Io-Tahoe Episode 5: Enterprise Digital Resilience on Hybrid and Multicloud
>>from around the globe. It's the Cube presenting enterprise. Digital resilience on hybrid and multi cloud Brought to You by Iota Ho. Hello, everyone, and welcome to our continuing Siri's covering data automation brought to you by Io Tahoe. Today we're gonna look at how to ensure enterprise resilience for hybrid and multi cloud. Let's welcome in age. Eva Hora, who is the CEO of Iota A J. Always good to see you again. Thanks for coming on. >>Great to be back. David Pleasure. >>And he's joined by Fozzy Coons, who is a global principal architect for financial services. The vertical of financial services. That red hat. He's got deep experiences in that sector. Welcome, Fozzie. Good to see you. >>Thank you very much. Happy to be here. >>Fancy. Let's start with you. Look, there are a lot of views on cloud and what it is. I wonder if you could explain to us how you think about what is a hybrid cloud and and how it works. >>Sure, yes. So the hybrid cloud is a 90 architecture that incorporates some degree off workload, possibility, orchestration and management across multiple clouds. Those clouds could be private cloud or public cloud or even your own data centers. And how does it all work? It's all about secure interconnectivity and on demand. Allocation of resources across clouds and separate clouds can become hydrate when they're similarly >>interconnected. And >>it is that interconnectivity that allows the workloads workers to be moved and how management can be unified in off the street. You can work and how well you have. These interconnections has a direct impact on how well your hybrid cloud will work. >>Okay, so we'll fancy staying with you for a minute. So in the early days of Cloud that turned private Cloud was thrown a lot around a lot, but often just meant virtualization of an on PREM system and a network connection to the public cloud. Let's bring it forward. What, in your view, does a modern hybrid cloud architecture look like? >>Sure. So for modern public clouds, we see that, um, teams organizations need to focus on the portability off applications across clouds. That's very important, right? And when organizations build applications, they need to build and deploy these applications as small collections off independently, loosely coupled services, and then have those things run on the same operating system which means, in other words, running it on Lenox everywhere and building cloud native applications and being able to manage and orchestrate thes applications with platforms like KUBERNETES or read it open shit, for example. >>Okay, so that Z, that's definitely different from building a monolithic application that's fossilized and and doesn't move. So what are the challenges for customers, you know, to get to that modern cloud? Aziz, you've just described it. Is it skill sets? Is that the ability to leverage things like containers? What's your view there? >>So, I mean, from what we've seen around around the industry, especially around financial services, where I spent most of my time, we see that the first thing that we see is management right now because you have all these clouds and all these applications, you have a massive array off connections off interconnections. You also have massive array off integrations, possibility and resource allocations as well, and then orchestrating all those different moving pieces. Things like storage networks and things like those are really difficult to manage, right? That's one. What s O Management is the first challenge. The second one is workload, placement, placement. Where do you place this? How do you place this cloud? Native applications. Do you or do you keep on site on Prem? And what do you put in the cloud? That is the the the other challenge. The major one. The third one is security. Security now becomes the key challenge and concern for most customers. And we could talk about how hundreds? Yeah, >>we're definitely gonna dig into that. Let's bring a J into the conversation. A J. You know, you and I have talked about this in the past. One of the big problems that virtually every companies face is data fragmentation. Um, talk a little bit about how I owe Tahoe unifies data across both traditional systems legacy systems. And it connects to these modern I t environments. >>Yeah, sure, Dave. I mean, fancy just nailed it. There used to be about data of the volume of data on the different types of data. But as applications become or connected and interconnected at the location of that data really matters how we serve that data up to those those app. So working with red hat in our partnership with Red Hat being able Thio, inject our data Discovery machine learning into these multiple different locations. Would it be in AWS on IBM Cloud or A D. C p R. On Prem being able thio Automate that discovery? I'm pulling that. That single view of where is all my data then allows the CEO to manage cast that can do things like one. I keep the data where it is on premise or in my Oracle Cloud or in my IBM cloud on Connect. The application that needs to feed off that data on the way in which you do that is machine learning. That learns over time is it recognizes different types of data, applies policies to declassify that data. Andi and brings it all together with automation. >>Right? And that's one of the big themes and we've talked about this on earlier episodes. Is really simplification really abstracting a lot of that heavy lifting away so we can focus on things A. J A. Z. You just mentioned e nifaz e. One of the big challenges that, of course, we all talk about his governance across thes disparity data sets. I'm curious as your thoughts. How does Red Hat really think about helping customers adhere to corporate edicts and compliance regulations, which, of course, are are particularly acute within financial services. >>Oh, yeah, Yes. So for banks and the payment providers, like you've just mentioned their insurers and many other financial services firms, Um, you know, they have to adhere Thio standards such as a PC. I. D. S s in Europe. You've got the G g d p g d p r, which requires strange and tracking, reporting documentation. And you know, for them to to remain in compliance and the way we recommend our customers to address these challenges is by having an automation strategy. Right. And that type of strategy can help you to improve the security on compliance off the organization and reduce the risk after the business. Right. And we help organizations build security and compliance from the start without consulting services residencies. We also offer courses that help customers to understand how to address some of these challenges. And that's also we help organizations build security into their applications without open sources. Mueller, where, um, middle offerings and even using a platform like open shift because it allows you to run legacy applications and also continue rights applications in a unified platform right And also that provides you with, you know, with the automation and the truly that you need to continuously monitor, manage and automate the systems for security and compliance >>purposes. Hey, >>Jay, anything. Any color you could add to this conversation? >>Yeah, I'm pleased. Badly brought up Open shift. I mean, we're using open shift to be able. Thio, take that security application of controls to to the data level. It's all about context. So, understanding what data is there being able to assess it to say who should have access to it. Which application permission should be applied to it. Um, that za great combination of Red Hat tonight. Tahoe. >>But what about multi Cloud? Doesn't that complicate the situation even even further? Maybe you could talk about some of the best practices to apply automation across not only hybrid cloud, but multi >>cloud a swell. Yeah, sure. >>Yeah. So the right automation solution, you know, can be the difference between, you know, cultivating an automated enterprise or automation caress. And some of the recommendations we give our clients is to look for an automation platform that can offer the first thing is complete support. So that means have an automation solution that provides that provides, um, you know, promotes I t availability and reliability with your platform so that you can provide, you know, enterprise great support, including security and testing, integration and clear roadmaps. The second thing is vendor interoperability interoperability in that you are going to be integrating multiple clouds. So you're going to need a solution that can connect to multiple clouds. Simples lee, right? And with that comes the challenge off maintain ability. So you you you're going to need to look into a automation Ah, solution that that is easy to learn or has an easy learning curve. And then the fourth idea that we tell our customers is scalability in the in the hybrid cloud space scale is >>is >>a big, big deal here, and you need a to deploy an automation solution that can span across the whole enterprise in a constituent, consistent manner, right? And then also, that allows you finally to, uh, integrate the multiple data centers that you have, >>So A J I mean, this is a complicated situation, for if a customer has toe, make sure things work on AWS or azure or Google. Uh, they're gonna spend all their time doing that, huh? What can you add really? To simplify that that multi cloud and hybrid cloud equation? >>Yeah. I could give a few customer examples here Warming a manufacturer that we've worked with to drive that simplification Onda riel bonuses for them is has been a reduction cost. We worked with them late last year to bring the cost bend down by $10 million in 2021 so they could hit that reduced budget. Andre, What we brought to that was the ability thio deploy using open shift templates into their different environments. Where there is on premise on bond or in as you mentioned, a W s. They had G cps well, for their marketing team on a cross, those different platforms being out Thio use a template, use pre built scripts to get up and running in catalog and discover that data within minutes. It takes away the legacy of having teams of people having Thio to jump on workshop cause and I know we're all on a lot of teens. The zoom cause, um, in these current times, they just sent me is in in of hours in the day Thio manually perform all of this. So yeah, working with red hat applying machine learning into those templates those little recipes that we can put that automation toe work, regardless of which location the data is in allows us thio pull that unified view together. Right? >>Thank you, Fozzie. I wanna come back to you. So the early days of cloud, you're in the big apple, you know, financial services. Really well. Cloud was like an evil word within financial services, and obviously that's changed. It's evolved. We talked about the pandemic, has even accelerated that, Um And when you really, you know, dug into it when you talk to customers about their experiences with security in the cloud it was it was not that it wasn't good. It was great, whatever. But it was different. And there's always this issue of skill, lack of skills and multiple tools suck up teams, they're really overburdened. But in the cloud requires new thinking. You've got the shared responsibility model you've got obviously have specific corporate requirements and compliance. So this is even more complicated when you introduce multiple clouds. So what are the differences that you can share from your experience is running on a sort of either on Prem or on a mono cloud, um, or, you know, and versus across clouds. What? What? What do you suggest there? >>Yeah, you know, because of these complexities that you have explained here, Miss Configurations and the inadequate change control the top security threats. So human error is what we want to avoid because is, you know, as your clouds grow with complexity and you put humans in the mix, then the rate off eras is going to increase, and that is going to exposure to security threat. So this is where automation comes in because automation will streamline and increase the consistency off your infrastructure management. Also application development and even security operations to improve in your protection, compliance and change control. So you want to consistently configure resources according to a pre approved um, you know, pre approved policies and you want to proactively maintain a to them in a repeatable fashion over the whole life cycle. And then you also want to rapid the identified system that require patches and and reconfiguration and automate that process off patching and reconfiguring so that you don't have humans doing this type of thing, right? And you want to be able to easily apply patches and change assistant settings. According Thio, Pre defined, based on like explained before, you know, with the pre approved policies and also you want is off auditing and troubleshooting, right? And from a rate of perspective, we provide tools that enable you to do this. We have, for example, a tool called danceable that enables you to automate data center operations and security and also deployment of applications and also obvious shit yourself, you know, automates most of these things and obstruct the human beings from putting their fingers on, causing, uh, potentially introducing errors right now in looking into the new world off multiple clouds and so forth. The difference is that we're seeing here between running a single cloud or on prem is three main areas which is control security and compliance. Right control here it means if your on premise or you have one cloud, um, you know, in most cases you have control over your data and your applications, especially if you're on Prem. However, if you're in the public cloud, there is a difference there. The ownership, it is still yours. But your resources are running on somebody else's or the public clouds. You know, e w s and so forth infrastructure. So people that are going to do this need to really especially banks and governments need to be aware off the regulatory constraints off running, uh, those applications in the public cloud. And we also help customers regionalize some of these choices and also on security. You will see that if you're running on premises or in a single cloud, you have more control, especially if you're on Prem. You can control this sensitive information that you have, however, in the cloud. That's a different situation, especially from personal information of employees and things like that. You need to be really careful off that. And also again, we help you rationalize some of those choices. And then the last one is compliant. Aziz. Well, you see that if you're running on Prem or a single cloud, um, regulations come into play again, right? And if you're running a problem, you have control over that. You can document everything you have access to everything that you need. But if you're gonna go to the public cloud again, you need to think about that. We have automation, and we have standards that can help you, uh, you know, address some of these challenges for security and compliance. >>So that's really strong insights, Potsie. I mean, first of all, answerable has a lot of market momentum. Red hats in a really good job with that acquisition, your point about repeatability is critical because you can't scale otherwise. And then that idea you're you're putting forth about control, security compliance It's so true is I called it the shared responsibility model. And there was a lot of misunderstanding in the early days of cloud. I mean, yeah, maybe a W s is gonna physically secure the, you know, s three, but in the bucket. But we saw so many Miss configurations early on. And so it's key to have partners that really understand this stuff and can share the experiences of other clients. So this all sounds great. A j. You're sharp, you know, financial background. What about the economics? >>You >>know, our survey data shows that security it's at the top of the spending priority list, but budgets are stretched thin. E especially when you think about the work from home pivot and and all the areas that they had toe the holes that they had to fill their, whether it was laptops, you know, new security models, etcetera. So how do organizations pay for this? What's the business case look like in terms of maybe reducing infrastructure costs so I could, you know, pay it forward or there's a There's a risk reduction angle. What can you share >>their? Yeah. I mean, the perspective I'd like to give here is, um, not being multi cloud is multi copies of an application or data. When I think about 20 years, a lot of the work in financial services I was looking at with managing copies of data that we're feeding different pipelines, different applications. Now what we're saying I talk a lot of the work that we're doing is reducing the number of copies of that data so that if I've got a product lifecycle management set of data, if I'm a manufacturer, I'm just gonna keep that in one location. But across my different clouds, I'm gonna have best of breed applications developed in house third parties in collaboration with my supply chain connecting securely to that. That single version of the truth. What I'm not going to do is to copy that data. So ah, lot of what we're seeing now is that interconnectivity using applications built on kubernetes. Um, that decoupled from the data source that allows us to reduce those copies of data within that you're gaining from the security capability and resilience because you're not leaving yourself open to those multiple copies of data on with that. Couldn't come. Cost, cost of storage on duh cost of compute. So what we're seeing is using multi cloud to leverage the best of what each cloud platform has to offer That goes all the way to Snowflake and Hiroko on Cloud manage databases, too. >>Well, and the people cost to a swell when you think about yes, the copy creep. But then you know when something goes wrong, a human has to come in and figured out um, you brought up snowflake, get this vision of the data cloud, which is, you know, data data. I think this we're gonna be rethinking a j, uh, data architectures in the coming decade where data stays where it belongs. It's distributed, and you're providing access. Like you said, you're separating the data from the applications applications as we talked about with Fozzie. Much more portable. So it Z really the last 10 years will be different than the next 10 years. A. >>J Definitely. I think the people cast election is used. Gone are the days where you needed thio have a dozen people governing managing black policies to data. Ah, lot of that repetitive work. Those tests can be in power automated. We've seen examples in insurance were reduced teams of 15 people working in the the back office China apply security controls compliance down to just a couple of people who are looking at the exceptions that don't fit. And that's really important because maybe two years ago the emphasis was on regulatory compliance of data with policies such as GDP are in CCP a last year, very much the economic effect of reduce headcounts on on enterprises of running lean looking to reduce that cost. This year, we can see that already some of the more proactive cos they're looking at initiatives such as net zero emissions how they use data toe under understand how cape how they can become more have a better social impact. Um, and using data to drive that, and that's across all of their operations and supply chain. So those regulatory compliance issues that may have been external we see similar patterns emerging for internal initiatives that benefiting the environment, social impact and and, of course, course, >>great perspectives. Yeah, Jeff Hammer, Bucker once famously said, The best minds of my generation are trying to get people to click on ads and a J. Those examples that you just gave of, you know, social good and moving. Uh, things forward are really critical. And I think that's where Data is gonna have the biggest societal impact. Okay, guys, great conversation. Thanks so much for coming on the program. Really appreciate your time. Keep it right there from, or insight and conversation around, creating a resilient digital business model. You're watching the >>Cube digital resilience, automated compliance, privacy and security for your multi cloud. Congratulations. You're on the journey. You have successfully transformed your organization by moving to a cloud based platform to ensure business continuity in these challenging times. But as you scale your digital activities, there is an inevitable influx of users that outpaces traditional methods of cybersecurity, exposing your data toe underlying threats on making your company susceptible toe ever greater risk to become digitally resilient. Have you applied controls your data continuously throughout the data Lifecycle? What are you doing to keep your customer on supply data private and secure? I owe Tahoe's automated, sensitive data. Discovery is pre programmed with over 300 existing policies that meet government mandated risk and compliance standards. Thes automate the process of applying policies and controls to your data. Our algorithm driven recommendation engine alerts you to risk exposure at the data level and suggests the appropriate next steps to remain compliant on ensure sensitive data is secure. Unsure about where your organization stands In terms of digital resilience, Sign up for a minimal cost commitment. Free data Health check. Let us run our sensitive data discovery on key unmapped data silos and sources to give you a clear understanding of what's in your environment. Book time within Iot. Tahoe Engineer Now >>Okay, let's now get into the next segment where we'll explore data automation. But from the angle of digital resilience within and as a service consumption model, we're now joined by Yusuf Khan, who heads data services for Iot, Tahoe and Shirish County up in. Who's the vice president and head of U. S. Sales at happiest Minds? Gents, welcome to the program. Great to have you in the Cube. >>Thank you, David. >>Trust you guys talk about happiest minds. This notion of born digital, foreign agile. I like that. But talk about your mission at the company. >>Sure. >>A former in 2011 Happiest Mind is a born digital born a child company. The reason is that we are focused on customers. Our customer centric approach on delivering digitals and seamless solutions have helped us be in the race. Along with the Tier one providers, Our mission, happiest people, happiest customers is focused to enable customer happiness through people happiness. We have Bean ranked among the top 25 i t services company in the great places to work serving hour glass to ratings off 41 against the rating off. Five is among the job in the Indian nineties services company that >>shows the >>mission on the culture. What we have built on the values right sharing, mindful, integrity, learning and social on social responsibilities are the core values off our company on. That's where the entire culture of the company has been built. >>That's great. That sounds like a happy place to be. Now you said you had up data services for Iot Tahoe. We've talked in the past. Of course you're out of London. What >>do you what? Your >>day to day focus with customers and partners. What you focused >>on? Well, David, my team work daily with customers and partners to help them better understand their data, improve their data quality, their data governance on help them make that data more accessible in a self service kind of way. To the stakeholders within those businesses on dis is all a key part of digital resilience that will will come on to talk about but later. You're >>right, e mean, that self service theme is something that we're gonna we're gonna really accelerate this decade, Yussef and so. But I wonder before we get into that, maybe you could talk about the nature of the partnership with happiest minds, you know? Why do you guys choose toe work closely together? >>Very good question. Um, we see Hyo Tahoe on happiest minds as a great mutual fit. A Suresh has said, uh, happiest minds are very agile organization um, I think that's one of the key things that attracts their customers on Io. Tahoe is all about automation. Uh, we're using machine learning algorithms to make data discovery data cataloging, understanding, data done. See, uh, much easier on. We're enabling customers and partners to do it much more quickly. So when you combine our emphasis on automation with the emphasis on agility that happiest minds have that that's a really nice combination work works very well together, very powerful. I think the other things that a key are both businesses, a serious have said, are really innovative digital native type type companies. Um, very focused on newer technologies, the cloud etcetera on. Then finally, I think they're both Challenger brands on happiest minds have a really positive, fresh ethical approach to people and customers that really resonates with us at Ideo Tahoe to >>great thank you for that. So Russia, let's get into the whole notion of digital resilience. I wanna I wanna sort of set it up with what I see, and maybe you can comment be prior to the pandemic. A lot of customers that kind of equated disaster recovery with their business continuance or business resilient strategy, and that's changed almost overnight. How have you seen your clients respond to that? What? I sometimes called the forced march to become a digital business. And maybe you could talk about some of the challenges that they faced along the way. >>Absolutely. So, uh, especially during this pandemic, times when you say Dave, customers have been having tough times managing their business. So happiest minds. Being a digital Brazilian company, we were able to react much faster in the industry, apart from the other services company. So one of the key things is the organisation's trying to adopt onto the digital technologies. Right there has bean lot off data which has been to manage by these customers on There have been lot off threats and risk, which has been to manage by the CEO Seo's so happiest minds digital resilient technology, right where we bring in the data. Complaints as a service were ableto manage the resilience much ahead off other competitors in the market. We were ableto bring in our business continuity processes from day one, where we were ableto deliver our services without any interruption to the services. What we were delivered to our customers So that is where the digital resilience with business community process enabled was very helpful for us. Toe enable our customers continue their business without any interruptions during pandemics. >>So I mean, some of the challenges that customers tell me they obviously they had to figure out how to get laptops to remote workers and that that whole remote work from home pivot figure out how to secure the end points. And, you know, those were kind of looking back there kind of table stakes, But it sounds like you've got a digital business. Means a data business putting data at the core, I like to say, but so I wonder if you could talk a little bit more about maybe the philosophy you have toward digital resilience in the specific approach you take with clients? >>Absolutely. They seen any organization data becomes. The key on that, for the first step is to identify the critical data. Right. So we this is a six step process. What we following happiest minds. First of all, we take stock off the current state, though the customers think that they have a clear visibility off their data. How are we do more often assessment from an external point off view on see how critical their data is, then we help the customers to strategies that right. The most important thing is to identify the most important critical herself. Data being the most critical assert for any organization. Identification off the data's key for the customers. Then we help in building a viable operating model to ensure these identified critical assets are secure on monitor dearly so that they are consumed well as well as protected from external threats. Then, as 1/4 step, we try to bring in awareness, toe the people we train them >>at >>all levels in the organization. That is a P for people to understand the importance off the digital ourselves and then as 1/5 step, we work as a back up plan in terms of bringing in a very comprehensive and a holistic testing approach on people process as well as in technology. We'll see how the organization can withstand during a crisis time, and finally we do a continuous governance off this data, which is a key right. It is not just a one step process. We set up the environment, we do the initial analysis and set up the strategy on continuously govern this data to ensure that they are not only know managed will secure as well as they also have to meet the compliance requirements off the organization's right. That is where we help organizations toe secure on Meet the regulations off the organizations. As for the privacy laws, so this is a constant process. It's not on one time effort. We do a constant process because every organization goes towards their digital journey on. They have to face all these as part off the evolving environment on digital journey. And that's where they should be kept ready in terms off. No recovering, rebounding on moving forward if things goes wrong. >>So let's stick on that for a minute, and then I wanna bring yourself into the conversation. So you mentioned compliance and governance when when your digital business, you're, as you say, you're a data business, so that brings up issues. Data sovereignty. Uh, there's governance, this compliance. There's things like right to be forgotten. There's data privacy, so many things. These were often kind of afterthoughts for businesses that bolted on, if you will. I know a lot of executives are very much concerned that these air built in on, and it's not a one shot deal. So do you have solutions around compliance and governance? Can you deliver that as a service? Maybe you could talk about some of the specifics there, >>so some of way have offered multiple services. Tow our customers on digital against. On one of the key service is the data complaints. As a service here we help organizations toe map the key data against the data compliance requirements. Some of the features includes in terms off the continuous discovery off data right, because organizations keep adding on data when they move more digital on helping the helping and understanding the actual data in terms off the residents of data, it could be a heterogeneous data soldiers. It could be on data basis, or it could be even on the data legs. Or it could be a no even on compromise all the cloud environment. So identifying the data across the various no heterogeneous environment is very key. Feature off our solution. Once we identify classify this sensitive data, the data privacy regulations on the traveling laws have to be map based on the business rules So we define those rules on help map those data so that organizations know how critical their digital assets are. Then we work on a continuous marching off data for anomalies because that's one of the key teachers off the solution, which needs to be implemented on the day to day operational basis. So we're helping monitoring those anomalies off data for data quality management on an ongoing basis. On finally, we also bringing the automated data governance where we can manage the sensory data policies on their later relationships in terms off mapping on manage their business roots on we drive reputations toe Also suggest appropriate actions to the customers. Take on those specific data sets. >>Great. Thank you, Yousef. Thanks for being patient. I want to bring in Iota ho thio discussion and understand where your customers and happiest minds can leverage your data automation capability that you and I have talked about in the past. I'm gonna be great if you had an example is well, but maybe you could pick it up from there, >>John. I mean, at a high level, assertions are clearly articulated. Really? Um, Hyoty, who delivers business agility. So that's by, um accelerating the time to operationalize data, automating, putting in place controls and actually putting helping put in place digital resilience. I mean way if we step back a little bit in time, um, traditional resilience in relation to data often met manually, making multiple copies of the same data. So you have a d b A. They would copy the data to various different places, and then business users would access it in those functional style owes. And of course, what happened was you ended up with lots of different copies off the same data around the enterprise. Very inefficient. ONDA course ultimately, uh, increases your risk profile. Your risk of a data breach. Um, it's very hard to know where everything is. And I realized that expression. They used David the idea of the forced march to digital. So with enterprises that are going on this forced march, what they're finding is they don't have a single version of the truth, and almost nobody has an accurate view of where their critical data is. Then you have containers bond with containers that enables a big leap forward so you could break applications down into micro services. Updates are available via a p I s on. So you don't have the same need thio to build and to manage multiple copies of the data. So you have an opportunity to just have a single version of the truth. Then your challenge is, how do you deal with these large legacy data states that the service has been referring Thio, where you you have toe consolidate and that's really where I attack comes in. Um, we massively accelerate that process of putting in a single version of the truth into place. So by automatically discovering the data, discovering what's dubica? What's redundant? Uh, that means you can consolidate it down to a single trusted version much more quickly. We've seen many customers have tried to do this manually, and it's literally taken years using manual methods to cover even a small percentage of their I T estates. With our tire, you could do it really very quickly on you can have tangible results within weeks and months on Ben, you can apply controls to the data based on context. So who's the user? What's the content? What's the use case? Things like data quality validations or access permissions on. Then, once you've done there. Your applications and your enterprise are much more secure, much more resilient. As a result, you've got to do these things whilst retaining agility, though. So coming full circle. This is where the partnership with happiest minds really comes in as well. You've got to be agile. You've gotta have controls. Um, on you've got a drug toward the business outcomes. Uh, and it's doing those three things together that really deliver for the customer. >>Thank you. Use f. I mean you and I. In previous episodes, we've looked in detail at the business case. You were just talking about the manual labor involved. We know that you can't scale, but also there's that compression of time. Thio get to the next step in terms of ultimately getting to the outcome. And we talked to a number of customers in the Cube, and the conclusion is, it's really consistent that if you could accelerate the time to value, that's the key driver reducing complexity, automating and getting to insights faster. That's where you see telephone numbers in terms of business impact. So my question is, where should customers start? I mean, how can they take advantage of some of these opportunities that we've discussed today. >>Well, we've tried to make that easy for customers. So with our Tahoe and happiest minds, you can very quickly do what we call a data health check. Um, this is a is a 2 to 3 week process, uh, to really quickly start to understand on deliver value from your data. Um, so, iota, who deploys into the customer environment? Data doesn't go anywhere. Um, we would look at a few data sources on a sample of data. Onda. We can very rapidly demonstrate how they discovery those catalog e on understanding Jupiter data and redundant data can be done. Um, using machine learning, um, on how those problems can be solved. Um, And so what we tend to find is that we can very quickly, as I say in the matter of a few weeks, show a customer how they could get toe, um, or Brazilian outcome on then how they can scale that up, take it into production on, then really understand their data state? Better on build. Um, Brasiliense into the enterprise. >>Excellent. There you have it. We'll leave it right there. Guys, great conversation. Thanks so much for coming on the program. Best of luck to you and the partnership Be well, >>Thank you, David Suresh. Thank you. Thank >>you for watching everybody, This is Dave Volonte for the Cuban are ongoing Siris on data automation without >>Tahoe, digital resilience, automated compliance, privacy and security for your multi cloud. Congratulations. You're on the journey. You have successfully transformed your organization by moving to a cloud based platform to ensure business continuity in these challenging times. But as you scale your digital activities, there is an inevitable influx of users that outpaces traditional methods of cybersecurity, exposing your data toe underlying threats on making your company susceptible toe ever greater risk to become digitally resilient. Have you applied controls your data continuously throughout the data lifecycle? What are you doing to keep your customer on supply data private and secure? I owe Tahoe's automated sensitive data. Discovery is pre programmed with over 300 existing policies that meet government mandated risk and compliance standards. Thes automate the process of applying policies and controls to your data. Our algorithm driven recommendation engine alerts you to risk exposure at the data level and suggests the appropriate next steps to remain compliant on ensure sensitive data is secure. Unsure about where your organization stands in terms of digital resilience. Sign up for our minimal cost commitment. Free data health check. Let us run our sensitive data discovery on key unmapped data silos and sources to give you a clear understanding of what's in your environment. Book time within Iot. Tahoe Engineer. Now. >>Okay, now we're >>gonna go into the demo. We want to get a better understanding of how you can leverage open shift. And I owe Tahoe to facilitate faster application deployment. Let me pass the mic to Sabetta. Take it away. >>Uh, thanks, Dave. Happy to be here again, Guys, uh, they've mentioned names to be the Davis. I'm the enterprise account executive here. Toyota ho eso Today we just wanted to give you guys a general overview of how we're using open shift. Yeah. Hey, I'm Noah Iota host data operations engineer, working with open ship. And I've been learning the Internets of open shift for, like, the past few months, and I'm here to share. What a plan. Okay, so So before we begin, I'm sure everybody wants to know. Noel, what are the benefits of using open shift. Well, there's five that I can think of a faster time, the operation simplicity, automation control and digital resilience. Okay, so that that's really interesting, because there's an exact same benefits that we had a Tahoe delivered to our customers. But let's start with faster time the operation by running iota. Who on open shift? Is it faster than, let's say, using kubernetes and other platforms >>are >>objective iota. Who is to be accessible across multiple cloud platforms, right? And so by hosting our application and containers were able to achieve this. So to answer your question, it's faster to create and use your application images using container tools like kubernetes with open shift as compared to, like kubernetes with docker cry over container D. Okay, so we got a bit technical there. Can you explain that in a bit more detail? Yeah, there's a bit of vocabulary involved, uh, so basically, containers are used in developing things like databases, Web servers or applications such as I have top. What's great about containers is that they split the workload so developers can select the libraries without breaking anything. And since Hammond's can update the host without interrupting the programmers. Uh, now, open shift works hand in hand with kubernetes to provide a way to build those containers for applications. Okay, got It s basically containers make life easier for developers and system happens. How does open shift differ from other platforms? Well, this kind of leads into the second benefit I want to talk about, which is simplicity. Basically, there's a lot of steps involved with when using kubernetes with docker. But open shift simplifies this with their source to image process that takes the source code and turns it into a container image. But that's not all. Open shift has a lot of automation and features that simplify working with containers, an important one being its Web console. Here. I've set up a light version of open ship called Code Ready Containers, and I was able to set up her application right from the Web console. And I was able to set up this entire thing in Windows, Mac and Lennox. So its environment agnostic in that sense. Okay, so I think I've seen the top left that this is a developers view. What would a systems admin view look like? It's a good question. So here's the administrator view and this kind of ties into the benefit of control. Um, this view gives insights into each one of the applications and containers that are running, and you could make changes without affecting deployment. Andi can also, within this view, set up each layer of security, and there's multiple that you can prop up. But I haven't fully messed around with it because with my luck, I'd probably locked myself out. So that seems pretty secure. Is there a single point security such as you use a log in? Or are there multiple layers of security? Yeah, there are multiple layers of security. There's your user login security groups and general role based access controls. Um, but there's also a ton of layers of security surrounding like the containers themselves. But for the sake of time, I won't get too far into it. Okay, eso you mentioned simplicity In time. The operation is being two of the benefits. You also briefly mention automation. And as you know, automation is the backbone of our platform here, Toyota Ho. So that's certainly grabbed my attention. Can you go a bit more in depth in terms of automation? Open shift provides extensive automation that speeds up that time the operation. Right. So the latest versions of open should come with a built in cryo container engine, which basically means that you get to skip that container engine insulation step and you don't have to, like, log into each individual container host and configure networking, configure registry servers, storage, etcetera. So I'd say, uh, it automates the more boring kind of tedious process is Okay, so I see the iota ho template there. What does it allow me to do? Um, in terms of automation in application development. So we've created an open shift template which contains our application. This allows developers thio instantly, like set up our product within that template. So, Noah Last question. Speaking of vocabulary, you mentioned earlier digital resilience of the term we're hearing, especially in the banking and finance world. Um, it seems from what you described, industries like banking and finance would be more resilient using open shift, Correct. Yeah, In terms of digital resilience, open shift will give you better control over the consumption of resource is each container is using. In addition, the benefit of containers is that, like I mentioned earlier since Hammond's can troubleshoot servers about bringing down the application and if the application does go down is easy to bring it back up using templates and, like the other automation features that open ship provides. Okay, so thanks so much. Know us? So any final thoughts you want to share? Yeah. I just want to give a quick recap with, like, the five benefits that you gained by using open shift. Uh, the five are timeto operation automation, control, security and simplicity. You could deploy applications faster. You could simplify the workload you could automate. A lot of the otherwise tedious processes can maintain full control over your workflow. And you could assert digital resilience within your environment. Guys, >>Thanks for that. Appreciate the demo. Um, I wonder you guys have been talking about the combination of a Iot Tahoe and red hat. Can you tie that in subito Digital resilience >>Specifically? Yeah, sure, Dave eso when we speak to the benefits of security controls in terms of digital resilience at Io Tahoe, we automated detection and apply controls at the data level, so this would provide for more enhanced security. >>Okay, But so if you were trying to do all these things manually. I mean, what what does that do? How much time can I compress? What's the time to value? >>So with our latest versions, Biota we're taking advantage of faster deployment time associated with container ization and kubernetes. So this kind of speeds up the time it takes for customers. Start using our software as they be ableto quickly spin up io towel on their own on premise environment are otherwise in their own cloud environment, like including aws. Assure or call GP on IBM Cloud a quick start templates allow flexibility deploy into multi cloud environments all just using, like, a few clicks. Okay, so so now just quickly add So what we've done iota, Who here is We've really moved our customers away from the whole idea of needing a team of engineers to apply controls to data as compared to other manually driven work flows. Eso with templates, automation, previous policies and data controls. One person can be fully operational within a few hours and achieve results straight out of the box on any cloud. >>Yeah, we've been talking about this theme of abstracting the complexity. That's really what we're seeing is a major trend in in this coming decade. Okay, great. Thanks, Sabina. Noah, How could people get more information or if they have any follow up questions? Where should they go? >>Yeah, sure. They've. I mean, if you guys are interested in learning more, you know, reach out to us at info at iata ho dot com to speak with one of our sales engineers. I mean, we love to hear from you, so book a meeting as soon as you can. All >>right. Thanks, guys. Keep it right there from or cube content with.
SUMMARY :
Always good to see you again. Great to be back. Good to see you. Thank you very much. I wonder if you could explain to us how you think about what is a hybrid cloud and So the hybrid cloud is a 90 architecture that incorporates some degree off And it is that interconnectivity that allows the workloads workers to be moved So in the early days of Cloud that turned private Cloud was thrown a lot to manage and orchestrate thes applications with platforms like Is that the ability to leverage things like containers? And what do you put in the cloud? One of the big problems that virtually every companies face is data fragmentation. the way in which you do that is machine learning. And that's one of the big themes and we've talked about this on earlier episodes. And that type of strategy can help you to improve the security on Hey, Any color you could add to this conversation? is there being able to assess it to say who should have access to it. Yeah, sure. the difference between, you know, cultivating an automated enterprise or automation caress. What can you add really? bond or in as you mentioned, a W s. They had G cps well, So what are the differences that you can share from your experience is running on a sort of either And from a rate of perspective, we provide tools that enable you to do this. A j. You're sharp, you know, financial background. know, our survey data shows that security it's at the top of the spending priority list, Um, that decoupled from the data source that Well, and the people cost to a swell when you think about yes, the copy creep. Gone are the days where you needed thio have a dozen people governing managing to get people to click on ads and a J. Those examples that you just gave of, you know, to give you a clear understanding of what's in your environment. Great to have you in the Cube. Trust you guys talk about happiest minds. We have Bean ranked among the mission on the culture. Now you said you had up data services for Iot Tahoe. What you focused To the stakeholders within those businesses on dis is of the partnership with happiest minds, you know? So when you combine our emphasis on automation with the emphasis And maybe you could talk about some of the challenges that they faced along the way. So one of the key things putting data at the core, I like to say, but so I wonder if you could talk a little bit more about maybe for the first step is to identify the critical data. off the digital ourselves and then as 1/5 step, we work as a back up plan So you mentioned compliance and governance when when your digital business, you're, as you say, So identifying the data across the various no heterogeneous environment is well, but maybe you could pick it up from there, So you don't have the same need thio to build and to manage multiple copies of the data. and the conclusion is, it's really consistent that if you could accelerate the time to value, to really quickly start to understand on deliver value from your data. Best of luck to you and the partnership Be well, Thank you, David Suresh. to give you a clear understanding of what's in your environment. Let me pass the mic to And I've been learning the Internets of open shift for, like, the past few months, and I'm here to share. into each one of the applications and containers that are running, and you could make changes without affecting Um, I wonder you guys have been talking about the combination of apply controls at the data level, so this would provide for more enhanced security. What's the time to value? a team of engineers to apply controls to data as compared to other manually driven work That's really what we're seeing I mean, if you guys are interested in learning more, you know, reach out to us at info at iata Keep it right there from or cube content with.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Jeff Hammer | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Eva Hora | PERSON | 0.99+ |
David Suresh | PERSON | 0.99+ |
Sabina | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Yusuf Khan | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
2021 | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave Volonte | PERSON | 0.99+ |
Siri | TITLE | 0.99+ |
ORGANIZATION | 0.99+ | |
Fozzie | PERSON | 0.99+ |
2 | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
David Pleasure | PERSON | 0.99+ |
iata ho dot com | ORGANIZATION | 0.99+ |
Jay | PERSON | 0.99+ |
Five | QUANTITY | 0.99+ |
six step | QUANTITY | 0.99+ |
five benefits | QUANTITY | 0.99+ |
15 people | QUANTITY | 0.99+ |
Yousef | PERSON | 0.99+ |
$10 million | QUANTITY | 0.99+ |
This year | DATE | 0.99+ |
first step | QUANTITY | 0.99+ |
Ideo Tahoe | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Andre | PERSON | 0.99+ |
hundreds | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
one cloud | QUANTITY | 0.99+ |
2011 | DATE | 0.99+ |
Tahoe | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
Noel | PERSON | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Prem | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
tonight | DATE | 0.99+ |
Io Tahoe | ORGANIZATION | 0.99+ |
second benefit | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Iota A J. | ORGANIZATION | 0.99+ |
one step | QUANTITY | 0.99+ |
both | QUANTITY | 0.98+ |
third one | QUANTITY | 0.98+ |
Siris | TITLE | 0.98+ |
Aziz | PERSON | 0.98+ |
red hat | ORGANIZATION | 0.98+ |
each layer | QUANTITY | 0.98+ |
both businesses | QUANTITY | 0.98+ |
fourth idea | QUANTITY | 0.98+ |
apple | ORGANIZATION | 0.98+ |
1/5 step | QUANTITY | 0.98+ |
Toyota Ho | ORGANIZATION | 0.98+ |
first challenge | QUANTITY | 0.98+ |
41 | QUANTITY | 0.98+ |
azure | ORGANIZATION | 0.98+ |
Io Tahoe | PERSON | 0.98+ |
One person | QUANTITY | 0.98+ |
one location | QUANTITY | 0.98+ |
single | QUANTITY | 0.98+ |
Noah | PERSON | 0.98+ |
over 300 existing policies | QUANTITY | 0.98+ |
Iot Tahoe | ORGANIZATION | 0.98+ |
Thio | PERSON | 0.98+ |
Lenox | ORGANIZATION | 0.98+ |
two years ago | DATE | 0.98+ |
A. J A. Z. | PERSON | 0.98+ |
single point | QUANTITY | 0.98+ |
first thing | QUANTITY | 0.97+ |
Yussef | PERSON | 0.97+ |
Jupiter | LOCATION | 0.97+ |
second thing | QUANTITY | 0.97+ |
three things | QUANTITY | 0.97+ |
about 20 years | QUANTITY | 0.97+ |
single cloud | QUANTITY | 0.97+ |
First | QUANTITY | 0.97+ |
Suresh | PERSON | 0.97+ |
3 week | QUANTITY | 0.97+ |
each container | QUANTITY | 0.97+ |
each cloud platform | QUANTITY | 0.97+ |
Yusef Khan & Suresh Kanniappan | Io Tahoe Enterprise Digital Resilience on Hybrid & Multicloud
>>from around the globe. It's the Cube presenting enterprise, Digital resilience on hybrid and multi cloud Brought to You by Iota Ho. Okay, let's now get into the next segment where we'll explore data automation. But from the angle of digital resilience within and as a service consumption model, we're now joined by Yusuf Khan, who heads data services for Iota Ho and Shirish County. Up in Who's the vice president and head of U. S. Sales at happiest Minds. Gents, welcome to the program. Great to have you in the Cube. >>Thank you, David. >>Stretch. You guys talk about happiest minds. This notion of born digital, foreign agile. I like that. But talk about your mission at the company. >>Sure. A former in 2011 Happiest minds Up Born digital born a child company. >>The >>reason is that we are focused on customers. Our customer centric approach on delivering digitals and seamless solutions have helped us be in the race. Along with the Tier one providers, our mission, happiest people, happiest customers is focused to enable customer happiness through people happiness. We have Bean ranked among the top 25 I t services company in the great places to work serving hour glass to ratings off 4.1 against the rating off five is among the job in the Indian nineties services company that >>shows the >>mission on the culture. What we have built on the values, right sharing, mindful, integrity, learning and social on social responsibilities are the core values off our company on. That's where the entire culture of the company has been built. >>That's great. That sounds like a happy place to be. Now you have you head up data services for Iot Tahoe. We've talked in the past. Of course you're out of London. What do you what's your day to day focus with customers and partners? What you focused on? >>Well, David, my team work daily with customers and partners to help them better understand their data, improve their data quality, their data governance on help them make that data more accessible in a self service kind of way. To the stakeholders within those businesses on dis is all a key part of digital resilience that will will come on to talk about but later. You're >>right, e mean, that self service theme is something that we're gonna we're gonna really accelerate this decade, Yussef and so. But I wonder before we get into that, maybe you could talk about the nature of the partnership with happiest minds. You know, why do you guys choose toe work closely together? >>Very good question. Um, we see Io Tahoe on Happiest minds as a great mutual fit. A Suresh has said happiest minds are very agile organization. Um, I think that's one of the key things that attracts their customers on Io. Tahoe is all about automation. We're using machine learning algorithms to make data discovery data cataloging, understanding, data, redundancy, uh, much easier on. We're enabling customers and partners to do it much more quickly. So when you combine our emphasis on automation with the emphasis on agility, the happiest minds have that. That's a really nice combination. Work works very well together, very powerful. I think the other things that a key are both businesses, a serious have said are really innovative digital native type type companies. Um, very focused on newer technologies, the cloud etcetera, uh, on. Then finally, I think that both challenger brands Andi happiest minds have a really positive, fresh ethical approach to people and customers that really resonates with us that I have tied to its >>great thank you for that. So Russia, Let's get into the whole notion of digital resilience. I wanna I wanna sort of set it up with what I see. And maybe you can comment be prior to the pandemic. A lot of customers that kind of equated disaster recovery with their business continuance or business resilient strategy, and that's changed almost overnight. How have you seen your clients respond to that? What? I sometimes called the forced march to become a digital business. And maybe you could talk about some of the challenges that they faced along the way. >>Absolutely. So, uh, especially during this pandemic times when you see Dave customers have been having tough times managing their business. So happiest minds. Being a digital Brazilian company, we were able to react much faster in the industry, apart from the other services company. So one of the key things is the organizations trying to adopt onto the digital technologies right there has bean lot off data which has been to managed by these customers on. There have been lot off threats and risk, which has been to manage by the CEO Seo's so happiest minds digital resilient technology fight the where we're bringing the data complaints as a service, we were ableto manage the resilience much ahead off other competitors in the market. We were ableto bring in our business community processes from day one, where we were ableto deliver our services without any interruption to the services what we were delivering to our customers. >>So >>that is where the digital resilience with business community process enabled was very helpful for us who enable our customers continue there business without any interruptions during pandemics. >>So, I mean, some of the challenges that that customers tell me they obviously had to figure out how to get laptops to remote workers and that that whole remote, you know, work from home pivot figure out how to secure the end points. And, you know, those were kind of looking back there kind of table stakes, but it sounds like you've got a digital business means a data business putting data at the core, I like to say, but so I wonder if you could talk a little bit more about maybe the philosophy you have toward digital resilience in the specific approach you take with clients? >>Absolutely. They seen any organization data becomes. The key on this for the first step is to identify the critical data. Right. So we this is 1/6 process. What we following happiest minds. First of all, we take stock off the current state, though the customers think that they have a clear visibility off their data. How are we do more often assessment from an external point off view on See how critical their data is? Then we help the customers to strategies that right the most important thing is to identify the most important critical herself. Data being the most critical assault for any organization. Identification off the data's key for the customers. Then we help in building a viable operating model to ensure these identified critical assets are secure on monitor dearly so that they are consumed well as well as protected from external threats. Then, as 1/4 step, we try to bring in awareness, toe the people we train them at all levels in the organization. That is a P for people to understand the importance off the residual our cells. And then as 1/5 step, we work as a back up plan in terms of bringing in a very comprehensive and the holistic testing approach on people process as well as in technology. We'll see how the organization can withstand during a crisis time. And finally we do a continuous governance off this data, which is a key right. It is not just a one step process. We set up the environment. We do the initial analysis and set up the strategy on continuously govern this data to ensure that they are not only know managed will secure as well as they also have to meet the compliance requirements off the organization's right. That is where we help organizations toe secure on Meet the regulations off the organizations. As for the privacy laws, >>so >>this is a constant process. It's not on one time effort. We do a constant process because every organization goes towards the digital journey on. They have to face all these as part off the evolving environment on digital journey, and that's where they should be kept ready in terms off. No recovering, rebounding on moving forward if things goes wrong. >>So let's stick on that for a minute, and then I wanna bring yourself into the conversation. So you mentioned compliance and governance. When? When your digital business. Here, as you say, you're a data business. So that brings up issues. Data sovereignty. Uh, there's governance, this compliance. There's things like right to be forgotten. There's data privacy, so many things. These were often kind of afterthoughts for businesses that bolted on, if you will. I know a lot of executives are very much concerned that these air built in on, and it's not a one shot deal. So do you have solutions around compliance and governance? Can you deliver that as a service? Maybe you could talk about some of the specifics there, >>so some of way have offered multiple services. Tow our customers on digital race against. On one of the key service is the data complaints. As a service here we help organizations toe map the key data against the data compliance requirements. Some of the features includes in terms off the continuous discovery off data right, because organizations keep adding on data when they move more digital on helping the helping and understanding the actual data in terms off the residents of data, it could be a heterogeneous data sources. It could be on data basis or it could be even on the data lakes. Or it could be or no even on compromise, all the cloud environment. So identifying the data across the various no heterogeneous environment is very key. Feature off our solution. Once we identify, classify this sensitive data, the data privacy regulations on the traveling laws have to be map based on the business rules. So we define those rules on help map those data so that organizations know how critical their digital assets are. Then we work on a continuous marching off data for anomalies because that's one of the key teachers off the solution, which needs to be implemented on the day to day operational basis. So we're helping monitoring those anomalies off data for data quality management on an ongoing basis. And finally we also bringing the automatic data governance where we can manage the sensory data policies on their data relationships in terms off, mapping on manage their business rules on we drive reputations toe also suggest appropriate actions to the customers. Take on those specific data sets. >>Great. Thank you, Yousef. Thanks for being patient. I want to bring in Iota ho thio discussion and understand where your customers and happiest minds can leverage your data automation capability that you and I have talked about in the past. And I'm gonna be great if you had an example is well, but maybe you could pick it up from there. >>Sure. I mean, at a high level, assertions are clearly articulated. Really? Um, Iota, who delivers business agility. So that's by, um, accelerating the time to operationalize data, automating, putting in place controls and ultimately putting, helping put in place digital resilience. I mean, way if we step back a little bit in time, um, traditional resilience in relation to data are often met manually, making multiple copies of the same data. So you have a DB A. They would copy the data to various different places on business. Users would access it in those functional style owes. And of course, what happened was you ended up with lots of different copies off the same data around the enterprise. Very inefficient. Onda course ultimately, uh, increases your risk profile. Your risk of a data breach. Um, it's very hard to know where everything is, and I realized that expression they used David, the idea of the forced march to digital. So with enterprises that are going on this forced march, what they're finding is they don't have a single version of the truth, and almost nobody has an accurate view of where their critical data is. Then you have containers bond with containers that enables a big leap forward so you could break applications down into micro services. Updates are available via a P I s. And so you don't have the same need to build and to manage multiple copies of the data. So you have an opportunity to just have a single version of the truth. Then your challenge is, how do you deal with these large legacy data states that the service has been referring Thio, where you you have toe consolidate, and that's really where I Tahoe comes in. Um, we massively accelerate that process of putting in a single version of the truth into place. So by automatically discovering the data, um, discovering what's duplicate what's redundant, that means you can consolidate it down to a single trusted version much more quickly. We've seen many customers have tried to do this manually, and it's literally taken years using manual methods to cover even a small percentage of their I T estates with a tire. You could do it really very quickly on you can have tangible results within weeks and months. Um, and then you can apply controls to the data based on context. So who's the user? What's the content? What's the use case? Things like data quality validations or access permissions on. Then once you've done there, your applications and your enterprise are much more secure, much more resilient. As a result, you've got to do these things whilst retaining agility, though. So coming full circle. This is where the partnership with happiest minds really comes in as well. You've got to be agile. You've gotta have controls, um, on you've got a drug towards the business outcomes and it's doing those three things together that really deliver for the customer. Thank >>you. Use f. I mean you and I. In previous episodes, we've looked in detail at the business case. You were just talking about the manual labor involved. We know that you can't scale, but also there's that compression of time. Thio get to the next step in terms of ultimately getting to the outcome and we talked to a number of customers in the Cube. And the conclusion is really consistent that if you could accelerate the time to value, that's the key driver reducing complexity, automating and getting to insights faster. That's where you see telephone numbers in terms of business impact. So my question is, where should customers start? I mean, how can they take advantage of some of these opportunities that we've discussed >>today? Well, we've tried to make that easy for customers. So with our Tahoe and happiest minds, you can very quickly do what we call a data health check on. Dis is a is a 2 to 3 weeks process are two Really quickly start to understand and deliver value from your data. Um, so, iota, who deploys into the customer environment? Data doesn't go anywhere. Um, we would look at a few data sources on a sample of data Onda. We can very rapidly demonstrate how date discovery those catalog e understanding Jupiter data and redundant data can be done. Um, using machine learning, um, on how those problems can be solved. Um, and so what we tend to find is that we can very quickly as I say in a matter of a few weeks, show a customer how they could get toe, um, or Brazilian outcome on. Then how they can scale that up, take it into production on, then really understand their data state Better on build resilience into the enterprise. >>Excellent. There you have it. We'll leave it right there. Guys. Great conversation. Thanks so much for coming on the program. Best of luck to you in the partnership. Be well. >>Thank you, David. Sorry. Thank you. Thank >>you for watching everybody, This is Dave Volonte for the Cuban Are ongoing Siris on data Automation without Tahoe.
SUMMARY :
Great to have you in the Cube. But talk about your mission at the company. digital born a child company. I t services company in the great places to work serving hour glass to ratings mission on the culture. What do you what's your day to day focus To the stakeholders within those businesses on dis is all a key part of digital of the partnership with happiest minds. So when you combine our emphasis I sometimes called the forced march to become a digital business. So one of the key things that is where the digital resilience with business community process enabled was very putting data at the core, I like to say, but so I wonder if you could talk a little bit more about maybe for the first step is to identify the critical data. They have to face all these as part off the evolving environment So do you have solutions around compliance and governance? So identifying the data across the various no heterogeneous is well, but maybe you could pick it up from there. So by automatically discovering the data, um, And the conclusion is really consistent that if you could accelerate the time to value, So with our Tahoe and happiest minds, you can very quickly do what we call Best of luck to you in the partnership. Thank you. you for watching everybody, This is Dave Volonte for the Cuban Are ongoing Siris on data Automation without
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Yusuf Khan | PERSON | 0.99+ |
Yusef Khan | PERSON | 0.99+ |
2 | QUANTITY | 0.99+ |
London | LOCATION | 0.99+ |
Suresh Kanniappan | PERSON | 0.99+ |
Yousef | PERSON | 0.99+ |
one step | QUANTITY | 0.99+ |
Dave Volonte | PERSON | 0.99+ |
first step | QUANTITY | 0.99+ |
2011 | DATE | 0.99+ |
1/5 step | QUANTITY | 0.99+ |
4.1 | QUANTITY | 0.99+ |
Yussef | PERSON | 0.99+ |
Iot Tahoe | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
both businesses | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
two | QUANTITY | 0.98+ |
five | QUANTITY | 0.98+ |
single | QUANTITY | 0.98+ |
Dave | PERSON | 0.98+ |
1/6 | QUANTITY | 0.98+ |
today | DATE | 0.97+ |
3 weeks | QUANTITY | 0.97+ |
Suresh | PERSON | 0.97+ |
Jupiter | LOCATION | 0.96+ |
Io Tahoe | ORGANIZATION | 0.96+ |
one shot | QUANTITY | 0.96+ |
single version | QUANTITY | 0.96+ |
Russia | LOCATION | 0.96+ |
1/4 step | QUANTITY | 0.96+ |
First | QUANTITY | 0.96+ |
Siris | TITLE | 0.96+ |
Tahoe | PERSON | 0.94+ |
Cube | ORGANIZATION | 0.93+ |
Iota | ORGANIZATION | 0.92+ |
day one | QUANTITY | 0.9+ |
one time | QUANTITY | 0.88+ |
Iota Ho | ORGANIZATION | 0.87+ |
three things | QUANTITY | 0.85+ |
Brazilian | OTHER | 0.84+ |
Tier one | QUANTITY | 0.84+ |
forced | EVENT | 0.82+ |
Shirish County | LOCATION | 0.81+ |
Seo | PERSON | 0.81+ |
Cuban | OTHER | 0.81+ |
Tahoe | ORGANIZATION | 0.73+ |
Bean | PERSON | 0.72+ |
Iota | TITLE | 0.69+ |
pandemic | EVENT | 0.67+ |
U. S. Sales | ORGANIZATION | 0.66+ |
top 25 I t | QUANTITY | 0.64+ |
Thio | PERSON | 0.61+ |
Io | ORGANIZATION | 0.57+ |
Indian | OTHER | 0.55+ |
teachers | QUANTITY | 0.55+ |
Andi | PERSON | 0.54+ |
minute | QUANTITY | 0.53+ |
CEO | PERSON | 0.52+ |
Onda | LOCATION | 0.51+ |
Cube | COMMERCIAL_ITEM | 0.45+ |
service | QUANTITY | 0.45+ |
march | EVENT | 0.44+ |
nineties | DATE | 0.41+ |
IO TAHOE EPISODE 4 DATA GOVERNANCE V2
>>from around the globe. It's the Cube presenting adaptive data governance brought to you by Iota Ho. >>And we're back with the data automation. Siri's. In this episode, we're gonna learn more about what I owe Tahoe is doing in the field of adaptive data governance how it can help achieve business outcomes and mitigate data security risks. I'm Lisa Martin, and I'm joined by a J. Bihar on the CEO of Iot Tahoe and Lester Waters, the CEO of Bio Tahoe. Gentlemen, it's great to have you on the program. >>Thank you. Lisa is good to be back. >>Great. Staley's >>likewise very socially distant. Of course as we are. Listen, we're gonna start with you. What's going on? And I am Tahoe. What's name? Well, >>I've been with Iot Tahoe for a little over the year, and one thing I've learned is every customer needs air just a bit different. So we've been working on our next major release of the I O. Tahoe product. But to really try to address these customer concerns because, you know, we wanna we wanna be flexible enough in order to come in and not just profile the date and not just understand data quality and lineage, but also to address the unique needs of each and every customer that we have. And so that required a platform rewrite of our product so that we could, uh, extend the product without building a new version of the product. We wanted to be able to have plausible modules. We also focused a lot on performance. That's very important with the bulk of data that we deal with that we're able to pass through that data in a single pass and do the analytics that are needed, whether it's, uh, lineage, data quality or just identifying the underlying data. And we're incorporating all that we've learned. We're tuning up our machine learning we're analyzing on MAWR dimensions than we've ever done before. We're able to do data quality without doing a Nen initial rejects for, for example, just out of the box. So I think it's all of these things were coming together to form our next version of our product. We're really excited by it, >>So it's exciting a J from the CEO's level. What's going on? >>Wow, I think just building on that. But let's still just mentioned there. It's were growing pretty quickly with our partners. And today, here with Oracle are excited. Thio explain how that shaping up lots of collaboration already with Oracle in government, in insurance, on in banking and we're excited because we get to have an impact. It's real satisfying to see how we're able. Thio. Help businesses transform, Redefine what's possible with their data on bond. Having I recall there is a partner, uh, to lean in with is definitely helping. >>Excellent. We're gonna dig into that a little bit later. Let's let's go back over to you. Explain adaptive data governance. Help us understand that >>really adaptive data governance is about achieving business outcomes through automation. It's really also about establishing a data driven culture and pushing what's traditionally managed in I t out to the business. And to do that, you've got to you've got Thio. You've got to enable an environment where people can actually access and look at the information about the data, not necessarily access the underlying data because we've got privacy concerns itself. But they need to understand what kind of data they have, what shape it's in what's dependent on it upstream and downstream, and so that they could make their educated decisions on on what they need to do to achieve those business outcomes. >>Ah, >>lot of a lot of frameworks these days are hardwired, so you can set up a set of business rules, and that set of business rules works for a very specific database and a specific schema. But imagine a world where you could just >>say, you >>know, the start date of alone must always be before the end date of alone and having that generic rule, regardless of the underlying database and applying it even when a new database comes online and having those rules applied. That's what adaptive data governance about I like to think of. It is the intersection of three circles, Really. It's the technical metadata coming together with policies and rules and coming together with the business ontology ease that are that are unique to that particular business. And this all of this. Bringing this all together allows you to enable rapid change in your environment. So it's a mouthful, adaptive data governance. But that's what it kind of comes down to. >>So, Angie, help me understand this. Is this book enterprise companies are doing now? Are they not quite there yet. >>Well, you know, Lisa, I think every organization is is going at its pace. But, you know, markets are changing the economy and the speed at which, um, some of the changes in the economy happening is is compelling more businesses to look at being more digital in how they serve their own customers. Eh? So what we're seeing is a number of trends here from heads of data Chief Data Officers, CEO, stepping back from, ah, one size fits all approach because they've tried that before, and it it just hasn't worked. They've spent millions of dollars on I T programs China Dr Value from that data on Bennett. And they've ended up with large teams of manual processing around data to try and hardwire these policies to fit with the context and each line of business and on that hasn't worked. So the trends that we're seeing emerge really relate. Thio, How do I There's a chief data officer as a CEO. Inject more automation into a lot of these common tax. Andi, you know, we've been able toc that impact. I think the news here is you know, if you're trying to create a knowledge graph a data catalog or Ah, business glossary. And you're trying to do that manually will stop you. You don't have to do that manually anymore. I think best example I can give is Lester and I We we like Chinese food and Japanese food on. If you were sitting there with your chopsticks, you wouldn't eat the bowl of rice with the chopsticks, one grain at a time. What you'd want to do is to find a more productive way to to enjoy that meal before it gets cold. Andi, that's similar to how we're able to help the organizations to digest their data is to get through it faster, enjoy the benefits of putting that data to work. >>And if it was me eating that food with you guys, I would be not using chopsticks. I would be using a fork and probably a spoon. So eso Lester, how then does iota who go about doing this and enabling customers to achieve this? >>Let me, uh, let me show you a little story have here. So if you take a look at the challenges the most customers have, they're very similar, but every customers on a different data journey, so but it all starts with what data do I have? What questions or what shape is that data in? Uh, how is it structured? What's dependent on it? Upstream and downstream. Um, what insights can I derive from that data? And how can I answer all of those questions automatically? So if you look at the challenges for these data professionals, you know, they're either on a journey to the cloud. Maybe they're doing a migration oracle. Maybe they're doing some data governance changes on bits about enabling this. So if you look at these challenges and I'm gonna take you through a >>story here, E, >>I want to introduce Amanda. Man does not live like, uh, anyone in any large organization. She's looking around and she just sees stacks of data. I mean, different databases, the one she knows about, the one she doesn't know about what should know about various different kinds of databases. And a man is just tasking with understanding all of this so that they can embark on her data journey program. So So a man who goes through and she's great. I've got some handy tools. I can start looking at these databases and getting an idea of what we've got. Well, as she digs into the databases, she starts to see that not everything is as clear as she might have hoped it would be. You know, property names or column names, or have ambiguous names like Attribute one and attribute to or maybe date one and date to s Oh, man is starting to struggle, even though she's get tools to visualize. And look what look at these databases. She still No, she's got a long road ahead. And with 2000 databases in her large enterprise, yes, it's gonna be a long turkey but Amanda Smart. So she pulls out her trusty spreadsheet to track all of her findings on what she doesn't know about. She raises a ticket or maybe tries to track down the owner to find what the data means. And she's tracking all this information. Clearly, this doesn't scale that well for Amanda, you know? So maybe organization will get 10 Amanda's to sort of divide and conquer that work. But even that doesn't work that well because they're still ambiguities in the data with Iota ho. What we do is we actually profile the underlying data. By looking at the underlying data, we can quickly see that attribute. One looks very much like a U. S. Social Security number and attribute to looks like a I c D 10 medical code. And we do this by using anthologies and dictionaries and algorithms to help identify the underlying data and then tag it. Key Thio Doing, uh, this automation is really being able to normalize things across different databases, so that where there's differences in column names, I know that in fact, they contain contain the same data. And by going through this exercise with a Tahoe, not only can we identify the data, but we also could gain insights about the data. So, for example, we can see that 97% of that time that column named Attribute one that's got us Social Security numbers has something that looks like a Social Security number. But 3% of the time, it doesn't quite look right. Maybe there's a dash missing. Maybe there's a digit dropped. Or maybe there's even characters embedded in it. So there may be that may be indicative of a data quality issues, so we try to find those kind of things going a step further. We also try to identify data quality relationships. So, for example, we have two columns, one date, one date to through Ah, observation. We can see that date 1 99% of the time is less than date, too. 1% of the time. It's not probably indicative of a data quality issue, but going a step further, we can also build a business rule that says Day one is less than date to. And so then when it pops up again, we can quickly identify and re mediate that problem. So these are the kinds of things that we could do with with iota going even a step further. You could take your your favorite data science solution production ISAT and incorporated into our next version a zey what we call a worker process to do your own bespoke analytics. >>We spoke analytics. Excellent, Lester. Thank you. So a J talk us through some examples of where you're putting this to use. And also what is some of the feedback from >>some customers? But I think it helped do this Bring it to life a little bit. Lisa is just to talk through a case study way. Pull something together. I know it's available for download, but in ah, well known telecommunications media company, they had a lot of the issues that lasted. You spoke about lots of teams of Amanda's, um, super bright data practitioners, um, on baby looking to to get more productivity out of their day on, deliver a good result for their own customers for cell phone subscribers, Um, on broadband users. So you know that some of the examples that we can see here is how we went about auto generating a lot of that understanding off that data within hours. So Amanda had her data catalog populated automatically. A business class three built up on it. Really? Then start to see. Okay, where do I want Thio? Apply some policies to the data to to set in place some controls where they want to adapt, how different lines of business, maybe tax versus customer operations have different access or permissions to that data on What we've been able to do there is, is to build up that picture to see how does data move across the entire organization across the state. Andi on monitor that overtime for improvement, so have taken it from being a reactive. Let's do something Thio. Fix something. Thio, Now more proactive. We can see what's happening with our data. Who's using it? Who's accessing it, how it's being used, how it's being combined. Um, on from there. Taking a proactive approach is a real smart use of of the talents in in that telco organization Onda folks that worked there with data. >>Okay, Jason, dig into that a little bit deeper. And one of the things I was thinking when you were talking through some of those outcomes that you're helping customers achieve is our ally. How do customers measure are? Why? What are they seeing with iota host >>solution? Yeah, right now that the big ticket item is time to value on. And I think in data, a lot of the upfront investment cause quite expensive. They have been today with a lot of the larger vendors and technologies. So what a CEO and economic bio really needs to be certain of is how quickly can I get that are away. I think we've got something we can show. Just pull up a before and after, and it really comes down to hours, days and weeks. Um, where we've been able Thio have that impact on in this playbook that we pulled together before and after picture really shows. You know, those savings that committed a bit through providing data into some actionable form within hours and days to to drive agility, but at the same time being out and forced the controls to protect the use of that data who has access to it. So these are the number one thing I'd have to say. It's time on. We can see that on the the graphic that we've just pulled up here. >>We talk about achieving adaptive data governance. Lester, you guys talk about automation. You talk about machine learning. How are you seeing those technologies being a facilitator of organizations adopting adaptive data governance? Well, >>Azaz, we see Mitt Emmanuel day. The days of manual effort are so I think you know this >>is a >>multi step process. But the very first step is understanding what you have in normalizing that across your data estate. So you couple this with the ontology, that air unique to your business. There is no algorithms, and you basically go across and you identify and tag tag that data that allows for the next steps toe happen. So now I can write business rules not in terms of columns named columns, but I could write him in terms of the tags being able to automate. That is a huge time saver and the fact that we can suggest that as a rule, rather than waiting for a person to come along and say, Oh, wow. Okay, I need this rule. I need this will thes air steps that increased that are, I should say, decrease that time to value that A. J talked about and then, lastly, a couple of machine learning because even with even with great automation and being able to profile all of your data and getting a good understanding, that brings you to a certain point. But there's still ambiguities in the data. So, for example, I might have to columns date one and date to. I may have even observed the date. One should be less than day two, but I don't really know what date one and date to our other than a date. So this is where it comes in, and I might ask the user said, >>Can >>you help me identify what date? One and date You are in this in this table. Turns out they're a start date and an end date for alone That gets remembered, cycled into the machine learning. So if I start to see this pattern of date one day to elsewhere, I'm going to say, Is it start dating and date? And these Bringing all these things together with this all this automation is really what's key to enabling this This'll data governance. Yeah, >>great. Thanks. Lester and a j wanna wrap things up with something that you mentioned in the beginning about what you guys were doing with Oracle. Take us out by telling us what you're doing there. How are you guys working together? >>Yeah, I think those of us who worked in i t for many years we've We've learned Thio trust articles technology that they're shifting now to ah, hybrid on Prohm Cloud Generation to platform, which is exciting. Andi on their existing customers and new customers moving to article on a journey. So? So Oracle came to us and said, you know, we can see how quickly you're able to help us change mindsets Ondas mindsets are locked in a way of thinking around operating models of I t. That there may be no agile and what siloed on day wanting to break free of that and adopt a more agile A p I at driven approach. A lot of the work that we're doing with our recall no is around, uh, accelerating what customers conduce with understanding their data and to build digital APS by identifying the the underlying data that has value. Onda at the time were able to do that in in in hours, days and weeks. Rather many months. Is opening up the eyes to Chief Data Officers CEO to say, Well, maybe we can do this whole digital transformation this year. Maybe we can bring that forward and and transform who we are as a company on that's driving innovation, which we're excited about it. I know Oracle, a keen Thio to drive through and >>helping businesses transformed digitally is so incredibly important in this time as we look Thio things changing in 2021 a. J. Lester thank you so much for joining me on this segment explaining adaptive data governance, how organizations can use it benefit from it and achieve our Oi. Thanks so much, guys. >>Thank you. Thanks again, Lisa. >>In a moment, we'll look a adaptive data governance in banking. This is the Cube, your global leader in high tech coverage. >>Innovation, impact influence. Welcome to the Cube. Disruptors. Developers and practitioners learn from the voices of leaders who share their personal insights from the hottest digital events around the globe. Enjoy the best this community has to offer on the Cube, your global leader in high tech digital coverage. >>Our next segment here is an interesting panel you're gonna hear from three gentlemen about adaptive data. Governments want to talk a lot about that. Please welcome Yusuf Khan, the global director of data services for Iot Tahoe. We also have Santiago Castor, the chief data officer at the First Bank of Nigeria, and good John Vander Wal, Oracle's senior manager of digital transformation and industries. Gentlemen, it's great to have you joining us in this in this panel. Great >>to be >>tried for me. >>Alright, Santiago, we're going to start with you. Can you talk to the audience a little bit about the first Bank of Nigeria and its scale? This is beyond Nigeria. Talk to us about that. >>Yes, eso First Bank of Nigeria was created 125 years ago. One of the oldest ignored the old in Africa because of the history he grew everywhere in the region on beyond the region. I am calling based in London, where it's kind of the headquarters and it really promotes trade, finance, institutional banking, corporate banking, private banking around the world in particular, in relationship to Africa. We are also in Asia in in the Middle East. >>So, Sanjay, go talk to me about what adaptive data governance means to you. And how does it help the first Bank of Nigeria to be able to innovate faster with the data that you have? >>Yes, I like that concept off adaptive data governor, because it's kind of Ah, I would say an approach that can really happen today with the new technologies before it was much more difficult to implement. So just to give you a little bit of context, I I used to work in consulting for 16, 17 years before joining the president of Nigeria, and I saw many organizations trying to apply different type of approaches in the governance on by the beginning early days was really kind of a year. A Chicago A. A top down approach where data governance was seeing as implement a set of rules, policies and procedures. But really, from the top down on is important. It's important to have the battle off your sea level of your of your director. Whatever I saw, just the way it fails, you really need to have a complimentary approach. You can say bottom are actually as a CEO are really trying to decentralize the governor's. Really, Instead of imposing a framework that some people in the business don't understand or don't care about it, it really needs to come from them. So what I'm trying to say is that data basically support business objectives on what you need to do is every business area needs information on the detector decisions toe actually be able to be more efficient or create value etcetera. Now, depending on the business questions they have to solve, they will need certain data set. So they need actually to be ableto have data quality for their own. For us now, when they understand that they become the stores naturally on their own data sets. And that is where my bottom line is meeting my top down. You can guide them from the top, but they need themselves to be also empower and be actually, in a way flexible to adapt the different questions that they have in orderto be able to respond to the business needs. Now I cannot impose at the finish for everyone. I need them to adapt and to bring their answers toe their own business questions. That is adaptive data governor and all That is possible because we have. And I was saying at the very beginning just to finalize the point, we have new technologies that allow you to do this method data classifications, uh, in a very sophisticated way that you can actually create analitico of your metadata. You can understand your different data sources in order to be able to create those classifications like nationalities, a way of classifying your customers, your products, etcetera. >>So one of the things that you just said Santa kind of struck me to enable the users to be adaptive. They probably don't want to be logging in support ticket. So how do you support that sort of self service to meet the demand of the users so that they can be adaptive. >>More and more business users wants autonomy, and they want to basically be ableto grab the data and answer their own question. Now when you have, that is great, because then you have demand of businesses asking for data. They're asking for the insight. Eso How do you actually support that? I would say there is a changing culture that is happening more and more. I would say even the current pandemic has helped a lot into that because you have had, in a way, off course, technology is one of the biggest winners without technology. We couldn't have been working remotely without these technologies where people can actually looking from their homes and still have a market data marketplaces where they self serve their their information. But even beyond that data is a big winner. Data because the pandemic has shown us that crisis happened, that we cannot predict everything and that we are actually facing a new kind of situation out of our comfort zone, where we need to explore that we need to adapt and we need to be flexible. How do we do that with data. Every single company either saw the revenue going down or the revenue going very up For those companies that are very digital already. Now it changed the reality, so they needed to adapt. But for that they needed information. In order to think on innovate, try toe, create responses So that type of, uh, self service off data Haider for data in order to be able to understand what's happening when the prospect is changing is something that is becoming more, uh, the topic today because off the condemning because of the new abilities, the technologies that allow that and then you then are allowed to basically help your data. Citizens that call them in the organization people that no other business and can actually start playing and an answer their own questions. Eso so these technologies that gives more accessibility to the data that is some cataloging so they can understand where to go or what to find lineage and relationships. All this is is basically the new type of platforms and tools that allow you to create what are called a data marketplace. I think these new tools are really strong because they are now allowing for people that are not technology or I t people to be able to play with data because it comes in the digital world There. Used to a given example without your who You have a very interesting search functionality. Where if you want to find your data you want to sell, Sir, you go there in that search and you actually go on book for your data. Everybody knows how to search in Google, everybody's searching Internet. So this is part of the data culture, the digital culture. They know how to use those schools. Now, similarly, that data marketplace is, uh, in you can, for example, see which data sources they're mostly used >>and enabling that speed that we're all demanding today during these unprecedented times. Goodwin, I wanted to go to you as we talk about in the spirit of evolution, technology is changing. Talk to us a little bit about Oracle Digital. What are you guys doing there? >>Yeah, Thank you. Um, well, Oracle Digital is a business unit that Oracle EMEA on. We focus on emerging countries as well as low and enterprises in the mid market, in more developed countries and four years ago. This started with the idea to engage digital with our customers. Fear Central helps across EMEA. That means engaging with video, having conference calls, having a wall, a green wall where we stand in front and engage with our customers. No one at that time could have foreseen how this is the situation today, and this helps us to engage with our customers in the way we were already doing and then about my team. The focus of my team is to have early stage conversations with our with our customers on digital transformation and innovation. And we also have a team off industry experts who engaged with our customers and share expertise across EMEA, and we inspire our customers. The outcome of these conversations for Oracle is a deep understanding of our customer needs, which is very important so we can help the customer and for the customer means that we will help them with our technology and our resource is to achieve their goals. >>It's all about outcomes, right? Good Ron. So in terms of automation, what are some of the things Oracle's doing there to help your clients leverage automation to improve agility? So that they can innovate faster, which in these interesting times it's demanded. >>Yeah, thank you. Well, traditionally, Oracle is known for their databases, which have bean innovated year over year. So here's the first lunch on the latest innovation is the autonomous database and autonomous data warehouse. For our customers, this means a reduction in operational costs by 90% with a multi medal converts, database and machine learning based automation for full life cycle management. Our databases self driving. This means we automate database provisioning, tuning and scaling. The database is self securing. This means ultimate data protection and security, and it's self repairing the automates failure, detection fail over and repair. And then the question is for our customers, What does it mean? It means they can focus on their on their business instead off maintaining their infrastructure and their operations. >>That's absolutely critical use if I want to go over to you now. Some of the things that we've talked about, just the massive progression and technology, the evolution of that. But we know that whether we're talking about beta management or digital transformation, a one size fits all approach doesn't work to address the challenges that the business has, um that the i t folks have, as you're looking through the industry with what Santiago told us about first Bank of Nigeria. What are some of the changes that you're seeing that I owe Tahoe seeing throughout the industry? >>Uh, well, Lisa, I think the first way I'd characterize it is to say, the traditional kind of top down approach to data where you have almost a data Policeman who tells you what you can and can't do, just doesn't work anymore. It's too slow. It's too resource intensive. Uh, data management data, governments, digital transformation itself. It has to be collaborative on. There has to be in a personalization to data users. Um, in the environment we find ourselves in. Now, it has to be about enabling self service as well. Um, a one size fits all model when it comes to those things around. Data doesn't work. As Santiago was saying, it needs to be adapted toe how the data is used. Andi, who is using it on in order to do this cos enterprises organizations really need to know their data. They need to understand what data they hold, where it is on what the sensitivity of it is they can then any more agile way apply appropriate controls on access so that people themselves are and groups within businesses are our job and could innovate. Otherwise, everything grinds to a halt, and you risk falling behind your competitors. >>Yeah, that one size fits all term just doesn't apply when you're talking about adaptive and agility. So we heard from Santiago about some of the impact that they're making with First Bank of Nigeria. Used to talk to us about some of the business outcomes that you're seeing other customers make leveraging automation that they could not do >>before it's it's automatically being able to classify terabytes, terabytes of data or even petabytes of data across different sources to find duplicates, which you can then re mediate on. Deletes now, with the capabilities that iota offers on the Oracle offers, you can do things not just where the five times or 10 times improvement, but it actually enables you to do projects for Stop that otherwise would fail or you would just not be able to dio I mean, uh, classifying multi terrible and multi petabytes states across different sources, formats very large volumes of data in many scenarios. You just can't do that manually. I mean, we've worked with government departments on the issues there is expect are the result of fragmented data. There's a lot of different sources. There's lot of different formats and without these newer technologies to address it with automation on machine learning, the project isn't durable. But now it is on that that could lead to a revolution in some of these businesses organizations >>to enable that revolution that there's got to be the right cultural mindset. And one of the when Santiago was talking about folks really kind of adapted that. The thing I always call that getting comfortably uncomfortable. But that's hard for organizations to. The technology is here to enable that. But well, you're talking with customers use. How do you help them build the trust in the confidence that the new technologies and a new approaches can deliver what they need? How do you help drive the kind of a tech in the culture? >>It's really good question is because it can be quite scary. I think the first thing we'd start with is to say, Look, the technology is here with businesses like I Tahoe. Unlike Oracle, it's already arrived. What you need to be comfortable doing is experimenting being agile around it, Andi trying new ways of doing things. Uh, if you don't wanna get less behind that Santiago on the team that fbn are a great example off embracing it, testing it on a small scale on, then scaling up a Toyota, we offer what we call a data health check, which can actually be done very quickly in a matter of a few weeks. So we'll work with a customer. Picky use case, install the application, uh, analyzed data. Drive out Cem Cem quick winds. So we worked in the last few weeks of a large entity energy supplier, and in about 20 days, we were able to give them an accurate understanding of their critical data. Elements apply. Helping apply data protection policies. Minimize copies of the data on work out what data they needed to delete to reduce their infrastructure. Spend eso. It's about experimenting on that small scale, being agile on, then scaling up in a kind of very modern way. >>Great advice. Uh, Santiago, I'd like to go back to Is we kind of look at again that that topic of culture and the need to get that mindset there to facilitate these rapid changes, I want to understand kind of last question for you about how you're doing that from a digital transformation perspective. We know everything is accelerating in 2020. So how are you building resilience into your data architecture and also driving that cultural change that can help everyone in this shift to remote working and a lot of the the digital challenges and changes that we're all going through? >>The new technologies allowed us to discover the dating anyway. Toe flawed and see very quickly Information toe. Have new models off over in the data on giving autonomy to our different data units. Now, from that autonomy, they can then compose an innovator own ways. So for me now, we're talking about resilience because in a way, autonomy and flexibility in a organization in a data structure with platform gives you resilience. The organizations and the business units that I have experienced in the pandemic are working well. Are those that actually because they're not physically present during more in the office, you need to give them their autonomy and let them actually engaged on their own side that do their own job and trust them in a way on as you give them, that they start innovating and they start having a really interesting ideas. So autonomy and flexibility. I think this is a key component off the new infrastructure. But even the new reality that on then it show us that, yes, we used to be very kind off structure, policies, procedures as very important. But now we learn flexibility and adaptability of the same side. Now, when you have that a key, other components of resiliency speed, because people want, you know, to access the data and access it fast and on the site fast, especially changes are changing so quickly nowadays that you need to be ableto do you know, interact. Reiterate with your information to answer your questions. Pretty, um, so technology that allows you toe be flexible iterating on in a very fast job way continue will allow you toe actually be resilient in that way, because you are flexible, you adapt your job and you continue answering questions as they come without having everything, setting a structure that is too hard. We also are a partner off Oracle and Oracle. Embodies is great. They have embedded within the transactional system many algorithms that are allowing us to calculate as the transactions happened. What happened there is that when our customers engaged with algorithms and again without your powers, well, the machine learning that is there for for speeding the automation of how you find your data allows you to create a new alliance with the machine. The machine is their toe, actually, in a way to your best friend to actually have more volume of data calculated faster. In a way, it's cover more variety. I mean, we couldn't hope without being connected to this algorithm on >>that engagement is absolutely critical. Santiago. Thank you for sharing that. I do wanna rap really quickly. Good On one last question for you, Santiago talked about Oracle. You've talked about a little bit. As we look at digital resilience, talk to us a little bit in the last minute about the evolution of Oracle. What you guys were doing there to help your customers get the resilience that they have toe have to be not just survive but thrive. >>Yeah. Oracle has a cloud offering for infrastructure, database, platform service and a complete solutions offered a South on Daz. As Santiago also mentioned, We are using AI across our entire portfolio and by this will help our customers to focus on their business innovation and capitalize on data by enabling new business models. Um, and Oracle has a global conference with our cloud regions. It's massively investing and innovating and expanding their clouds. And by offering clouds as public cloud in our data centers and also as private cloud with clouded customer, we can meet every sovereignty and security requirements. And in this way we help people to see data in new ways. We discover insights and unlock endless possibilities. And and maybe 11 of my takeaways is if I If I speak with customers, I always tell them you better start collecting your data. Now we enable this partners like Iota help us as well. If you collect your data now, you are ready for tomorrow. You can never collect your data backwards, So that is my take away for today. >>You can't collect your data backwards. Excellently, John. Gentlemen, thank you for sharing all of your insights. Very informative conversation in a moment, we'll address the question. Do you know your data? >>Are you interested in test driving the iota Ho platform kick Start the benefits of data automation for your business through the Iota Ho Data Health check program. Ah, flexible, scalable sandbox environment on the cloud of your choice with set up service and support provided by Iota ho. Look time with a data engineer to learn more and see Io Tahoe in action from around the globe. It's the Cube presenting adaptive data governance brought to you by Iota Ho. >>In this next segment, we're gonna be talking to you about getting to know your data. And specifically you're gonna hear from two folks at Io Tahoe. We've got enterprise account execs to be to Davis here, as well as Enterprise Data engineer Patrick Simon. They're gonna be sharing insights and tips and tricks for how you could get to know your data and quickly on. We also want to encourage you to engage with the media and Patrick, use the chat feature to the right, send comments, questions or feedback so you can participate. All right, Patrick Savita, take it away. Alright. >>Thankfully saw great to be here as Lisa mentioned guys, I'm the enterprise account executive here in Ohio. Tahoe you Pat? >>Yeah. Hey, everyone so great to be here. I said my name is Patrick Samit. I'm the enterprise data engineer here in Ohio Tahoe. And we're so excited to be here and talk about this topic as one thing we're really trying to perpetuate is that data is everyone's business. >>So, guys, what patent I got? I've actually had multiple discussions with clients from different organizations with different roles. So we spoke with both your technical and your non technical audience. So while they were interested in different aspects of our platform, we found that what they had in common was they wanted to make data easy to understand and usable. So that comes back. The pats point off to being everybody's business because no matter your role, we're all dependent on data. So what Pan I wanted to do today was wanted to walk you guys through some of those client questions, slash pain points that we're hearing from different industries and different rules and demo how our platform here, like Tahoe, is used for automating Dozier related tasks. So with that said are you ready for the first one, Pat? >>Yeah, Let's do it. >>Great. So I'm gonna put my technical hat on for this one. So I'm a data practitioner. I just started my job. ABC Bank. I have, like, over 100 different data sources. So I have data kept in Data Lakes, legacy data, sources, even the cloud. So my issue is I don't know what those data sources hold. I don't know what data sensitive, and I don't even understand how that data is connected. So how can I saw who help? >>Yeah, I think that's a very common experience many are facing and definitely something I've encountered in my past. Typically, the first step is to catalog the data and then start mapping the relationships between your various data stores. Now, more often than not, this has tackled through numerous meetings and a combination of excel and something similar to video which are too great tools in their own part. But they're very difficult to maintain. Just due to the rate that we are creating data in the modern world. It starts to beg for an idea that can scale with your business needs. And this is where a platform like Io Tahoe becomes so appealing, you can see here visualization of the data relationships created by the I. O. Tahoe service. Now, what is fantastic about this is it's not only laid out in a very human and digestible format in the same action of creating this view, the data catalog was constructed. >>Um so is the data catalog automatically populated? Correct. Okay, so So what I'm using Iota hope at what I'm getting is this complete, unified automated platform without the added cost? Of course. >>Exactly. And that's at the heart of Iota Ho. A great feature with that data catalog is that Iota Ho will also profile your data as it creates the catalog, assigning some meaning to those pesky column underscore ones and custom variable underscore tents. They're always such a joy to deal with. Now, by leveraging this interface, we can start to answer the first part of your question and understand where the core relationships within our data exists. Uh, personally, I'm a big fan of this view, as it really just helps the i b naturally John to these focal points that coincide with these key columns following that train of thought, Let's examine the customer I D column that seems to be at the center of a lot of these relationships. We can see that it's a fairly important column as it's maintaining the relationship between at least three other tables. >>Now you >>notice all the connectors are in this blue color. This means that their system defined relationships. But I hope Tahoe goes that extra mile and actually creates thes orange colored connectors as well. These air ones that are machine learning algorithms have predicted to be relationships on. You can leverage to try and make new and powerful relationships within your data. >>Eso So this is really cool, and I can see how this could be leverage quickly now. What if I added new data sources or your multiple data sources and need toe identify what data sensitive can iota who detect that? >>Yeah, definitely. Within the hotel platform. There, already over 300 pre defined policies such as hip for C, C, P. A and the like one can choose which of these policies to run against their data along for flexibility and efficiency and running the policies that affect organization. >>Okay, so so 300 is an exceptional number. I'll give you that. But what about internal policies that apply to my organization? Is there any ability for me to write custom policies? >>Yeah, that's no issue. And it's something that clients leverage fairly often to utilize this function when simply has to write a rejects that our team has helped many deploy. After that, the custom policy is stored for future use to profile sensitive data. One then selects the data sources they're interested in and select the policies that meet your particular needs. The interface will automatically take your data according to the policies of detects, after which you can review the discoveries confirming or rejecting the tagging. All of these insights are easily exported through the interface. Someone can work these into the action items within your project management systems, and I think this lends to the collaboration as a team can work through the discovery simultaneously, and as each item is confirmed or rejected, they can see it ni instantaneously. All this translates to a confidence that with iota hope, you can be sure you're in compliance. >>So I'm glad you mentioned compliance because that's extremely important to my organization. So what you're saying when I use the eye a Tahoe automated platform, we'd be 90% more compliant that before were other than if you were going to be using a human. >>Yeah, definitely the collaboration and documentation that the Iot Tahoe interface lends itself to really help you build that confidence that your compliance is sound. >>So we're planning a migration. Andi, I have a set of reports I need to migrate. But what I need to know is, uh well, what what data sources? Those report those reports are dependent on. And what's feeding those tables? >>Yeah, it's a fantastic questions to be toe identifying critical data elements, and the interdependencies within the various databases could be a time consuming but vital process and the migration initiative. Luckily, Iota Ho does have an answer, and again, it's presented in a very visual format. >>Eso So what I'm looking at here is my entire day landscape. >>Yes, exactly. >>Let's say I add another data source. I can still see that unified 3 60 view. >>Yeah, One future that is particularly helpful is the ability to add data sources after the data lineage. Discovery has finished alone for the flexibility and scope necessary for any data migration project. If you only need need to select a few databases or your entirety, this service will provide the answers. You're looking for things. Visual representation of the connectivity makes the identification of critical data elements a simple matter. The connections air driven by both system defined flows as well as those predicted by our algorithms, the confidence of which, uh, can actually be customized to make sure that they're meeting the needs of the initiative that you have in place. This also provides tabular output in case you needed for your own internal documentation or for your action items, which we can see right here. Uh, in this interface, you can actually also confirm or deny the pair rejection the pair directions, allowing to make sure that the data is as accurate as possible. Does that help with your data lineage needs? >>Definitely. So So, Pat, My next big question here is So now I know a little bit about my data. How do I know I can trust >>it? So >>what I'm interested in knowing, really is is it in a fit state for me to use it? Is it accurate? Does it conform to the right format? >>Yeah, that's a great question. And I think that is a pain point felt across the board, be it by data practitioners or data consumers alike. Another service that I owe Tahoe provides is the ability to write custom data quality rules and understand how well the data pertains to these rules. This dashboard gives a unified view of the strength of these rules, and your dad is overall quality. >>Okay, so Pat s o on on the accuracy scores there. So if my marketing team needs to run, a campaign can read dependent those accuracy scores to know what what tables have quality data to use for our marketing campaign. >>Yeah, this view would allow you to understand your overall accuracy as well as dive into the minutia to see which data elements are of the highest quality. So for that marketing campaign, if you need everything in a strong form, you'll be able to see very quickly with these high level numbers. But if you're only dependent on a few columns to get that information out the door, you can find that within this view, eso >>you >>no longer have to rely on reports about reports, but instead just come to this one platform to help drive conversations between stakeholders and data practitioners. >>So I get now the value of IATA who brings by automatically capturing all those technical metadata from sources. But how do we match that with the business glossary? >>Yeah, within the same data quality service that we just reviewed, one can actually add business rules detailing the definitions and the business domains that these fall into. What's more is that the data quality rules were just looking at can then be tied into these definitions. Allowing insight into the strength of these business rules is this service that empowers stakeholders across the business to be involved with the data life cycle and take ownership over the rules that fall within their domain. >>Okay, >>so those custom rules can I apply that across data sources? >>Yeah, you could bring in as many data sources as you need, so long as you could tie them to that unified definition. >>Okay, great. Thanks so much bad. And we just want to quickly say to everyone working in data, we understand your pain, so please feel free to reach out to us. we are Website the chapel. Oh, Arlington. And let's get a conversation started on how iota Who can help you guys automate all those manual task to help save you time and money. Thank you. Thank >>you. Your Honor, >>if I could ask you one quick question, how do you advise customers? You just walk in this great example this banking example that you instantly to talk through. How do you advise customers get started? >>Yeah, I think the number one thing that customers could do to get started with our platform is to just run the tag discovery and build up that data catalog. It lends itself very quickly to the other needs you might have, such as thes quality rules. A swell is identifying those kind of tricky columns that might exist in your data. Those custom variable underscore tens I mentioned before >>last questions to be to anything to add to what Pat just described as a starting place. >>I'm no, I think actually passed something that pretty well, I mean, just just by automating all those manual task. I mean, it definitely can save your company a lot of time and money, so we we encourage you just reach out to us. Let's get that conversation >>started. Excellent. So, Pete and Pat, thank you so much. We hope you have learned a lot from these folks about how to get to know your data. Make sure that it's quality, something you can maximize the value of it. Thanks >>for watching. Thanks again, Lisa, for that very insightful and useful deep dive into the world of adaptive data governance with Iota Ho Oracle First Bank of Nigeria This is Dave a lot You won't wanna mess Iota, whose fifth episode in the data automation Siri's in that we'll talk to experts from Red Hat and Happiest Minds about their best practices for managing data across hybrid cloud Inter Cloud multi Cloud I T environment So market calendar for Wednesday, January 27th That's Episode five. You're watching the Cube Global Leader digital event technique
SUMMARY :
adaptive data governance brought to you by Iota Ho. Gentlemen, it's great to have you on the program. Lisa is good to be back. Great. Listen, we're gonna start with you. But to really try to address these customer concerns because, you know, we wanna we So it's exciting a J from the CEO's level. It's real satisfying to see how we're able. Let's let's go back over to you. But they need to understand what kind of data they have, what shape it's in what's dependent lot of a lot of frameworks these days are hardwired, so you can set up a set It's the technical metadata coming together with policies Is this book enterprise companies are doing now? help the organizations to digest their data is to And if it was me eating that food with you guys, I would be not using chopsticks. So if you look at the challenges for these data professionals, you know, they're either on a journey to the cloud. Well, as she digs into the databases, she starts to see that So a J talk us through some examples of where But I think it helped do this Bring it to life a little bit. And one of the things I was thinking when you were talking through some We can see that on the the graphic that we've just How are you seeing those technologies being think you know this But the very first step is understanding what you have in normalizing that So if I start to see this pattern of date one day to elsewhere, I'm going to say, in the beginning about what you guys were doing with Oracle. So Oracle came to us and said, you know, we can see things changing in 2021 a. J. Lester thank you so much for joining me on this segment Thank you. is the Cube, your global leader in high tech coverage. Enjoy the best this community has to offer on the Cube, Gentlemen, it's great to have you joining us in this in this panel. Can you talk to the audience a little bit about the first Bank of One of the oldest ignored the old in Africa because of the history And how does it help the first Bank of Nigeria to be able to innovate faster with the point, we have new technologies that allow you to do this method data So one of the things that you just said Santa kind of struck me to enable the users to be adaptive. Now it changed the reality, so they needed to adapt. I wanted to go to you as we talk about in the spirit of evolution, technology is changing. customer and for the customer means that we will help them with our technology and our resource is to achieve doing there to help your clients leverage automation to improve agility? So here's the first lunch on the latest innovation Some of the things that we've talked about, Otherwise, everything grinds to a halt, and you risk falling behind your competitors. Used to talk to us about some of the business outcomes that you're seeing other customers make leveraging automation different sources to find duplicates, which you can then re And one of the when Santiago was talking about folks really kind of adapted that. Minimize copies of the data can help everyone in this shift to remote working and a lot of the the and on the site fast, especially changes are changing so quickly nowadays that you need to be What you guys were doing there to help your customers I always tell them you better start collecting your data. Gentlemen, thank you for sharing all of your insights. adaptive data governance brought to you by Iota Ho. In this next segment, we're gonna be talking to you about getting to know your data. Thankfully saw great to be here as Lisa mentioned guys, I'm the enterprise account executive here in Ohio. I'm the enterprise data engineer here in Ohio Tahoe. So with that said are you ready for the first one, Pat? So I have data kept in Data Lakes, legacy data, sources, even the cloud. Typically, the first step is to catalog the data and then start mapping the relationships Um so is the data catalog automatically populated? i b naturally John to these focal points that coincide with these key columns following These air ones that are machine learning algorithms have predicted to be relationships Eso So this is really cool, and I can see how this could be leverage quickly now. such as hip for C, C, P. A and the like one can choose which of these policies policies that apply to my organization? And it's something that clients leverage fairly often to utilize this So I'm glad you mentioned compliance because that's extremely important to my organization. interface lends itself to really help you build that confidence that your compliance is Andi, I have a set of reports I need to migrate. Yeah, it's a fantastic questions to be toe identifying critical data elements, I can still see that unified 3 60 view. Yeah, One future that is particularly helpful is the ability to add data sources after So now I know a little bit about my data. the data pertains to these rules. So if my marketing team needs to run, a campaign can read dependent those accuracy scores to know what the minutia to see which data elements are of the highest quality. no longer have to rely on reports about reports, but instead just come to this one So I get now the value of IATA who brings by automatically capturing all those technical to be involved with the data life cycle and take ownership over the rules that fall within their domain. Yeah, you could bring in as many data sources as you need, so long as you could manual task to help save you time and money. you. this banking example that you instantly to talk through. Yeah, I think the number one thing that customers could do to get started with our so we we encourage you just reach out to us. folks about how to get to know your data. into the world of adaptive data governance with Iota Ho Oracle First Bank of Nigeria
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amanda | PERSON | 0.99+ |
Jason | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Patrick Simon | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Santiago | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Yusuf Khan | PERSON | 0.99+ |
Asia | LOCATION | 0.99+ |
16 | QUANTITY | 0.99+ |
Santiago Castor | PERSON | 0.99+ |
Ohio | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
ABC Bank | ORGANIZATION | 0.99+ |
Patrick Savita | PERSON | 0.99+ |
10 times | QUANTITY | 0.99+ |
Sanjay | PERSON | 0.99+ |
Angie | PERSON | 0.99+ |
Wednesday, January 27th | DATE | 0.99+ |
Africa | LOCATION | 0.99+ |
Thio | PERSON | 0.99+ |
John Vander Wal | PERSON | 0.99+ |
2020 | DATE | 0.99+ |
Patrick | PERSON | 0.99+ |
two columns | QUANTITY | 0.99+ |
90% | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
Toyota | ORGANIZATION | 0.99+ |
Bio Tahoe | ORGANIZATION | 0.99+ |
Azaz | PERSON | 0.99+ |
Pat | PERSON | 0.99+ |
11 | QUANTITY | 0.99+ |
five times | QUANTITY | 0.99+ |
Oracle Digital | ORGANIZATION | 0.99+ |
J. Bihar | PERSON | 0.99+ |
1% | QUANTITY | 0.99+ |
Staley | PERSON | 0.99+ |
Iot Tahoe | ORGANIZATION | 0.99+ |
Iota ho | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Ron | PERSON | 0.99+ |
first | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
Iota Ho | ORGANIZATION | 0.99+ |
Andi | PERSON | 0.99+ |
Io Tahoe | ORGANIZATION | 0.99+ |
one date | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
excel | TITLE | 0.99+ |
tomorrow | DATE | 0.99+ |
3% | QUANTITY | 0.99+ |
John | PERSON | 0.99+ |
First Bank of Nigeria | ORGANIZATION | 0.99+ |
Middle East | LOCATION | 0.99+ |
Patrick Samit | PERSON | 0.99+ |
I. O. Tahoe | ORGANIZATION | 0.99+ |
first step | QUANTITY | 0.99+ |
97% | QUANTITY | 0.99+ |
Lester | PERSON | 0.99+ |
two folks | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
2021 | DATE | 0.99+ |
fifth episode | QUANTITY | 0.99+ |
one grain | QUANTITY | 0.99+ |
Ajay Vohora 9 9 V1
>>from around the globe. It's the Cube with digital coverage of smart data. Marketplace is brought to You by Io Tahoe Digital transformation is really gone from buzzword to a mandate. Additional businesses, a data business. And for the last several months, we've been working with Iot Tahoe on an ongoing content. Serious, serious, focused on smart data and automation to drive better insights and outcomes, essentially putting data to work. And today we're gonna do a deeper dive on automating data Discovery. And one of the thought leaders in this space is a J ahora who is the CEO of Iot. Tahoe's once again joining Me A J Good to see you. Thanks for coming on. >>A great to be here, David. Thank you. >>So let's start by talking about some of the business realities. And what are the economics that air? That air driving, automated data Discovery? Why is that so important? >>Yeah, and on this one, David, it's It's a number of competing factors we've got. The reality is data which may be sensitive, so this control on three other elements are wanting to drive value from that data. So innovation, you can't really drive a lot of value without exchanging data. So the ability to exchange data and to manage those costs, overheads and data discovery is at the roots of managing that in an automated way to classify that data in sets and policies to put that automation in place. >>Yeah. Okay, look, we have a picture of this. We could bring it up, guys, because I want oh, A j help the audience. Understand? Unaware data Discovery fits in here. This is as we talked about this, a complicated situation for a lot of customers. They got a variety of different tools, and you really laid it out nicely here in this diagram. So take us through. Sort of where that he spits. >>Yeah. I mean, where at the right hand side, This exchange. You know, we're really now in a data driven economy that is, everything's connected through AP, eyes that we consume on mine free mobile relapse. And what's not a parent is the chain of activities and tasks that have to go into serving that data two and eight p. I. At the outset, there may be many legacy systems, technologies, platforms on premise and cloud hybrids. You name it. Andi across those silos. Getting to a unified view is the heavy lifting. I think we've seen Cem some great impacts that be I titles such as Power Bi I tableau looker on DSO on in Clear. Who had Andi there in our ecosystem on visualising Data and CEO's managers, people that are working in companies day to day get a lot of value from saying What's the was the real time activity? What was the trend over this month? First his last month. The tools to enable that you know, we here, Um, a lot of good things are work that we're doing with snowflake mongo db on the public cloud platforms gcpd as your, um, about enabling building those pay planes to feed into those analytics. But what often gets hidden is have you sauce that data that could be locked into a mainframe, a data warehouse? I ot data on DPA, though, that all of that together that is the reality of that is it's it's, um, it's a lot of heavy lifting It z hands on what that, um, can be time consuming on the issue There is that data may have value. It might have potential to have an impact on the on the top line for a business on outcomes for consumers. But you never any sure unless you you've done the investigation discovered it unified that Onda and be able to serve that through to other technologies. >>Guys have. You would bring that picture back up again because A. J, you made a point, and I wanna land on that for a second. There's a lot of manual curating. Ah, an example would be the data catalogue if they decide to complain all the time that they're manually wrangling data. So you're trying to inject automation in the cycle, and then the other piece that I want you to addresses the importance of AP eyes. You really can't do this without an architecture that allows you to connect things together. That sort of enables some of the automation. >>Yeah, I mean, I don't take that in two parts. They would be the AP eyes so virtual machines connected by AP eyes, um, business rules and business logic driven by AP eyes applications. So everything across the stack from infrastructure down to the network um, hardware is all connected through AP eyes and the work of serving data three to an MP I Building these pipelines is is often, um, miscalculated. Just how much manual effort that takes and that manual ever. We've got a nice list here of what we automate down at the bottom. Those tasks of indexing, labeling, mapping across different legacy systems. Um, all of that takes away from the job of a data scientist today to engineer it, looking to produce value monetize data on day two to help their business day to conceive us. >>Yes. So it's that top layer that the business sees, of course, is a lot of work that has to go went into achieving that. I want to talk about some of the key tech trends that you're seeing and one of the things that we talked about a lot of metadata at the importance of metadata. It can't be understated. What are some of the big trends that you're seeing metadata and others? >>Yeah, I'll summarize. It is five. There's trains now, look, a metadata more holistically across the enterprise, and that really makes sense from trying. Teoh look across different data silos on apply, um, a policy to manage that data. So that's the control piece. That's that lever the other side's on. Sometimes competing with that control around sense of data around managing the costs of data is innovation innovation, being able to speculate on experiment and trying things out where you don't really know what the outcome is. If you're a data scientist and engineer, you've got a hypothesis. And now, before you got that tension between control over data on innovation and driving value from it. So enterprise wide manage data management is really helping to enough. Where might that latent value be across that sets of data? The other piece is adaptive data governance. Those controls that that that stick from the data policemen on day to steer its where they're trying to protect the organization, protect the brand, protect consumers data is necessary. But in different use cases, you might want to nuance and apply a different policy to govern that data run of into the context where you may have data that is less sensitive. Um, that can me used for innovation. Andi. Adapting the style of governance to fit the context is another trend that we're seeing coming up here. A few others is where we're sitting quite extensively and working with automating data discovery. We're now breaking that down into what can we direct? What do we know is a business outcome is a known up front objective on direct that data discovery to towards that. And that means applying around with Dems run technology and our tools towards solving a known problem. The other one is autonomous data discovery. And that means, you know, trying to allow background processes do winds down what changes are happening with data over time flagging those anomalies. And the reason that's important is when you look over a length of time to see different spikes, different trends and activity that's really giving a day drops team the ability to to manage and calibrate how they're applying policies and controls today. There, in the last two David that we're seeing is this huge drive towards self service so reimagining how to play policy data governance into the hands off, um, a day to consumer inside a business or indeed, the consumer themselves. The South service, um, if their banking customer or healthcare customer and the policies and the controls and rules, making sure that those are all in place to adaptive Lee, um, serve those data marketplaces that, um when they're involved in creating, >>I want to ask you about the autonomous data discovering the adaptive data. Governance is the is the problem where addressing their one of quality. In other words, machines air better than humans are doing this. Is that one of scale that humans just don't don't scale that well, is it? Is it both? Can you add some color to that >>yet? Honestly, it's the same equation that existed 10 years ago, 20 years ago. It's It's being exacerbated, but it's that equation is how do I control both things that I need to protect? How do we enable innovation where it is going to deliver business value? Had to exchange data between a customer, somebody in my supply chains safely. And all of that was managing the fourth that leg, which is cost overheads. You know, there's no no can checkbook here. I've got a figure out. If only see io and CDO how I do all of this within a fixed budget so that those aspects have always been there. Now, with more choices. Infrastructure in the cloud, um, NPR driven applications own promise. And that is expanding the choices that a a business has and how they put mandated what it's also then creating a layer off management and data governance that really has to now, uh, manage those full wrath space control, innovation, exchange of data on the cost overhead. >>That that top layer of the first slide that we showed was all about business value. So I wonder if we could drill into the business impact a little bit. What do your customers seeing you know, specifically in terms of the impact of all this automation on their business? >>Yeah, so we've had some great results. I think view the biggest Have Bean helping customers move away from manually curating their data in their metadata. It used to be a time where for data quality initiatives or data governance initiative that be teams of people manually feeding a data Cavallo. And it's great to have the inventory of classified data to be out to understand single version of the trees. But in a having 10 15 people manually process that keep it up to date when it's moving feet. The reality of it is what's what's true about data today? and another few sources in a few months. Time to your business on start collaborating with new partners. Suddenly the landscape has changed. The amount of work is gonna But the, um, what we're finding is through automating creating that data discovery feeding a dent convoke that's releasing a lot more time for our CAS. Mr Spend on innovating and managing their data. A couple of others is around cell service data and medics moving the the choices of what data might have business value into the hands of business users and and data consumers to They're faster cycle times around generating insights. Um, we really helping that by automating the creation of those those data sets that are needed for that. And in the last piece, I'd have to say where we're seeing impacts. A more recently is in the exchange of data. There are a number of marketplaces out there who are now being compelled to become more digital to rewire their business processes. Andi. Everything from an r p a initiative. Teoh automation involving digital transformation is having, um, see iose Chief data officers Andi Enterprise architects rethink how do they how they re worthy pipelines? But they dated to feed that additional transformation. >>Yeah, to me, it comes down to monetization. Of course, that's for for profit in industry, from if nonprofits, for sure, the cost cutting or, in the case of healthcare, which we'll talk about in a moment. I mean, it's patient outcomes. But you know, the the job of ah, chief data officer has gone from your data quality and governance and compliance to really figuring out how data and be monetized, not necessarily selling the data, but how it contributes for the monetization of the company and then really understanding specifically for that organization how to apply that. And that is a big challenge. We chatted about it 10 years ago in the early days of a Duke. And then, you know, 1% of the companies had enough engineers to figure it out. But now the tooling is available, the technology is there and the the practices air there, and that really to me, is the bottom line. A. J is it says to show me the money. >>Absolutely. It's is definitely then six sing links is focusing in on the saying over here, that customer Onda, where we're helping there is dio go together. Those disparities siloed source of data to understand what are the needs of the patient of the broker of the if it's insurance? Ah, one of the needs of the supply chain manager If its manufacturing onda providing that 3 60 view of data, um is helping to see helping that individual unlock the value for the business. Eso data is providing the lens, provided you know which data it is that can God assist in doing that? >>And you know, you mentioned r p A. Before an r p A customer tell me she was a six Sigma expert and she told me we would never try to apply six segment to a business process. But with our P A. We can do so very cheaply. Well, what that means is lower costs means better employee satisfaction and, really importantly, better customer satisfaction and better customer outcomes. Let's talk about health care for a minute because it's a really important industry. It's one that is ripe for disruption on has really been up until recently, pretty slow. Teoh adopt ah, lot of the major technologies that have been made available, but come, what are you seeing in terms of this theme, we're using a putting data to work in health care. Specific. >>Yeah, I mean, healthcare's Havlat thrown at it. There's been a lot of change in terms of legislation recently. Um, particularly in the U. S. Market on in other economies, um, healthcare ease on a path to becoming more digital on. Part of that is around transparency of price, saying to be operating effectively as a health care marketplace, being out to have that price transparency, um, around what an elective procedure is going to cost before taking that that's that forward. It's super important to have an informed decision around there. So we look at the US, for example. We've seen that health care costs annually have risen to $4 trillion. But even with all of that on cost, we have health care consumers who are reluctant sometimes to take up health care if they even if they have symptoms on a lot of that is driven through, not knowing what they're opening themselves up to. Andi and I think David, if you are, I want to book, travel, holiday, maybe, or trip. We want to know what what we're in for what we're paying for outfront, but sometimes in how okay, that choice, the option might be their plan, but the cost that comes with it isn't so recent legislation in the US Is it certainly helpful to bring for that tryst price, transparency, the underlying issue there? There is the disparity. Different formats, types of data that being used from payers, patients, employers, different healthcare departments try and make that make that work. And when we're helping on that aspect in particular related to track price transparency is to help make that date of machine readable. So sometimes with with data, the beneficiary might be on a person. I've been a lot of cases now we're seeing the ability to have different systems, interact and exchange data in order to process the workflow. To generate online at lists of pricing from a provider that's been negotiated with a payer is, um, is really a neighboring factor. >>So, guys, I wonder if you bring up the next slide, which is kind of the Nirvana. So if you if you saw the previous slide that the middle there was all different shapes and presumably to disparage data, this is that this is the outcome that you want to get. Everything fits together nicely and you've got this open exchange. It's not opaque as it is today. It's not bubble gum band aids and duct tape, but but but described this sort of outcome the trying to achieve and maybe a little bit about what gonna take to get there. >>Yeah, that's a combination of a number of things. It's making sure that the data is machine readable. Um, making it available to AP eyes that could be our ph toes. We're working with technology companies that employ R P. A full health care. I'm specifically to manage that patient and pay a data. Teoh, bring that together in our data Discovery. What we're able to do is to classify that data on having made available to eight downstream tour technology or person to imply that that workflow to to the data. So this looks like nirvana. It looks like utopia. But it's, you know, the end objective of a journey that we can see in different economies there at different stages of maturity, in turning healthcare into a digital service, even so that you could consume it from when you live from home when telling medicine. Intellicast >>Yes, so And this is not just health care but you wanna achieve that self service doing data marketplace in virtually any industry you working with TCS, Tata Consultancy Services Toe Achieve this You know, if you are a company like Iota has toe have partnerships with organizations that have deep industry expertise Talk about your relationship with TCS and what you guys are doing specifically in this regard. >>Yeah, we've been working with TCS now for room for a long while. Andi will be announcing some of those initiatives here where we're now working together to reach their customers where they've got a a brilliant framework of business for that zero when there re imagining with their clients. Um, how their business cause can operate with ai with automation on, become more agile in digital. Um, our technology, the dreams of patients that we have in our portfolio being out to apply that at scale on the global scale across industries such as banking, insurance and health care is is really allowing us to see a bigger impact on consumer outcomes. Patient outcomes And the feedback from TCS is that we're really helping in those initiatives remove that friction. They talk a lot about data. Friction. Um, I think that's a polite term for the the image that we just saw with the disparity technologies that the legacy that has built up. So if we want to create a transformation, Um, having a partnership with TCS across Industries is giving us that that reach and that impacts on many different people's day to day jobs and knives. >>Let's talk a little bit about the cloud. It's It's a topic that we've hit on quite a bit here in this in this content Siri's. But But you know, the cloud companies, the big hyper scale should put everything into the cloud, right? But but customers are more circumspect than that. But at the same time, machine intelligence M. L. A. The cloud is a place to do a lot of that. That's where a lot of the innovation occurs. And so what are your thoughts on getting to the cloud? Ah, putting dated to work, if you will, with machine learning stuff you're doing with aws. What? You're fit there? >>Yeah, we we and David. We work with all of the cloud platforms. Mike stuffed as your G, c p IBM. Um, but we're expanding our partnership now with AWS Onda we really opening up the ability to work with their Greenfield accounts, where a lot of that data that technology is in their own data centers at the customer, and that's across banking, health care, manufacturing and insurance. And for good reason. A lot of companies have taken the time to see what works well for them, with the technologies that the cloud providers ah, are offered a offering in a lot of cases testing services or analytics using the cloud to move workloads to the cloud to drive Data Analytics is is a real game changer. So there's good reason to maintain a lot of systems on premise. If that makes sense from a cost from a liability point of view on the number of clients that we work with, that do have and we will keep their mainframe systems within kobo is is no surprise to us, but equally they want to tap into technologies that AWS have such a sage maker. The issue is as a chief data officer, I don't have the budget to me, everything to the cloud day one, I might want to show some results. First upfront to my business users Um, Onda worked closely with my chief marketing officer to look at what's happening in terms of customer trains and customer behavior. What are the customer outcomes? Patient outcomes and partner at comes I can achieve through analytics data signs. So I, working with AWS and with clients to manage that hybrid topology of some of that data being, uh, in the cloud being put to work with AWS age maker on night, I hope being used to identify where is the data that needs to bay amalgamated and curated to provide the data set for machine learning advanced and medics to have an impact for the business. >>So what are the critical attributes of what you're looking at to help customers decide what what to move and what to keep, if you will. >>Well, what one of the quickest outcomes that we help custom achieve is to buy that business blustery. You know that the items of data that means something to them across those different silos and pour all of that together into a unified view once they've got that for a data engineer working with a a business manager to think through how we want to create this application. There was the turn model, the loyalty or the propensity model that we want to put in place here. Um, how do we use predictive and medics to understand what needs are for a patient, that sort of innovation is what we're looking applying the tools such a sagemaker, uh, night to be west. So they do the the computation and to build those models to deliver the outcome is is across that value chain, and it goes back to the first picture that we put up. David, you know the outcome Is that a P I On the back of it, you've got the machine learning model that's been developed in That's always such as data breaks. But with Jupiter notebook, that data has to be sourced from somewhere. Somebody has to say that yet you've got permission to do what you're trying to do without falling foul of any compliance around data. Um, it'll goes back to discovering that data, classifying it, indexing it in an automated way to cut those timelines down two hours and days. >>Yeah, it's the it's the innovation part of your data portfolio, if you will, that you're gonna put into the cloud. Apply tools like sage maker and others. You told the jury. Whatever your favorite tool is, you don't care. The customer's gonna choose that and hear the cloud vendors. Maybe they want you to use their tool, but they're making their marketplaces available to everybody. But it's it's that innovation piece, the ones that you where you want to apply that self service data marketplace to and really drive. As I said before monetization. All right, give us your final thoughts. A. J bring us home. >>So final thoughts on this David is that at the moment we're seeing, um, a lot of value in helping customers discover that day the using automation automatically curating a data catalogue, and that unified view is then being put to work through our A B. I's having an open architecture to plug in whatever tool technology our clients have decided to use, and that open architecture is really feeding into the reality of what see Iose in Chief Data Officers of Managing, which is a hybrid on premise cloud approach. Do you suppose to breed Andi but business users wanting to use a particular technology to get their business outcome having the flexibility to do that no matter where you're dating. Sitting on Premise on Cloud is where self service comes in that self service. You of what data I can plug together, Dr Exchange. Monetizing that data is where we're starting to see some real traction. Um, with customers now accelerating becoming more digital, uh, to serve their own customers, >>we really have seen a cultural mind shift going from sort of complacency. And obviously, cove, it has accelerated this. But the combination of that cultural shift the cloud machine intelligence tools give give me a lot of hope that the promises of big data will ultimately be lived up to ah, in this next next 10 years. So a J ahora thanks so much for coming back on the Cube. You're you're a great guest. And ah, appreciate your insights. >>Appreciate, David. See you next time. >>All right? And keep it right there. Very right back. Right after this short break
SUMMARY :
And for the last several months, we've been working with Iot Tahoe on an ongoing content. A great to be here, David. So let's start by talking about some of the business realities. So the ability to exchange and you really laid it out nicely here in this diagram. tasks that have to go into serving that data two and eight p. addresses the importance of AP eyes. So everything across the stack from infrastructure down to the network um, What are some of the big trends that you're the costs of data is innovation innovation, being able to speculate Governance is the is and data governance that really has to now, uh, manage those full wrath space control, the impact of all this automation on their business? And in the last piece, I'd have to say where we're seeing in the case of healthcare, which we'll talk about in a moment. Eso data is providing the lens, provided you know Teoh adopt ah, lot of the major technologies that have been made available, that choice, the option might be their plan, but the cost that comes with it isn't the previous slide that the middle there was all different shapes and presumably to disparage into a digital service, even so that you could consume it from Yes, so And this is not just health care but you wanna achieve that self service the image that we just saw with the disparity technologies that the legacy Ah, putting dated to work, if you will, with machine learning stuff A lot of companies have taken the time to see what works well for them, to move and what to keep, if you will. You know that the items of data that means something to The customer's gonna choose that and hear the cloud vendors. the flexibility to do that no matter where you're dating. that cultural shift the cloud machine intelligence tools give give me a lot of hope See you next time. And keep it right there.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Ajay Vohora | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
TCS | ORGANIZATION | 0.99+ |
Mike | PERSON | 0.99+ |
Andi | PERSON | 0.99+ |
Iota | ORGANIZATION | 0.99+ |
Iot Tahoe | ORGANIZATION | 0.99+ |
Iot | ORGANIZATION | 0.99+ |
$4 trillion | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
first picture | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
two parts | QUANTITY | 0.99+ |
two hours | QUANTITY | 0.99+ |
US | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
Tata Consultancy Services | ORGANIZATION | 0.99+ |
10 years ago | DATE | 0.99+ |
first slide | QUANTITY | 0.99+ |
1% | QUANTITY | 0.99+ |
both things | QUANTITY | 0.98+ |
First | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
Spend | PERSON | 0.98+ |
fourth | QUANTITY | 0.97+ |
U. S. | LOCATION | 0.97+ |
Iose | PERSON | 0.97+ |
today | DATE | 0.97+ |
six sing links | QUANTITY | 0.96+ |
A. J | PERSON | 0.96+ |
20 years ago | DATE | 0.96+ |
three other elements | QUANTITY | 0.96+ |
day two | QUANTITY | 0.95+ |
two | QUANTITY | 0.95+ |
last month | DATE | 0.94+ |
Duke | ORGANIZATION | 0.93+ |
zero | QUANTITY | 0.91+ |
cove | PERSON | 0.9+ |
Andi | ORGANIZATION | 0.9+ |
Onda | ORGANIZATION | 0.88+ |
10 15 people | QUANTITY | 0.87+ |
single version | QUANTITY | 0.86+ |
this month | DATE | 0.83+ |
CDO | TITLE | 0.83+ |
eight | QUANTITY | 0.81+ |
Tahoe | ORGANIZATION | 0.79+ |
eight downstream | QUANTITY | 0.77+ |
AWS Onda | ORGANIZATION | 0.77+ |
Io Tahoe | ORGANIZATION | 0.77+ |
next next 10 years | DATE | 0.76+ |
day | QUANTITY | 0.73+ |
Cube | COMMERCIAL_ITEM | 0.72+ |
six segment | QUANTITY | 0.71+ |
last several months | DATE | 0.71+ |
three | QUANTITY | 0.68+ |
Eso | ORGANIZATION | 0.6+ |
Have Bean | ORGANIZATION | 0.6+ |
3 60 view | QUANTITY | 0.58+ |
J | ORGANIZATION | 0.55+ |
Greenfield | ORGANIZATION | 0.49+ |
ahora | PERSON | 0.48+ |
J | PERSON | 0.48+ |
South | ORGANIZATION | 0.47+ |
six Sigma | QUANTITY | 0.46+ |
Io-Tahoe Smart Data Lifecycle CrowdChat | Digital
>>from around the globe. It's the Cube with digital coverage of data automated and event. Siri's Brought to You by Iot Tahoe Welcome, everyone to the second episode in our data automated Siri's made possible with support from Iot Tahoe. Today we're gonna drill into the data lifecycle, meaning the sequence of stages that data travels through from creation to consumption to archive. The problem, as we discussed in our last episode, is that data pipelines, they're complicated, They're cumbersome, that disjointed, and they involve highly manual processes. Ah, smart data lifecycle uses automation and metadata to approve agility, performance, data quality and governance and ultimately reduce costs and time to outcomes. Now, in today's session will define the data lifecycle in detail and provide perspectives on what makes a data lifecycle smart and importantly, how to build smarts into your processes. In a moment, we'll be back with Adam Worthington from ethos to kick things off, and then we'll go into an export power panel to dig into the tech behind smart data life cycles, and it will hop into the crowdchat and give you a chance to ask questions. So stay right there. You're watching the cube innovation impact influence. Welcome >>to the Cube disruptors. Developers and practitioners learn from the voices of leaders who share their personal insights from the hottest digital events around the globe. Enjoy the best this community has to offer on the Cube, your global leader. >>High tech digital coverage. Okay, we're back with Adam Worthington. Adam, good to see you. How are things across the pond? >>Thank you, I'm sure. >>Okay, so let's let's set it up. Tell us about yourself. What? Your role is a CTO and >>automatically. As you said, we found a way to have a pretty in company ourselves that we're in our third year on. Do we specialize in emerging disruptive technologies within the infrastructure? That's the kind of cloud space on my phone is the technical lead. So I kind of my job to be an expert in all of the technologies that we work with, which can be a bit of a challenge if you have a huge for phone is one of the reasons, like deliberately focusing on on also kind of pieces a successful validation and evaluation of new technologies. >>So you guys really technology experts, data experts and probably also expert in process and delivering customer outcomes. Right? >>That's a great word there, Dave Outcomes. That's a lot of what I like to speak to customers about. >>Let's talk about smart data, you know, when you when you throw in terms like this is it kind of can feel buzz, wordy. But what are the critical aspects of so called smart data? >>Help to step back a little bit, seen a little bit more in terms of kind of where I can see the types of problems I saw. I'm really an infrastructure solution architect trace on and what I kind of benefit we organically. But over time my personal framework, I focused on three core design principal simplicity, flexibility, inefficient, whatever it was designing. And obviously they need different things, depending on what the technology area is working with. But that's a pretty good. So they're the kind of areas that a smart approach to data will directly address. Reducing silos that comes from simplifying, so moving away from conflict of infrastructure, reducing the amount of copies of data that we have across the infrastructure and reducing the amount of application environments that need different areas so smarter get with data in my eyes anyway, the further we moved away from this. >>But how does it work? I mean, how do you know what's what's involved in injecting smarts into your data lifecycle? >>I think one of my I actually did not ready, but generally one of my favorite quotes from the French lost a mathematician, Blaise Pascal. He said, If I get this right, I have written a short letter, but I didn't have time. But Israel, I love that quite for lots of reasons >>why >>direct application in terms of what we're talking about, it is actually really complicated. These developers technology capabilities to make things simple, more directly meet the needs of the business. So you provide self service capabilities that they just need to stop driving. I mean, making data on infrastructure makes the business users using >>your job. Correct me. If I'm wrong is to kind of put that all together in a solution and then help the customer realize that we talked about earlier that business out. >>Yeah, enough if they said in understanding both sides so that it keeps us on our ability to deliver on exactly what you just said is big experts in the capabilities and new a better way to do things but also having the kind of the business understanding to be able to ask the right questions. That's how new a better price is. Positions another area that I really like his stuff with their platforms. You can do more with less. And that's not just about using data redundancy. That's about creating application environments, that conservative and then the infrastructure to service different requirements that are able to use the random Io thing without getting too kind of low level as well as the sequential. So what that means is you don't necessarily have to move data from application environment a do one thing related, and then move it to the application environment. Be that environment free terms of an analytics on the left Right works. Both keep the data where it is, use it or different different requirements within the infrastructure and again do more with less. And what that does is not just about simplicity and efficiency. It significantly reduces the time to value of that as well. >>Do you have examples that you can share with us even if they're anonymous customers that you work with that are maybe a little further down on the journey. Or maybe not >>looking at the you mentioned data protection earlier. So another organization This is a project which is just kind of hearing confessions moment, huge organization. They're literally petabytes of data that was servicing their back up in archive. And what they have is not just this realization they have combined. I think I different that they have dependent on the what area of infrastructure they were backing up, whether it was virtualization, that was different because they were backing up PC's June 6th. They're backing up another database environment, using something else in the cloud knowledge bases approach that we recommended to work with them on. They were able to significantly reduce complexity and reduce the amount of time that it systems of what they were able to achieve and what this is again. One of the clients have They've gone above the threshold of being able to back up for that. >>Adam, give us the final thoughts, bring us home. In this segment, >>the family built something we didn't particularly such on, that I think it is really barely hidden. It is spoken about as much as I think it is, that agile approaches to infrastructure we're going to be touched on there could be complicated on the lack of it efficient, the impact, a user's ability to be agile. But what you find with traditional approaches and you already touched on some of the kind of benefits new approaches there. It's often very prescriptive, designed for a particular as the infrastructure environment, the way that it served up the users in kind of a packaged. Either way, it means that they need to use it in that whatever wave in data bases, that kind of service of as it comes in from a flexibility standpoint. But for this platform approach, which is the right way to address technology in my eyes enables, it's the infrastructure to be used. Flexible piece of it, the business users of the data users what we find this capability into their innovating in the way they use that on the White House. I bring benefits. This is a platform to prescriptive, and they are able to do that. What you're doing with these new approaches is all of the metrics that we touched on and pass it from a cost standpoint from a visibility standpoint, but what it means is that the innovators in the business want really, is to really understand what they're looking to achieve and now have to to innovate with us. Now, I think I've started to see that with projects season places. If you do it in the right way, you articulate the capability and empower the business users in the right ways. Very significantly. Better position. The advantages on really matching significantly bigger than their competition. Yeah, >>Super Adam in a really exciting space. And we spent the last 10 years gathering all this data, you know, trying to slog through it and figure it out. And now, with the tools that we have and the automation capabilities, it really is a new era of innovation and insights. So, Adam or they didn't thanks so much for coming on the Cube and participating in this program. >>Exciting times with that. Thank you very much Today. >>Now we're going to go into the power panel and go deeper into the technologies that enable smart data life cycles. Stay right there. You're watching the cube. Are >>you interested in test driving? The i o ta ho platform Kickstart the benefits of data automation for your business through the Iot Labs program. Ah, flexible, scalable sandbox environment on the cloud of your choice with set up a service and support provided by Iot. Top. Click on the Link and connect with the data engineer to learn more and see Iot Tahoe in action. >>Welcome back, everybody to the power panel driving business performance with smart data life cycles. Leicester Waters is here. He's the chief technology officer from Iot Tahoe. He's joined by Patrick Smith, who was field CTO from pure storage. And is that data? Who's a system engineering manager at KohI City? Gentlemen, good to see you. Thanks so much for coming on this panel. >>Thank you. >>Let's start with Lester. I wonder if each of you could just give us a quick overview of your role. And what's the number one problem that you're focused on solving for your customers? Let's start with Lester Fleet. >>Yes, I'm Lost Waters, chief technology officer for Iot Tahoe and really the number one problem that we're trying to solve for our customers is to understand, help them understand what they have, because if they don't understand what they have in terms of their data. They can't manage it. They can't control it. The cap monitor. They can't ensure compliance. So really, that's finding all you can about your data that you have. And building a catalog that could be readily consumed by the entire business is what we do. >>Patrick Field, CTO in your title That says to me, You're talking to customers all the time, so you got a good perspective on it. Give us your take on things here. >>Yeah, absolutely. So my patches in here on day talkto customers and prospects in lots of different verticals across the region. And as they look at their environments and their data landscape, they're faced with massive growth in the data that they're trying to analyze and demands to be able to get insight our stuff and to deliver better business value faster than they've ever had to do in the past. So >>got it. And is that of course, Kohi City. You're like the new kid on the block. You guys were really growing rapidly created this whole notion of data management, backup and and beyond. But I'm assistant system engineering manager. What are you seeing from from from customers your role and the number one problem that you're solving. >>Yeah, sure. So the number one problem I see time and again speaking with customers. It's around data fragmentation. So do two things like organic growth, even maybe budgetary limitations. Infrastructure has grown over time very piecemeal, and it's highly distributed internally. And just to be clear, you know, when I say internally, that >>could be >>that it's on multiple platforms or silos within an on Prem infrastructure that it also does extend to the cloud as well. >>Right Cloud is cool. Everybody wants to be in the cloud, right? So you're right, It creates, Ah, maybe unintended consequences. So let's start with the business outcome and kind of try to work backwards to people you know. They want to get more insights from data they want to have. Ah, Mawr efficient data lifecycle. But so let's let me start with you were thinking about like the North Star for creating data driven cultures. You know, what is the North Star or customers >>here? I think the North Star, in a nutshell, is driving value from your data. Without question, I mean way, differentiate ourselves these days by even nuances in our data now, underpinning that, there's a lot of things that have to happen to make that work out. Well, you know, for example, making sure you adequately protect your data, you know? Do you have a good You have a good storage sub system? Do you have a good backup and recovery point objectives? Recovery time objective. How do you Ah, are you fully compliant? Are you ensuring that you're taking all the boxes? There's a lot of regulations these days in terms with respect to compliance, data retention, data, privacy and so forth. Are you taking those boxes? Are you being efficient with your, uh, your your your data? You know, In other words, I think there's a statistic that someone mentioned me the other day that 53% of all businesses have between three and 15 copies of the same data. So you know, finding and eliminating does is it is part of the part of the problem is when you do a chase, >>um, I I like to think of you're right, no doubt, business value and and a lot of that comes from reducing the end in cycle times. But anything that you guys would would add to that. Patrick, Maybe start with Patrick. >>Yeah, I think I think in value from your data really hits on tips on what everyone wants to achieve. But I think there are a couple of key steps in doing that. First of all, is getting access to the data and asked that, Really, it's three big problems, firstly, working out what you've got. Secondly, looking at what? After working on what you've got, how to get access to it? Because it's all very well knowing that you've got some data. But if you can't get access to it either because of privacy reasons, security reasons, then that's a big challenge. And then finally, once you've got access to the data making sure that you can process that data in a timely manner >>for me, you know it would be that an organization has got a really good global view of all of its data. It understands the data flow and dependencies within their infrastructure, understands that precise legal and compliance requirements, and you had the ability to action changes or initiatives within their environment to give the fun. But with a cloud like agility. Um, you know, and that's no easy feat, right? That is hard work. >>Okay, so we've we've talked about. The challenge is in some of the objectives, but there's a lot of blockers out there, and I want to understand how you guys are helping remove them. So So, Lester. But what do you see as some of the big blockers in terms of people really leaning in? So this smart data lifecycle >>yeah, Silos is is probably one of the biggest one I see in business is yes, it's it's my data, not your data. Lots of lots of compartmentalization. Breaking that down is one of the one of the challenges. And having the right tools to help you do that is only part of the solution. There's obviously a lot of cultural things that need to take place Teoh to break down those silos and work together. If you can identify where you have redundant data across your enterprise, you might be able to consolidate those. >>So, Patrick, so one of the blockers that I see is legacy infrastructure, technical debt, sucking all the budget you got. You know, too many people have having to look after, >>as you look at the infrastructure that supports people's data landscapes today for primarily legacy reasons. The infrastructure itself is siloed. So you have different technologies with different underlying hardware and different management methodologies that they're there for good reason, because historically you have to have specific fitness, the purpose for different data requirements. And that's one of the challenges that we tackled head on a pure with with the flash blade technology and the concept of the data, a platform that can deliver in different characteristics for the different workloads. But from a consistent data platform >>now is that I want to go to you because, you know, in the world in your world, which to me goes beyond backup. And one of the challenges is, you know, they say backup is one thing. Recovery is everything, but as well. The the CFO doesn't want to pay for just protection, and one of things that I like about what you guys have done is you. You broadened the perspective to get more value out of your what was once seen as an insurance policy. >>I do see one of the one of the biggest blockers as the fact that the task at hand can, you know, can be overwhelming for customers. But the key here is to remember that it's not an overnight change. It's not, you know, a flick of a switch. It's something that can be tackled in a very piecemeal manner on. Absolutely. Like you said, You know, reduction in TCO and being able to leverage the data for other purposes is a key driver for this. So, you know, this can be this can be resolved. It would be very, you know, pretty straightforward. It can be quite painless as well. Same goes for unstructured data, which is very complex to manage. And, you know, we've all heard the stats from the the analysts. You know, data obviously is growing at an extremely rapid rate, but actually, when you look at that, you know how is actually growing. 80% of that growth is actually in unstructured data, and only 20% of that growth is in unstructured data. S o. You know, these are quick win areas that customers can realize immediate tco improvement and increased agility as well >>paint a picture of this guy that you could bring up the life cycle. You know what you can see here is you've got this this cycle, the data lifecycle and what we're wanting to do is inject intelligence or smarts into this, like like life cycles. You see, you start with ingestion or creation of data. You're you're storing it. You got to put it somewhere, right? You gotta classify it. You got to protect it. And then, of course, you want to reduce the copies, make it, you know, efficient on. And then you want to prepare it so that businesses can actually sumit. And then you've got clients and governance and privacy issues, and I wonder if we could start with you. Lester, this is, you know, the picture of the life cycle. What role does automation play in terms of injecting smarts into the lifecycle? >>Automation is key here, especially from the discover it catalog and classify perspective. I've seen companies where they geo and will take and dump their all of their database scheme is into a spreadsheet so that they can sit down and manually figure out what attributes 37 means for a column names, Uh, and that's that's only the tip of the iceberg. So being able to do automatically detect what you have automatically deduced where what's consuming the data, you know, upstream and downstream. Being able to understand all of the things related to the lifecycle of your data. Back up archive deletion. It is key. And so we're having having good tool. IShares is very >>important. So, Patrick, obviously you participate in the store piece of this picture s I wonder if you could talk more specifically about that. But I'm also interested in how you effect the whole system view the the end end cycle time. >>Yeah, I think Leicester kind of hit the nail on the head in terms of the importance of automation because the data volumes are just just so massive. Now that you can, you can you can effectively manage or understand or catalog your data without automation. Once you understand the data and the value of the data, then that's where you can work out where the data needs to be at any point in >>time, right? So pure and kohi city obviously partner to do that and of course, is that you guys were part of the protect you certainly part of the retain. But Also, you provide data management capabilities and analytics. I wonder if you could add some color there. >>Yeah, absolutely. So, like you said, you know, we focused pretty heavily on data protection. Is just one of our one of our areas on that infrastructure. It is just sitting there, really? Can, you know, with the legacy infrastructure, It's just sitting there, you know, consuming power, space cooling and pretty inefficient. And what, if anything, that protest is a key part of that. If I If I have a modern data platform such as, you know, the cohesive data platform, I can actually do a lot of analytics on that through application. So we have a marketplace for APS. >>I wonder if we could talk about metadata. It's It's increasingly important. Metadata is data about the data, but Leicester maybe explain why it's so important and what role it plays in terms of creating smart data lifecycle. A >>lot of people think it's just about the data itself, but there's a lot of extended characteristics about your data. So so imagine if or my data life cycle I can communicate with the backup system from Kohi City and find out when the last time that data was backed up or where is backed up to. I can communicate exchange data with pure storage and find out what two years? And is the data at the right tier commensurate with its use level pointed out and being able to share that metadata across systems? I think that's the direction that we're going in right now. We're at the stage where just identifying the metadata and trying to bring it together and catalog the next stage will be OK using the AP eyes it that that we have between our systems can't communicate and share that data and build good solutions for customers to use. >>It's a huge point that you just made. I mean, you know, 10 years ago, automating classification was the big problem, and it was machine intelligence, you know, obviously attacking that, But your point about as machines start communicating to each other and you start, it's cloud to cloud. There's all kinds of metadata, uh, kind of new meta data that's being created. I often joke that someday there's gonna be more metadata than data, so that brings us to cloud and that I'd like to start with you. >>You know, I do think, you know, having the cloud is a great thing. And it has got its role to play, and you can have many different permutations and iterations of how you use it on. Um, you know, I may have sort of mentioned previously. You know, I've seen customers go into the cloud very, very quickly, and actually recently, they're starting to remove workloads from the cloud. And the reason why this happens is that, you know, Cloud has got its role to play, but it's not right for absolutely everything, especially in their current form as well. A good analogy I like to use on this may sound a little bit cliche, but you know, when you compare clouds versus on premises data centers, you can use the analogy of houses and hotels. So to give you an idea so you know, when we look at hotels, that's like the equivalent of a cloud, right? I can get everything I need from there. I can get my food, my water, my outdoor facilities. If I need to accommodate more people, I can rent some more rooms. I don't have to maintain the hotel. It's all done for me. When you look at houses the equivalent to on premises infrastructure, I pretty much have to do everything myself, right. So I have to purchase the house. I have to maintain it. I have to buy my own food and water. Eat it. You have to make improvements myself. But then why do we all live in houses? No, in hotels. And the simple answer that I can I can only think of is, is that it's cheaper, right. It's cheaper to do it myself. But that's not to say that hotels haven't got their role to play. Um, you know? So, for example, if I've got loads of visitors coming over for the weekend, I'm not going to go build an extension to my house just for them. I will burst into my hotel into the cloud, um, and use it for, you know, for for things like that. So what I'm really saying is the cloud is great for many things, but it can work out costlier for certain applications, while others are a perfect >>It's an interesting analogy. I hadn't thought of that before, but you're right because I was going to say Well, part of it is you want the cloud experience everywhere, but you don't always want the cloud experience especially, you know, when you're with your family, you want certain privacy that I've not heard that before. He's out. So that's the new perspective s Oh, thank you, but but But Patrick, I do want to come back to that cloud experience because, in fact, that's what's happening. In a lot of cases, organizations are extending the cloud properties of automation on Prem. >>Yeah, I thought, as I thought, a really interesting point and a great analogy for the use of the public cloud. And it really reinforces the importance of the hybrid and multi cloud environment because it gives you the flexibility to choose where is the optimal environment to run your business workloads? And that's what it's all about and the flexibility to change which environment you're running in, either for more months to the next or from one year to the next. Because workloads change and the characteristics that are available in the cloud change, the hybrid cloud is something that we've we've lived with ourselves of pure, So our pure one management technology actually sits in hybrid cloud and what we we started off entirely cloud native. But now we use public cloud for compute. We use our own technology at the end of a high performance network link to support our data platform. So we get the best of both worlds and I think that's where a lot of our customers are trying to get to. >>Alright, I want to come back in a moment there. But before we do, let's see, I wonder if we could talk a little bit about compliance, governance and privacy. I think the Brits hung on. This panel is still in the EU for now, but the you are looking at new rules. New regulations going beyond GDP are where does sort of privacy governance, compliance fit in the data lifecycle, then, is that I want your thoughts on this as well. >>Yeah, this is this is a very important point because the landscape for for compliance, around data privacy and data retention is changing very rapidly. And being able to keep up with those changing regulations in an automated fashion is the only way you're gonna be able to do it. Even I think there's a some sort of Ah, maybe ruling coming out today or tomorrow with the changed in the r. So this is things are all very key points and being able to codify those rules into some software. Whether you know, Iot Tahoe or or your storage system or kohi city, it will help you be compliant is crucial. >>Yeah. Is that anything you can add there? I mean, it's really is your wheelhouse. >>Yeah, absolutely. So, you know, I think anybody who's watching this probably has gotten the message that, you know, less silos is better. And it absolutely it also applies to data in the cloud is where as well. So you know, my aiming Teoh consolidate into fewer platforms, customers can realize a lot better control over their data. And the natural effect of this is that it makes meeting compliance and governance a lot easier. So when it's consolidated, you can start to confidently understand who's accessing your data. How frequently are they accessing the data? You can also do things like, you know, detecting anomalous file access activities and quickly identify potential threats. >>Okay, Patrick, we were talking. You talked earlier about storage optimization. We talked to Adam Worthington about the business case, the numerator, which is the business value, and then the denominator, which is the cost and what's unique about pure in this regard. >>Yeah, and I think there are. There are multiple time dimensions to that. Firstly, if you look at the difference between legacy storage platforms that used to take up racks or aisles of space in the data center, the flash technology that underpins flash blade way effectively switch out racks rack units on. It has a big play in terms of data center footprint, and the environmental is associated with the data center. If you look at extending out storage efficiencies and the benefits it brings, just the performance has a direct effect on start we whether that's, you know, the start from the simplicity that platform so that it's easy and efficient to manage, whether it's the efficiency you get from your data. Scientists who are using the outcomes from the platform, making them more efficient to new. If you look at some of our customers in the financial space there, their time to results are improved by 10 or 20 x by switching to our technology from legacy technologies for their analytics, platforms. >>The guys we've been running, you know, Cube interviews in our studios remotely for the last 120 days is probably the first interview I've done where haven't started off talking about Cove it, Lester. I wonder if you could talk about smart data lifecycle and how it fits into this isolation economy. And hopefully, what will soon be a post isolation economy? >>Yeah, Come. It has dramatically accelerated the data economy. I think. You know, first and foremost, we've all learned to work at home. You know, we've all had that experience where, you know, people would have been all about being able to work at home just a couple days a week. And here we are working five days. That's how to knock on impact to infrastructure, to be able to support that. But going further than that, you know, the data economy is all about how a business can leverage their data to compete in this New World order that we are now in code has really been a forcing function to, you know, it's probably one of the few good things that have come out of government is that we've been forced to adapt and It's a zoo. Been an interesting journey and it continues to be so >>like Lester said, you know, we've We're seeing huge impact here. Working from home has pretty much become the norm. Now, you know, companies have been forced into basically making it work. If you look online retail, that's accelerated dramatically as well. Unified communications and videoconferencing. So really, you know the point here, is that Yes, absolutely. We're you know, we've compressed, you know, in the past, maybe four months. What already would have taken maybe even five years, maybe 10 years or so >>We got to wrap. But Celester Louis, let me ask you to sort of get paint. A picture of the sort of journey the maturity model that people have to take. You know, if they want to get into it, where did they start? And where are they going to give us that view, >>I think, versus knowing what you have. You don't know what you have. You can't manage it. You can't control that. You can't secure what you can't ensure. It's a compliant s so that that's first and foremost. Uh, the second is really, you know, ensuring that your compliance once, once you know what you have. Are you securing it? Are you following the regulatory? The applicable regulations? Are you able to evidence that, uh, how are you storing your data? Are you archiving it? Are you storing it effectively and efficiently? Um, you know, have you Nirvana from my perspective, is really getting to a point where you you've consolidated your data, you've broken down the silos and you have a virtually self service environment by which the business can consume and build upon their data. And really, at the end of the day, as we said at the beginning, it's all about driving value out of your data. And ah, the automation is is key to this, sir. This journey >>that's awesome and you just described is sort of a winning data culture. Lester, Patrick, thanks so much for participating in this power panel. >>Thank you, David. >>Alright, So great overview of the steps in the data lifecycle and how to inject smarts into the process is really to drive business outcomes. Now it's your turn. Hop into the crowd chat, please log in with Twitter or linked in or Facebook. Ask questions, answer questions and engage with the community. Let's crowdchat, right. Yeah, yeah, yeah.
SUMMARY :
behind smart data life cycles, and it will hop into the crowdchat and give you a chance to ask questions. Enjoy the best this community has to offer Adam, good to see you. and So I kind of my job to be an expert in all of the technologies that we work with, So you guys really technology experts, data experts and probably also expert in That's a lot of what I like to speak to customers Let's talk about smart data, you know, when you when you throw in terms like this is it kind of can feel buzz, reducing the amount of copies of data that we have across the infrastructure and reducing I love that quite for lots of reasons So you provide self service capabilities help the customer realize that we talked about earlier that business out. that it keeps us on our ability to deliver on exactly what you just said is big experts Do you have examples that you can share with us even if they're anonymous customers that you work looking at the you mentioned data protection earlier. In this segment, But what you find with traditional approaches and you already touched on some of you know, trying to slog through it and figure it out. Thank you very much Today. Now we're going to go into the power panel and go deeper into the technologies that enable Click on the Link and connect with the data Welcome back, everybody to the power panel driving business performance with smart data life I wonder if each of you could just give us a quick overview of your role. So really, that's finding all you can about your data that you so you got a good perspective on it. to deliver better business value faster than they've ever had to do in the past. What are you seeing from from from And just to be clear, you know, when I say internally, that it also does extend to the cloud as well. So let's start with the business outcome and kind of try to work backwards to people you and eliminating does is it is part of the part of the problem is when you do a chase, But anything that you guys would would add to that. But if you can't get access to it either because of privacy reasons, and you had the ability to action changes or initiatives within their environment to give But what do you see as some of the big blockers in terms of people really If you can identify where you have redundant data across your enterprise, technical debt, sucking all the budget you got. So you have different And one of the challenges is, you know, they say backup is one thing. But the key here is to remember that it's not an overnight the copies, make it, you know, efficient on. what you have automatically deduced where what's consuming the data, this picture s I wonder if you could talk more specifically about that. you can you can effectively manage or understand or catalog your data without automation. is that you guys were part of the protect you certainly part of the retain. Can, you know, with the legacy infrastructure, It's just sitting there, you know, consuming power, the data, but Leicester maybe explain why it's so important and what role it And is the data at the right tier commensurate with its use level pointed out I mean, you know, 10 years ago, automating classification And it has got its role to play, and you can have many different permutations and iterations of how you you know, when you're with your family, you want certain privacy that I've not heard that before. at the end of a high performance network link to support our data platform. This panel is still in the EU for now, but the you are looking at new Whether you know, Iot Tahoe or or your storage system I mean, it's really is your wheelhouse. So you know, my aiming Teoh consolidate into Worthington about the business case, the numerator, which is the business value, to manage, whether it's the efficiency you get from your data. The guys we've been running, you know, Cube interviews in our studios remotely for the last 120 days But going further than that, you know, the data economy is all about how a business can leverage we've compressed, you know, in the past, maybe four months. A picture of the sort of journey the maturity model that people have to take. from my perspective, is really getting to a point where you you've consolidated your that's awesome and you just described is sort of a winning data culture. Alright, So great overview of the steps in the data lifecycle and how to inject smarts into the process
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Patrick | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Adam Worthington | PERSON | 0.99+ |
Adam Worthington | PERSON | 0.99+ |
Patrick Field | PERSON | 0.99+ |
Patrick Smith | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
five days | QUANTITY | 0.99+ |
June 6th | DATE | 0.99+ |
10 | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
five years | QUANTITY | 0.99+ |
third year | QUANTITY | 0.99+ |
North Star | ORGANIZATION | 0.99+ |
Lester | PERSON | 0.99+ |
Siri | TITLE | 0.99+ |
10 years | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
second episode | QUANTITY | 0.99+ |
Blaise Pascal | PERSON | 0.99+ |
Leicester Waters | ORGANIZATION | 0.99+ |
15 copies | QUANTITY | 0.99+ |
53% | QUANTITY | 0.99+ |
Lester | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
both sides | QUANTITY | 0.99+ |
four months | QUANTITY | 0.99+ |
each | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
two years | QUANTITY | 0.99+ |
20 x | QUANTITY | 0.99+ |
Iot Tahoe | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
first interview | QUANTITY | 0.99+ |
second | QUANTITY | 0.98+ |
Celester Louis | PERSON | 0.98+ |
ORGANIZATION | 0.98+ | |
Lester Fleet | ORGANIZATION | 0.98+ |
ORGANIZATION | 0.98+ | |
Both | QUANTITY | 0.98+ |
Firstly | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
one year | QUANTITY | 0.98+ |
10 years ago | DATE | 0.98+ |
White House | ORGANIZATION | 0.98+ |
One | QUANTITY | 0.98+ |
two things | QUANTITY | 0.97+ |
both worlds | QUANTITY | 0.97+ |
Secondly | QUANTITY | 0.97+ |
Iot | ORGANIZATION | 0.97+ |
Iot Labs | ORGANIZATION | 0.97+ |
20% | QUANTITY | 0.96+ |
Cove | ORGANIZATION | 0.96+ |
First | QUANTITY | 0.96+ |
Dave Outcomes | PERSON | 0.95+ |
firstly | QUANTITY | 0.95+ |
three big problems | QUANTITY | 0.94+ |
three core | QUANTITY | 0.94+ |
Israel | LOCATION | 0.94+ |
three | QUANTITY | 0.94+ |
KohI City | ORGANIZATION | 0.91+ |
Kohi City | LOCATION | 0.9+ |
one thing | QUANTITY | 0.89+ |
Leicester | ORGANIZATION | 0.89+ |
Adam Worthington, Ethos Technology | IoTahoe | Data Automated
>>from around the globe. It's the Cube with digital coverage of data automated and event. Siri's brought to you by Iot. Tahoe. Okay, we're back with Adam Worthington. Who's the CTO and co founder of Ethos Adam. Good to see you. How are things across the pond? >>Thank you. I'm sure that a little bit on your side. >>Okay, so let's let's set it up. Tell us about yourself. What your role is a CTO and give us the low down on those. >>Sure, So we get automatic. As you said CTO and co founder of A were pretty young company ourselves that we're in our sixth year and we specialize in emerging disruptive technologies within the infrastructure Data center kind of cloud space. And my role is the technical lead. So it's kind of my job to be an expert in all of the technologies that we work with, which can be a bit of a challenge if you have a huge portfolio, is one of the reasons we deliberately focusing on on also kind of a validation and evaluation of new technologies. Yeah, >>so you guys are really technology experts, data experts and probably also expert in process and delivering customer outcomes. Right? >>That's a great word there, Dave Outcomes. That's a lot of what I like to speak to customers about on. Sometimes I get that gets lost, particularly with within highly technical field. I like the virtualization guy or a network like very quickly start talking about the nuts and bolts of technology on I'm a techie. I'm absolutely a nerd, like the best tech guitar but fundamentally reporting in technologies to meet. This is outcomes to solve business problems on on to enable a better way. >>Love it. We love tech, too, but really, it's all about the customer. So let's talk about smart data. You know, when you when you throw in terms like this is it kind of Canfield Buzz Wordy. But let's let's get into the meat on it. What does that mean to you? One of the critical aspects of so called smart data >>cool probably hoped to step back a little bit and set the scene a little bit more in in terms of kind of where I came from, the types of problems that I'm really an infrastructure solution architect trace on what I kind of benefits. We organically But over time my personal framework, I focused on three core design principles whatever it was I was designing. And obviously they need different things. Depending on what technology area is that we're working with. That's pretty good on. And what I realized that we realized we started with those principles could be it could be used more broadly in the the absolute best of breed of technologies. And those really disrupt, uh, significantly improve upon the status quo in one or more of those three areas. Ideally or more simple, more on if we look at the data of the challenges that organizations, enterprises organizations have criticized around data and smart fail over the best way. Maybe it's good to reflect on what the opposite end of the story is kind of why data is often quite dumb. The traditional approaches. We have limited visibility into the data that we're up to the story using within our infrastructure as what we kind of ended up with over time, through no fault of the organizations that have happened silos, everyone silos of expertise. So whether that be, that's going out. Specialized teams, socialization, networking. They have been, for example, silos of infrastructure, which trade state of fragmentation copies of data in different areas of the infrastructure on copies of replication in that data set or reputation in terms of application environments. I think that that's kind of what we tend to focus on, what it's becoming, um, resonating with more organizations. There's a survey that one of the vendors that we work with actually are launched vendor 5.5 years ago, a medical be gone. They work with any company called Phantom Born a first of a kind of global market, 900 respondents, all different vectors, a little different countries, the U. S. And Germany. And what they found was shocking. It was a recent survey so focused on secondary data, but the lessons learned the information taken out a survey applies right across the gamut of infrastructure data organizations. Just some stats just pull out the five minutes 85% off the organization surveyed store between two and five stores data in 3 to 5 clouds. 63% of organizations have between four and 16 coffees of exactly the same data. Nearly nine out of 10 respondents believe that organizations, secondly, data's fragmented across silos are touched on is would become nearly impossible to manage over the long term on. And 91% of the vast majority of organizations leadership were concerned about the level of visibility their teams. So they're the kind of areas that a smart approach to data will directly address. So reducing silos that comes from simplifying so moving away from complexity of infrastructure, reducing the amount of copies of data that we have across the infrastructure and reducing the amount of application environment. I mean, Harry, so smarter we get with data is in my eyes. Anyway, the further we moved away from this, >>there was a lot in that answer, but I want to kind of summarize it if I can talk. You started with simplicity, flexibility, efficiency. Of course, that's what customers want. And then I was gonna ask you about you know, what challenges customers are facing, and I think you laid it out here. But I want to I want to pick on a couple of some of the data that you talked about the public cloud treat that adds complexity and diversity in skill requirements. The copies of data is so true, like data is just like like if rebels, If you Star Trek franchise, they just expand and replicate. So that's an expense, and it adds complexity. Silo data means you spend a lot of time trying to figure out who's got the right data. What's the real truth with a lot of manual processes involved in the visibility is obviously critical. So those are the problems on. But course you talked about how you address those, But But how does it work? I mean, how do you know what's what's involved in injecting smarts into your data? Lifecycle >>that plane, Think about it. So insurance of the infrastructure and say they were very good reasons why customers are in situations they have been in this situation because of the limits are traditional prices. So you look at something is fundamental. So a great example, um on applications that utilize the biggest fundamentally back ups are now often what that typically required is completely separate infrastructure to everything else. But when we're talking about the data set, so what would be a perfect is if we could back up data on use it for other things, and that's where a, uh, a technology provider like So So although it better technology is incredibly simple, it's also incredibly powerful and allows identification, consolidation. And then, if you look at just getting insight out of that fundamentally tradition approaches to infrastructure, they're put in a point of putting a requirement. And therefore it wasn't really incumbent exposed any information out of the data that's stored within the division, which makes it really tricky to do anything else outside of the application. That that's where something like Iot how come in in terms of abstracting away the complexity more directly, I So these are the kind of the area. So I think one of my I did not ready, but generally one of my favorite quotes from the French philosopher and a mathematician, Blaise Pascal, he says, I get this right. I have written a short letter, but I didn't have time. But Israel. I love that quite for lots of reasons, that computation of what we're talking about, it is actually really complicated to develop a technology capability to make things simple, more directly meet the needs of the business. So you provide self service capabilities that they just need to stop driving. I mean making data on infrastructure makes sense for the business users. Music. It's My belief is that the technology shouldn't mean that the users of the technology has to be a technology expert what we really want them to be. And they should be a business experts in any technology that you should enable on demand for the types of technologies to get me excited. They're not necessarily from a ftt complicated technology perspective, but those are really focused on impressive the capability. >>Yeah. Okay, so you talked about back up, We're gonna hear from Kohi City a little bit later and beyond backup data protection, Data Management, That insight piece you talked earlier about visibility, and that's what the Iot Tahoe's bringing table with its software. So that's another component of the tech stack, if you will, Um, and then you talk about simplicity. We're gonna hear from pure storage. They're all about simple storage. They call it the modern data experience. I think so. So those are some of the aspects and your job. Correct me. If I'm wrong is to kind of put that all together in a solution and then help the customer realize that we talked about earlier that business out. >>Yeah, it's that they said, in understanding both sides so that it keeps us on our ability to be able to deliver on exactly what you just said. It's being experts in the capabilities and new and better ways to do things but also having the kind of business under. I found it to be able to ask the right questions, identify how new a better price is positions and you touched on. Yet three vendors that we work with that you have on the panel are very genuinely of. I think of the most exciting around storage and pure is a great one. So yes, a lot of the way that they've made their way. The market is through impressive C and through producing data redundancy. But another area that I really like is with that platform, you can do more with less. And that's not just about using data redundancy. That's about creating application environment, that conservative, then the infrastructure to service different requirements are able to do that the random Io thing without getting too kind of low level as well as a sequential. So what that means is that you don't necessarily have to move data from application environment a do one thing. They disseminate it and then move it to the application environment. Be that based environment three in terms of an analytics on the left to right work. So keep the data where it is, use it for different requirements within the infrastructure and again do more with less. And what that does is not just about simplicity and efficiency. It significantly reduces the time to value. Well at that again resonates that I want to pick up a soundbite that resonates with all of the vendors we have on the panel later. This is the way that they're able todo a better a better TCO better our alliance significantly reduce the value of data. But to answer your question, yeah, you're exactly right. So it's key to us to kind of position, understand? Customer climbs, position the right technology. >>Adam. I wonder if you could give us your insights based on your experience with customers in terms of what success looks like. I'm interested in what they're measuring. I'm big on and end cycle times and taking a systems view, but of course you know customers. They want to measure everything, whether it's the productivity of developers or, you know, time to insights, etcetera. What >>are >>they? One of the KP eyes that are driving success and outcomes? >>Those capabilities on historically in our space have always been a bit really. When you talk about total cost of ownership, talk about return on investment, you talk about time to value on. I've worked in many different companies, many different infrastructure, often quite complicated environments and infrastructure. I'm being able to put together anything Security realistic gets proven out. One solution gets turned around our alliance TCO is challenging. But now with these new, a better approach is that more efficient, enables you to really build a true story and on replicate whatever you want. Obviously ran kind of our life, and the key thing is to say from data, But now it's time to value. So what we what? We help in terms of the scoping on in terms of the understanding what the requirements are, we specifically called out business outcomes what organizations are looking to achieve and then back on those metrics, uh, to those outcomes. What that does is a few different things, but it provides a certain success criteria. Whether that's success criteria within a proof of concept of the mobile solutions on being able to speak that language on before, more directly meet the needs of the business kind of crystallized defined way is we're only really be able to do that. Now we work with >>Yeah, So when you think about the business case, they are a why benefit over cost benefit obviously lower tco you lower the denominator, you're going to increase the output in the value. And then I would I would really stress that I think the numerator, ultimately especially in a world of data, is the most important. And I think the TCO is fundamental. It's really becoming table stakes. You gotta have simple. You've gotta have efficient. You've got to be agile. But it enables that that numerator, whether that's new customer revenue, maybe, you know, maybe cost savings across the business. And again that comes from taking that systems view. Do you >>have >>examples that you can share with us even if they're anonymous, eyes the customers that you work with that or maybe a little further down on the journey, or maybe not things that you can share with us that are proof points here. >>Sure, it's quite easy and very gratifying when you've spoken to a customer. We know you've been doing this for 20 years, and this is the way that your infrastructure if you think about it like this, if we implemented that technology or this new approach, then we will enable you to get simple, often ready, populous. Reduce your back. I worked on a project where a customer accused that back book from I think it was. It was nine. Just under 10. It was nine fully loaded. Wraps back. We should just for the it you're providing the fundamental underlying storage architectures. And they were able to consolidate that that down on, provide additional capacity. Great performance. The less than half Uh huh. Looking at the you mentioned data protection earlier. So another organization. This is a project which is just kind of nearing completion of the moment. Huge organization. They're literally petabytes of data that was servicing their back up in archive. And what they have is not just the reams of data, they have the combined thing. I different backup. Yeah, that they have dependent on the what area of infrastructure they were backing up. So whether it was virtualization that was different, they were backing up. Pretty soon they're backing up another database environment using something else in the cloud. So a consolidated approach that we recommended to work with them on they were able to significantly reduce complexity and reduce the amount of time that it system what they were able to achieve. And this is again one of the clients have they've gone above the threshold of being able to back up. When they tried to do a CR, you been everything back up into in a second. They want people to achieve it. Within the timescales is a disaster recovery, business continuity. So with this, we're able to prove them with a proof up. Just before they went into production and the our test using the new approach. And they were able to recover everything the entire interest in minutes instead of a production production, workloads that this was in comparison to hours and that was those hours is just a handful of workloads. They were able to get up and running with the entire estate, and I think it was something like an hour on the core production systems. They were up and running practically instantaneously. So if you look at really stepping back what the customers are looking to the chief, they want to be able to if there is any issues recover from those issues, understand what they're dealing with. Yeah, On another, we have customers that we work with recently what they had huge challenges around and they were understandably very scared about GDP are. But this is a little while ago, actually, a bit still no up. A conversation has gone away. Just everybody are still speaks to issues and concerns around GDP are applying understanding whether they so put in them in us in a position to be able to effectively react. Subject That was something that was a key metric. A target for on infrastructure solution that we work with and we were able to provide them with the insight into their data on day enables them to react to compliance. And they're here to get a subject access request way created in significantly. I'm >>awesome. Thank you for that. I want to pick up on a little bit. So the first example you get your infrastructure in order to bust down those silos and what I've when I talk to customers. And I've talked to a number of banks, insurance companies, other financial services of manufacturers when they're able to sort of streamline that data lifecycle and bring in automation and intelligence, if you will. What they tell me is now they're able to obviously compress the time to value, but also they're loading up on way more initiatives and projects that they can deliver for the business. And you talk for about about the line of business having self served. The businesses feel like they actually are really invested in the data, that it's their data that it's not, you know, confusing and a lot of finger pointing. So so that's that's huge on. And I think that your other example is right on as well of really clear business value that organizations are seeing. So thanks for those you know. Now is the time really, t get these houses in order, if you will, because it really drives competitive advantage, especially take your second example in this isolation economy, you know, being able to respond things like privacy are just increasingly critical. Adam, give us the final thoughts. Bring us home in this segment, >>not the farm of built, something we didn't particularly touch on that I think it's It's fairly fairly hidden. It isn't spoken about as much as I think it is that digital approaches to infrastructure we've already touched on there could be complicated on lack of efficiency, impact, a user's ability to be agile, what you find with traditional approaches. And you already touched on some of the kind of benefits and new approaches that they're often very prescriptive, designed for a particular as the infrastructure environment, the way that it served up to the users in a kind of A packaged either way means that they need to use it in that whatever way, in places. So that kind of self service aspect that comes in from a flexibility standpoint that for me in this platform approach, which is the right way to address technology in my eyes enables it's the infrastructure to be used effectively so that the business uses of the data users what we find in this capability into their hand and start innovating in the way that they use that on the way that they bring benefits a platform to prescriptive, and they are able to do that. So what you're doing with these new approaches is all of the metrics that we touched on fantastic from a cost standpoint, from a visibility standpoint. But what it means is that the innovators in the business want to really, really understand what they're looking to achieve and now tools to innovate with us. Now, I think I've started to see that with projects that were completed, you could do it in the right way. You articulate the capability and empower the business users in the right way. Then very significantly better position. Take advantage of this on really match and significantly bigger than their competition. >>Super Adam in a really exciting space. And we spent the last 10 years gathering all this data, you know, trying to slog through it and figure it out. And now, with the tools that we have and the automation capabilities, it really is a new era of innovation and insights. So, Adam or they didn't thanks so much for coming on the Cube and participating in this program >>Exciting times. And thank you very much today. >>Alright, Stay safe and thank you. Everybody, this is Dave Volante for the Cube. Yeah, yeah, yeah, yeah
SUMMARY :
Siri's brought to you by Iot. I'm sure that a little bit on your side. What your role is a CTO So it's kind of my job to be an expert in all of the technologies that we work so you guys are really technology experts, data experts and probably also like the best tech guitar but fundamentally reporting in technologies to meet. One of the critical aspects of so called smart There's a survey that one of the vendors that we work with actually are launched vendor 5.5 to pick on a couple of some of the data that you talked about the public cloud treat that mean that the users of the technology has to be a technology expert what we really want them So that's another component of the tech stack, that it keeps us on our ability to be able to deliver on exactly what you just said. everything, whether it's the productivity of developers or, you know, time to insights, scoping on in terms of the understanding what the requirements are, we specifically is the most important. that or maybe a little further down on the journey, or maybe not things that you can share with us that are proof at the you mentioned data protection earlier. So the first example you get your infrastructure in order to bust ability to be agile, what you find with traditional approaches. you know, trying to slog through it and figure it out. And thank you very much today. Everybody, this is Dave Volante for the Cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Adam | PERSON | 0.99+ |
Adam Worthington | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Blaise Pascal | PERSON | 0.99+ |
20 years | QUANTITY | 0.99+ |
16 coffees | QUANTITY | 0.99+ |
sixth year | QUANTITY | 0.99+ |
nine | QUANTITY | 0.99+ |
3 | QUANTITY | 0.99+ |
five minutes | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
900 respondents | QUANTITY | 0.99+ |
Phantom Born | ORGANIZATION | 0.99+ |
Harry | PERSON | 0.99+ |
91% | QUANTITY | 0.99+ |
second example | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
Ethos Technology | ORGANIZATION | 0.99+ |
63% | QUANTITY | 0.99+ |
five stores | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Germany | LOCATION | 0.98+ |
both sides | QUANTITY | 0.98+ |
Star Trek | TITLE | 0.98+ |
three vendors | QUANTITY | 0.98+ |
U. S. | LOCATION | 0.98+ |
IoTahoe | ORGANIZATION | 0.98+ |
5 clouds | QUANTITY | 0.98+ |
three areas | QUANTITY | 0.98+ |
TCO | ORGANIZATION | 0.98+ |
two | QUANTITY | 0.97+ |
One solution | QUANTITY | 0.97+ |
Iot Tahoe | ORGANIZATION | 0.97+ |
Nearly nine | QUANTITY | 0.97+ |
5.5 years ago | DATE | 0.96+ |
Kohi City | ORGANIZATION | 0.96+ |
10 respondents | QUANTITY | 0.96+ |
under 10 | QUANTITY | 0.95+ |
One | QUANTITY | 0.94+ |
Dave Outcomes | PERSON | 0.94+ |
85% | QUANTITY | 0.93+ |
first example | QUANTITY | 0.93+ |
Israel | LOCATION | 0.92+ |
So So | ORGANIZATION | 0.9+ |
first | QUANTITY | 0.88+ |
last 10 years | DATE | 0.86+ |
less than half | QUANTITY | 0.85+ |
Ethos | ORGANIZATION | 0.84+ |
Cube | ORGANIZATION | 0.81+ |
three core design principles | QUANTITY | 0.8+ |
secondly | QUANTITY | 0.79+ |
petabytes | QUANTITY | 0.79+ |
CTO | PERSON | 0.79+ |
an hour | QUANTITY | 0.72+ |
French | OTHER | 0.69+ |
three | QUANTITY | 0.68+ |
secondary | QUANTITY | 0.62+ |
Iot. Tahoe | ORGANIZATION | 0.59+ |
quotes | QUANTITY | 0.49+ |
Super | PERSON | 0.49+ |
second | QUANTITY | 0.44+ |
Wordy | PERSON | 0.43+ |
Canfield | ORGANIZATION | 0.35+ |
Paula D'Amico, Webster Bank | Io Tahoe | Enterprise Data Automation
>>from around the globe. It's the Cube with digital coverage of enterprise data automation, an event Siri's brought to you by Iot. Tahoe, >>my buddy, We're back. And this is Dave Volante, and we're covering the whole notion of automating data in the Enterprise. And I'm really excited to have Paul Damico here. She's a senior vice president of enterprise data Architecture at Webster Bank. Good to see you. Thanks for coming on. >>Hi. Nice to see you, too. Yes. >>So let's let's start with Let's start with Webster Bank. You guys are kind of a regional. I think New York, New England, uh, leave headquartered out of Connecticut, but tell us a little bit about the bank. >>Yeah, Um, Webster Bank >>is regional Boston And that again, and New York, Um, very focused on in Westchester and Fairfield County. Um, they're a really highly rated saying regional bank for this area. They, um, hold, um, quite a few awards for the area for being supportive for the community and, um, are really moving forward. Technology lives. They really want to be a data driven bank, and they want to move into a more robust Bruce. >>Well, we got a lot to talk about. So data driven that is an interesting topic. And your role as data architect. The architecture is really senior vice president data architecture. So you got a big responsibility as it relates to It's kind of transitioning to this digital data driven bank. But tell us a little bit about your role in your organization, >>right? Um, currently, >>today we have, ah, a small group that is just working toward moving into a more futuristic, more data driven data warehouse. That's our first item. And then the other item is to drive new revenue by anticipating what customers do when they go to the bank or when they log into there to be able to give them the best offer. The only way to do that is you >>have uh huh. >>Timely, accurate, complete data on the customer and what's really a great value on off something to offer that or a new product or to help them continue to grow their savings or do and grow their investment. >>Okay. And I really want to get into that. But before we do and I know you're sort of part way through your journey, you got a lot of what they do. But I want to ask you about Cove. It how you guys you're handling that? I mean, you had the government coming down and small business loans and P p p. And huge volume of business and sort of data was at the heart of that. How did you manage through that? >>But we were extremely successful because we have a big, dedicated team that understands where their data is and was able to switch much faster than a larger bank to be able to offer. The TPP longs at to our customers within lightning speeds. And part of that was is we adapted to Salesforce very, for we've had salesforce in house for over 15 years. Um, you know, pretty much, uh, that was the driving vehicle to get our CPP is loans in on and then developing logic quickly. But it was a 24 7 development role in get the data moving, helping our customers fill out the forms. And a lot of that was manual. But it was a It was a large community effort. >>Well, think about that. Think about that too. Is the volume was probably much, much higher the volume of loans to small businesses that you're used to granting. But and then also, the initial guidelines were very opaque. You really didn't know what the rules were, but you were expected to enforce them. And then finally, you got more clarity. So you had to essentially code that logic into the system in real time, right? >>I wasn't >>directly involved, but part of my data movement Team Waas, and we had to change the logic overnight. So it was on a Friday night was released. We've pushed our first set of loans through and then the logic change, Um, from, you know, coming from the government and changed. And we had to re develop our our data movement piece is again and we design them and send them back. So it was It was definitely kind of scary, but we were completely successful. We hit a very high peak and I don't know the exact number, but it was in the thousands of loans from, you know, little loans to very large loans, and not one customer who buy it's not yet what they needed for. Um, you know, that was the right process and filled out the rate and pace. >>That's an amazing story and really great support for the region. New York, Connecticut, the Boston area. So that's that's fantastic. I want to get into the rest of your story. Now let's start with some of the business drivers in banking. I mean, obviously online. I mean, a lot of people have sort of joked that many of the older people who kind of shunned online banking would love to go into the branch and see their friendly teller had no choice, You know, during this pandemic to go to online. So that's obviously a big trend you mentioned. So you know the data driven data warehouse? I wanna understand that. But well, at the top level, what were some of what are some of the key business drivers there catalyzing your desire for change? >>Um, the ability to give the customer what they need at the time when they need it. And what I mean by that is that we have, um, customer interactions in multiple ways, right? >>And I want >>to be able for the customer, too. Walk into a bank, um, or online and see the same the same format and being able to have the same feel, the same look, and also to be able to offer them the next best offer for them. But they're you know, if they want looking for a new a mortgage or looking to refinance or look, you know, whatever it iss, um, that they have that data, we have the data and that they feel comfortable using it. And that's a untethered banker. Um, attitude is, you know, whatever my banker is holding and whatever the person is holding in their phone, that that is the same. And it's comfortable, so they don't feel that they've, you know, walked into the bank and they have to do a lot of different paperwork comparative filling out paperwork on, you know, just doing it on their phone. >>So you actually want the experience to be better. I mean, and it is in many cases now, you weren't able to do this with your existing against mainframe based Enterprise data warehouse. Is is that right? Maybe talk about that a little bit. >>Yeah, we were >>definitely able to do it with what we have today. The technology we're using, but one of the issues is that it's not timely, Um, and and you need a timely process to be able to get the customers to understand what's happening. Um, you want you need a timely process so we can enhance our risk management. We can apply for fraud issues and things like that. >>Yeah, so you're trying to get more real time in the traditional e g W. It's it's sort of a science project. There's a few experts that know how to get it. You consider line up. The demand is tremendous, and often times by the time you get the answer, you know it's outdated. So you're trying to address that problem. So So part of it is really the cycle time, the end end cycle, time that you're pressing. And then there's if I understand it, residual benefits that are pretty substantial from a revenue opportunity. Other other offers that you can you can make to the right customer, Um, that that you, you maybe know through your data. Is that right? >>Exactly. It's drive new customers, Teoh new opportunities. It's enhanced the risk, and it's to optimize the banking process and then obviously, to create new business. Um, and the only way we're going to be able to do that is that we have the ability to look at the data right when the customer walks in the door or right when they open up their app. And, um, by doing, creating more to New York time near real time data for the data warehouse team that's giving the lines of business the ability to to work on the next best offer for that customer. >>Paulo, we're inundated with data sources these days. Are there their data sources that you maybe maybe had access to before? But perhaps the backlog of ingesting and cleaning and cataloging and you know of analyzing. Maybe the backlog was so great that you couldn't perhaps tap some of those data sources. You see the potential to increase the data sources and hence the quality of the data, Or is that sort of premature? >>Oh, no. Um, >>exactly. Right. So right now we ingest a lot of flat files and from our mainframe type of Brennan system that we've had for quite a few years. But now that we're moving to the cloud and off Prem and on France, you know, moving off Prem into like an s three bucket. Where That data king, We can process that data and get that data faster by using real time tools to move that data into a place where, like, snowflake could utilize that data or we can give it out to our market. >>Okay, so we're >>about the way we do. We're in batch mode. Still, so we're doing 24 hours. >>Okay, So when I think about the data pipeline and the people involved, I mean, maybe you could talk a little bit about the organization. I mean, you've got I know you have data. Scientists or statisticians? I'm sure you do. Ah, you got data architects, data engineers, quality engineers, you know, developers, etcetera, etcetera. And oftentimes, practitioners like yourself will will stress about pay. The data's in silos of the data quality is not where we want it to be. We have to manually categorize the data. These are all sort of common data pipeline problems, if you will. Sometimes we use the term data ops, which is kind of a play on Dev Ops applied to the data pipeline. I did. You just sort of described your situation in that context. >>Yeah. Yes. So we have a very large data ops team and everyone that who is working on the data part of Webster's Bay has been there 13 14 years. So they get the data, they understand that they understand the lines of business. Um, so it's right now, um, we could we have data quality issues, just like everybody else does. We have. We have places in him where that gets clans, Um, and we're moving toward. And there was very much silo data. The data scientists are out in the lines of business right now, which is great, cause I think that's where data science belongs. We should give them on. And that's what we're working towards now is giving them more self service, giving them the ability to access the data, um, in a more robust way. And it's a single source of truth. So they're not pulling the data down into their own like tableau dashboards and then pushing the data back out. Um, so they're going to more not, I don't want to say a central repository, but a more of a robust repository that's controlled across multiple avenues where multiple lines of business can access. That said, how >>got it? Yes, and I think that one of the key things that I'm taking away from your last comment is the cultural aspects of this bite having the data. Scientists in the line of business, the line of lines of business, will feel ownership of that data as opposed to pointing fingers, criticizing the data quality they really own that that problem, as opposed to saying, Well, it's it's It's Paulus problem, >>right? Well, I have. My problem >>is, I have a date. Engineers, data architects, they database administrators, right, Um, and then data traditional data forwarding people. Um, and because some customers that I have that our business customers lines of business, they want to just subscribe to a report. They don't want to go out and do any data science work. Um, and we still have to provide that. So we still want to provide them some kind of regimen that they wake up in the morning and they open up their email. And there's the report that they just drive, um, which is great. And it works out really well. And one of the things is why we purchase I o waas. I would have the ability to give the lines of business the ability to do search within the data. And we read the data flows and data redundancy and things like that help me cleanup the data and also, um, to give it to the data. Analysts who say All right, they just asked me. They want this certain report, and it used to take Okay, well, we're gonna four weeks, we're going to go. We're gonna look at the data, and then we'll come back and tell you what we dio. But now with Iot Tahoe, they're able to look at the data and then, in one or two days of being able to go back and say, yes, we have data. This is where it is. This is where we found that this is the data flows that we've found also, which is that what I call it is the birth of a column. It's where the calm was created and where it went live as a teenager. And then it went to, you know, die very archive. Yeah, it's this, you know, cycle of life for a column. And Iot Tahoe helps us do that, and we do. Data lineage has done all the time. Um, and it's just takes a very long time. And that's why we're using something that has AI and machine learning. Um, it's it's accurate. It does it the same way over and over again. If an analyst leads, you're able to utilize talked something like, Oh, to be able to do that work for you. I get that. >>Yes. Oh, got it. So So a couple things there is in in, In researching Iot Tahoe, it seems like one of the strengths of their platform is the ability to visualize data the data structure and actually dig into it. But also see it, um, and that speeds things up and gives everybody additional confidence. And then the other pieces essentially infusing AI or machine intelligence into the data pipeline is really how you're attacking automation, right? And you're saying it's repeatable and and then that helps the data quality, and you have this virtuous cycle. Is there a firm that and add some color? Perhaps >>Exactly. Um, so you're able to let's say that I have I have seven cause lines of business that are asking me questions and one of the questions I'll ask me is. We want to know if this customer is okay to contact, right? And you know, there's different avenues, so you can go online to go. Do not contact me. You can go to the bank and you can say I don't want, um, email, but I'll take tests and I want, you know, phone calls. Um, all that information. So seven different lines of business asked me that question in different ways once said okay to contact the other one says, you know, customer one to pray All these, You know, um, and each project before I got there used to be siloed. So one customer would be 100 hours for them to do that and analytical work, and then another cut. Another analysts would do another 100 hours on the other project. Well, now I can do that all at once, and I can do those type of searches and say, Yes, we already have that documentation. Here it is. And this is where you can find where the customer has said, you know, you don't want I don't want to get access from you by email, or I've subscribed to get emails from you. >>Got it. Okay? Yeah. Okay. And then I want to come back to the cloud a little bit. So you you mentioned those three buckets? So you're moving to the Amazon cloud. At least I'm sure you're gonna get a hybrid situation there. You mentioned Snowflake. Um, you know what was sort of the decision to move to the cloud? Obviously, snowflake is cloud only. There's not an on Prem version there. So what precipitated that? >>Alright, So, from, um, I've been in >>the data I t Information field for the last 35 years. I started in the US Air Force and have moved on from since then. And, um, my experience with off brand waas with Snowflake was working with G McGee capital. And that's where I met up with the team from Iot to house as well. And so it's a proven. So there's a couple of things one is symptomatic of is worldwide. Now to move there, right, Two products, they have the on frame in the offering. Um, I've used the on Prem and off Prem. They're both great and it's very stable and I'm comfortable with other people are very comfortable with this. So we picked. That is our batch data movement. Um, we're moving to her, probably HBR. It's not a decision yet, but we're moving to HP are for real time data which has changed capture data, you know, moves it into the cloud. And then So you're envisioning this right now in Petrit, you're in the S three and you have all the data that you could possibly want. And that's Jason. All that everything is sitting in the S three to be able to move it through into snowflake and snowflake has proven cto have a stability. Um, you only need to learn in train your team with one thing. Um, aws has is completely stable at this 10.2. So all these avenues, if you think about it going through from, um, you know, this is your your data lake, which is I would consider your s three. And even though it's not a traditional data leg like you can touch it like a like a progressive or a dupe and into snowflake and then from snowflake into sandboxes. So your lines of business and your data scientists and just dive right in, Um, that makes a big, big win. and then using Iot. Ta ho! With the data automation and also their search engine, um, I have the ability to give the data scientists and eight analysts the the way of they don't need to talk to i t to get, um, accurate information or completely accurate information from the structure. And we'll be right there. >>Yes, so talking about, you know, snowflake and getting up to speed quickly. I know from talking to customers you get from zero to snowflake, you know, very fast. And then it sounds like the i o Ta ho is sort of the automation cloud for your data pipeline within the cloud. This is is that the right way to think about it? >>I think so. Um, right now I have I o ta >>ho attached to my >>on Prem. And, um, I >>want to attach it to my offering and eventually. So I'm using Iot Tahoe's data automation right now to bring in the data and to start analyzing the data close to make sure that I'm not missing anything and that I'm not bringing over redundant data. Um, the data warehouse that I'm working off is not a It's an on Prem. It's an Oracle database and its 15 years old. So it has extra data in it. It has, um, things that we don't need anymore. And Iot. Tahoe's helping me shake out that, um, extra data that does not need to be moved into my S three. So it's saving me money when I'm moving from offering on Prem. >>And so that was a challenge prior because you couldn't get the lines of business to agree what to delete or what was the issue there. >>Oh, it was more than that. Um, each line of business had their own structure within the warehouse, and then they were copying data between each other and duplicating the data and using that, uh so there might be that could be possibly three tables that have the same data in it. But it's used for different lines of business. And so I had we have identified using Iot Tahoe. I've identified over seven terabytes in the last, um, two months on data that is just been repetitive. Um, it just it's the same exact data just sitting in a different scheme. >>And and that's not >>easy to find. If you only understand one schema that's reporting for that line of business so that >>yeah, more bad news for the storage companies out there. Okay to follow. >>It's HCI. That's what that's what we were telling people you >>don't know and it's true, but you still would rather not waste it. You apply it to, you know, drive more revenue. And and so I guess Let's close on where you see this thing going again. I know you're sort of part way through the journey. May be you could sort of describe, you know, where you see the phase is going and really what you want to get out of this thing, You know, down the road Midterm. Longer term. What's your vision or your your data driven organization? >>Um, I want >>for the bankers to be able to walk around with on iPad in their hands and be able to access data for that customer really fast and be able to give them the best deal that they can get. I want Webster to be right there on top, with being able to add new customers and to be able to serve our existing customers who had bank accounts. Since you were 12 years old there and now our, you know, multi. Whatever. Um, I want them to be able to have the best experience with our our bankers, and >>that's awesome. I mean, that's really what I want is a banking customer. I want my bank to know who I am, anticipate my needs and create a great experience for me. And then let me go on with my life. And so that is a great story. Love your experience, your background and your knowledge. Can't thank you enough for coming on the Cube. >>No, thank you very much. And you guys have a great day. >>Alright, Take care. And thank you for watching everybody keep it right there. We'll take a short break and be right back. >>Yeah, yeah, yeah, yeah.
SUMMARY :
of enterprise data automation, an event Siri's brought to you by Iot. And I'm really excited to have Paul Damico here. Hi. Nice to see you, too. So let's let's start with Let's start with Webster Bank. awards for the area for being supportive for the community So you got a big responsibility as it relates to It's kind of transitioning to And then the other item is to drive new revenue Timely, accurate, complete data on the customer and what's really But I want to ask you about Cove. And part of that was is we adapted to Salesforce very, And then finally, you got more clarity. Um, from, you know, coming from the government and changed. I mean, a lot of people have sort of joked that many of the older people Um, the ability to give the customer what they a new a mortgage or looking to refinance or look, you know, whatever it iss, So you actually want the experience to be better. Um, you want you need a timely process so we can enhance Other other offers that you can you can make to the right customer, Um, and the only way we're going to be You see the potential to Prem and on France, you know, moving off Prem into like an s three bucket. about the way we do. quality engineers, you know, developers, etcetera, etcetera. Um, so they're going to more not, I don't want to say a central criticizing the data quality they really own that that problem, Well, I have. We're gonna look at the data, and then we'll come back and tell you what we dio. it seems like one of the strengths of their platform is the ability to visualize data the data structure and to contact the other one says, you know, customer one to pray All these, You know, So you you mentioned those three buckets? All that everything is sitting in the S three to be able to move it through I know from talking to customers you get from zero to snowflake, Um, right now I have I o ta Um, the data warehouse that I'm working off is And so that was a challenge prior because you couldn't get the lines Um, it just it's the same exact data just sitting If you only understand one schema that's reporting Okay to That's what that's what we were telling people you You apply it to, you know, drive more revenue. for the bankers to be able to walk around with on iPad And so that is a great story. And you guys have a great day. And thank you for watching everybody keep it right there.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Paul Damico | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Webster Bank | ORGANIZATION | 0.99+ |
Westchester | LOCATION | 0.99+ |
Paula D'Amico | PERSON | 0.99+ |
iPad | COMMERCIAL_ITEM | 0.99+ |
New York | LOCATION | 0.99+ |
one | QUANTITY | 0.99+ |
Connecticut | LOCATION | 0.99+ |
100 hours | QUANTITY | 0.99+ |
S three | COMMERCIAL_ITEM | 0.99+ |
15 years | QUANTITY | 0.99+ |
Jason | PERSON | 0.99+ |
France | LOCATION | 0.99+ |
Siri | TITLE | 0.99+ |
first item | QUANTITY | 0.99+ |
three tables | QUANTITY | 0.99+ |
24 hours | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
two months | QUANTITY | 0.99+ |
each line | QUANTITY | 0.99+ |
Fairfield County | LOCATION | 0.99+ |
HP | ORGANIZATION | 0.99+ |
Friday night | DATE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Two products | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
four weeks | QUANTITY | 0.99+ |
US Air Force | ORGANIZATION | 0.98+ |
over 15 years | QUANTITY | 0.98+ |
two days | QUANTITY | 0.98+ |
New England | LOCATION | 0.98+ |
each project | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Iot Tahoe | PERSON | 0.98+ |
Paulo | PERSON | 0.98+ |
Iot Tahoe | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.97+ |
one thing | QUANTITY | 0.97+ |
first set | QUANTITY | 0.97+ |
TPP | TITLE | 0.97+ |
Paulus | PERSON | 0.97+ |
seven cause | QUANTITY | 0.97+ |
one schema | QUANTITY | 0.97+ |
one customer | QUANTITY | 0.96+ |
13 14 years | QUANTITY | 0.96+ |
over seven terabytes | QUANTITY | 0.96+ |
three | QUANTITY | 0.96+ |
single source | QUANTITY | 0.95+ |
Webster's Bay | ORGANIZATION | 0.95+ |
Webster | ORGANIZATION | 0.94+ |
seven different lines | QUANTITY | 0.94+ |
Cove | ORGANIZATION | 0.94+ |
Prem | ORGANIZATION | 0.93+ |
Enterprise Data Automation | ORGANIZATION | 0.92+ |
eight analysts | QUANTITY | 0.92+ |
10.2 | QUANTITY | 0.89+ |
12 years old | QUANTITY | 0.89+ |
Iot | ORGANIZATION | 0.88+ |
three buckets | QUANTITY | 0.88+ |
Snowflake | EVENT | 0.86+ |
last 35 years | DATE | 0.84+ |
Team Waas | ORGANIZATION | 0.8+ |
Io Tahoe | PERSON | 0.79+ |
24 7 development | QUANTITY | 0.72+ |
Salesforce | ORGANIZATION | 0.68+ |
each | QUANTITY | 0.68+ |
Amazon cloud | ORGANIZATION | 0.66+ |
Tahoe | PERSON | 0.66+ |
zero | QUANTITY | 0.64+ |
snowflake | EVENT | 0.61+ |
things | QUANTITY | 0.57+ |
Ajay Vohora, Io Tahoe | Enterprise Data Automation
>>from around the globe. It's the Cube with digital coverage of enterprise data automation an event Siri's brought to you by Iot. Tahoe. >>Okay, we're back. Welcome back to data Automated. A J ahora is CEO of I o Ta ho, JJ. Good to see you. How have things in London? >>Big thing. Well, thinking well, where we're making progress, I could see you hope you're doing well and pleasure being back here on the Cube. >>Yeah, it's always great to talk to. You were talking enterprise data automation. As you know, with within our community, we've been pounding the whole data ops conversation. Little different, though. We're gonna We're gonna dig into that a little bit. But let's start with a J how you've seen the response to Covert and I'm especially interested in the role that data has played in this pandemic. >>Yeah, absolutely. I think everyone's adapting both essentially, um, and and in business, the customers that I speak to on day in, day out that we partner with, um they're busy adapting their businesses to serve their customers. It's very much a game of and showing the week and serve our customers to help their customers um, you know, the adaptation that's happening here is, um, trying to be more agile, kind of the most flexible. Um, a lot of pressure on data. A lot of demand on data and to deliver more value to the business, too. Serve that customer. >>Yeah. I mean, data machine intelligence and cloud, or really three huge factors that have helped organizations in this pandemic. And, you know, the machine intelligence or AI piece? That's what automation is all about. How do you see automation helping organizations evolve maybe faster than they thought they might have to >>Sure. I think the necessity of these times, um, there's there's a says a lot of demand doing something with data data. Uh huh. A lot of a lot of businesses talk about being data driven. Um, so interesting. I sort of look behind that when we work with our customers, and it's all about the customer. You know, the mic is cios invested shareholders. The common theme here is the customer. That customer experience starts and ends with data being able to move from a point that is reacting. So what the customer is expecting and taking it to that step forward where you can be proactive to serve what that customer's expectation to and that's definitely come alive now with they, um, the current time. >>Yes. So, as I said, we've been talking about data ops a lot. The idea being Dev Ops applied to the data pipeline. But talk about enterprise data automation. What is it to you and how is it different from data off? >>Yeah, Great question. Thank you. I am. I think we're all familiar with felt more more awareness around. So as it's applied, Teoh, uh, processes methodologies that have become more mature of the past five years around devil that managing change, managing an application, life cycles, managing software development data about, you know, has been great. But breaking down those silos between different roles functions and bringing people together to collaborate. Andi, you know, we definitely see that those tools, those methodologies, those processes, that kind of thinking, um, landing itself to data with data is exciting. We're excited about that, Andi shifting the focus from being I t versus business users to you know who are the data producers. And here the data consumers in a lot of cases, it concert in many different lines of business. So in data role, those methods those tools and processes well we look to do is build on top of that with data automation. It's the is the nuts and bolts of the the algorithms, the models behind machine learning that the functions. That's where we investors our R and D and bringing that in to build on top of the the methods, the ways of thinking that break down those silos on injecting that automation into the business processes that are going to drive a business to serve its customers. It's, um, a layer beyond Dev ops data ops. They can get to that point where well, I think about it is, Is the automation behind the automation we can take? I'll give you an example. Okay, a bank where we did a lot of work to do make move them into accelerating that digital transformation. And what we're finding is that as we're able to automate the jobs related to data a managing that data and serving that data that's going into them as a business automating their processes for their customer. Um, so it's it's definitely having a compound effect. >>Yeah, I mean I think that you did. Data ops for a lot of people is somewhat new to the whole Dev Ops. The data ops thing is is good and it's a nice framework. Good methodology. There is obviously a level of automation in there and collaboration across different roles. But it sounds like you're talking about so supercharging it, if you will, the automation behind the automation. You know, I think organizations talk about being data driven. You hear that? They have thrown around a lot of times. People sit back and say, We don't make decisions without data. Okay? But really, being data driven is there's a lot of aspects there. There's cultural, but it's also putting data at the core of your organization, understanding how it effects monetization. And, as you know, well, silos have been built up, whether it's through M and a, you know, data sprawl outside data sources. So I'm interested in your thoughts on what data driven means and specifically Hi, how Iot Tahoe plays >>there. Yeah, I'm sure we'll be happy. That look that three David, we've We've come a long way in the last four years. We started out with automating some of those simple, um, to codify. Um, I have a high impact on organization across the data, a data warehouse. There's data related tasks that classify data on and a lot of our original pattern. Senai people value that were built up is is very much around. They're automating, classifying data across different sources and then going out to so that for some purpose originally, you know, some of those simpler I'm challenges that we have. Ah, custom itself, um, around data privacy. You know, I've got a huge data lake here. I'm a telecoms business. I've got millions of six subscribers. Um, quite often the chief data office challenges. How do I cover the operational risk? Where, um, I got so much data I need to simplify my approach to automating, classifying that data. Recent is you can't do that manually. We can for people at it. And the the scale of that is is prohibitive, right? Often, if you had to do it manually by the time you got a good picture of it, it's already out of date. Then, starting with those those simple challenges that we've been able to address, we're then going on and build on that to say, What else do we serve? What else do we serve? The chief data officer, Chief marketing officer on the CFO. Within these times, um, where those decision makers are looking for having a lot of choices in the platform options that they say that the tooling they're very much looking for We're that Swiss army. Not being able to do one thing really well is is great, but more more. Where that cost pressure challenge is coming in is about how do we, um, offer more across the organization, bring in those business lines of business activities that depend on data to not just with a T. Okay, >>so we like the cube. Sometimes we like to talk about Okay, what is it? And then how does it work? And what's the business impact? We kind of covered what it is but love to get into the tech a little bit in terms of how it works. And I think we have a graphic here that gets into that a little bit. So, guys, if you bring that up, I wonder if you could tell us and what is the secret sauce behind Iot Tahoe? And if you could take us through this slot. >>Sure. I mean, right there in the middle that the heart of what we do It is the intellectual property. Yeah, that was built up over time. That takes from Petra genius data sources Your Oracle relational database, your your mainframe. If they lay in increasingly AP eyes and devices that produce data and that creates the ability to automatically discover that data, classify that data after it's classified them have the ability to form relationships across those different, uh, source systems, silos, different lines of business. And once we've automated that that we can start to do some cool things that just puts a contact and meaning around that data. So it's moving it now from bringing data driven on increasingly well. We have really smile, right people in our customer organizations you want do some of those advanced knowledge tasks, data scientists and, uh, quants in some of the banks that we work with. The the onus is on, then, putting everything we've done there with automation, pacifying it, relationship, understanding that equality policies that you apply to that data. I'm putting it in context once you've got the ability to power. A a professional is using data, um, to be able to put that data and contacts and search across the entire enterprise estate. Then then they can start to do some exciting things and piece together the tapestry that fabric across that different systems could be crm air P system such as s AP on some of the newer cloud databases that we work with. Snowflake is a great Well, >>yes. So this is you're describing sort of one of the one of the reasons why there's so many stove pipes and organizations because data is gonna locked in the silos of applications. I also want to point out, you know, previously to do discovery to do that classification that you talked about form those relationship to glean context from data. A lot of that, if not most of that in some cases all that would have been manual. And of course, it's out of date so quickly. Nobody wants to do it because it's so hard. So this again is where automation comes into the the the to the idea of really becoming data driven. >>Sure. I mean the the efforts. If we if I look back, maybe five years ago, we had a prevalence of daily technologies at the cutting edge. Those have said converging me to some of these cloud platforms. So we work with Google and AWS, and I think very much is, as you said it, those manual attempts to try and grasp. But it is such a complex challenge at scale. I quickly runs out of steam because once, um, once you've got your hat, once you've got your fingers on the details Oh, um, what's what's in your data estate? It's changed, you know, you've onboard a new customer. You signed up a new partner, Um, customer has no adopted a new product that you just Lawrence and there that that slew of data it's keeps coming. So it's keeping pace with that. The only answer really is is some form of automation. And what we found is if we can tie automation with what I said before the expertise the, um, the subject matter expertise that sometimes goes back many years within an organization's people that augmentation between machine learning ai on and on that knowledge that sits within inside the organization really tends to involve a lot of value in data? >>Yes, So you know Well, a J you can't be is a smaller company, all things to all people. So your ecosystem is critical. You working with AWS? You're working with Google. You got red hat. IBM is as partners. What is attracting those folks to your ecosystem and give us your thoughts on the importance of ecosystem? >>Yeah, that's that's fundamental. So I mean, when I caimans, we tell her here is the CEO of one of the, um, trends that I wanted us to to be part of was being open, having an open architecture that allowed one thing that was nice to my heart, which is as a CEO, um, a C I O where you've got a budget vision and you've already made investments into your organization, and some of those are pretty long term bets. They should be going out 5 10 years, sometimes with CRM system training up your people, getting everybody working together around a common business platform. What I wanted to ensure is that we could openly like it using ap eyes that were available, the love that some investment on the cost that has already gone into managing in organizations I t. But business users to before So part of the reason why we've been able to be successful with, um, the partners like Google AWS and increasingly, a number of technology players. That red hat mongo DB is another one where we're doing a lot of good work with, um, and snowflake here is, um it's those investments have been made by the organizations that are our customers, and we want to make sure we're adding to that, and they're leveraging the value that they've already committed to. >>Okay, so we've talked about kind of what it is and how it works, and I want to get into the business impact. I would say what I would be looking for from from this would be Can you help me lower my operational risk? I've got I've got tasks that I do many year sequential, some who are in parallel. But can you reduce my time to task? And can you help me reduce the labor intensity and ultimately, my labor costs? And I put those resources elsewhere, and ultimately, I want to reduce the end and cycle time because that is going to drive Telephone number R. A. Y So, um, I missing anything? Can you do those things? And maybe you could give us some examples of the tiara y and the business impact. >>Yeah. I mean, the r a y David is is built upon on three things that I mentioned is a combination off leveraging the existing investment with the existing state, whether that's home, Microsoft, Azure or AWS or Google IBM. And I'm putting that to work because, yeah, the customers that we work with have had made those choices. On top of that, it's, um, is ensuring that we have you got the automation that is working right down to the level off data, a column level or the file level so we don't do with meta data. It is being very specific to be at the most granular level. So as we've grown our processes and on the automation, gasification tagging, applying policies from across different compliance and regulatory needs, that an organization has to the data, everything that then happens downstream from that is ready to serve a business outcome. It could be a customer who wants that experience on a mobile device. A tablet oh, face to face within, within the store. I mean game. Would you provision the right data and enable our customers do that? But their customers, with the right data that they can trust at the right time, just in that real time moment where decision or an action is being expected? That's, um, that's driving the r a y two b in some cases, 20 x but and that's that's really satisfying to see that that kind of impact it is taking years down to months and in many cases, months of work down to days. In some cases, our is the time to value. I'm I'm impressed with how quickly out of the box with very little training a customer and think about, too. And you speak just such a search. They discovery knowledge graph on DM. I don't find duplicates. Onda Redundant data right off the bat within hours. >>Well, it's why investors are interested in this space. I mean, they're looking for a big, total available market. They're looking for a significant return. 10 X is you gotta have 10 x 20 x is better. So so that's exciting and obviously strong management and a strong team. I want to ask you about people and culture. So you got people process technology we've seen with this pandemic that processes you know are really unpredictable. And the technology has to be able to adapt to any process, not the reverse. You can't force your process into some static software, so that's very, very important. But the end of the day you got to get people on board. So I wonder if you could talk about this notion of culture and a data driven culture. >>Yeah, that's that's so important. I mean, current times is forcing the necessity of the moment to adapt. But as we start to work their way through these changes on adapt ah, what with our customers, But that is changing economic times. What? What we're saying here is the ability >>to I >>have, um, the technology Cartman, in a really smart way, what those business uses an I T knowledge workers are looking to achieve together. So I'll give you an example. We have quite often with the data operations teams in the companies that we, um, partnering with, um, I have a lot of inbound enquiries on the day to day level. I really need this set of data they think it can help my data scientists run a particular model? Or that what would happen if we combine these two different silence of data and gets the Richmond going now, those requests you can, sometimes weeks to to realize what we've been able to do with the power is to get those answers being addressed by the business users themselves. And now, without without customers, they're coming to the data. And I t folks saying, Hey, I've now built something in the development environment. Why don't we see how that can scale up with these sets of data? I don't need terabytes of it. I know exactly the columns and the feet in the data that I'm going to use on that gets seller wasted in time, um, angle to innovate. >>Well, that's huge. I mean, the whole notion of self service and the lines of business actually feeling like they have ownership of the data as opposed to, you know, I t or some technology group owning the data because then you've got data quality issues or if it doesn't line up there their agenda, you're gonna get a lot of finger pointing. So so that is a really important. You know a piece of it. I'll give you last word A J. Your final thoughts, if you would. >>Yeah, we're excited to be the only path. And I think we've built great customer examples here where we're having a real impact in in a really fast pace, whether it helping them migrate to the cloud, helping the bean up their legacy, Data lake on and write off there. Now the conversation is around data quality as more of the applications that we enable to a more efficiently could be data are be a very robotic process automation along the AP, eyes that are now available in the cloud platforms. A lot of those they're dependent on data quality on and being able to automate. So business users, um, to take accountability off being able to so look at the trend of their data quality over time and get the signals is is really driving trust. And that trust in data is helping in time. Um, the I T teams, the data operations team, with do more and more quickly that comes back to culture being out, supply this technology in such a way that it's visual insensitive. Andi. How being? Just like Dev Ops tests with with a tty Dave drops putting intelligence in at the data level to drive that collaboration. We're excited, >>you know? You remind me of something. I lied. I don't want to go yet. It's OK, so I know we're tight on time, but you mentioned migration to the cloud. And I'm thinking about conversation with Paula from Webster Webster. Bank migrations. Migrations are, you know, they're they're a nasty word for for organizations. So our and we saw this with Webster. How are you able to help minimize the migration pain and and why is that something that you guys are good at? >>Yeah. I mean, there were many large, successful companies that we've worked with. What's There's a great example where, you know, I'd like to give you the analogy where, um, you've got a lot of people in your teams if you're running a business as a CEO on this bit like a living living grade. But imagine if those different parts of your brain we're not connected, that with, um, so diminish how you're able to perform. So what we're seeing, particularly with migration, is where banks retailers. Manufacturers have grown over the last 10 years through acquisition on through different initiatives, too. Um, drive customer value that sprawl in their data estate hasn't been fully dealt with. It sometimes been a good thing, too. Leave whatever you're fired off the agent incent you a side by side with that legacy mainframe on your oracle, happy and what we're able to do very quickly with that migration challenges shine a light on all the different parts. Oh, data application at the column level or higher level if it's a day late and show an enterprise architect a CDO how everything's connected, where they may not be any documentation. The bright people that created some of those systems long since moved on or retired or been promoted into so in the rose on within days, being out to automatically generate Anke refreshed the states of that data across that man's game on and put it into context, then allows you to look at a migration from a confidence that you did it with the back rather than what we've often seen in the past is teams of consultant and business analysts. Data around this spend months getting an approximation and and a good idea of what it could be in the current state and try their very best to map that to the future Target state. Now, without all hoping out, run those processes within hours of getting started on, um well, that picture visualize that picture and bring it to life. You know, the Yarra. Why, that's off the bat with finding data that should have been deleted data that was copies off on and being able to allow the architect whether it's we're working on gcb or migration to any other clouds such as AWS or a multi cloud landscape right now with yeah, >>that visibility is key. Teoh sort of reducing operational risks, giving people confidence that they can move forward and being able to do that and update that on an ongoing basis, that means you can scale a J. Thanks so much for coming on the Cube and sharing your insights and your experience is great to have >>you. Thank you, David. Look towards smoking in. >>Alright, keep it right there, everybody. We're here with data automated on the Cube. This is Dave Volante and we'll be right back. Short break. >>Yeah, yeah, yeah, yeah
SUMMARY :
enterprise data automation an event Siri's brought to you by Iot. Good to see you. Well, thinking well, where we're making progress, I could see you hope As you know, with within A lot of demand on data and to deliver more value And, you know, the machine intelligence I sort of look behind that What is it to you that automation into the business processes that are going to drive at the core of your organization, understanding how it effects monetization. that for some purpose originally, you know, some of those simpler I'm challenges And if you could take us through this slot. produce data and that creates the ability to that you talked about form those relationship to glean context from data. customer has no adopted a new product that you just Lawrence those folks to your ecosystem and give us your thoughts on the importance of ecosystem? that are our customers, and we want to make sure we're adding to that, that is going to drive Telephone number R. A. Y So, um, And I'm putting that to work because, yeah, the customers that we work But the end of the day you got to get people on board. necessity of the moment to adapt. I have a lot of inbound enquiries on the day to day level. of the data as opposed to, you know, I t or some technology group owning the data intelligence in at the data level to drive that collaboration. is that something that you guys are good at? I'd like to give you the analogy where, um, you've got a lot of people giving people confidence that they can move forward and being able to do that and update We're here with data automated on the Cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Paula | PERSON | 0.99+ |
Ajay Vohora | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
IBM | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Dave Volante | PERSON | 0.99+ |
millions | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
Webster | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
Iot Tahoe | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Io Tahoe | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
five years ago | DATE | 0.98+ |
Onda | ORGANIZATION | 0.98+ |
Webster Webster | ORGANIZATION | 0.98+ |
Covert | PERSON | 0.97+ |
two | QUANTITY | 0.97+ |
both | QUANTITY | 0.97+ |
5 10 years | QUANTITY | 0.97+ |
three | QUANTITY | 0.96+ |
20 x | QUANTITY | 0.94+ |
10 X | QUANTITY | 0.94+ |
Cube | COMMERCIAL_ITEM | 0.93+ |
Andi | PERSON | 0.93+ |
one | QUANTITY | 0.93+ |
Azure | ORGANIZATION | 0.92+ |
six subscribers | QUANTITY | 0.91+ |
three things | QUANTITY | 0.91+ |
I o Ta ho | ORGANIZATION | 0.91+ |
Google AWS | ORGANIZATION | 0.91+ |
Yarra | ORGANIZATION | 0.89+ |
J ahora | PERSON | 0.89+ |
Anke | ORGANIZATION | 0.89+ |
Dave | PERSON | 0.85+ |
Iot Tahoe | PERSON | 0.84+ |
a day | QUANTITY | 0.82+ |
Lawrence | PERSON | 0.82+ |
one thing | QUANTITY | 0.81+ |
Petra | PERSON | 0.78+ |
pandemic | EVENT | 0.78+ |
Iot. Tahoe | PERSON | 0.78+ |
last four years | DATE | 0.78+ |
past five years | DATE | 0.77+ |
Swiss | ORGANIZATION | 0.76+ |
JJ | PERSON | 0.75+ |
Enterprise Data Automation | ORGANIZATION | 0.73+ |
last 10 years | DATE | 0.62+ |
Dev Ops | ORGANIZATION | 0.59+ |
Richmond | ORGANIZATION | 0.55+ |
Cartman | ORGANIZATION | 0.55+ |
Snowflake | EVENT | 0.51+ |
terabytes | QUANTITY | 0.5+ |
factors | QUANTITY | 0.46+ |
data | TITLE | 0.45+ |
Yusef Khan, Io Tahoe | Enterprise Data Automation
>>from around the globe. It's the Cube with digital coverage of enterprise data automation, an event Siri's brought to you by Iot. Tahoe, everybody, We're back. We're talking about enterprise data automation. The hashtag is data automated, and we're going to really dig into data migrations, data, migrations. They're risky. They're time consuming, and they're expensive. Yousef con is here. He's the head of partnerships and alliances at I o ta ho coming again from London. Hey, good to see you, Seth. Thanks very much. >>Thank you. >>So your role is is interesting. We're talking about data migrations. You're gonna head of partnerships. What is your role specifically? And how is it relevant to what we're gonna talk about today? >>Uh, I work with the various businesses such as cloud companies, systems integrators, companies that sell operating systems, middleware, all of whom are often quite well embedded within a company. I t infrastructures and have existing relationships. Because what we do fundamentally makes migrating to the cloud easier on data migration easier. A lot of businesses that are interested in partnering with us. Um, we're interested in parting with, So >>let's set up the problem a little bit. And then I want to get into some of the data. You know, I said that migration is a risky, time consuming, expensive. They're they're often times a blocker for organizations to really get value out of data. Why is that? >>Uh, I think I mean, all migrations have to start with knowing the facts about your data, and you can try and do this manually. But when that you have an organization that may have been going for decades or longer, they will probably have a pretty large legacy data estate so that I have everything from on premise mainframes. They may have stuff which is probably in the cloud, but they probably have hundreds, if not thousands of applications and potentially hundreds of different data stores. Um, now they're understanding of what they have. Ai's often quite limited because you can try and draw a manual maps, but they're outdated very quickly. Every time that data changes the manual that's out of date on people obviously leave organizations over time, so that kind of tribal knowledge gets built up is limited as well. So you can try a Mackel that manually you might need a db. Hey, thanks. Based analyst or ah, business analyst, and they won't go in and explore the data for you. But doing that manually is very, very time consuming this contract teams of people, months and months. Or you can use automation just like what's the bank with Iot? And they managed to do this with a relatively small team. Are in a timeframe of days. >>Yeah, we talked to Paul from Webster Bank. Awesome discussion. So I want to dig into this migration and let's let's pull up graphic it will talk about. We'll talk about what a typical migration project looks like. So what you see here it is. It's very detailed. I know it's a bit of an eye test, but let me call your attention to some of the key aspects of this Ah, and then use. If I want you to chime in. So at the top here, you see that area graph that's operational risk for a typical migration project, and you can see the timeline and the the milestones. That blue bar is the time to test so you can see the second step data analysis talking 24 weeks so, you know, very time consuming. And then Let's not get dig into the stuff in the middle of the fine print, but there's some real good detail there, but go down the bottom. That's labor intensity in the in the bottom and you can see high is that sort of brown and and you could see a number of data analysis, data staging data prep, the trial, the implementation post implementation fixtures, the transition toe B A B a year, which I think is business as usual. Those are all very labor intensive. So what do you take aways from this typical migration project? What do we need to know yourself? >>I mean, I think the key thing is, when you don't understand your data upfront, it's very difficult to scope to set up a project because you go to business stakeholders and decision makers and you say Okay, we want to migrate these data stores. We want to put them in the cloud most often, but actually, you probably don't know how much data is there. You don't necessarily know how many applications that relates to, you know, the relationships between the data. You don't know the flow of the data. So the direction in which the data is going between different data stores and tables, so you start from a position where you have pretty high risk and alleviate that risk. You could be stacking project team of lots and lots of people to do the next base, which is analysis. And so you set up a project which has got a pretty high cost. The big projects, more people, the heavy of governance, obviously on then there, then in the phase where they're trying to do lots and lots of manual analysis manage. That, in a sense, is, as we all know, on the idea of trying to relate data that's in different those stores relating individual tables and columns. Very, very time consuming, expensive. If you're hiring in resource from consultants or systems integrators externally, you might need to buy or to use party tools, Aziz said earlier. The people who understand some of those systems may have left a while ago. See you even high risks quite cost situation from the off on the same things that have developed through the project. Um, what are you doing with it, Ayatollah? Who is that? We're able to automate a lot of this process from the very beginning because we can do the initial data. Discovery run, for example, automatically you very quickly have an automated validator. A data map on the data flow has been generated automatically, much less time and effort and much less cars. Doctor Marley. >>Okay, so I want to bring back that that first chart, and I want to call your attention to the again that area graph the blue bars and then down below that labor intensity. And now let's bring up the the the same chart. But with a set of an automation injection in here and now. So you now see the So let's go Said Accelerated by Iot, Tom. Okay, great. And we're going to talk about this. But look, what happens to the operational risk. A dramatic reduction in that. That graph. And then look at the bars, the bars, those blue bars. You know, data analysis went from 24 weeks down to four weeks and then look at the labor intensity. The it was all these were high data analysis data staging data prep. Try a lot post implementation fixtures in transition to be a you. All of those went from high labor intensity. So we've now attack that and gone to low labor intensity. Explain how that magic happened. >>I think that the example off a data catalog. So every large enterprise wants to have some kind of repository where they put all their understanding about their data in its Price States catalog, if you like, um, imagine trying to do that manually. You need to go into every individual data store. You need a DB a business analyst, rich data store they need to do in extracted the data table was individually they need to cross reference that with other data school, it stores and schemers and tables. You probably were the mother of all lock Excel spreadsheets. It would be a very, very difficult exercise to do. I mean, in fact, one of our reflections as we automate lots of data lots of these things is, um it accelerates the ability to water may, But in some cases, it also makes it possible for enterprise customers with legacy systems um, take banks, for example. There quite often end up staying on mainframe systems that they've had in place for decades. Uh, no migrating away from them because they're not able to actually do the work of understanding the data g duplicating the data, deleting data isn't relevant and then confidently going forward to migrate. So they stay where they are with all the attendant problems assistance systems that are out of support. Go back to the data catalog example. Um, whatever you discover invades, discovery has to persist in a tool like a data catalog. And so we automate data catalog books, including Out Way Cannot be others, but we have our own. The only alternative to this kind of automation is to build out this very large project team or business analysts off db A's project managers processed analysts together with data to understand that the process of gathering data is correct. To put it in the repository to validate it except etcetera, we've got into organizations and we've seen them ramp up teams off 2030 people costs off £234 million a year on a time frame, 15 20 years just to try and get a data catalog done. And that's something that we can typically do in a timeframe of months, if not weeks. And the difference is using automation. And if you do what? I've just described it. In this manual situation, you make migrations to the cloud prohibitively expensive. Whatever saving you might make from shutting down your legacy data stores, we'll get eaten up by the cost of doing it. Unless you go with the more automated approach. >>Okay, so the automated approach reduces risk because you're not gonna, you know you're going to stay on project plan. Ideally, it's all these out of scope expectations that come up with the manual processes that kill you in the rework andan that data data catalog. People are afraid that their their family jewels data is not going to make it through to the other side. So So that's something that you're you're addressing and then you're also not boiling the ocean. You're really taking the pieces that are critical and stuff you don't need. You don't have to pay for >>process. It's a very good point. I mean, one of the other things that we do and we have specific features to do is to automatically and noise data for a duplication at a rover or record level and redundancy on a column level. So, as you say before you go into a migration process. You can then understand. Actually, this stuff it was replicated. We don't need it quite often. If you put data in the cloud you're paying, obviously, the storage based offer compute time. The more data you have in there that's duplicated, that is pure cost. You should take out before you migrate again if you're trying to do that process of understanding what's duplicated manually off tens or hundreds of bases stores. It was 20 months, if not years. Use machine learning to do that in an automatic way on it's much, much quicker. I mean, there's nothing I say. Well, then, that costs and benefits of guitar. Every organization we work with has a lot of money existing, sunk cost in their I t. So have your piece systems like Oracle or Data Lakes, which they've spent a good time and money investing in. But what we do by enabling them to transition everything to the strategic future repositories, is accelerate the value of that investment and the time to value that investment. So we're trying to help people get value out of their existing investments on data estate, close down the things that they don't need to enable them to go to a kind of brighter, more future well, >>and I think as well, you know, once you're able to and this is a journey, we know that. But once you're able to go live on, you're infusing sort of a data mindset, a data oriented culture. I know it's somewhat buzzword, but when you when you see it in organizations, you know it's really and what happens is you dramatically reduce that and cycle time of going from data to actually insights. Data's plentiful, but insights aren't, and that is what's going to drive competitive advantage over the next decade and beyond. >>Yeah, definitely. And you could only really do that if you get your data estate cleaned up in the first place. Um, I worked with the managed teams of data scientists, data engineers, business analysts, people who are pushing out dashboards and trying to build machine learning applications. You know, you know, the biggest frustration for lots of them and the thing that they spend far too much time doing is trying to work out what the right data is on cleaning data, which really you don't want a highly paid thanks to scientists doing with their time. But if you sort out your data stays in the first place, get rid of duplication. If that pans migrate to cloud store, where things are really accessible on its easy to build connections and to use native machine learning tools, you're well on the way up to date the maturity curve on you can start to use some of those more advanced applications. >>You said. What are some of the pre requisites? Maybe the top few that are two or three that I need to understand as a customer to really be successful here? Is it skill sets? Is it is it mindset leadership by in what I absolutely need to have to make this successful? >>Well, I think leadership is obviously key just to set the vision of people with spiky. One of the great things about Ayatollah, though, is you can use your existing staff to do this work. If you've used on automation, platform is no need to hire expensive people. Alright, I was a no code solution. It works out of the box. You just connect to force on your existing stuff can use. It's very intuitive that has these issues. User interface? >>Um, it >>was only to invest vast amounts with large consultants who may well charging the earth. Um, and you already had a bit of an advantage. If you've got existing staff who are close to the data subject matter experts or use it because they can very easily learn how to use a tool on, then they can go in and they can write their own data quality rules on. They can really make a contribution from day one, when we are go into organizations on way. Can I? It's one of the great things about the whole experience. Veritas is. We can get tangible results back within the day. Um, usually within an hour or two great ones to say Okay, we started to map relationships. Here's the data map of the data that we've analyzed. Harrison thoughts on where the sensitive data is because it's automated because it's running algorithms stater on. That's what they were really to expect. >>Um, >>and and you know this because you're dealing with the ecosystem. We're entering a new era of data and many organizations to your point, they just don't have the resources to do what Google and Amazon and Facebook and Microsoft did over the past decade To become data dominant trillion dollar market cap companies. Incumbents need to rely on technology companies to bring that automation that machine intelligence to them so they can apply it. They don't want to be AI inventors. They want to apply it to their businesses. So and that's what really was so difficult in the early days of so called big data. You have this just too much complexity out there, and now companies like Iot Tahoe or bringing your tooling and platforms that are allowing companies to really become data driven your your final thoughts. Please use it. >>That's a great point, Dave. In a way, it brings us back to where it began. In terms of partnerships and alliances. I completely agree with a really exciting point where we can take applications like Iot. Uh, we can go into enterprises and help them really leverage the value of these type of machine learning algorithms. And and I I we work with all the major cloud providers AWS, Microsoft Azure or Google Cloud Platform, IBM and Red Hat on others, and we we really I think for us. The key thing is that we want to be the best in the world of enterprise data automation. We don't aspire to be a cloud provider or even a workflow provider. But what we want to do is really help customers with their data without automated data functionality in partnership with some of those other businesses so we can leverage the great work they've done in the cloud. The great work they've done on work flows on virtual assistants in other areas. And we help customers leverage those investments as well. But our heart, we really targeted it just being the best, uh, enterprised data automation business in the world. >>Massive opportunities not only for technology companies, but for those organizations that can apply technology for business. Advantage yourself, count. Thanks so much for coming on the Cube. Appreciate. All right. And thank you for watching everybody. We'll be right back right after this short break. >>Yeah, yeah, yeah, yeah.
SUMMARY :
of enterprise data automation, an event Siri's brought to you by Iot. And how is it relevant to what we're gonna talk about today? fundamentally makes migrating to the cloud easier on data migration easier. a blocker for organizations to really get value out of data. And they managed to do this with a relatively small team. That blue bar is the time to test so you can see the second step data analysis talking 24 I mean, I think the key thing is, when you don't understand So you now see the So let's go Said Accelerated by Iot, You need a DB a business analyst, rich data store they need to do in extracted the data processes that kill you in the rework andan that data data catalog. close down the things that they don't need to enable them to go to a kind of brighter, and I think as well, you know, once you're able to and this is a journey, And you could only really do that if you get your data estate cleaned up in I need to understand as a customer to really be successful here? One of the great things about Ayatollah, though, is you can use Um, and you already had a bit of an advantage. and and you know this because you're dealing with the ecosystem. And and I I we work And thank you for watching everybody.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Paul | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Amazon | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Yusef Khan | PERSON | 0.99+ |
Seth | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
20 months | QUANTITY | 0.99+ |
Aziz | PERSON | 0.99+ |
hundreds | QUANTITY | 0.99+ |
tens | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Webster Bank | ORGANIZATION | 0.99+ |
24 weeks | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
four weeks | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Io Tahoe | PERSON | 0.99+ |
Marley | PERSON | 0.99+ |
Harrison | PERSON | 0.99+ |
Data Lakes | ORGANIZATION | 0.99+ |
Siri | TITLE | 0.99+ |
Excel | TITLE | 0.99+ |
Veritas | ORGANIZATION | 0.99+ |
second step | QUANTITY | 0.99+ |
15 20 years | QUANTITY | 0.98+ |
Tahoe | PERSON | 0.98+ |
One | QUANTITY | 0.98+ |
first chart | QUANTITY | 0.98+ |
an hour | QUANTITY | 0.98+ |
Red Hat | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.97+ |
Tom | PERSON | 0.96+ |
hundreds of bases | QUANTITY | 0.96+ |
first | QUANTITY | 0.95+ |
next decade | DATE | 0.94+ |
first place | QUANTITY | 0.94+ |
Iot | ORGANIZATION | 0.94+ |
Iot | TITLE | 0.93+ |
earth | LOCATION | 0.93+ |
day one | QUANTITY | 0.92+ |
Mackel | ORGANIZATION | 0.91+ |
today | DATE | 0.91+ |
Ayatollah | PERSON | 0.89+ |
£234 million a year | QUANTITY | 0.88+ |
data | QUANTITY | 0.88+ |
Iot | PERSON | 0.83+ |
hundreds of | QUANTITY | 0.81+ |
thousands of applications | QUANTITY | 0.81+ |
decades | QUANTITY | 0.8+ |
I o ta ho | ORGANIZATION | 0.75+ |
past decade | DATE | 0.75+ |
Microsoft Azure | ORGANIZATION | 0.72+ |
two great ones | QUANTITY | 0.72+ |
2030 people | QUANTITY | 0.67+ |
Doctor | PERSON | 0.65+ |
States | LOCATION | 0.65+ |
Iot Tahoe | ORGANIZATION | 0.65+ |
a year | QUANTITY | 0.55+ |
Yousef | PERSON | 0.45+ |
Cloud Platform | TITLE | 0.44+ |
Cube | ORGANIZATION | 0.38+ |
Enterprise Data Automation | Crowdchat
>>from around the globe. It's the Cube with digital coverage of enterprise data automation, an event Siri's brought to you by Iot. Tahoe Welcome everybody to Enterprise Data Automation. Ah co created digital program on the Cube with support from my hotel. So my name is Dave Volante. And today we're using the hashtag data automated. You know, organizations. They really struggle to get more value out of their data, time to data driven insights that drive cost savings or new revenue opportunities. They simply take too long. So today we're gonna talk about how organizations can streamline their data operations through automation, machine intelligence and really simplifying data migrations to the cloud. We'll be talking to technologists, visionaries, hands on practitioners and experts that are not just talking about streamlining their data pipelines. They're actually doing it. So keep it right there. We'll be back shortly with a J ahora who's the CEO of Iot Tahoe to kick off the program. You're watching the Cube, the leader in digital global coverage. We're right back right after this short break. Innovation impact influence. Welcome to the Cube disruptors. Developers and practitioners learn from the voices of leaders who share their personal insights from the hottest digital events around the globe. Enjoy the best this community has to offer on the Cube, your global leader. High tech digital coverage from around the globe. It's the Cube with digital coverage of enterprise, data, automation and event. Siri's brought to you by Iot. Tahoe. Okay, we're back. Welcome back to Data Automated. A J ahora is CEO of I O ta ho, JJ. Good to see how things in London >>Thanks doing well. Things in, well, customers that I speak to on day in, day out that we partner with, um, they're busy adapting their businesses to serve their customers. It's very much a game of ensuring the week and serve our customers to help their customers. Um, you know, the adaptation that's happening here is, um, trying to be more agile. Got to be more flexible. Um, a lot of pressure on data, a lot of demand on data and to deliver more value to the business, too. So that customers, >>as I said, we've been talking about data ops a lot. The idea being Dev Ops applied to the data pipeline, But talk about enterprise data automation. What is it to you. And how is it different from data off >>Dev Ops, you know, has been great for breaking down those silos between different roles functions and bring people together to collaborate. Andi, you know, we definitely see that those tools, those methodologies, those processes, that kind of thinking, um, lending itself to data with data is exciting. We look to do is build on top of that when data automation, it's the it's the nuts and bolts of the the algorithms, the models behind machine learning that the functions. That's where we investors, our r and d on bringing that in to build on top of the the methods, the ways of thinking that break down those silos on injecting that automation into the business processes that are going to drive a business to serve its customers. It's, um, a layer beyond Dev ops data ops. They can get to that point where well, I think about it is is the automation behind new dimension. We've come a long way in the last few years. Boy is, we started out with automating some of those simple, um, to codify, um, I have a high impact on organization across the data a cost effective way house. There's data related tasks that classify data on and a lot of our original pattern certain people value that were built up is is very much around that >>love to get into the tech a little bit in terms of how it works. And I think we have a graphic here that gets into that a little bit. So, guys, if you bring that up, >>sure. I mean right there in the middle that the heart of what we do it is, you know, the intellectual property now that we've built up over time that takes from Hacha genius data sources. Your Oracle Relational database. Short your mainframe. It's a lay and increasingly AP eyes and devices that produce data and that creates the ability to automatically discover that data. Classify that data after it's classified. Them have the ability to form relationships across those different source systems, silos, different lines of business. And once we've automated that that we can start to do some cool things that just puts of contact and meaning around that data. So it's moving it now from bringing data driven on increasingly where we have really smile, right people in our customer organizations you want I do some of those advanced knowledge tasks data scientists and ah, yeah, quants in some of the banks that we work with, the the onus is on, then, putting everything we've done there with automation, pacifying it, relationship, understanding that equality, the policies that you can apply to that data. I'm putting it in context once you've got the ability to power. Okay, a professional is using data, um, to be able to put that data and contacts and search across the entire enterprise estate. Then then they can start to do some exciting things and piece together the the tapestry that fabric across that different system could be crm air P system such as s AP and some of the newer brown databases that we work with. Snowflake is a great well, if I look back maybe five years ago, we had prevalence of daily technologies at the cutting edge. Those are converging to some of the cloud platforms that we work with Google and AWS and I think very much is, as you said it, those manual attempts to try and grasp. But it is such a complex challenges scale quickly runs out of steam because once, once you've got your hat, once you've got your fingers on the details Oh, um, what's what's in your data state? It's changed, You know, you've onboard a new customer. You signed up a new partner. Um, customer has, you know, adopted a new product that you just Lawrence and there that that slew of data keeps coming. So it's keeping pace with that. The only answer really is is some form of automation >>you're working with AWS. You're working with Google, You got red hat. IBM is as partners. What is attracting those folks to your ecosystem and give us your thoughts on the importance of ecosystem? >>That's fundamental. So, I mean, when I caimans where you tell here is the CEO of one of the, um, trends that I wanted us CIO to be part of was being open, having an open architecture allowed one thing that was close to my heart, which is as a CEO, um, a c i o where you go, a budget vision on and you've already made investments into your organization, and some of those are pretty long term bets. They should be going out 5 10 years, sometimes with the CRM system training up your people, getting everybody working together around a common business platform. What I wanted to ensure is that we could openly like it using AP eyes that were available, the love that some investment on the cost that has already gone into managing in organizations I t. But business users to before. So part of the reason why we've been able to be successful with, um, the partners like Google AWS and increasingly, a number of technology players. That red hat mongo DB is another one where we're doing a lot of good work with, um and snowflake here is, um Is those investments have been made by the organizations that are our customers, and we want to make sure we're adding to that. And they're leveraging the value that they've already committed to. >>Yeah, and maybe you could give us some examples of the r A y and the business impact. >>Yeah, I mean, the r a y David is is built upon on three things that I mentioned is a combination off. You're leveraging the existing investment with the existing estate, whether that's on Microsoft Azure or AWS or Google, IBM, and I'm putting that to work because, yeah, the customers that we work with have had made those choices. On top of that, it's, um, is ensuring that we have got the automation that is working right down to the level off data, a column level or the file level we don't do with meta data. It is being very specific to be at the most granular level. So as we've grown our processes and on the automation, gasification tagging, applying policies from across different compliance and regulatory needs that an organization has to the data, everything that then happens downstream from that is ready to serve a business outcome now without hoping out which run those processes within hours of getting started And, um, Bill that picture, visualize that picture and bring it to life. You know, the PR Oh, I that's off the bat with finding data that should have been deleted data that was copies off on and being able to allow the architect whether it's we're working on GCB or a migration to any other clouds such as AWS or a multi cloud landscape right off the map. >>A. J. Thanks so much for coming on the Cube and sharing your insights and your experience is great to have you. >>Thank you, David. Look who is smoking in >>now. We want to bring in the customer perspective. We have a great conversation with Paul Damico, senior vice president data architecture, Webster Bank. So keep it right there. >>Utah Data automated Improve efficiency, Drive down costs and make your enterprise data work for you. Yeah, we're on a mission to enable our customers to automate the management of data to realise maximum strategic and operational benefits. We envisage a world where data users consume accurate, up to date unified data distilled from many silos to deliver transformational outcomes, activate your data and avoid manual processing. Accelerate data projects by enabling non I t resources and data experts to consolidate categorize and master data. Automate your data operations Power digital transformations by automating a significant portion of data management through human guided machine learning. Yeah, get value from the start. Increase the velocity of business outcomes with complete accurate data curated automatically for data, visualization tours and analytic insights. Improve the security and quality of your data. Data automation improves security by reducing the number of individuals who have access to sensitive data, and it can improve quality. Many companies report double digit era reduction in data entry and other repetitive tasks. Trust the way data works for you. Data automation by our Tahoe learns as it works and can ornament business user behavior. It learns from exception handling and scales up or down is needed to prevent system or application overloads or crashes. It also allows for innate knowledge to be socialized rather than individualized. No longer will your companies struggle when the employee who knows how this report is done, retires or takes another job, the work continues on without the need for detailed information transfer. Continue supporting the digital shift. Perhaps most importantly, data automation allows companies to begin making moves towards a broader, more aspirational transformation, but on a small scale but is easy to implement and manage and delivers quick wins. Digital is the buzzword of the day, but many companies recognized that it is a complex strategy requires time and investment. Once you get started with data automation, the digital transformation initiated and leaders and employees alike become more eager to invest time and effort in a broader digital transformational agenda. Yeah, >>everybody, we're back. And this is Dave Volante, and we're covering the whole notion of automating data in the Enterprise. And I'm really excited to have Paul Damico here. She's a senior vice president of enterprise Data Architecture at Webster Bank. Good to see you. Thanks for coming on. >>Nice to see you too. Yes. >>So let's let's start with Let's start with Webster Bank. You guys are kind of a regional. I think New York, New England, uh, leave headquartered out of Connecticut, but tell us a little bit about the >>bank. Yeah, Webster Bank is regional, Boston. And that again in New York, Um, very focused on in Westchester and Fairfield County. Um, they're a really highly rated bank regional bank for this area. They, um, hold, um, quite a few awards for the area for being supportive for the community. And, um, are really moving forward. Technology lives. Currently, today we have, ah, a small group that is just working toward moving into a more futuristic, more data driven data warehouse. That's our first item. And then the other item is to drive new revenue by anticipating what customers do when they go to the bank or when they log into there to be able to give them the best offer. The only way to do that is you have timely, accurate, complete data on the customer and what's really a great value on off something to offer that >>at the top level, what were some of what are some of the key business drivers there catalyzing your desire for change >>the ability to give the customer what they need at the time when they need it? And what I mean by that is that we have, um, customer interactions and multiple weights, right? And I want to be able for the customer, too. Walk into a bank, um, or online and see the same the same format and being able to have the same feel, the same look and also to be able to offer them the next best offer for them. >>Part of it is really the cycle time, the end end cycle, time that you're pressing. And then there's if I understand it, residual benefits that are pretty substantial from a revenue opportunity >>exactly. It's drive new customers, Teoh new opportunities. It's enhanced the risk, and it's to optimize the banking process and then obviously, to create new business. Um, and the only way we're going to be able to do that is that we have the ability to look at the data right when the customer walks in the door or right when they open up their app. >>Do you see the potential to increase the data sources and hence the quality of the data? Or is that sort of premature? >>Oh, no. Um, exactly. Right. So right now we ingest a lot of flat files and from our mainframe type of runnin system that we've had for quite a few years. But now that we're moving to the cloud and off Prem and on France, you know, moving off Prem into, like, an s three bucket Where that data king, we can process that data and get that data faster by using real time tools to move that data into a place where, like, snowflake Good, um, utilize that data or we can give it out to our market. The data scientists are out in the lines of business right now, which is great, cause I think that's where data science belongs. We should give them on, and that's what we're working towards now is giving them more self service, giving them the ability to access the data in a more robust way. And it's a single source of truth. So they're not pulling the data down into their own like tableau dashboards and then pushing the data back out. I have eight engineers, data architects, they database administrators, right, um, and then data traditional data forwarding people, Um, and because some customers that I have that our business customers lines of business, they want to just subscribe to a report. They don't want to go out and do any data science work. Um, and we still have to provide that. So we still want to provide them some kind of read regiment that they wake up in the morning and they open up their email. And there's the report that they just drive, um, which is great. And it works out really well. And one of the things. This is why we purchase I o waas. I would have the ability to give the lines of business the ability to do search within the data, and we read the data flows and data redundancy and things like that and help me cleanup the data and also, um, to give it to the data. Analysts who say All right, they just asked me. They want this certain report and it used to take Okay, well, we're gonna four weeks, we're going to go. We're gonna look at the data, and then we'll come back and tell you what we dio. But now with Iot Tahoe, they're able to look at the data and then, in one or two days of being able to go back and say, Yes, we have data. This is where it is. This is where we found that this is the data flows that we've found also, which is what I call it is the birth of a column. It's where the calm was created and where it went live as a teenager. And then it went to, you know, die very archive. >>In researching Iot Tahoe, it seems like one of the strengths of their platform is the ability to visualize data the data structure, and actually dig into it. But also see it, um, and that speeds things up and gives everybody additional confidence. And then the other pieces essentially infusing ai or machine intelligence into the data pipeline is really how you're attacking automation, right? >>Exactly. So you're able to let's say that I have I have seven cause lines of business that are asking me questions. And one of the questions I'll ask me is, um, we want to know if this customer is okay to contact, right? And you know, there's different avenues so you can go online to go. Do not contact me. You can go to the bank And you could say, I don't want, um, email, but I'll take tests and I want, you know, phone calls. Um, all that information. So seven different lines of business asked me that question in different ways once said Okay to contact the other one says, You know, just for one to pray all these, you know, um, and each project before I got there used to be siloed. So one customer would be 100 hours for them to do that and analytical work, and then another cut. Another of analysts would do another 100 hours on the other project. Well, now I can do that all at once, and I can do those type of searches and say yes we already have that documentation. Here it is. And this is where you can find where the customer has said, You know, you don't want I don't want to get access from you by email, or I've subscribed to get emails from you. I'm using Iot typos eight automation right now to bring in the data and to start analyzing the data close to make sure that I'm not missing anything and that I'm not bringing over redundant data. Um, the data warehouse that I'm working off is not, um a It's an on prem. It's an oracle database. Um, and it's 15 years old, so it has extra data in it. It has, um, things that we don't need anymore. And Iot. Tahoe's helping me shake out that, um, extra data that does not need to be moved into my S three. So it's saving me money when I'm moving from offering on Prem. >>What's your vision or your your data driven organization? >>Um, I want for the bankers to be able to walk around with on iPad in their hands and be able to access data for that customer really fast and be able to give them the best deal that they can get. I want Webster to be right there on top, with being able to add new customers and to be able to serve our existing customers who had bank accounts. Since you were 12 years old there and now our, you know, multi. Whatever. Um, I want them to be able to have the best experience with our our bankers. >>That's really what I want is a banking customer. I want my bank to know who I am, anticipate my needs and create a great experience for me. And then let me go on with my life. And so that's a great story. Love your experience, your background and your knowledge. Can't thank you enough for coming on the Cube. >>No, thank you very much. And you guys have a great day. >>Next, we'll talk with Lester Waters, who's the CTO of Iot Toe cluster takes us through the key considerations of moving to the cloud. >>Yeah, right. The entire platform Automated data Discovery data Discovery is the first step to knowing your data auto discover data across any application on any infrastructure and identify all unknown data relationships across the entire siloed data landscape. smart data catalog. Know how everything is connected? Understand everything in context, regained ownership and trust in your data and maintain a single source of truth across cloud platforms, SAS applications, reference data and legacy systems and power business users to quickly discover and understand the data that matters to them with a smart data catalog continuously updated ensuring business teams always have access to the most trusted data available. Automated data mapping and linking automate the identification of unknown relationships within and across data silos throughout the organization. Build your business glossary automatically using in house common business terms, vocabulary and definitions. Discovered relationships appears connections or dependencies between data entities such as customer account, address invoice and these data entities have many discovery properties. At a granular level, data signals dashboards. Get up to date feeds on the health of your data for faster improved data management. See trends, view for history. Compare versions and get accurate and timely visual insights from across the organization. Automated data flows automatically captured every data flow to locate all the dependencies across systems. Visualize how they work together collectively and know who within your organization has access to data. Understand the source and destination for all your business data with comprehensive data lineage constructed automatically during with data discovery phase and continuously load results into the smart Data catalog. Active, geeky automated data quality assessments Powered by active geek You ensure data is fit for consumption that meets the needs of enterprise data users. Keep information about the current data quality state readily available faster Improved decision making Data policy. Governor Automate data governance End to end over the entire data lifecycle with automation, instant transparency and control Automate data policy assessments with glossaries, metadata and policies for sensitive data discovery that automatically tag link and annotate with metadata to provide enterprise wide search for all lines of business self service knowledge graph Digitize and search your enterprise knowledge. Turn multiple siloed data sources into machine Understandable knowledge from a single data canvas searching Explore data content across systems including GRP CRM billing systems, social media to fuel data pipelines >>Yeah, yeah, focusing on enterprise data automation. We're gonna talk about the journey to the cloud Remember, the hashtag is data automate and we're here with Leicester Waters. Who's the CTO of Iot Tahoe? Give us a little background CTO, You've got a deep, deep expertise in a lot of different areas. But what do we need to know? >>Well, David, I started my career basically at Microsoft, uh, where I started the information Security Cryptography group. They're the very 1st 1 that the company had, and that led to a career in information, security. And and, of course, as easy as you go along with information security data is the key element to be protected. Eso I always had my hands and data not naturally progressed into a roll out Iot talk was their CTO. >>What's the prescription for that automation journey and simplifying that migration to the cloud? >>Well, I think the first thing is understanding what you've got. So discover and cataloging your data and your applications. You know, I don't know what I have. I can't move it. I can't. I can't improve it. I can't build upon it. And I have to understand there's dependence. And so building that data catalog is the very first step What I got. Okay, >>so So we've done the audit. We know we've got what's what's next? Where do we go >>next? So the next thing is remediating that data you know, where do I have duplicate data? I may have often times in an organization. Uh, data will get duplicated. So somebody will take a snapshot of the data, you know, and then end up building a new application, which suddenly becomes dependent on that data. So it's not uncommon for an organization of 20 master instances of a customer, and you can see where that will go. And trying to keep all that stuff in sync becomes a nightmare all by itself. So you want to sort of understand where all your redundant data is? So when you go to the cloud, maybe you have an opportunity here to do you consolidate that that data, >>then what? You figure out what to get rid of our actually get rid of it. What's what's next? >>Yes, yes, that would be the next step. So figure out what you need. What, you don't need you Often times I've found that there's obsolete columns of data in your databases that you just don't need. Or maybe it's been superseded by another. You've got tables have been superseded by other tables in your database, so you got to kind of understand what's being used and what's not. And then from that, you can decide. I'm gonna leave this stuff behind or I'm gonna I'm gonna archive this stuff because I might need it for data retention where I'm just gonna delete it. You don't need it. All were >>plowing through your steps here. What's next on the >>journey? The next one is is in a nutshell. Preserve your data format. Don't. Don't, Don't. Don't boil the ocean here at music Cliche. You know, you you want to do a certain degree of lift and shift because you've got application dependencies on that data and the data format, the tables in which they sent the columns and the way they're named. So some degree, you are gonna be doing a lift and ship, but it's an intelligent lift and ship. The >>data lives in silos. So how do you kind of deal with that? Problem? Is that is that part of the journey? >>That's that's great pointed because you're right that the data silos happen because, you know, this business unit is start chartered with this task. Another business unit has this task and that's how you get those in stance creations of the same data occurring in multiple places. So you really want to is part of your cloud migration. You really want a plan where there's an opportunity to consolidate your data because that means it will be less to manage. Would be less data to secure, and it will be. It will have a smaller footprint, which means reduce costs. >>But maybe you could address data quality. Where does that fit in on the >>journey? That's that's a very important point, you know. First of all, you don't want to bring your legacy issues with U. S. As the point I made earlier. If you've got data quality issues, this is a good time to find those and and identify and remediate them. But that could be a laborious task, and you could probably accomplish. It will take a lot of work. So the opportunity used tools you and automate that process is really will help you find those outliers that >>what's next? I think we're through. I think I've counted six. What's the What's the lucky seven >>Lucky seven involved your business users. Really, When you think about it, you're your data is in silos, part of part of this migration to cloud as an opportunity to break down the silos. These silence that naturally occurs are the business. You, uh, you've got to break these cultural barriers that sometimes exists between business and say so. For example, I always advise there's an opportunity year to consolidate your sensitive data. Your P I. I personally identifiable information and and three different business units have the same source of truth From that, there's an opportunity to consolidate that into one. >>Well, great advice, Lester. Thanks so much. I mean, it's clear that the Cap Ex investments on data centers they're generally not a good investment for most companies. Lester really appreciate Lester Water CTO of Iot Tahoe. Let's watch this short video and we'll come right back. >>Use cases. Data migration. Accelerate digitization of business by providing automated data migration work flows that save time in achieving project milestones. Eradicate operational risk and minimize labor intensive manual processes that demand costly overhead data quality. You know the data swamp and re establish trust in the data to enable data signs and Data analytics data governance. Ensure that business and technology understand critical data elements and have control over the enterprise data landscape Data Analytics ENABLEMENT Data Discovery to enable data scientists and Data Analytics teams to identify the right data set through self service for business demands or analytical reporting that advanced too complex regulatory compliance. Government mandated data privacy requirements. GDP Our CCP, A, e, p, R HIPPA and Data Lake Management. Identify late contents cleanup manage ongoing activity. Data mapping and knowledge graph Creates BKG models on business enterprise data with automated mapping to a specific ontology enabling semantic search across all sources in the data estate data ops scale as a foundation to automate data management presences. >>Are you interested in test driving the i o ta ho platform Kickstart the benefits of data automation for your business through the Iot Labs program? Ah, flexible, scalable sandbox environment on the cloud of your choice with set up service and support provided by Iot. Top Click on the link and connect with the data engineer to learn more and see Iot Tahoe in action. Everybody, we're back. We're talking about enterprise data automation. The hashtag is data automated and we're going to really dig into data migrations, data migrations. They're risky, they're time consuming and they're expensive. Yousef con is here. He's the head of partnerships and alliances at I o ta ho coming again from London. Hey, good to see you, Seth. Thanks very much. >>Thank you. >>So let's set up the problem a little bit. And then I want to get into some of the data said that migration is a risky, time consuming, expensive. They're they're often times a blocker for organizations to really get value out of data. Why is that? >>I think I mean, all migrations have to start with knowing the facts about your data. Uh, and you can try and do this manually. But when you have an organization that may have been going for decades or longer, they will probably have a pretty large legacy data estate so that I have everything from on premise mainframes. They may have stuff which is probably in the cloud, but they probably have hundreds, if not thousands of applications and potentially hundreds of different data stores. >>So I want to dig into this migration and let's let's pull up graphic. It will talk about We'll talk about what a typical migration project looks like. So what you see, here it is. It's very detailed. I know it's a bit of an eye test, but let me call your attention to some of the key aspects of this, uh and then use if I want you to chime in. So at the top here, you see that area graph that's operational risk for a typical migration project, and you can see the timeline and the the milestones That Blue Bar is the time to test so you can see the second step. Data analysis. It's 24 weeks so very time consuming, and then let's not get dig into the stuff in the middle of the fine print. But there's some real good detail there, but go down the bottom. That's labor intensity in the in the bottom, and you can see hi is that sort of brown and and you could see a number of data analysis data staging data prep, the trial, the implementation post implementation fixtures, the transition to be a Blu, which I think is business as usual. >>The key thing is, when you don't understand your data upfront, it's very difficult to scope to set up a project because you go to business stakeholders and decision makers, and you say Okay, we want to migrate these data stores. We want to put them in the cloud most often, but actually, you probably don't know how much data is there. You don't necessarily know how many applications that relates to, you know, the relationships between the data. You don't know the flow of the basis of the direction in which the data is going between different data stores and tables. So you start from a position where you have pretty high risk and probably the area that risk you could be. Stack your project team of lots and lots of people to do the next phase, which is analysis. And so you set up a project which has got a pretty high cost. The big projects, more people, the heavy of governance, obviously on then there, then in the phase where they're trying to do lots and lots of manual analysis, um, manual processes, as we all know, on the layer of trying to relate data that's in different grocery stores relating individual tables and columns, very time consuming, expensive. If you're hiring in resource from consultants or systems integrators externally, you might need to buy or to use party tools. Aziz said earlier the people who understand some of those systems may have left a while ago. CEO even higher risks quite cost situation from the off on the same things that have developed through the project. Um, what are you doing with Ayatollah? Who is that? We're able to automate a lot of this process from the very beginning because we can do the initial data. Discovery run, for example, automatically you very quickly have an automated validator. A data met on the data flow has been generated automatically, much less time and effort and much less cars stopped. >>Yeah. And now let's bring up the the the same chart. But with a set of an automation injection in here and now. So you now see the sort of Cisco said accelerated by Iot, Tom. Okay, great. And we're gonna talk about this, but look, what happens to the operational risk. A dramatic reduction in that, That that graph and then look at the bars, the bars, those blue bars. You know, data analysis went from 24 weeks down to four weeks and then look at the labor intensity. The it was all these were high data analysis, data staging data prep trialling post implementation fixtures in transition to be a you all those went from high labor intensity. So we've now attacked that and gone to low labor intensity. Explain how that magic happened. >>I think that the example off a data catalog. So every large enterprise wants to have some kind of repository where they put all their understanding about their data in its price States catalog. If you like, imagine trying to do that manually, you need to go into every individual data store. You need a DB, a business analyst, reach data store. They need to do an extract of the data. But it on the table was individually they need to cross reference that with other data school, it stores and schemers and tables you probably with the mother of all Lock Excel spreadsheets. It would be a very, very difficult exercise to do. I mean, in fact, one of our reflections as we automate lots of data lots of these things is, um it accelerates the ability to water may, But in some cases, it also makes it possible for enterprise customers with legacy systems take banks, for example. There quite often end up staying on mainframe systems that they've had in place for decades. I'm not migrating away from them because they're not able to actually do the work of understanding the data, duplicating the data, deleting data isn't relevant and then confidently going forward to migrate. So they stay where they are with all the attendant problems assistance systems that are out of support. You know, you know, the biggest frustration for lots of them and the thing that they spend far too much time doing is trying to work out what the right data is on cleaning data, which really you don't want a highly paid thanks to scientists doing with their time. But if you sort out your data in the first place, get rid of duplication that sounds migrate to cloud store where things are really accessible. It's easy to build connections and to use native machine learning tools. You well, on the way up to the maturity card, you can start to use some of the more advanced applications >>massive opportunities not only for technology companies, but for those organizations that can apply technology for business. Advantage yourself, count. Thanks so much for coming on the Cube. Much appreciated. Yeah, yeah, yeah, yeah
SUMMARY :
of enterprise data automation, an event Siri's brought to you by Iot. a lot of pressure on data, a lot of demand on data and to deliver more value What is it to you. into the business processes that are going to drive a business to love to get into the tech a little bit in terms of how it works. the ability to automatically discover that data. What is attracting those folks to your ecosystem and give us your thoughts on the So part of the reason why we've IBM, and I'm putting that to work because, yeah, the A. J. Thanks so much for coming on the Cube and sharing your insights and your experience is great to have Look who is smoking in We have a great conversation with Paul Increase the velocity of business outcomes with complete accurate data curated automatically And I'm really excited to have Paul Damico here. Nice to see you too. So let's let's start with Let's start with Webster Bank. complete data on the customer and what's really a great value the ability to give the customer what they need at the Part of it is really the cycle time, the end end cycle, time that you're pressing. It's enhanced the risk, and it's to optimize the banking process and to the cloud and off Prem and on France, you know, moving off Prem into, In researching Iot Tahoe, it seems like one of the strengths of their platform is the ability to visualize data the You know, just for one to pray all these, you know, um, and each project before data for that customer really fast and be able to give them the best deal that they Can't thank you enough for coming on the Cube. And you guys have a great day. Next, we'll talk with Lester Waters, who's the CTO of Iot Toe cluster takes Automated data Discovery data Discovery is the first step to knowing your We're gonna talk about the journey to the cloud Remember, the hashtag is data automate and we're here with Leicester Waters. data is the key element to be protected. And so building that data catalog is the very first step What I got. Where do we go So the next thing is remediating that data you know, You figure out what to get rid of our actually get rid of it. And then from that, you can decide. What's next on the You know, you you want to do a certain degree of lift and shift Is that is that part of the journey? So you really want to is part of your cloud migration. Where does that fit in on the So the opportunity used tools you and automate that process What's the What's the lucky seven there's an opportunity to consolidate that into one. I mean, it's clear that the Cap Ex investments You know the data swamp and re establish trust in the data to enable Top Click on the link and connect with the data for organizations to really get value out of data. Uh, and you can try and milestones That Blue Bar is the time to test so you can see the second step. have pretty high risk and probably the area that risk you could be. to be a you all those went from high labor intensity. But it on the table was individually they need to cross reference that with other data school, Thanks so much for coming on the Cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Paul Damico | PERSON | 0.99+ |
Paul Damico | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Aziz | PERSON | 0.99+ |
Webster Bank | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Westchester | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
24 weeks | QUANTITY | 0.99+ |
Seth | PERSON | 0.99+ |
London | LOCATION | 0.99+ |
one | QUANTITY | 0.99+ |
hundreds | QUANTITY | 0.99+ |
Connecticut | LOCATION | 0.99+ |
New York | LOCATION | 0.99+ |
100 hours | QUANTITY | 0.99+ |
iPad | COMMERCIAL_ITEM | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
four weeks | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
thousands | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
six | QUANTITY | 0.99+ |
first item | QUANTITY | 0.99+ |
20 master instances | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
second step | QUANTITY | 0.99+ |
S three | COMMERCIAL_ITEM | 0.99+ |
I o ta ho | ORGANIZATION | 0.99+ |
first step | QUANTITY | 0.99+ |
Fairfield County | LOCATION | 0.99+ |
five years ago | DATE | 0.99+ |
first | QUANTITY | 0.99+ |
each project | QUANTITY | 0.99+ |
France | LOCATION | 0.98+ |
two days | QUANTITY | 0.98+ |
Leicester Waters | ORGANIZATION | 0.98+ |
Iot Tahoe | ORGANIZATION | 0.98+ |
Cap Ex | ORGANIZATION | 0.98+ |
seven cause | QUANTITY | 0.98+ |
Lester Waters | PERSON | 0.98+ |
5 10 years | QUANTITY | 0.98+ |
Boston | LOCATION | 0.97+ |
Iot | ORGANIZATION | 0.97+ |
Tahoe | ORGANIZATION | 0.97+ |
Tom | PERSON | 0.97+ |
First | QUANTITY | 0.97+ |
15 years old | QUANTITY | 0.96+ |
seven different lines | QUANTITY | 0.96+ |
single source | QUANTITY | 0.96+ |
Utah | LOCATION | 0.96+ |
New England | LOCATION | 0.96+ |
Webster | ORGANIZATION | 0.95+ |
12 years old | QUANTITY | 0.95+ |
Iot Labs | ORGANIZATION | 0.95+ |
Iot. Tahoe | ORGANIZATION | 0.95+ |
1st 1 | QUANTITY | 0.95+ |
U. S. | LOCATION | 0.95+ |
J ahora | ORGANIZATION | 0.95+ |
Cube | COMMERCIAL_ITEM | 0.94+ |
Prem | ORGANIZATION | 0.94+ |
one customer | QUANTITY | 0.93+ |
Oracle | ORGANIZATION | 0.93+ |
I O ta ho | ORGANIZATION | 0.92+ |
Snowflake | TITLE | 0.92+ |
seven | QUANTITY | 0.92+ |
single | QUANTITY | 0.92+ |
Lester | ORGANIZATION | 0.91+ |
David Piester, Io-Tahoe & Eddie Edwards, Direct Energy | AWS re:Invent 2019
>>long from Las Vegas. It's the Q covering a ws re invent 2019. Brought to you by Amazon Web service is and in along with its ecosystem partners. >>Hey, welcome back to the cubes. Coverage of AWS 19 from Las Vegas. This is Day two of our coverage of three days. Two sets, lots of cute content. Lisa Martin here with Justin Warren, founder and chief analyst. A pivot nine. Justin and I are joined by a couple of guests New to the Cube. We've got David Meister next to meet Global head of sales for Io Tahoe. Welcome. Eddie Edwards with a cool name. Global Data Service is director from Direct Energy. Welcome, Eddie. Thank you. Okay, So, David, I know we had somebody from Io Tahoe on yesterday, but I'd love for you to give her audience an overview of Io Tahoe, and then you gotta tell us what the name means. >>Okay. Well, day pie stir. Io Tahoe thinks it's wonderful event here in AWS and excited to be here. Uh, I, oh, Tahoe were located in downtown on Wall Street, New York on and I Oh, Tahoe. Well, there's a lot of different meanings, but mainly Tahoe for Data Lake Input output into the lake is how it was originally meant So But ah, little background on Io Tahoe way are 2014. We came out way started in stealth came out of stealth in 2017 with two signature clients. When you're going to hear from in a moment direct energy, the other one g e and we'll speak to those in just a moment I owe Tahoe takes a unique approach way have nine machine learning machine learning algorithms 14 future sets that interrogates the data. At the data level, we go past metadata, so solving that really difficult data challenge and I'm gonna let Eddie describe some of the use cases that were around data migration, P II discovery, and so over to you >>a little bit about direct energy. What, you where you're located, What you guys do and how data is absolutely critical to your business. Yeah, >>sure. So direct energy. Well, it's the largest residential energy supplier in the er us around 5000 employees. Loss of this is coming from acquisitions. So as you can imagine, we have a vast amount of data that we need some money. Currently, I've got just under 1700 applications in my portfolio. Onda a lot. The challenges We guys are around the cost, driving down costs to serve so we can pass that back onto our consumers on the challenge that with hard is how best to gain that understanding. Where I alter whole came into play, it was vainly around off ability to use the products quickly for being able to connect to our existing sources to discover the data. What, then, that Thio catalog that information to start applying the rules around whether it be legislation like GDP, are or that way gets a lot of cases where these difference between the states on the standings and definitions so the product gives us the ability to bring a common approach So that information a good success story, would be about three months ago, we took the 30 and applications for our North America home business. We were able to running through the product within a week on that gave us the information to them, consolidate the estate downwards, working with bar business colleagues Thio, identify all the data we don't see the archival retention reels on, bring you no more meaning to the data on actually improve ourselves opportunities by highlights in that rich information that was not known >>previously. Yes, you mentioned that you growing through acquisition. One thing that people tend to underestimate around I t. Is that it's not a heterogeneous. It's not a homogeneous environments hatred genius. Like as soon as you buy another company, you've got another. You got another silent. You got another day to say. You got something else. So walk us through how iota who actually deals with that very disparity set of data that you've night out inherited from just acquiring all of these different companies? >>Yeah, so exactly right. You know, every time we a private organization, they would have various different applications that were running in the estate. Where would be an old article? I say, Hey, sequel tap environment. What we're able to do is use the products to plug in a name profile to understand what's inside knowledge they have around their customer base and how we can number in. That's in to build up a single view and offer additional products value adding products or rewards for customers, whether that be, uh on our hay truck side our heat in a ventilation and air con unit, which again we have 4600 engineers in that space. So it's opening up new opportunities and territories to us. >>Go ahead, >>say additionally to that, we're across multiple sectors, but the problem death by Excel was in the financial service is we're located on Wall Street. As I mentioned on this problem of legacy to spirit, data, sources and understanding, and knowing your data was a common problem, banks were just throwing people at the problem. So his use case with 1700 applications, a lot of them legacy is fits right into what we d'oh and cataloging is he mentioned. We catalogue with that discover in search engine that we have. We enable search cross enterprise. But Discovery we auto tag and auto classify the sensitive data into the catalog automatically, and that's a key part of what we do. And it >>was that Dave is something in thinking of differentiation, wanting to know what is unique about Iota. What was the opportunity that you guys saw? But is the cataloging and the sensitive information one of the key things that makes it a difference >>Way enabled data governance. So it's not just sensitive information way catalog, entire data set multiple data sets. And what makes us what differentiates us is that the machine learning way Interrogate in brute force The data So every single so metadata beyond so 1,000,000,000 rose. 100,000 columns. Large, complex data sets way. Interrogate every field value. And we tell you what this looks like A phone number. This looks like an address. This looks like a first name. This looks like the last name and we tagged at to the catalog. And then anything that sensitive in nature will color coded red green, highly sensitive, sensitive. So that's our big differentiator. >>So is that like 100% visibility into the granularity of what is in this data? >>Yes, that's that's one of the issues is who were here ahead of us. We're finding a lot of folks are wanting to go to the cloud, but they can't get access to the data. They don't know their data. They don't understand it. On DSO where that bridge were a key strategic partner for aws Andi we're excited about the opportunity that's come about in the last six months with AWS because we're gonna be that key geese for migration to the cloud >>so that the data like I love the name iota, How But in your opinion, you know, you could hear so many different things about Data Lake Data's turning into data Swamp is there's still a lot of value and data lakes that customers just like you're saying before, you just don't know what they have. >>Well, what's interesting in this transition to one of other clients? But on I just want to make a note that way actually started in the relational world. So we're already a mess. We're across header genius environment so but Tahoe does have more to do with Lake. But at a time a few years back, everybody was just dumping data into the lake. They didn't understand what what was in there, and it's created in this era of privacy, a big issue, and Comcast had this problem. The large Terry Tate instance just dumping into the lake, not understanding data flows, how they're data's flowing, not understanding what's in the lake, sensitivity wise, and they want to start, you know they want enable b I. They want they want to start doing analytics, but you gotta understand and know the data, right? So for Comcast, we enable data ops for them automatically with our machine learning. So that was one of the use cases. And then they put the information and we integrated with Apache Atlas, and they have a large JW aws instance, and they're able to then better govern their data on S O N G. Digital. One other customer very complex use case around their data. 36 e. R. P s being migrated toe one virtually r p in the lake. And think about finance data How difficult that is to manage and understand. So we were a key piece in helping that migration happen in weeks rather than months. >>David, you mentioned cloud. Clearly weird. We're at a cloud show, but you mentioned knowing your data. One of the aspect of that cloud is that it moves fast, and it's a much bigger scale than what we've been used to. So I'm interested. Maybe, Eddie, you can. You can fill us in here as well about the use of a tool to help you know your data when we're not creating any less stated. There's just more and more data. So at this speed and this scale, how important is it that you actually have tooling to provide to the to the humans who have to go on that operate on all of this data >>building on what David was saying around the speed in the agility side, you know, now all our information I would know for North America home business is in AWS Hold on ns free bucket. We are already starting work with AWS connect on the call center side. Being able to stream that information through so we're getting to the point now is an organization where we're able to profile the data riel. Time on. Take that information Bolts predict what the customers going going to do is part that machine learning side. So we're starting to trial where we will interject into a call to say, Well, you know, a customer might be on your digital site trying to do a journey. You can see the challenges around data, and you could Then they go in with a chop using, say, the new AWS trap that's just coming through at the moment. So >>one of the things that opportunities I'm here. Sorry, Eddie is the opportunity to leverage the insights into the data to deliver more. You mentioned like customer words, are more personalized experience or a call center agent. Knowing this is the problem of this customer is experiencing this way. Have tried X, y and Z to resolve, or this customer is loyal to pay their bills on time. They should be eligible for some sort of reward program. I think consumers that I think amazon dot com has created us this demanding consumer that way expect you to know us. I expect you to serve us up things that you think we want. Talk to me about the opportunity that I owe Ty was is giving your business to be able to delight customers in ways that you probably couldn't even have predicted? >>Well, they touched on the tagging earlier, you know, survive on the stunned in the data that's coming through. Being able to use the data flow technology on dhe categorizing were able than telling kidding with wider estate. So David mentioned Comcast around 36 e. R. P. You know, we've just gone through the same in other parts of our organization. We're driving the additional level of value, turning away from being a manually labor intensive task. So I used to have 20 architects that daily goal through trying to build an understanding the relationship. I do not need that now. I just have a couple of people that are able to take the outputs and then be able to validate the information using the products. >>And I like that. There's just so much you mentioned customer 360. Example at a call centre. There's so much data ops that has to happen to make that happen on. That's the most difficult challenge to solve. And that's where we come in. And after you catalogue the data, I just want to touch on this. We enable search for the enterprise so you're now connected to 50 115 100 sources with our software. Now you've catalogued it. You profiled it. Now you can search Karen Kim Kim Smith, So your your your engineers, your architect, your data stewards influences your business analysts. This is folks can now search anything they want and find anything sensitive. Find that person find an invoice, and that helps enable. But you mentioned the customer >>360. But I can Also. What I'm hearing is, as it has the potential to enable a better relationship between I t in the business. >>Absolutely. It brings those both together because they're so siloed. In this day and age, your data siloed and your business is siloed in a different business unit. So this helps exactly collaborate crowdsource, bring it all together. One platform >>and how many you so 1700 applications. How many you mentioned the 36 or so air peace. What percentage? If you can guess who have you been able to reduce duplicate triplicate at center applications? And what are some of the overarching business benefits that direct energy is achieving? >>So incentive the direct senator, decide that we're just at the beginning about journey. We're about four months in what? We've already decommissioned 12. The applications I was starting to move out to the wider side in terms of benefits are oh, I probably around 300% of the moment >>in a 300% r A y in just a few months. >>Just now, you know you've got some of the basic savings around the story side. We're also getting large savings from some of the existing that support agreements that we have in place. David touched on data Rob's. I've been able to reduce the amount of people that are required to support the team. There is now a more common on the standing within the organization and have money to turn it more into a self care opportunity with the business operations by pushing the line from being a technical problem to a business challenge. And at the end of the day, they're the experts. They understand the data better than any IittIe fault that sat in a corner, right? So I'm >>gonna ask you one more question. What gave you the confidence that I Oh, Tahoe was the right solution for you >>purely down Thio three Open Soul site. So we come from a you know I've been using. I'll tell whole probably for about two years in parts of the organization. We were very early. Adopters are over technologies in the open source market, and it was just the ability thio on the proof of concept to be able to turn it around iTunes, where you'll go to a traditional vendor, which would take a few months large business cases. They need any of that. We were able to show results within 24 48 hours on now buys the confidence. And I'm sure David would take the challenge of being able to plug in some day. It says on to show you the day. >>Cool stuff, guys. Well, thank you for sharing with us what you guys are doing. And I have a Iot Tahoe keeping up data Lake Blue and the successes that you're cheating in such a short time, but direct energy. I appreciate your time, guys. Thank you. Excellent. Our pleasure. >>No, you'll day. >>Exactly know your data. My guests and my co host, Justin Warren. I'm Lisa Martin. I'm gonna go often. Learn my data. Now you've been watching the Cube and AWS reinvent 19. Thanks for watching
SUMMARY :
Brought to you by Amazon Web service Justin and I are joined by a couple of guests New to the Cube. P II discovery, and so over to you critical to your business. the products quickly for being able to connect to our existing sources to discover You got another day to say. That's in to build up a single view and offer but the problem death by Excel was in the financial service is we're But is the cataloging and the sensitive information one of the key things that makes it And we tell you what this looks like A phone number. in the last six months with AWS because we're gonna be that key geese for so that the data like I love the name iota, How But in does have more to do with Lake. So at this speed and this scale, how important is it that you actually have tooling into a call to say, Well, you know, a customer might be on your digital site Sorry, Eddie is the opportunity to leverage I just have a couple of people that are able to take the outputs and then be on. That's the most difficult challenge to solve. What I'm hearing is, as it has the potential to enable So this helps exactly How many you mentioned the 36 or so So incentive the direct senator, decide that we're just at the beginning about journey. reduce the amount of people that are required to support the team. Tahoe was the right solution for you It says on to show you the day. Well, thank you for sharing with us what you guys are doing. Exactly know your data.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Justin Warren | PERSON | 0.99+ |
Comcast | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Eddie | PERSON | 0.99+ |
David Meister | PERSON | 0.99+ |
Justin | PERSON | 0.99+ |
Eddie Edwards | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
2017 | DATE | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
David Piester | PERSON | 0.99+ |
100% | QUANTITY | 0.99+ |
2014 | DATE | 0.99+ |
Karen Kim Kim Smith | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
North America | LOCATION | 0.99+ |
three days | QUANTITY | 0.99+ |
20 architects | QUANTITY | 0.99+ |
Two sets | QUANTITY | 0.99+ |
300% | QUANTITY | 0.99+ |
4600 engineers | QUANTITY | 0.99+ |
1,000,000,000 | QUANTITY | 0.99+ |
Rob | PERSON | 0.99+ |
1700 applications | QUANTITY | 0.99+ |
One platform | QUANTITY | 0.99+ |
North America | LOCATION | 0.99+ |
Io-Tahoe | PERSON | 0.99+ |
30 | QUANTITY | 0.99+ |
Direct Energy | ORGANIZATION | 0.99+ |
Excel | TITLE | 0.99+ |
100,000 columns | QUANTITY | 0.98+ |
Wall Street | LOCATION | 0.98+ |
36 | QUANTITY | 0.98+ |
yesterday | DATE | 0.98+ |
Global Data Service | ORGANIZATION | 0.98+ |
iTunes | TITLE | 0.98+ |
amazon dot com | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
12 | QUANTITY | 0.98+ |
first name | QUANTITY | 0.98+ |
both | QUANTITY | 0.97+ |
Io Tahoe | ORGANIZATION | 0.97+ |
aws | ORGANIZATION | 0.97+ |
Day two | QUANTITY | 0.97+ |
14 future sets | QUANTITY | 0.97+ |
around 5000 employees | QUANTITY | 0.96+ |
two signature clients | QUANTITY | 0.96+ |
around 300% | QUANTITY | 0.96+ |
under 1700 applications | QUANTITY | 0.96+ |
One | QUANTITY | 0.96+ |
one more question | QUANTITY | 0.95+ |
about two years | QUANTITY | 0.95+ |
24 48 hours | QUANTITY | 0.95+ |
2019 | DATE | 0.95+ |
Amazon Web | ORGANIZATION | 0.94+ |
Thio | ORGANIZATION | 0.94+ |
Terry Tate | PERSON | 0.94+ |
a week | QUANTITY | 0.94+ |
One thing | QUANTITY | 0.94+ |
about four months | QUANTITY | 0.94+ |
Discovery | ORGANIZATION | 0.91+ |
nine | QUANTITY | 0.91+ |
last six months | DATE | 0.9+ |
Andi | PERSON | 0.89+ |
Iota | TITLE | 0.89+ |
Tahoe | ORGANIZATION | 0.89+ |
Data Lake Data | ORGANIZATION | 0.88+ |
DSO | ORGANIZATION | 0.88+ |
Wall Street, New York | LOCATION | 0.86+ |