Image Title

Search Results for IBM DataOps in Action:

IBM DataOps in Action Panel | IBM DataOps 2020


 

from the cube studios in Palo Alto in Boston connecting with thought leaders all around the world this is a cube conversation hi buddy welcome to this special noob digital event where we're focusing in on data ops data ops in Acton with generous support from friends at IBM let me set up the situation here there's a real problem going on in the industry and that's that people are not getting the most out of their data data is plentiful but insights perhaps aren't what's the reason for that well it's really a pretty complicated situation for a lot of organizations there's data silos there's challenges with skill sets and lack of skills there's tons of tools out there sort of a tools brief the data pipeline is not automated the business lines oftentimes don't feel as though they own the data so that creates some real concerns around data quality and a lot of finger-point quality the opportunity here is to really operationalize the data pipeline and infuse AI into that equation and really attack their cost-cutting and revenue generation opportunities that are there in front of you think about this virtually every application this decade is going to be infused with AI if it's not it's not going to be competitive and so we have organized a panel of great practitioners to really dig in to these issues first I want to introduce Victoria Stassi with who's an industry expert in a top at Northwestern you two'll very great to see you again thanks for coming on excellent nice to see you as well and Caitlin Alfre is the director of AI a vai accelerator and also part of the peak data officers organization at IBM who has actually eaten some of it his own practice what a creep let me say it that way Caitlin great to see you again and Steve Lewis good to see you again see vice president director of management associated a bank and Thompson thanks for coming on thanks Dave make speaker alright guys so you heard my authority with in terms of operationalizing getting the most insight hey data is wonderful insights aren't but getting insight in real time is critical in this decade each of you is a sense as to where you are on that journey or Victoria your taste because you're brand new to Northwestern Mutual but you have a lot of deep expertise in in health care and manufacturing financial services but where you see just the general industry climate and we'll talk about the journeys that you are on both personally and professionally so it's all fair sure I think right now right again just me going is you need to have speech insight right so as I experienced going through many organizations are all facing the same challenges today and a lot of those pounds is hard where do my to live is my data trust meaning has a bank curated has been Clinton's visit qualified has a big a lot of that is ready what we see often happen is businesses right they know their KPIs they know their business metrics but they can't find where that data Linda Barragan asked there's abundant data disparity all over the place but it is replicated because it's not well managed it's a lot of what governance in the platform of pools that governance to speak right offer fact it organizations pay is just that piece of it I can tell you where data is I can tell you what's trusted that when you can quickly access information and bring back answers to business questions that is one answer not many answers leaving the business to question what's the right path right which is the correct answer which which way do I go at the executive level that's the biggest challenge where we want the industry to go moving forward right is one breaking that down along that information to be published quickly and to an emailing data virtualization a lot of what you see today is most businesses right it takes time to build out large warehouses at an enterprise level we need to pivot quicker so a lot of what businesses are doing is we're leaning them towards taking advantage of data virtualization allowing them to connect to these data sources right to bring that information back quickly so they don't have to replicate that information across different systems or different applications right and then to be able to provide that those answers back quickly also allowing for seamless access to from the analysts that are running running full speed right try and find the answers as quickly as they find great okay and I want to get into that sort of how news Steve let me go to you one of the things that we talked about earlier was just infusing this this mindset of a data cult and thinking about data as a service so talk a little bit about how you got started what was the starting NICUs through that sure I think the biggest thing for us there is to change that mindset from data being just for reporting or things that have happened in the past to do some insights on us and some data that already existed well we've tried to shift the mentality there is to start to use data and use that into our actual applications so that we're providing those insight in real time through the applications as they're consumed helping with customer experience helping with our personalization and an optimization of our application the way we've started down that path or kind of the journey that we're still on was to get the foundation laid birch so part of that has been making sure we have access to all that data whether it's through virtualization like vic talked about or whether it's through having more of the the data selected in a data like that that where we have all of that foundational data available as opposed to waiting for people to ask for it that's been the biggest culture shift for us is having that availability of data to be ready to be able to provide those insights as opposed to having to make the businesses or the application or asked for that day Oh Kailyn when I first met into pulp andari the idea wobble he paid up there yeah I was asking him okay where does a what's the role of that at CBO and and he mentioned a number of things but two of the things that stood out is you got to understand how data affect the monetization of your company that doesn't mean you know selling the data what role does it play and help cut cost or ink revenue or productivity or no customer service etc the other thing he said was you've got a align with the lines of piss a little sounded good and this is several years ago and IBM took it upon itself Greek its own champagne I was gonna say you know dogfooding whatever but it's not easy just flip a switch and an infuse a I and automate the data pipeline you guys had to go you know some real of pain to get there and you did you were early on you took some arrows and now you're helping your customers better on thin debt but talk about some of the use cases that where you guys have applied this obviously the biggest organization you know one of the biggest in the world the real challenge is they're sure I'm happy today you know we've been on this journey for about four years now so we stood up our first book to get office 2016 and you're right it was all about getting what data strategy offered and executed internally and we want to be very transparent because as you've mentioned you know a lot of challenges possible think differently about the value and so as we wrote that data strategy at that time about coming to enterprise and then we quickly of pivoted to see the real opportunity and value of infusing AI across all of our needs were close to your question on a couple of specific use cases I'd say you know we invested that time getting that platform built and implemented and then we were able to take advantage of that one particular example that I've been really excited about I have a practitioner on my team who's a supply chain expert and a couple of years ago he started building out supply chain solution so that we can better mitigate our risk in the event of a natural disaster like the earthquake hurricane anywhere around the world and be cuz we invest at the time and getting the date of pipelines right getting that all of that were created and cleaned and the quality of it we were able to recently in recent weeks add the really critical Kovach 19 data and deliver that out to our employees internally for their preparation purposes make that available to our nonprofit partners and now we're starting to see our first customers take advantage too with the health and well-being of their employees mine so that's you know an example I think where and I'm seeing a lot of you know my clients I work with they invest in the data and AI readiness and then they're able to take advantage of all of that work work very quickly in an agile fashion just spin up those out well I think one of the keys there who Kaelin is that you know we can talk about that in a covet 19 contact but it's that's gonna carry through that that notion of of business resiliency is it's gonna live on you know in this post pivot world isn't it absolutely I think for all of us the importance of investing in the business continuity and resiliency type work so that we know what to do in the event of either natural disaster or something beyond you know it'll be grounded in that and I think it'll only become more important for us to be able to act quickly and so the investment in those platforms and approach that we're taking and you know I see many of us taking will really be grounded in that resiliency so Vic and Steve I want to dig into this a little bit because you know we use this concept of data op we're stealing from DevOps and there are similarities but there are also differences now let's talk about the data pipeline if you think about the data pipeline as a sort of quasi linear process where you're investing data and you might be using you know tools but whether it's Kafka or you know we have a favorite who will you have and then you're transforming that that data and then you got a you know discovery you got to do some some exploration you got to figure out your metadata catalog and then you're trying to analyze that data to get some insights and then you ultimately you want to operationalize it so you know and and you could come up with your own data pipeline but generally that sort of concept is is I think well accepted there's different roles and unlike DevOps where it might be the same developer who's actually implementing security policies picking it the operations in in data ops there might be different roles and fact very often are there's data science there's may be an IT role there's data engineering there's analysts etc so Vic I wonder if you could you could talk about the challenges in in managing and automating that data pipeline applying data ops and how practitioners can overcome them yeah I would say a perfect example would be a client that I was just recently working for where we actually took a team and we built up a team using agile methodologies that framework right we're rapidly ingesting data and then proving out data's fit for purpose right so often now we talk a lot about big data and that is really where a lot of industries are going they're trying to add an enrichment to their own data sources so what they're doing is they're purchasing these third-party data sets so in doing so right you make that initial purchase but what many companies are doing today is they have no real way to vet that so they'll purchase the information they aren't going to vet it upfront they're going to bring it into an environment there it's going to take them time to understand if the data is of quality or not and by the time they do typically the sales gone and done and they're not going to ask for anything back but we were able to do it the most recent claim was use an instructure data source right bring that and ingest that with modelers using this agile team right and within two weeks we were able to bring the data in from the third-party vendor what we considered rapid prototyping right be able to profile the data understand if the data is of quality or not and then quickly figure out that you know what the data's not so in doing that we were able to then contact the vendor back tell them you know it sorry the data set up to snuff we'd like our money back we're not gonna go forward with it that's enabling businesses to be smarter with what they're doing with 30 new purchases today as many businesses right now um as much as they want to rely on their own data right they actually want to rely on cross the data from third-party sources and that's really what data Ops is allowing us to do it's allowing us to think at a broader a higher level right what to bring the information what structures can we store them in that they don't necessarily have to be modeled because a modeler is great right but if we have to take time to model all the information before we even know we want to use it that's gonna slow the process now and that's slowing the business down the business is looking for us to speed up all of our processes a lot of what we heard in the past raised that IP tends to slow us down and that's where we're trying to change that perception in the industry is no we're actually here to speed you up we have all the tools and technologies to do so and they're only getting better I would say also on data scientists right that's another piece of the pie for us if we can bring the information in and we can quickly catalog it in a metadata and burn it bring in the information in the backend data data assets right and then supply that information back to scientists gone are the days where scientists are going and asking for connections to all these different data sources waiting days for access requests to be approved just to find out that once they figure out how it with them the relationship diagram right the design looks like in that back-end database how to get to it write the code to get to it and then figure out this is not the information I need that Sally next to me right fold me the wrong information that's where the catalog comes in that's where due to absent data governance having that catalog that metadata management platform available to you they can go into a catalog without having to request access to anything quickly and within five minutes they can see the structures what if the tables look like what did the fields look like are these are these the metrics I need to bring back answers to the business that's data apps it's allowing us to speed up all of that information you know taking stuff that took months now down two weeks down two days down two hours so Steve I wonder if you could pick up on that and just help us understand what data means you we talked about earlier in our previous conversation I mentioned it upfront is this notion of you know the demand for for data access is it was through the roof and and you've gone from that to sort of more of a self-service environment where it's not IT owning the data it's really the businesses owning the data but what what is what is all this data op stuff meaning in your world sure I think it's very similar it's it's how do we enable and get access to that clicker showing the right controls showing the right processes and and building that scalability and agility and into all of it so that we're we're doing this at scale it's much more rapidly available we can discover new data separately determine if it's right or or more importantly if it's wrong similar to what what Vic described it's it's how do we enable the business to make those right decisions on whether or not they're going down the right path whether they're not the catalog is a big part of that we've also introduced a lot of frameworks around scale so just the ability to rapidly ingest data and make that available has been a key for us we've also focused on a prototyping environment so that sandbox mentality of how do we rapidly stand those up for users and and still provide some controls but have provide that ability for people to do that that exploration what we're finding is that by providing the platform and and the foundational layers that were we're getting the use cases to sort of evolve and come out of that as opposed to having the use cases prior to then go build things from we're shifting the mentality within the organization to say we don't know what we need yet let's let's start to explore that's kind of that data scientist mentality and culture it more of a way of thinking as opposed to you know an actual project or implement well I think that that cultural aspect is important of course Caitlin you guys are an AI company or at least that you know part of what you do but you know you've you for four decades maybe centuries you've been organized around different things by factoring plant but sales channel or whatever it is but-but-but-but how has the chief data officer organization within IBM been able to transform itself and and really infuse a data culture across the entire company one of the approaches you know we've taken and we talk about sort of the blueprint to drive AI transformation so that we can achieve and deliver these really high value use cases we talked about the data the technology which we've just pressed on with organizational piece of it duration are so important the change management enabling and equipping our data stewards I'll give one a civic example that I've been really excited about when we were building our platform and starting to pull districting structured unstructured pull it in our ADA stewards are spending a lot of time manually tagging and creating business metadata about that data and we identified that that was a real pain point costing us a lot of money valuable resources so we started to automate the metadata and doing that in partnership with our deep learning practitioners and some of the models that they were able to build that capability we pushed out into our contacts our product last year and one of the really exciting things for me to see is our data stewards who be so value exporters and the skills that they bring have reported that you know it's really changed the way they're able to work it's really sped up their process it's enabled them to then move on to higher value to abilities and and business benefits so they're very happy from an organizational you know completion point of view so I think there's ways to identify those use cases particularly for taste you know we drove some significant productivity savings we also really empowered and hold our data stewards we really value to make their job you know easier more efficient and and help them move on to things that they are more you know excited about doing so I think that's that you know another example of approaching taken yes so the cultural piece the people piece is key we talked a little bit about the process I want to get into a little bit into the tech Steve I wonder if you could tell us you know what's it what's the tech we have this bevy of tools I mentioned a number of them upfront you've got different data stores you've got open source pooling you've got IBM tooling what are the critical components of the technology that people should be thinking about tapping in architecture from ingestion perspective we're trying to do a lot of and a Python framework and scaleable ingestion pipe frameworks on the catalog side I think what we've done is gone with IBM PAC which provides a platform for a lot of these tools to stay integrated together so things from the discovery of data sources the cataloging the documentation of those data sources and then all the way through the actual advanced analytics and Python models and our our models and the open source ID combined with the ability to do some data prep and refinery work having that all in an integrated platform was a key to us for us that the rollout and of more of these tools in bulk as opposed to having the point solutions so that's been a big focus area for us and then on the analytic side and the web versus IDE there's a lot of different components you can go into whether it's meal soft whether it's AWS and some of the native functionalities out there you mentioned before Kafka and Anissa streams and different streaming technologies those are all the ones that are kind of in our Ketil box that we're starting to look at so and one of the keys here is we're trying to make decisions in as close to real time as possible as opposed to the business having to wait you know weeks or months and then by the time they get insights it's late and really rearview mirror so Vic your focus you know in your career has been a lot on data data quality governance master data management data from a data quality standpoint as well what are some of the key tools that you're familiar with that you've used that really have enabled you operationalize that data pipeline you know I would say I'm definitely the IBM tools I have the most experience with that also informatica though as well those are to me the two top players IBM definitely has come to the table with a suite right like Steve said cloud pack for data is really a one-stop shop so that's allowing that quick seamless access for business user versus them having to go into some of the previous versions that IBM had rolled out where you're going into different user interfaces right to find your information and that can become clunky it can add the process it can also create almost like a bad taste and if in most people's mouths because they don't want to navigate from system to system to system just to get their information so cloud pack to me definitely brings everything to the table in one in a one-stop shop type of environment in for me also though is working on the same thing and I would tell you that they haven't come up with a solution that really comes close to what IBM is done with cloud pack for data I'd be interested to see if they can bring that on the horizon but really IBM suite of tools allows for profiling follow the analytics write metadata management access to db2 warehouse on cloud those are the tools that I've worked in my past to implement as well as cloud object store to bring all that together to provide that one stop that at Northwestern right we're working right now with belieber I think calibra is a great set it pool are great garments catalog right but that's really what it's truly made for is it's a governance catalog you have to bring some other pieces to the table in order for it to serve up all the cloud pack does today which is the advanced profiling the data virtualization that cloud pack enables today the machine learning at the level where you can actually work with our and Python code and you put our notebooks inside of pack that's some of this the pieces right that are missing in some of the under vent other vendor schools today so one of the things that you're hearing here is the theme of openness others addition we've talked about a lot of tools and not IBM tools all IBM tools there there are many but but people want to use what they want to use so Kaitlin from an IBM perspective what's your commitment the openness number one but also to you know we talked a lot about cloud packs but to simplify the experience for your client well and I thank Stephen Victoria for you know speaking to their experience I really appreciate feedback and part of our approach has been to really take one the challenges that we've had I mentioned some of the capabilities that we brought forward in our cloud platform data product one being you know automating metadata generation and that was something we had to solve for our own data challenges in need so we will continue to source you know our use cases from and grounded from a practitioner perspective of what we're trying to do and solve and build and the approach we've really been taking is co-creation line and that we roll these capability about the product and work with our customers like Stephen light victorious you really solicit feedback to product route our dev teams push that out and just be very open and transparent I mean we want to deliver a seamless experience we want to do it in partnership and continue to solicit feedback and improve and roll out so no I think that will that has been our approach will continue to be and really appreciate the partnerships that we've been able to foster so we don't have a ton of time but I want to go to practitioners on the panel and ask you about key key performance indicators when I think about DevOps one of the things that we're measuring is the elapsed time the deploy applications start finished where we're measuring the amount of rework that has to be done the the quality of the deliverable what are the KPIs Victoria that are indicators of success in operationalizing date the data pipeline well I would definitely say your ability to deliver quickly right so how fast can you deliver is that is that quicker than what you've been able to do in the past right what is the user experience like right so have you been able to measure what what the amount of time was right that users are spending to bring information to the table in the past versus have you been able to reduce that time to delivery right of information business answers to business questions those are the key performance indicators to me that tell you that the suite that we've put in place today right it's providing information quickly I can get my business answers quickly but quicker than I could before and the information is accurate so being able to measure is it quality that I've been giving that I've given back or is this not is it the wrong information and yet I've got to go back to the table and find where I need to gather that from from somewhere else that to me tells us okay you know what the tools we've put in place today my teams are working quicker they're answering the questions they need to accurately that is when we know we're on the right path Steve anything you add to that I think she covered a lot of the people components the around the data quality scoring right for all the different data attributes coming up with a metric around how to measure that and and then showing that trend over time to show that it's getting better the other one that we're doing is just around overall date availability how how much data are we providing to our users and and showing that trend so when I first started you know we had somewhere in the neighborhood of 500 files that had been brought into the warehouse and and had been published and available in the neighborhood of a couple thousand fields we've grown that into weave we have thousands of cables now available so it's it's been you know hundreds of percent in scale as far as just the availability of that data how much is out there how much is is ready and available for for people to just dig in and put into their their analytics and their models and get those back into the other application so that's another key metric that we're starting to track as well so last question so I said at the top that every application is gonna need to be infused with AI this decade otherwise that application not going to be as competitive as it could be and so for those that are maybe stuck in their journey don't really know where to get started I'll start with with Caitlin and go to Victoria and then and then even bring us home what advice would you give the people that need to get going on this my advice is I think you pull the folks that are either producing or accessing your data and figure out what the rate is between I mentioned some of the data management challenges we were seeing this these processes were taking weeks and prone to error highly manual so part was ripe for AI project so identifying those use cases I think that are really causing you know the most free work and and manual effort you can move really quickly and as you build this platform out you're able to spin those up on an accelerated fashion I think identifying that and figuring out the business impact are able to drive very early on you can get going and start really seeing the value great yeah I would actually say kids I hit it on the head but I would probably add to that right is the first and foremost in my opinion right the importance around this is data governance you need to implement a data governance at an enterprise level many organizations will do it but they'll have silos of governance you really need an interface I did a government's platform that consists of a true framework of an operational model model charters right you have data domain owners data domain stewards data custodians all that needs to be defined and while that may take some work in in the beginning right the payoff down the line is that much more it's it it's allowing your business to truly own the data once they own the data and they take part in classifying the data assets for technologists and for analysts right you can start to eliminate some of the technical debt that most organizations have acquired today they can start to look at what are some of the systems that we can turn off what are some of the systems that we see valium truly build out a capability matrix we can start mapping systems right to capabilities and start to say where do we have wares or redundancy right what can we get rid of that's the first piece of it and then the second piece of it is really leveraging the tools that are out there today the IBM tools some of the other tools out there as well that enable some of the newer next-generation capabilities like unit nai right for example allowing automation for automation which right for all of us means that a lot of the analysts that are in place today they can access the information quicker they can deliver the information accurately like we've been talking about because it's been classified that pre works being done it's never too late to start but once you start that it just really acts as a domino effect to everything else where you start to see everything else fall into place all right thank you and Steve bring us on but advice for your your peers that want to get started sure I think the key for me too is like like those guys have talked about I think all everything they said is valid and accurate thing I would add is is from a starting perspective if you haven't started start right don't don't try to overthink that over plan it it started just do something and and and start the show that progress and value the use cases will come even if you think you're not there yet it's amazing once you have the national components there how some of these things start to come out of the woodwork so so it started it going may have it have that iterative approach to this and an open mindset it's encourage exploration and enablement look your organization in the eye to say why are their silos why do these things like this what are our problem what are the things getting in our way and and focus and tackle those those areas as opposed to trying to put up more rails and more boundaries and kind of encourage that silo mentality really really look at how do you how do you focus on that enablement and then the last comment would just be on scale everything should be focused on scale what you think is a one-time process today you're gonna do it again we've all been there you're gonna do it a thousand times again so prepare for that prepare forever that you're gonna do everything a thousand times and and start to instill that culture within your organization a great advice guys data bringing machine intelligence an AI to really drive insights and scaling with a cloud operating model no matter where that data live it's really great to have have three such knowledgeable practitioners Caitlyn Toria and Steve thanks so much for coming on the cube and helping support this panel all right and thank you for watching everybody now remember this panel was part of the raw material that went into a crowd chat that we hosted on May 27th Crouch at net slash data ops so go check that out this is Dave Volante for the cube thanks for watching [Music]

Published Date : May 28 2020

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
Steve LewisPERSON

0.99+

Caitlyn ToriaPERSON

0.99+

StevePERSON

0.99+

Linda BarraganPERSON

0.99+

Dave VolantePERSON

0.99+

two weeksQUANTITY

0.99+

Victoria StassiPERSON

0.99+

Caitlin AlfrePERSON

0.99+

two hoursQUANTITY

0.99+

VicPERSON

0.99+

two daysQUANTITY

0.99+

May 27thDATE

0.99+

500 filesQUANTITY

0.99+

IBMORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

PythonTITLE

0.99+

five minutesQUANTITY

0.99+

30 new purchasesQUANTITY

0.99+

last yearDATE

0.99+

CaitlinPERSON

0.99+

ClintonPERSON

0.99+

first pieceQUANTITY

0.99+

first bookQUANTITY

0.99+

DavePERSON

0.99+

second pieceQUANTITY

0.99+

BostonLOCATION

0.99+

SallyPERSON

0.99+

todayDATE

0.99+

AWSORGANIZATION

0.99+

hundreds of percentQUANTITY

0.98+

Stephen VictoriaPERSON

0.98+

oneQUANTITY

0.98+

Northwestern MutualORGANIZATION

0.98+

KaitlinPERSON

0.97+

four decadesQUANTITY

0.97+

firstQUANTITY

0.97+

two top playersQUANTITY

0.97+

several years agoDATE

0.96+

about four yearsQUANTITY

0.96+

first customersQUANTITY

0.95+

tons of toolsQUANTITY

0.95+

KailynPERSON

0.95+

bothQUANTITY

0.95+

twoQUANTITY

0.94+

NorthwesternORGANIZATION

0.94+

NorthwesternLOCATION

0.93+

eachQUANTITY

0.91+

CrouchPERSON

0.91+

CBOORGANIZATION

0.91+

DevOpsTITLE

0.91+

two ofQUANTITY

0.89+

AIORGANIZATION

0.87+

thingsQUANTITY

0.87+

three such knowledgeable practitionersQUANTITY

0.87+

Steven Lueck, Associated Bank | IBM DataOps in Action


 

from the cube studios in Palo Alto in Boston connecting with thought leaders all around the world this is a cube conversation hi Bri welcome back this is Dave Volante and welcome to this special presentation made possible by IBM we're talking about data op data ops in Acton Steve Lucas here he's the senior vice president and director of data management at Associated Bank be great to see how are things going and in Wisconsin all safe we're doing well we're staying safe staying healthy thanks for having me Dave yeah you're very welcome so Associated Bank and regional bank Midwest to cover a lot of the territories not just Wisconsin but another number of other states around there retail commercial lending real estate offices stuff I think the largest bank in in Wisconsin but tell us a little bit about your business in your specific role sure yeah no it's a good intro we're definitely largest bank at Corvis concen and then we have branches in the in the Upper Midwest area so Minnesota Illinois Wisconsin our primary locations my role at associated I'm director data management so been with the bank a couple of years now and really just focused on defining our data strategy as an overall everything from data ingestion through consumption of data and analytics all the way through and then I'm also the data governance components and keeping the controls and the rails in place around all of our data in its usage so financial services obviously one of the more cutting-edge industries in terms of their use of technology not only are you good negotiators but you you often are early adopters you guys were on the Big Data bandwagon early a lot of financial services firms we're kind of early on in Hadoop but I wonder if you could tell us a little bit about sort of the business drivers and and where's the poor the pressure point that are informing your digital strategy your your data and data op strategy sure yeah I think that one of the key areas for us is that we're trying to shift from more of a reactive mode into more of a predictive prescriptive mode from a data and analytics perspective and using our data to infuse and drive more business decisions but also to infuse it in actual applications and customer experience etc so we have a wealth of data at our fingertips we're really focused on starting to build out that data link style strategy make sure that we're kind of ahead of the curve as far as trying to predict what our end users are going to need and some of the advanced use cases we're going to have before we even know that they actually exist right so it's really trying to prepare us for the future and what's next and and then abling and empowering the business to be able to pivot when we need to without having everything perfect that they prescribed and and ready for what if we could talk about a little bit about the data journey I know it's kind of a buzzword but in my career as a independent observer and analyst I've kind of watched the promise of whether it was decision support systems or enterprise data warehouse you know give that 360 degree view of the business the the real-time nature the the customer intimacy all that in and up until sort of the recent digital you know meme I feel as though the industry hasn't lived up to that promise so I wonder if you could take us through the journey and tell us sort of where you came from and where you are today and I really want to sort of understand some of the successes they've had sure no that's a that's a great point nice I feel like as an industry I think we're at a point now where the the people process technology have sort of all caught up to each other right I feel that that real-time streaming analytics the data service mentality just leveraging web services and API is more throughout our organization in our industry as a whole I feel like that's really starting to take shape right now and and all the pieces of that puzzle have come together so kind of where we started from a journey perspective it was it was very much if your your legacy reporting data warehouse mindset of tell me tell me the data elements that you think you're going to need we'll figure out how do we map those in and form them we'll figure out how to get those prepared for you and that whole lifecycle that waterfall mentality of how do we get this through the funnel and get it to users quality was usually there the the enablement was still there but it was missing that that rapid turnaround it was also missing the the what's next right than what you haven't thought of and almost to a point of just discouraging people from asking for too many things because it got too expensive it got too hard to maintain there was some difficulty in that space so some of the things that we're trying to do now is build that that enablement mentality of encouraging people to ask for everything so when we bring out new systems - the bank is no longer an option as far as how much data they're going to send to us right we're getting all of the data we're going to we're going to bring that all together for people and then really starting to figure out how can this data now be used and and we almost have to push that out and infuse it within our organization as opposed to waiting for it to be asked for so I think that all of the the concepts so that bringing that people process and then now the tools and capabilities together has really started to make a move for us and in the industry I mean it's really not an uncommon story right you had a traditional data warehouse system you had you know some experts that you had to go through to get the data the business kind of felt like it didn't own the data you know it felt like it was imposing every time it made a request or maybe it was frustrated because it took so long and then by the time they got the data perhaps you know the market had shifted so it create a lot of frustration and then to your point but but it became very useful as a reporting tool and that was kind of this the sweet spot so so how did you overcome that and you know get to where you are today and you know kind of where are you today I was gonna say I think we're still overcoming that we'll see it'll see how this all goes right I think there's there's a couple of things that you know we've started to enable first off is just having that a concept of scale and enablement mentality and everything that we do so when we bring systems on we bring on everything we're starting to have those those components and pieces in place and we're starting to build more framework base reusable processes and procedures so that every ask is not brand new it's not this reinvent the wheel and resolve for for all that work so I think that's helped if expedite our time to market and really get some of the buy-in and support from around the organization and it's really just finding the right use cases and finding the different business partners to work with and partner with so that you help them through their journey as well is there I'm there on a similar roadmap and journey for for their own life cycles as well in their product element or whatever business line there so from a process standpoint that you kind of have to jettison the you mentioned waterfall before and move to a more being an agile approach did it require different different skill sets talk about the process and the people side of yeah it's been a it's been a shift we've tried to shift more towards I wouldn't call us more formal agile I would say we're a little bit more lean from a an iterative backlog type of approach right so what are you putting that work together in queues and having the queue of B reprioritized working with the business owners to help through those things has been a key success criteria for us and how we start to manage that work as opposed to opening formal project requests and and having all that work have to funnel through some of the old channels that like you mentioned earlier kind of distracted a little bit from from the way things had been done in the past and added some layers that people felt potentially wouldn't be necessary if they thought it was a small ask in their eyes you know I think it also led to a lot of some of the data silos and and components that we have in place today in the industry and I don't think our company is alone and having data silos and components of data in different locations but those are there for a reason though those were there because they're they're filling a need that has been missing or a gap in the solution so what we're trying to do is really take that to heart and evaluate what can we do to enable those mindsets and those mentalities and find out what was the gap and why did they have to go get a siloed solution or work around operations and technology and the channels that had been in place what would you say well your biggest challenges in getting from point A to point B point B being where you are today there were challenges on each of the components of the pillar right so people process technology people are hard to change right men behavioral type changes has been difficult that there's components of that that definitely has been in place same with the process side right so so changing it into that backlog style mentality and working with the users and having more that be sort of that maintenance type support work is is a different call culture for our organization and traditional project management and then the tool sets right the the tools and capabilities we had to look in and evaluate what tools do we need to Mabel this behavior in this mentality how do we enable more self-service the exploration how do we get people the data that they need when they need it and empower them to use so maybe you could share with us some of the outcomes and I know it's yeah we're never done in this business but but thinking about you know the investments that you've made in intact people in reprocessing you know the time it takes to get leadership involved what has been so far anyway the business outcome and you share any any metrics or it is sort of subjective a guidance I yeah I think from a subjective perspective the some of the biggest things for us has just been our ability to to truly start to have that very 60 degree view of the customer which we're probably never going to get they're officially right there's there everyone's striving for that but the ability to have you know all of that data available kind of at our fingertips and have that all consolidated now into one one location one platform and start to be that hub that starts to redistribute that data to our applications and infusing that out has been a key component for us I think some of the other big kind of components are differentiators for us and value that we can show from an organizational perspective we're in an M&A mode right so we're always looking from a merger and acquisition perspective our the model that we've built out from a data strategy perspective has proven itself useful over and over now in that M&A mentality of how do you rapidly ingest new data sets it had understood get it distributed to the right consumers it's fit our model exactly and and it hasn't been an exception it's been just part of our overall framework for how we get that data and it wasn't anything new that we had to do different because it was M&A just timelines were probably a little bit more expedited the other thing that's been interesting in some of the world that were in now right from a a Kovach perspective and having a pivot and start to change some of the way we do business and some of the PPP loans and and our business models sort of had to change overnight and our ability to work with our different lines of business and get them the data they need to help drive those decisions was another scenario where had we not had the foundational components there in the platform there to do some of this if we would have spun a little bit longer so your data ops approach I'm gonna use that term helped you in this in this kovat situation I mean you had the PPE you had you know of slew of businesses looking to get access to that money you had uncertainty with regard to kind of what the rules of the game were what you was the bank you had a Judah cape but you it was really kind of opaque in terms of what you had to do the volume of loans had to go through the roof in the time frame it was like within days or weeks that you had to provide these so I wonder if we could talk about that a little bit and how you're sort of approach the data helped you be prepared for that yeah no it was a race I mean the bottom line was it felt like a race right from from industry perspective as far as how how could we get this out there soon enough fast enough provide the most value to our customers our applications teams did a phenomenal job on enabling the applications to help streamline some of the application process for the loans themselves but from a data and reporting perspective behind the scenes we were there and we had some tools and capabilities and readiness to say we have the data now in our in our lake we can start to do some business driven decisions around all all of the different components of what's being processed on a daily basis from an application perspective versus what's been funded and how do those start to funnel all the way through doing some data quality checks and operational reporting checks to make sure that that data move properly and got booked in in the proper ways because of the rapid nature of how that was was all being done other covent type use cases as well we had some some different scenarios around different feed reporting and and other capabilities that the business wasn't necessarily prepared for we wouldn't have planned to have some of these types of things and reporting in place that we were able to give it because we had access to all the data because of these frameworks that we had put into place that we could pretty rapidly start to turn around some of those data some of those data points and analytics for us to make some some better decisions so given the propensity in the pace of M&A there has to be a challenge fundamentally in just in terms of data quality consistency governance give us the before and after you know before kind of before being the before the data ops mindset and after being kind of where you are today I think that's still a journey we're always trying to get better on that as well but the data ops mindset for us really has has shifted us to start to think about automation right pipelines that enablement a constant improvement and and how do we deploy faster deploy more consistently and and have the right capabilities in place when we need it so you know where some of that has come into place from an M&A perspective is it's really been around the building scale into everything that we do dezq real-time nature this scalability the rapid deployment models that we have in place is really where that starts to join forces and really become become powerful having having the ability to rapidly ingesting new data sources whether we know about it or not and then exposing that and having the tools and platforms be able to expose that to our users and enable our business lines whether it's covent whether it's M&A the use cases keep coming up right they we keep running into the same same concept which is how rapidly get people the data they need when they need it but still provide the rails and controls and make sure that it's governed and controllable on the way as well [Music] about the tech though wonder if we could spend some time on that I mean can you paint a picture of us so I thought what what what we're looking at here you've got you know some traditional IDI w's involved I'm sure you've got lots of data sources you you may be one of the zookeepers from the the Hadoop days with a lot of you know experimentation there may be some machine intelligence and they are painting a pic before us but sure no so we're kind of evolving some of the tool sets and capabilities as well we have some some generic kind of custom in-house build ingestion frameworks that we've started to build out for how to rapidly ingest and kind of script out the nature of of how we bring those data sources into play what we're what we've now started as well as is a journey down IBM compact product which is really gonna it's providing us that ability to govern and control all of our data sources and then start to enable some of that real-time ad hoc analytics and data preparation data shaping so some of the components that we're doing in there is just around that data discovery pointing that data sources rapidly running data profiles exposing that data to our users obviously very handy in the emanating space and and anytime you get new data sources in but then the concept of publishing that and leveraging some of the AI capabilities of assigning business terms in the data glossary and those components is another key component for us on the on the consumption side of the house for for data we have a couple of tools in place where Cognos shop we do a tableau from a data visualization perspective as well that what that were we're leveraging but that's where cloud pack is now starting to come into play as well from a data refinement perspective and giving the ability for users to actually go start to shape and prep their data sets all within that governed concept and then we've actually now started down the enablement path from an AI perspective with Python and R and we're using compact to be our orchestration tool to keep all that governed and controlled as well enable some some new AI models and some new technologies in that space we're actually starting to convert all of our custom-built frameworks into python now as well so we start to have some of that embedded within cloud pack and we can start to use some of the rails of those frameworks with it within them okay so you've got the ingest and ingestion side you've done a lot of automation it sounds like called the data profiling that's maybe what classification and automating that piece and then you've got the data quality piece the governance you got visualization with with tableau and and this kind of all fits together in a in an open quote unquote open framework is that right yeah I exactly I mean the the framework itself from our perspective where we're trying to keep the tools as as consistent as we can we really want to enable our users to have the tools that they need in the toolbox and and keep all that open what we're trying to focus on is making sure that they get the same data the same experience through whatever tool and mechanism that they're consuming from so that's where that platform mentality comes into place having compact in the middle to help govern all that and and reprovision some of those data sources out for us has it has been a key component for us well see if it sounds like you're you know making a lot of progress or you know so the days of the data temple or the high priest of data or the sort of keepers of that data really to more of a data culture where the businesses kind of feel ownership for their own data you believe self-service I think you've got confidence much more confident than the in the compliance and governance piece but bring us home just in terms of that notion of data culture and where you are and where you're headed no definitely I think that's that's been a key for us too as as part of our strategy is really helping we put in a strategy that helps define and dictate some of those structures and ownership and make that more clear some of the of the failures of the past if you will from an overall my monster data warehouse was around nobody ever owned it there was there wasn't you always ran that that risk of either the loudest consumer actually owned it or no one actually owned it what we've started to do with this is that Lake mentality and and having all that data ingested into our our frameworks the data owners are clear-cut it's who sends that data in what is the book record system for that source data we don't want a ability we don't touch it we don't transform it as we load it it sits there and available you own it we're doing the same mentality on the consumer side so we have we have a series of structures from a consumption perspective that all of our users are consuming our data if it's represented exactly how they want to consume it so again that ownership we're trying to take out a lot of that gray area and I'm enabling them to say yeah I own this I understand what I'm what I'm going after and and I can put the the ownership and the rule and rules and the stewardship around that as opposed to having that gray model in the middle that that that we never we never get but I guess to kind of close it out really the the concept for us is enabling people and end-users right giving them the data that they need when they need it and it's it's really about providing the framework and then the rails around around doing that and it's not about building out a formal bill warehouse model or a formal lessor like you mentioned before some of the you know the ivory tower type concepts right it's really about purpose-built data sets getting the giving our users empowered with the data they need when they need it all the way through and fusing that into our applications so that the applications and provide the best user experiences and and use the data to our advantage all about enabling the business I got a shove all I have you how's that IBM doing you know as a as a partner what do you like what could they be doing better to make your life easier sure I think I think they've been a great partner for us as far as that that enablement mentality the cloud pack platform has been a key for us we wouldn't be where we are without that tool said I our journey originally when we started looking at tools and modernization of our staff was around data quality data governance type components and tools we now because of the platform have released our first Python I models into the environment we have our studio capabilities natively because of the way that that's all container is now within cloud back so we've been able to enable new use cases and really advance us where we would have a time or a lot a lot more technologies and capabilities and then integrate those ourselves so the ability to have that all done has or and be able to leverage that platform has been a key to helping us get some of these roles out of this as quickly as we have as far as a partnership perspective they've been great as far as listening to what what the next steps are for us where we're headed what can we what do we need more of what can they do to help us get there so it's it's really been an encouraging encouraging environment I think they as far as what can they do better I think it's just keep keep delivering write it delivery is ping so keep keep releasing the new functionality and features and keeping the quality of the product intact well see it was great having you on the cube we always love to get the practitioner angle sounds like you've made a lot of progress and as I said when we're never finished in this industry so best of luck to you stay safe then and thanks so much for for sharing appreciate it thank you all right and thank you for watching everybody this is Dave Volante for the cube data ops in action we got the crowd chat a little bit later get right there but right back right of this short break [Music] [Music]

Published Date : May 28 2020

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
WisconsinLOCATION

0.99+

Dave VolantePERSON

0.99+

Associated BankORGANIZATION

0.99+

DavePERSON

0.99+

Steve LucasPERSON

0.99+

Steven LueckPERSON

0.99+

pythonTITLE

0.99+

IBMORGANIZATION

0.99+

360 degreeQUANTITY

0.99+

MinnesotaLOCATION

0.99+

Palo AltoLOCATION

0.99+

60 degreeQUANTITY

0.99+

PythonTITLE

0.99+

todayDATE

0.98+

BostonLOCATION

0.98+

firstQUANTITY

0.97+

eachQUANTITY

0.95+

ActonORGANIZATION

0.94+

CognosORGANIZATION

0.94+

M&ATITLE

0.92+

one platformQUANTITY

0.91+

oneQUANTITY

0.9+

Corvis concenORGANIZATION

0.87+

MidwestLOCATION

0.87+

RTITLE

0.86+

Upper MidwestLOCATION

0.83+

IBM DataOps in ActionORGANIZATION

0.81+

one locationQUANTITY

0.79+

agileTITLE

0.78+

a couple of yearsQUANTITY

0.75+

M&AORGANIZATION

0.7+

point BOTHER

0.69+

Illinois WisconsinLOCATION

0.68+

couple of toolsQUANTITY

0.67+

pointOTHER

0.52+

couple of thingsQUANTITY

0.5+

JudahPERSON

0.31+

HadoopLOCATION

0.28+

UNLISTED FOR REVIEW Julie Lockner, IBM | DataOps In Action


 

from the cube studios in Palo Alto in Boston connecting with thought leaders all around the world this is a cube conversation hi everybody this is David on tape with the cube and welcome to the special digital presentation we're really digging into how IBM is operationalizing and automating the AI and data pipeline not only for its clients but also for itself and with me is Julie Lochner who looks after offering management and IBM's data and AI portfolio Julie great to see you again okay great to be here thank you talk a little bit about the role you have here at IBM sure so my responsibility in offering management in the data and AI organization is really twofold one is I lead a team that implements all of the back-end processes really the operations behind anytime we deliver a product from the data AI team to the market so think about all of the release cycle management pricing product management discipline etc the other roles that I play is really making sure that um we are working with our customers and making sure they have the best customer experience and a big part of that is developing the data ops methodology it's something that I needed internally from my own line of business execution but it's now something that our customers are looking for to implement in their shops as well well good I really want to get into that and so let's let's start with data ops I mean I think you know a lot of people are familiar with DevOps not maybe not everybody's familiar with the data Ops what do we need to know about data well I mean you bring up the point that everyone knows DevOps and and then in fact I think you know what data Ops really does is bring a lot of the benefits that DevOps did for application development to the data management organizations so when we look at what is data ops it's a data management it's a it's a data management set of principles that helps organizations bring business ready data to their consumers quickly it takes it borrows from DevOps similarly where you have a data pipeline that associates a business value requirement I have this business initiative it's gonna drive this much revenue or this much cost savings this is the data that I need to be able to deliver it how do I develop that pipeline and map to the data sources know what data it is know that I can trust it so ensuring that it has the right quality that I'm actually using the data that it was meant for and then put it to use so in in history most dated management practices deployed a waterfall like methodology or implementation methodology and what that meant is all the data pipeline projects were implemented serially and it was dawn based on potentially a first-in first-out program management office with a DevOps mental model and the idea of being able to slice through all of the different silos that's required to collect the data to organize it to integrate it to validate its quality to create those data integration pipelines and then present it to the dashboard like if it's a Cognos dashboard for a operational process or even a data science team that whole end-to-end process gets streamlined through what we're calling data ops methodology so I mean as you well know we've been following this market since the early days of a dupe and people struggle with their data pipelines it's complicated for them there's a raft of tools and and and they spend most of their time wrangling data preparing data improving data quality different roles within the organization so it sounds like you know to borrow from from DevOps data OPS's is all about REME lining that data pipeline helping people really understand and communicate across end to end as you're saying but but what's the ultimate business outcome that you're trying to drive so when you think about projects that require data to again cut cost to automate a business process or drive new revenue initiatives how long does it take to get from having access to the data to making it available that duration for every time delay that is spent wasted trying to connect to data sources trying to find subject matter experts that understand what the data means and can verify its quality like all of those steps along those different teams and different disciplines introduces delay in delivering high quality data fast so the business value of data Ops is always associated with something that the business is trying to achieve but with a time element so if it's for every day we don't have this data to make a decision we're either making money or losing money that's the value proposition of data ops so it's about taking things that people are already doing today and figuring out the quickest way to do it through automation through workflows and just cutting through all of the political barriers that often happens when these data's cross different organizational boundaries yeah so speed time to insights is critical but to in and then you know with DevOps you're really bringing together the skill sets into sort of you know one super dev or one super ops it sounds with data ops it's really more about everybody understanding their role and having communication and line-of-sight across the entire organization it's not trying to make everybody a superhuman data person it's the whole it's the group it's the team effort really it's really a team game here isn't it well that's a big part of it so just like any type of practice there's people aspects process aspects and technology right so people process technology and while you're you're describing it like having that super team that knows everything about the data the only way that's possible is if you have a common foundation of metadata so we've seen a surgeons in the data catalog market and last you know six seven years and what what the what that the innovation in the data catalog market has actually enabled us to be able to drive more data ops pipelines meaning as you identify data assets you've captured the metadata you capture its meaning you capture information that can be shared whether they're stakeholders it really then becomes more of a essential repository for people to really quickly know what data they have really quickly understand what it means in its quality and very quickly with the right proper authority like privacy rules included put it to use for models you know dashboards operational processes okay and and we're gonna talk about some examples and one of them of course is ibm's own internal example but but help us understand where you advise clients to start I want to get into it where do I get started yeah I mean so traditionally what we've seen with these large data management data governance programs is that sometimes our customers feel like this is a big pill to swallow and what we've said is look there's an opera there's an opportunity here to quickly define a small project align it to a high-value business initiative target something that you can quickly gain access to the data map out these pipelines and create a squad of skills so it includes a person with DevOps type programming skills to automate an instrument a lot of the technology a subject matter expert who understands the data sources and its meaning a line of business executive who can translate bringing that information to the business project and associating with business value so when we say how do you get started we've developed a I would call it a pretty basic maturity model to help organizations figure out where are they in terms of the technology where are they in terms of organizationally knowing who the right people should be involved in these projects and then from a process perspective we've developed some pretty prescriptive project plans that help you nail down what are the data elements that are critical for this business business initiative and then we have for each role what their jobs are to consolidate the datasets map them together and present them to the consumer we find that six-week projects typically three sprints are perfect times to be able to in a timeline to create one of these very short quick win projects take that as an opportunity to figure out where your bottlenecks are in your own organization where your skill shortages are and then use the outcome of that six-week sprint to then focus on filling in gaps kick off the next project and iterate celebrate the success and promote the success because it's typically tied to a business value to help them create momentum for the next one all right that's awesome I want to now get into some examples I mean or you're we're both massachusetts-based normally you'd be in our studio and we'd be sitting here face-to-face obviously with kovat 19 in this crisis we're all sheltering in place you're up in somewhere in New England I happen to be in my studio believe it but I'm the only one here so relate this to kovat how would data ops or maybe you have a concrete example in in terms of how it's helped inform or actually anticipate and keep up-to-date with what's happening with building yeah well I mean we're all experiencing it I don't think there's a person on the planet who hasn't been impacted by what's been going on with this coded pandemic crisis so we started we started down this data obscurity a year ago I mean this isn't something that we just decided to implement a few weeks ago we've been working on developing the methodology getting our own organization in place so that we could respond the next time we needed to be able to you know act upon a data-driven decision so part of step one of our journey has really been working with our global chief data officer Interpol who I believe you have had an opportunity to meet with an interview so part of this year journey has been working with with our corporate organization I'm in the line of business organization where we've established the roles and responsibilities we've established the technology stack based on our cloud pack for data and Watson knowledge catalog so I use that as the context for now we're faced with a pandemic crisis and I'm being asked in my business unit to respond very quickly how can we prioritize the offerings that are gonna help those in critical need so that we can get those products out to market we can offer a you know 90-day free use for governments and Hospital agencies so in order for me to do that as a operations lead for our team I needed to be able to have access to our financial data I needed to have access to our product portfolio information I needed to understand our cloud capacity so in order for me to be able to respond with the offers that we recently announced you know you can take a look at some of the examples with our Watson citizen assistant program where I was able to provide the financial information required for us to make those products available for governments hospitals state agencies etc that's a that's a perfect example now to to set the stage back to the corporate global chief data office organization they implemented some technology that allowed us to ingest data automatically classify it automatically assign metadata automatically associate data quality so that when my team started using that data we knew what the status of that information was when we started to build our own predictive models and so that's a great example of how we've partnered with a corporate central organization and took advantage of the automated set of capabilities without having to invest in any additional resources or headcount and be able to release products within a matter of a couple of weeks and in that automation is a function of machine intelligence is that right and obviously some experience but but you couldn't you and I when we were consultants doing this by hand we couldn't have done this we could have done it at scale anyways it is it machine intelligence an AI that allows us to do this that's exactly right and as you know our organization is data and AI so we happen to have the a research and innovation teams that are building a lot of this technology so we have somewhat of an advantage there but you're right the alternative to what I've described is manual spreadsheets it's querying databases it's sending emails to subject matter experts asking them what this data means if they're out sick or on vacation you have to wait for them to come back and all of this was a manual process and in the last five years we've seen this data catalog market really become this augmented data catalog and that augmentation means it's automation through AI so with years of experience and natural language understanding we can comb through a lot of the metadata that's available electronically we can comb through unstructured data we can categorize it and if you have a set of business terms that have industry standard definitions through machine learning we can automate what you and I did as a consultant manually in a matter of seconds that's the impact the AI is had in our organization and now we're bringing this to the market and it's a it's a big part of where I'm investing my time both internally and externally is bringing these types of concepts and ideas to the market so I'm hearing first of all one of the things that strikes me is you've got multiple data sources and data lives everywhere you might have your supply chain data and your ERP maybe that sits on Prem you might have some sales data that's sitting in the SAS store in a cloud somewhere you might have you know a weather data that you want to bring in in theory anyway the more data that you have the better insights that you can gather assuming you've got the right data quality but so let me start with like where the data is right so so it sits anywhere you don't know where it's gonna be but you know you need it so that that's part of this right is being able to read it quickly yeah it's funny you bring it up that way I actually look a little differently it's when you start these projects the data was in one place and then by the time you get through the end of a project you find out that it's a cloud so the data location actually changes while we're in the middle of projects we have many or coming even during this this pandemic crisis we have many organizations that are using this as an opportunity to move to SAS so what was on Prem is now cloud but that shouldn't change the definition of the data it shouldn't change its meaning it might change how you connect to it um it might also change your security policies or privacy laws now all of a sudden you have to worry about where is that data physically located and am I allowed to share it across national boundaries right before we knew physically where it was so when you think about data ops data ops is a process that sits on top of where the data physically resides and because we're mapping metadata and we're looking at these data pipelines and automated workflows part of the design principles are to set it up so that it's independent of where it resides however you have to have placeholders in your metadata and in your tool chain where we oughta mating these workflows so that you can accommodate when the data decides to move because of corporate policy change from on-prem to cloud then that's a big part of what data Ops offers it's the same thing by the way for DevOps they've had to accommodate you know building in you know platforms as a service versus on from the development environments it's the same for data ops and you know the other part that strikes me and listening to you is scale and it's not just about you know scale with the cloud operating model it's also about what you're talking about is you know the auto classification the automated metadata you can't do that manually you've got to be able to do that in order to scale with automation that's another key part of data Ops is it not it's well it's a big part of the value proposition and a lot of a part of the business base right then you and I started in this business you know and Big Data became the thing people just move all sorts of data sets to these Hadoop clusters without capturing the metadata and so as a result you know in the last 10 years this information is out there but nobody knows what it means anymore so you can't go back with the army of people and have them query these data sets because a lot of the contact was lost but you can use automated technology you can use automated machine learning with natural under Snatcher Alang guaa Jing to do a lot of the heavy lifting for you and a big part of data ops workflows and building these pipelines is to do what we call management-by-exception so if your algorithms say you know 80% confident that this is a phone number and your organization has a you know low risk tolerance that probably will go to an exception but if you have a you know a match algorithm that comes back and says it's 99 percent sure this is an email address right and you I have a threshold that's 98% it will automate much of the work that we used to have to do manually so that's an example of how you can automate eliminate manual work and have some human interaction based on your risk threshold now that's awesome I mean you're right the no schema on right said I throw it into a data leg the data link becomes the data swap we all know that joke okay I want to understand a little bit and maybe you have some other examples of some of the use cases here but there's some of the maturity of where customers are I mean it seems like you got to start by just understanding what data you have cataloging it you're getting your metadata act in order but then you've got a you've got a data quality component before you can actually implement and get yet to insight so you know where our customers on the on the maturity model do you have any other examples that you can share yeah so when we look at our data ops maturity model we tried to simplify it I mentioned this earlier that we try to simplify it so that really anybody can get started they don't have to have a full governance framework implemented to take advantage of the benefits data ops delivers so what we did we said if you can categorize your data ops programs into really three things one is how well do you know your data do you even know what data you have the second one is and you trust it like can you trust its quality can you trust its meeting and the third one is can you put it to use so if you really think about it when you begin with what data do you know right the first step is you know how are you determining what data you know the first step is if you are using spreadsheets replace it with a data catalog if you have a department line of business catalog and you need to start sharing information with the departments then start expanding to an enterprise level data catalog now you mentioned data quality so the first step is do you even have a data quality program right have you even established what your criteria are for high quality data have you considered what your data quality score is comprised of have you mapped out what your critical data elements are to run your business most companies have done that for they're they're governed processes but for these new initiatives and when you identify I'm in my example with the Kovach crisis what products are we gonna help bring to market quickly I need to be able to find out what the critical data elements are and can I trust it have I even done a quality scan and have teams commented on its trustworthiness to be used in this case if you haven't done anything like that in your organization that might be the first place to start pick the critical data elements for this initiative assess its quality and then start to implement the workflows to remediate and then when you get to putting it to use there's several methods for making data available you know one is simply making a data Mart available to a small set of users that's what most people do well first they make a spreadsheet of the data available but then if they need to have multiple people access it that's when like a data Mart might make sense technology like data virtualization eliminates the need for you to move data as you're in this prototyping phase and that's a great way to get started it doesn't cost a lot of money to get a virtual query set up to see if this is the right join or the right combination of fields that are required for this use case eventually you'll get to the need to use a high performance ETL tool for data integration but Nirvana is when you really get to that self-service data prep where users can query a catalog and say these are the data sets I need it presents you a list of data assets that are available I can point and click at these columns I want as part of my you know data pipeline and I hit go and it automatically generates that output for data science use cases for a Cognos dashboard right that's the most mature model and being able to iterate on that so quickly that as soon as you get feedback that that data elements are wrong or you need to add something you can do it push button and that's where data observation to bring organizations to well Julie I think there's no question that this kovat crisis is accentuated the importance of digital you know we talk about digital transformation a lot and it's it's certainly real although I would say a lot of people that we talk to will say well you know not on my watch or I'll be retired before that all happens will this crisis is accelerating that transformation and data is at the heart of it you know digital means data and if you don't have your data you know story together and your act together then you're gonna you're not going to be able to compete and data ops really is a key aspect of that so you know give us a parting word all right I think this is a great opportunity for us to really assess how well we're leveraging data to make strategic decisions and if there hasn't been a more pressing time to do it it's when our entire engagement becomes virtual like this interview is virtual write everything now creates a digital footprint that we can leverage to understand where our customers are having problems where they're having successes you know let's use the data that's available and use data ops to make sure that we can iterate access that data know it trust it put it to use so that we can respond to those in need when they need it Julie Locker your incredible practitioner really hands-on really appreciate you coming on the Kuban and sharing your knowledge with us thank you okay thank you very much it was a pleasure to be here all right and thank you for watching everybody this is Dave Volante for the cube and we will see you next time [Music]

Published Date : Apr 9 2020

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
Julie LochnerPERSON

0.99+

Dave VolantePERSON

0.99+

Julie LocknerPERSON

0.99+

90-dayQUANTITY

0.99+

IBMORGANIZATION

0.99+

99 percentQUANTITY

0.99+

Julie LockerPERSON

0.99+

80%QUANTITY

0.99+

six-weekQUANTITY

0.99+

first stepQUANTITY

0.99+

New EnglandLOCATION

0.99+

Palo AltoLOCATION

0.99+

first stepQUANTITY

0.99+

98%QUANTITY

0.99+

JuliePERSON

0.99+

DevOpsTITLE

0.99+

a year agoDATE

0.99+

BostonLOCATION

0.99+

DavidPERSON

0.98+

WatsonTITLE

0.98+

second oneQUANTITY

0.98+

six seven yearsQUANTITY

0.97+

InterpolORGANIZATION

0.97+

third oneQUANTITY

0.97+

oneQUANTITY

0.97+

bothQUANTITY

0.96+

MartORGANIZATION

0.94+

first placeQUANTITY

0.93+

todayDATE

0.92+

each roleQUANTITY

0.91+

firstQUANTITY

0.91+

a couple of weeksQUANTITY

0.88+

pandemicEVENT

0.88+

kovatPERSON

0.87+

three sprintsQUANTITY

0.87+

three thingsQUANTITY

0.84+

step oneQUANTITY

0.8+

guaa JingPERSON

0.8+

few weeks agoDATE

0.78+

OPSORGANIZATION

0.77+

one placeQUANTITY

0.77+

ibmORGANIZATION

0.75+

NirvanaORGANIZATION

0.74+

last five yearsDATE

0.72+

DevOpsORGANIZATION

0.71+

this yearDATE

0.7+

pandemic crisisEVENT

0.7+

last 10 yearsDATE

0.69+

a lot of peopleQUANTITY

0.68+

CognosTITLE

0.66+

lot of moneyQUANTITY

0.66+

KubanLOCATION

0.56+

DataOpsORGANIZATION

0.55+

KovachORGANIZATION

0.55+

SnatcherPERSON

0.51+

kovatORGANIZATION

0.49+

lotQUANTITY

0.46+

19PERSON

0.44+

massachusettsPERSON

0.42+

SASORGANIZATION

0.37+

AlangPERSON

0.31+

UNLISTED FOR REVIEW Inderpal Bhandari, IBM | DataOps In Action


 

>>from the Cube Studios in >>Palo Alto and Boston connecting with thought leaders all around the world. This is a cube conversation. Everybody welcome this special digital presentation where we're covering the topic of data ops and specifically how IBM is really operationalize ing and automating the data pipeline with data office. And with me is Interpol Bhandari, who is the global chief data officer at IBM and Paul. It's always great to see you. Thanks for coming on. >>My pleasure. >>So, you know the standard throwaway question from guys like me And you know what keeps the chief data officer up at night? Well, I know what's keeping you up that night. It's coverted 19. How you >>doing? It's keeping keeping all of us. >>Yeah, for sure. Um, So how are you guys making out as a leader I'm interested in, You know, how you have responded would whether it's communications. Obviously you're doing much more stuff you remotely You're not on airplanes. Certainly like you used to be. But But what was your first move when you actually realized this was going to require a shift? >>Well, I think one of the first things that I did wants to test the ability of my organization, You work remotely. This was well before the the recommendations came in from the government just so that we wanted to be sure that this is something that we could pull off if there were extreme circumstances where even everybody was. And so that was one of the first things we did along with that. I think another major activity that's being boxed off is even that we have created this Central Data and AI platform for idea using our hybrid, multi cloud approach. How could that the adaptive very, very quickly help them look over the city? But those were the two big items that my team and my embarked on and again, like I said, this is before there was any recommendations from the government or even internally, within IBM. Have any recommendations be? We decided that we wanted to run ahead and make sure that we were ready to ready to operate in that fashion. And I believe a lot of my colleagues did the same. Yeah, >>there's a there's a conversation going on right now just around productivity hits that people may be taking because they really weren't prepared it sounds like you're pretty comfortable with the productivity impact that you're achieving. >>Oh, I'm totally comfortable with the politics. I mean, in fact, I will tell you that while we've gone down this spot, we've realized that in some cases the productivity is actually going to be better when people are working from home and they're able to focus a lot more on the work, you know, And this could. This one's the gamut from the nature of the jaw, where you know somebody who basically needs to be in the front of the computer and is remotely taking care of operations. You know, if they don't have to come in, their productivity is going to go up Somebody like myself who had a long drive into work, you know, which I would use a phone calls, but that that entire time it can be used a lot more productivity, locked in a lot more productive manner. So there is. We realized that there's going to be some aspect of productivity that will actually be helped by the situation. Why did you are able to deliver the services that you deliver with the same level of quality and satisfaction that you want Now there were certain other aspect where you know the whole activity is going to be effective. So you know my team. There's a lot off white boarding that gets done there lots off informal conversations that spot creativity. But those things are much harder to replicate in a remote and large. So we've got a sense off. You know where we have to do some work? Well, things together. This is where we're actually going to be mobile. But all in all, they're very comfortable that we can pull this off. >>That's great. I want to stay on Cove it for a moment and in the context of just data and data ops, and you know why Now, obviously, with a crisis like this, it increases the imperative to really have your data act together. But I want to ask you both specifically as it relates to covert, why Data office is so important. And then just generally, why at this this point in time, >>So, I mean, you know, the journey we've been on. Thank you. You know, when I joined our data strategy centered around cloud data and ai, mainly because IBM business strategy was around that, and because there wasn't the notion off AI and Enterprise, right, there was everybody understood what AI means for the consumer. But for the enterprise, people don't really understand. Well, what a man. So our data strategy became one off, actually making IBM itself into an AI and and then using that as a showcase for our clients and customers who look a lot like us, you make them into AI. And in a nutshell, what that translated to was that one had two in few ai into the workflow off the key business processes off enterprise. So if you think about that workflow is very demanding, right, you have to be able to deliver. They did not insights on time just when it's needed. Otherwise, you can essentially slow down the whole workflow off a major process within an end. But to be able to pull all that off you need to have your own data works very, very streamlined so that a lot of it is automated and you're able to deliver those insights as the people who are involved in the work floor needed. So we've spent a lot of time while we were making IBM into any I enterprise and infusing AI into our key business processes into essentially a data ops pipeline that was very, very streamlined, which then allowed us to do very quickly adapt do the over 19 situation and I'll give you one specific example that will go to you know how one would someone would essentially leverage that capability that I just talked about to do this. So one of the key business processes that we have taken a map, it was our supply chain. You know, if you're a global company and our supply chain is critical, you have lots of suppliers, and they are all over the globe. And we have different types of products so that, you know, has a multiplication factors for each of those, you have additional suppliers and you have events. You have other events, you have calamities, you have political events. So we have to be able to very quickly understand the risks associated with any of those events with regard to our supply chain and make appropriate adjustments on the fly. So that was one off the key applications that we built on our central data. And as Paul about data ops pipeline. That meant we ingest the ingestion off those several 100 sources of data not to be blazingly fast and also refresh very, very quickly. Also, we have to then aggregate data from the outside from external sources that had to do with weather related events that had to do with political events. Social media feeds a separate I'm overly that on top off our map of interest with regard to our supply chain sites and also where they were supposed to deliver. We also leave them our capabilities here, track of those shipments as they flowed and have that data flow back as well so that we would know exactly where where things were. This is only possible because we had a streamline data ops capability and we have built this Central Data and AI platform for IBM. Now you flip over to the Coleman 19 situation when Corbyn 19 merged and we began to realize that this was going to be a significant significant pandemic. What we were able to do very quickly wants to overlay the over 19 incidents on top of our sites of interest, as well as pick up what was being reported about those sites of interests and provide that over to our business continuity. So this became an immediate exercise that we embark. But it wouldn't have been possible if you didn't have the foundation off the data office pipeline as well as that Central Data and AI platform even plays to help you do that very, very quickly and adapt. >>So what I really like about this story and something that I want to drill into is it Essentially, a lot of organizations have a really tough time operational izing ai, infusing it to use your word and the fact that you're doing it, um is really a good proof point that I want to explore a little bit. So you're essentially there was a number of aspects of what you just described. There was the data quality piece with your data quality in theory, anyway, is going to go up with more data if you can handle it and the other was speed time to insight, so you can respond more quickly if it's talk about this Covic situation. If you're days behind for weeks behind, which is not uncommon, sometimes even worse, you just can't respond. I mean, the things change daily? Um, sometimes, Certainly within the day. Um, so is that right? That's kind of the the business outcome. An objective that you guys were after. >>Yes, you know, So Rama Common infuse ai into your business processes right over our chain. Um, don't come metric. That one focuses on is end to end cycle time. So you take that process the end to end process and you're trying to reduce the end to end cycle time by several factors, several orders of magnitude. And you know, there are some examples off things that we did. For instance, in my organ organization that has to do with the generation of metadata is data about data. And that's usually a very time consuming process. And we've reduced that by over 95%. By using AI, you actually help in the metadata generation itself. And that's applied now across the board for many different business processes that, you know IBM has. That's the same kind of principle that was you. You'll be able to do that so that foundation essentially enables you to go after that cycle time reduction right off the bat. So when you get to a situation like over 19 situation which demands urgent action. Your foundation is already geared to deliver on that. >>So I think actually, we might have a graphic. And then the second graphic, guys, if you bring up a 2nd 1 I think this is Interpol. What you're talking about here, that sort of 95% reduction. Ah, guys, if you could bring that up, would take a look at it. So, um, this is maybe not a cove. It use case? Yeah. Here it is. So that 95% reduction in the cycle time improvement in data quality. What we talked about this actually some productivity metrics, right? This is what you're talking about here in this metadata example. Correct? >>Yeah. Yes, the metadata. Right. It's so central to everything that one does with. I mean, it's basically data about data, and this is really the business metadata that you're talking about, which is once you have data in your data lake. If you don't have business metadata describing what that data is, then it's very hard for people who are trying to do things to determine whether they can, even whether they even have access to the right data. And typically this process is being done manually because somebody looks at the data that looks at the fields and describe it. And it could easily take months. And what we did was we essentially use a deep learning and natural language processing of road. Look at all the data that we've had historically over an idea, and we've automated metadata generation. So whether it was, you know, you were talking about the data relevant for 19 or for supply chain or far receivable process any one of our business processes. This is one of those fundamental steps that one must go through. You'll be able to get your data ready for action. And if you were able to take that cycle time for that step and reduce it by 95% you can imagine the acceleration. >>Yeah, and I like you were saying before you talk about the end to end concept, you're applying system thinking here, which is very, very important because, you know, a lot of a lot of clients that I talk to, they're so focused on one metric maybe optimizing one component of that end to end, but it's really the overall outcome that you're trying to achieve. You may sometimes, you know, be optimizing one piece, but not the whole. So that systems thinking is very, very important, isn't it? >>The systems thinking is extremely important overall, no matter you know where you're involved in the process off designing the system. But if you're the data guy, it's incredibly important because not only does that give you an insight into the cycle time reduction, but it also give clues U N into what standardization is necessary in the data so that you're able to support an eventual out. You know, a lot of people will go down the part of data governance and the creation of data standards, and you can easily boil the ocean trying to do that. But if you actually start with an end to end, view off your key processes and that by extension the outcomes associated with those processes as well as the user experience at the end of those processes and kind of then work backwards as one of the standards that you need for the data that's going to feed into all that, that's how you arrive at, you know, a viable practical data standards effort that you can essentially push forward so that there are multiple aspect when you take that end to end system view that helps the chief legal. >>One of the other tenants of data ops is really the ability across the organization for everybody to have visibility. Communications is very key. We've got another graphic that I want to show around the organizational, you know, in the right regime, and it's a complicated situation for a lot of people. But it's imperative, guys, if you bring up the first graphic, it's a heritage that organizations, you know, find bringing the right stakeholders and actually identify those individuals that are going to participate so that this full visibility everybody understands what their roles are. They're not in silos. So, guys, if you could show us that first graphic, that would be great. But talk about the organization and the right regime there. Interpol? >>Yes, yes, I believe you're going to know what you're going to show up is actually my organization, but I think it's yes, it's very, very illustrative what one has to set up. You'll be able to pull off the kind of impact that I thought So let's say we talked about that Central Data and AI platform that's driving the entire enterprise, and you're infusing AI into key business processes like the supply chain. Then create applications like the operational risk in size that we talked about that extended over. Do a fast emerging and changing situation like the over 19. You need an organization that obviously reflects the technical aspects of the right, so you have to have the data engineering on and AI on. You know, in my case, there's a lot of emphasis around deep learning because that's one of those skill set areas that's really quite rare, and it also very, very powerful. So uh huh you know, the major technology arms off that. There's also the governance on that I talked about. You have to produce the set off standards and implement them and enforce them so that you're able to make this into an impact. But then there's also there's a there's an adoption there. There's a There's a group that reports into me very, very, you know, Empowered Group, which essentially has to convince the rest of the organization to adopt. Yeah, yeah, but the key to their success has been in power in the sense that they're on power. You find like minded individuals in our key business processes. We're also empowered. And if they agree that just move forward and go and do it because you know, we've already provided the central capabilities by Central. I don't mean they're all in one location. You're completely global and you know it's it's It's a hybrid multi cloud set up, but it's a central in the sense that it's one source to come for for trusted data as well as the the expertise that you need from an AI standpoint to be able to move forward and deliver the business out. So when these business teams come together, be an option, that's where the magic happens. So that's another another aspect of the organization that's critical. And then we've also got, ah, Data Officer Council that I chair, and that has to do with no people who are the chief data officers off the individual business units that we have. And they're kind of my extended teams into the rest of the organization, and we levers that bolt from a adoption off the platform standpoint. But also in terms of defining and enforcing standards. It helps them stupid. >>I want to come back over and talk a little bit about business resiliency people. I think it probably seen the news that IBM providing supercomputer resource is that the government to fight Corona virus. You've also just announced that that some some RTP folks, um, are helping first responders and non profits and providing capabilities for no charge, which is awesome. I mean, it's the kind of thing. Look, I'm sensitive companies like IBM. You know, you don't want to appear to be ambulance chasing in these times. However, IBM and other big tech companies you're in a position to help, and that's what you're doing here. So maybe you could talk a little bit about what you're doing in this regard. Um, and then we'll tie it up with just business resiliency and importance of data. >>Right? Right. So, you know, I explained that the operational risk insights application that we had, which we were using internally, we call that 19 even we're using. We're using it primarily to assess the risks to our supply chain from various events and then essentially react very, very quickly. Do those doodles events so you could manage the situation. Well, we realize that this is something that you know, several non government NGOs that they could essentially use. There's a stability because they have to manage many of these situations like natural disaster. And so we've given that same capability, do the NGOs to you and, uh, to help that, to help them streamline their planning. And there's thinking, by the same token, But you talked about over 19 that same capability with the moment 19 data over layed on double, essentially becomes a business continuity, planning and resilience. Because let's say I'm a supply chain offers right now. I can look at incidents off over night, and I can I know what my suppliers are and I can see the incidents and I can say, Oh, yes, no, this supplier and I can see that the incidences going up this is likely to be affected. Let me move ahead and stop making plans backup plans, just in case it reaches a crisis level. On the other hand, if you're somebody in revenue planning, you know, on the finance side and you know where you keep clients and customers are located again by having that information over laid that those sites, you can make your own judgments and you can make your own assessment to do that. So that's how it translates over into business continuity and resolute resilience planning. True, we are internally. No doing that now to every department. You know, that's something that we're actually providing them this capability because we build rapidly on what we have already done to be able to do that as we get inside into what each of those departments do with that data. Because, you know, once they see that data, once they overlay it with their sights of interest. And this is, you know, anybody and everybody in IBM, because no matter what department they're in, there are going to decide the interests that are going to be affected. And they haven't understanding what those sites of interest mean in the context off the planning that they're doing and so they'll be able to make judgments. But as we get a better understanding of that, we will automate those capabilities more and more for each of those specific areas. And now you're talking about the comprehensive approach and AI approach to business continuity and resilience planning in the context of a large IT organization like IBM, which obviously will be of great interest to our enterprise, clients and customers. >>Right? One of the things that we're researching now is trying to understand. You know, what about this? Prices is going to be permanent. Some things won't be, but we think many things will be. There's a lot of learnings. Do you think that organizations will rethink business resiliency in this context that they might sub optimize profitability, for example, to be more prepared crises like this with better business resiliency? And what role would data play in that? >>So, you know, it's a very good question and timely fashion, Dave. So I mean, clearly, people have understood that with regard to that's such a pandemic. Um, the first line of defense, right is is not going to be so much on the medicine side because the vaccine is not even available and will be available for a period of time. It has to go through. So the first line of defense is actually think part of being like approach, like we've seen play out across the world and then that in effect results in an impact on the business, right in the economic climate and on the business is there's an impact. I think people have realized this now they will honestly factor this in and do that in to how they do become. One of those things from this is that I'm talking about how this becomes a permanent. I think it's going to become one of those things that if you go responsible enterprise, you are going to be landing forward. You're going to know how to implement this, the on the second go round. So obviously you put those frameworks and structures in place and there will be a certain costs associated with them, and one could argue that that would eat into the profitability. On the other hand, what I would say is because these two points really that these are fast emerging fluid situations. You have to respond very, very quickly. You will end up laying out a foundation pretty much like we did, which enables you to really accelerate your pipeline, right? So the data ops pipelines we talked about, there's a lot of automation so that you can react very quickly, you know, data injection very, very rapidly that you're able to do that kind of thing, that meta data generation. That's the entire pipeline that you're talking about, that you're able to respond very quickly, bring in new data and then aggregated at the right levels, infuse it into the work flows on the delivery, do the right people at the right time. Well, you know that will become a must. But once you do that, you could argue that there's a cost associated with doing that. But we know that the cycle time reductions on things like that they can run, you know? I mean, I gave you the example of 95% 0 you know, on average, we see, like a 70% end to end cycle time where we've implemented the approach, and that's been pretty pervasive within IBM across the business. So that, in essence, then actually becomes a driver for profitability. So yes, it might. You know this might back people into doing that, but I would argue that that's probably something that's going to be very good long term for the enterprises and world, and they'll be able to leverage that in their in their business and I think that just the competitive director off having to do that will force everybody down that path. But I think it'll be eventually ago >>that end and cycle time. Compression is huge, and I like what you're saying because it's it's not just a reduction in the expected loss during of prices. There's other residual benefits to the organization. Interpol. Thanks so much for coming on the Cube and sharing this really interesting and deep case study. I know there's a lot more information out there, so really appreciate your done. >>My pleasure. >>Alright, take everybody. Thanks for watching. And this is Dave Volante for the Cube. And we will see you next time. Yeah, yeah, yeah.

Published Date : Apr 8 2020

SUMMARY :

how IBM is really operationalize ing and automating the data pipeline with So, you know the standard throwaway question from guys like me And you know what keeps the chief data officer up It's keeping keeping all of us. You know, how you have responded would whether it's communications. so that was one of the first things we did along with that. productivity impact that you're achieving. This one's the gamut from the nature of the jaw, where you know somebody But I want to ask you both specifically as it relates to covert, But to be able to pull all that off you need to have your own data works is going to go up with more data if you can handle it and the other was speed time to insight, So you take that process the end to end process and you're trying to reduce the end to end So that 95% reduction in the cycle time improvement in data quality. So whether it was, you know, you were talking about the data relevant Yeah, and I like you were saying before you talk about the end to end concept, you're applying system that you need for the data that's going to feed into all that, that's how you arrive you know, in the right regime, and it's a complicated situation for a lot of people. So uh huh you know, the major technology arms off that. So maybe you could talk a little bit about what you're doing in this regard. do the NGOs to you and, uh, to help that, Do you think that organizations will I think it's going to become one of those things that if you go responsible enterprise, Thanks so much for coming on the Cube and sharing And we will see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

DavePERSON

0.99+

95%QUANTITY

0.99+

70%QUANTITY

0.99+

twoQUANTITY

0.99+

Dave VolantePERSON

0.99+

Palo AltoLOCATION

0.99+

OneQUANTITY

0.99+

Interpol BhandariPERSON

0.99+

Inderpal BhandariPERSON

0.99+

two pointsQUANTITY

0.99+

first graphicQUANTITY

0.99+

one pieceQUANTITY

0.99+

oneQUANTITY

0.99+

Cube StudiosORGANIZATION

0.99+

100 sourcesQUANTITY

0.99+

second graphicQUANTITY

0.99+

secondQUANTITY

0.98+

first graphicQUANTITY

0.98+

InterpolORGANIZATION

0.98+

over 95%QUANTITY

0.98+

first lineQUANTITY

0.98+

first moveQUANTITY

0.98+

19QUANTITY

0.97+

eachQUANTITY

0.97+

one sourceQUANTITY

0.97+

BostonLOCATION

0.97+

PaulPERSON

0.97+

pandemicEVENT

0.97+

bothQUANTITY

0.97+

two big itemsQUANTITY

0.96+

one metricQUANTITY

0.96+

one componentQUANTITY

0.95+

one locationQUANTITY

0.95+

over 19QUANTITY

0.94+

doubleQUANTITY

0.94+

first thingsQUANTITY

0.93+

Data Officer CouncilORGANIZATION

0.93+

19OTHER

0.92+

Empowered GroupORGANIZATION

0.91+

CoveORGANIZATION

0.87+

Rama CommonORGANIZATION

0.87+

Corona virusOTHER

0.85+

CubeCOMMERCIAL_ITEM

0.82+

over 19 situationQUANTITY

0.82+

over 19 incidentsQUANTITY

0.81+

first respondersQUANTITY

0.73+

Coleman 19EVENT

0.71+

Central DataORGANIZATION

0.7+

2nd 1QUANTITY

0.69+

exampleQUANTITY

0.64+

Central DataTITLE

0.6+

dataORGANIZATION

0.54+

Corbyn 19ORGANIZATION

0.53+

0QUANTITY

0.51+

CovicORGANIZATION

0.49+

Itumeleng Monale, Standard Bank | IBM DataOps 2020


 

from the cube studios in Palo Alto in Boston connecting with thought leaders all around the world this is a cube conversation hi buddy welcome back to the cube this is Dave Volante and you're watching a special presentation data ops enacted made possible by IBM you know what's what's happening is the innovation engine in the IT economy is really shifted used to be Moore's Law today it's applying machine intelligence and AI to data really scaling that and operationalizing that new knowledge the challenges that is not so easy to operationalize AI and infuse it into the data pipeline but what we're doing in this program is bringing in practitioners who have actually had a great deal of success in doing just that and I'm really excited to have it Kumal a Himalayan Manali is here she's the executive head of data management or personal and business banking at Standard Bank of South Africa the tomb of length thanks so much for coming in the queue thank you for having me Dave you're very welcome and first of all how you holding up with this this bovid situation how are things in Johannesburg um things in Johannesburg are fine we've been on lockdown now I think it's day 33 if I'm not mistaken lost count and but we're really grateful for the swift action of government we we only I mean we have less than 4,000 places in the country and infection rate is is really slow so we've really I think been able to find the curve and we're grateful for being able to be protected in this way so all working from home or learning the new normal and we're all in this together that's great to hear why don't you tell us a little bit about your your role you're a data person we're really going to get into it but here with us you know how you spend your time okay well I head up a date operations function and a data management function which really is the foundational part of the data value chain that then allows other parts of the organization to monetize data and liberate it as as as the use cases apply we monetize it ourselves as well but really we're an enterprise wide organization that ensures that data quality is managed data is governed that we have the effective practices applied to the entire lineage of the data ownership and curation is in place and everything else from a regulatory as well as opportunity perspective then is able to be leveraged upon so historically you know data has been viewed as sort of this expense it's it's big it's growing it needs to be managed deleted after a certain amount of time and then you know ten years ago of the Big Data move data became an asset you had a lot of shadow I people going off and doing things that maybe didn't comply to the corporate ethics probably drove here here you're a part of the organization crazy but talk about that how what has changed but they in the last you know five years or so just in terms of how people approach data oh I mean you know the story I tell my colleague who are all bankers obviously is the fact that the banker in 1989 had to mainly just know debits credits and be able to look someone in the eye and know whether or not they'd be a credit risk or not you know if we lend you money and you pay it back the the banker of the late 90s had to then contend with the emergence of technologies that made their lives easier and allowed for automation and processes to run much more smoothly um in the early two-thousands I would say that digitization was a big focus and in fact my previous role was head of digital banking and at the time we thought digital was the panacea it is the be-all and end-all it's the thing that's gonna make organizations edit lo and behold we realized that once you've gotten all your digital platforms ready they are just the plate or the pipe and nothing is flowing through it and there's no food on the face if data is not the main photo really um it's always been an asset I think organizations just never consciously knew that data was that okay so so what sounds like once you've made that sort of initial digital transformation you really had to work it and what we're hearing from a lot of practitioners like self as challenges related to that involve different parts of the organization different skill sets of challenges and sort of getting everybody to work together on the same page it's better but maybe you could take us back to sort of when you started on this initiative around data Ops what was that like what were some of the challenges that you faced and how'd you get through them okay first and foremost Dave organizations used to believe that data was I t's problem and that's probably why you you then saw the emergence of things like chatter IP but when you really acknowledge that data is an essay just like money is an asset then you you have to then take accountability for it just the same way as you would any other asset in the organization and you will not abdicate its management to a separate function that's not cold to the business and oftentimes IT are seen as a support or an enabling but not quite the main show in most organizations right so what we we then did is first emphasize that data is a business capability the business function it presides in business makes to product management makes to marketing makes to everything else that the business needs for data management also has to be for to every role in every function to different degrees and varying bearing offense and when you take accountability as an owner of a business unit you also take accountability for the data in the systems that support the business unit for us that was the first picture um and convincing my colleagues that data was their problem and not something that we had to worry about they just kind of leave us to to it was was also a journey but that was kind of the first step into it in terms of getting the data operations journey going um you had to first acknowledge please carry on no you just had to first acknowledge that it's something you must take accountability of as a banker not just need to a different part of the organization that's a real cultural mindset you know in the game of rock-paper-scissors you know culture kinda beats everything doesn't it it's almost like a yep a trump card and so so the businesses embrace that but but what did you do to support that is there has to be trust in the data that it has to be a timeliness and so maybe you could take us through how you achieve those objectives and maybe some other objectives that business the man so the one thing I didn't mention Dave is that obviously they didn't embrace it in the beginning it wasn't a it wasn't there oh yeah that make sense they do that type of conversation um what what he had was a few very strategic people with the right mindset that I could partner with that understood the case for data management and while we had that as as an in we developed a framework for a fully matured data operations capability in the organization and what that would look like in a target date scenario and then what you do is you wait for a good crisis so we had a little bit of a challenge in that our local regulator found us a little bit wanting in terms of our date of college and from that perspective it then brought the case for data quality management so now there's a burning platform you have an appetite for people to partner with you and say okay we need this to comply to help us out and when they start seeing their opt-in action do they then buy into into the concept so sometimes you need to just wait for a good Christ and leverage it and only do that which the organization will appreciate at that time you don't have to go Big Bang data quality management was the use case at the time five years ago so we focused all our energy on that and after that it gave us leeway and license really bring to maturity all the other capabilities at the business might not well understand as well so when that crisis hit of thinking about people process in technology you probably had to turn some knobs in each of those areas can you talk about that so from a technology perspective that that's when we partnered with with IBM to implement information analyzer for us in terms of making sure that then we could profile the data effectively what was important for us is to to make strides in terms of showing the organization progress but also being able to give them access to self-service tools that will give them insight into their data from a technology perspective that was kind of I think the the genesis of of us implementing and the IBM suite in earnest from a data management perspective people wise we really then also began a data stewardship journey in which we implemented business unit stewards of data I don't like using the word steward because in my organization it's taken lightly almost like a part-time occupation so we converted them we call them data managers and and the analogy I would give is every department with a P&L any department worth its salt has a FDA or financial director and if money is important to you you have somebody helping you take accountability and execute on your responsibilities in managing that that money so if data is equally important as an asset you will have a leader a manager helping you execute on your data ownership accountability and that was the people journey so firstly I had kind of soldiers planted in each department which were data managers that would then continue building the culture maturing the data practices as as applicable to each business unit use cases so what was important is that every manager in every business unit to the Data Manager focus their energy on making that business unit happy by ensuring that they data was of the right compliance level and the right quality the right best practices from a process and management perspective and was governed and then in terms of process really it's about spreading through the entire ecosystem data management as a practice and can be quite lonely um in the sense that unless the whole business of an organization is managing data they worried about doing what they do to make money and most people in most business units will be the only unicorn relative to everybody else who does what they do and so for us it was important to have a community of practice a process where all the data managers across business as well as the technology parts and the specialists who were data management professionals coming together and making sure that we we work together on on specific you say so I wonder if I can ask you so the the industry sort of likes to market this notion of of DevOps applied to data and data op have you applied that type of mindset approach agile of continuous improvement is I'm trying to understand how much is marketing and how much actually applicable in the real world can you share well you know when I was reflecting on this before this interview I realized that our very first use case of data officers probably when we implemented information analyzer in our business unit simply because it was the first time that IT and business as well as data professionals came together to spec the use case and then we would literally in an agile fashion with a multidisciplinary team come together to make sure that we got the outcomes that we required I mean for you to to firstly get a data quality management paradigm where we moved from 6% quality at some point from our client data now we're sitting at 99 percent and that 1% literally is just the timing issue to get from from 6 to 99 you have to make sure that the entire value chain is engaged so our business partners will the fundamental determinant of the business rules apply in terms of what does quality mean what are the criteria of quality and then what we do is translate that into what we put in the catalog and ensure that the profiling rules that we run are against those business rules that were defined at first so you'd have upfront determination of the outcome with business and then the team would go into an agile cycle of maybe two-week sprints where we develop certain things have stand-ups come together and then the output would be - boarded in a prototype in a fashion where business then gets to go double check that out so that was the first iterate and I would say we've become much more mature at it and we've got many more use cases now and there's actually one that it's quite exciting that we we recently achieved over the end of of 2019 into the beginning of this year so what we did was they I'm worried about the sunlight I mean through the window you look creative to me like sunset in South Africa we've been on the we've been on CubeSat sometimes it's so bright we have to put on sunglasses but so the most recent one which was in in mates 2019 coming in too early this year we we had long kind of achieved the the compliance and regulatory burning platform issues and now we are in a place of I think opportunity and luxury where we can now find use cases that are pertinent to business execution and business productivity um the one that comes to mind is we're a hundred and fifty eight years old as an organization right so so this Bank was born before technology it was also born in the days of light no no no integration because every branch was a standalone entity you'd have these big ledges that transactions were documented in and I think once every six months or so these Ledger's would be taken by horse-drawn carriage to a central place to get go reconcile between branches and paper but the point is if that is your legacy the initial kind of ERP implementations would have been focused on process efficiency based on old ways of accounting for transactions and allocating information so it was not optimized for the 21st century our architecture had has had huge legacy burden on it and so going into a place where you can be agile with data is something that we constantly working toward so we get to a place where we have hundreds of branches across the country and all of them obviously telling to client servicing clients as usual and and not being able for any person needing sales teams or executional teams they were not able in a short space of time to see the impact of the tactic from a database fee from a reporting history and we were in a place where in some cases based on how our Ledger's roll up and the reconciliation between various systems and accounts work it would take you six weeks to verify whether your technique were effective or not because to actually see the revenue hitting our our general ledger and our balance sheet might take that long that is an ineffective way to operate in a such a competitive environment so what you had our frontline sales agents literally manually documenting the sales that they had made but not being able to verify whether that or not is bringing revenue until six weeks later so what we did then is we sat down and defined all the requirements were reporting perspective and the objective was moved from six weeks latency to 24 hours um and even 24 hours is not perfect our ideal would be that bite rows of day you're able to see what you've done for that day but that's the next the next epoch that will go through however um we literally had the frontline teams defining what they'd want to see in a dashboard the business teams defining what the business rules behind the quality and the definitions would be and then we had an entire I'm analytics team and the data management team working around sourcing the data optimising and curating it and making sure that the latency had done that's I think only our latest use case for data art um and now we're in a place where people can look at a dashboard it's a cubed self-service they can learn at any time I see the sales they've made which is very important right now at the time of covert nineteen from a form of productivity and executional competitiveness those are two great use cases of women lying so the first one you know going from data quality 6% the 99% I mean 6% is all you do is spend time arguing about the data bills profanity and then 99% you're there and you said it's just basically a timing issue use latency in the timing and then the second one is is instead of paving the cow path with an outdated you know ledger Barret data process week you've now compressed that down to 24 hours you want to get the end of day so you've built in the agility into your data pipeline I'm going to ask you then so when gdpr hit were you able to very quickly leverage this capability and and apply and then maybe other of compliance edik as well well actually you know what we just now was post TDP our us um and and we got GDP all right about three years ago but literally all we got right was reporting for risk and compliance purposes they use cases that we have now are really around business opportunity lists so the risk so we prioritize compliance report a long time it but we're able to do real-time reporting from a single transaction perspective I'm suspicious transactions etc I'm two hours in Bank and our governor so from that perspective that was what was prioritize in the beginning which was the initial crisis so what you found is an entire engine geared towards making sure that data quality was correct for reporting and regulatory purposes but really that is not the be-all and end-all of it and if that's all we did I believe we really would not have succeeded or could have stayed dead we succeeded because Dana monetization is actually the penis' t the leveraging of data for business opportunity is is actually then what tells you whether you've got the right culture or not you're just doing it to comply then it means the hearts and minds of the rest of the business still aren't in the data game I love this story because it's me it's nirvana for so many years we've been pouring money to mitigate risk and you have no choice do it you know the general council signs off on it the the CFO but grudgingly signs off on it but it's got to be done but for years decades we've been waiting to use these these risk initiatives to actually drive business value you know it kind of happened with enterprise data warehouse but it was too slow it was complicated and it certainly didn't happen with with email archiving that was just sort of a tech balk it sounds like you know we're at that point today and I want to ask you I mean like you know you we talking earlier about you know the crisis gonna perpetuated this this cultural shift and you took advantage of that so we're out who we the the mother nature dealt up a crisis like we've never seen before how do you see your data infrastructure your data pipeline your data ops what kind of opportunities do you see in front of you today as a result of ovid 19 well I mean because of of the quality of kind data that we had now we were able to very quickly respond to to pivot nineteen in in our context where the government put us on lockdown relatively early in in the curve or in the cycle of infection and what it meant is it brought a little bit of a shock to the economy because small businesses all of a sudden didn't have a source of revenue or potentially three to six weeks and based on the data quality work that we did before it was actually relatively easy to be agile enough to do the things that we did so within the first weekend of of lockdown in South Africa we were the first bank to proactively and automatically offer small businesses and student and students with loans on our books a instant three month payment holiday assuming they were in good standing and we did that upfront though it was actually an opt-out process rather than you had to fall in and arrange for that to happen and I don't believe we would have been able to do that if our data quality was not with um we have since made many more initiatives to try and keep the economy going to try and keep our clients in in a state of of liquidity and so you know data quality at that point and that Dharma is critical to knowing who you're talking to who needs what and in which solutions would best be fitted towards various segments I think the second component is um you know working from home now brings an entirely different normal right so so if we had not been able to provide productivity dashboard and and and sales and dashboards to to management and all all the users that require it we would not be able to then validate or say what our productivity levels are now that people are working from home I mean we still have essential services workers that physically go into work but a lot of our relationship bankers are operating from home and that face the baseline and the foundation that we said productivity packing for various methods being able to be reported on in a short space of time has been really beneficial the next opportunity for us is we've been really good at doing this for the normal operational and front line and type of workers but knowledge workers have also know not necessarily been big productivity reporters historically they kind of get an output then the output might be six weeks down the line um but in a place where teams now are not locate co-located and work needs to flow in an edge of passion we need to start using the same foundation and and and data pipeline that we've laid down as a foundation for the reporting of knowledge work and agile team type of metric so in terms of developing new functionality and solutions there's a flow in a multidisciplinary team and how do those solutions get architected in a way where data assists in the flow of information so solutions can be optimally developed well it sounds like you're able to map a metric but business lines care about you know into these dashboards you usually the sort of data mapping approach if you will which makes it much more relevant for the business as you said before they own the data that's got to be a huge business benefit just in terms of again we talked about cultural we talked about speed but but the business impact of being able to do that it has to be pretty substantial it really really is um and and the use cases really are endless because every department finds their own opportunity to utilize in terms of their also I think the accountability factor has has significantly increased because as the owner of a specific domain of data you know that you're not only accountable to yourself and your own operation but people downstream to you as a product and in an outcome depend on you to ensure that the quality of the data you produces is of a high nature so so curation of data is a very important thing and business is really starting to understand that so you know the cards Department knows that they are the owners of card data right and you know the vehicle asset Department knows that they are the owners of vehicle they are linked to a client profile and all of that creates an ecosystem around the plan I mean when you come to a bank you you don't want to be known as a number and you don't want to be known just for one product you want to be known across everything that you do with that with that organization but most banks are not structured that way they still are product houses and product systems on which your data reside and if those don't act in concert then we come across extremely schizophrenic as if we don't know our clients and so that's very very important stupid like I can go on for an hour talking about this topic but unfortunately we're we're out of time thank you so much for sharing your deep knowledge and your story it's really an inspiring one and congratulations on all your success and I guess I'll leave it with you know what's next you gave us you know a glimpse of some of the things you wanted to do pressing some of the the elapsed times and the time cycle but but where do you see this going in the next you know kind of mid term and longer term currently I mean obviously AI is is a big is a big opportunity for all organizations and and you don't get automation of anything right if the foundations are not in place so you believe that this is a great foundation for anything AI to be applied in terms of the use cases that we can find the second one is really providing an API economy where certain data product can be shared with third parties I think that probably where we want to take things as well we are really utilizing external third-party data sources I'm in our data quality management suite to ensure validity of client identity and and and residents and things of that nature but going forward because been picked and banks and other organizations are probably going to partner to to be more competitive going forward we need to be able to provide data product that can then be leveraged by external parties and vice-versa to be like thanks again great having you thank you very much Dave appreciate the opportunity thank you for watching everybody that we go we are digging in the data ops we've got practitioners we've got influencers we've got experts we're going in the crowd chat it's the crowd chat net flash data ops but keep it right there way back but more coverage this is Dave Volante for the cube [Music] you

Published Date : May 28 2020

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
JohannesburgLOCATION

0.99+

1989DATE

0.99+

six weeksQUANTITY

0.99+

Dave VolantePERSON

0.99+

IBMORGANIZATION

0.99+

DavePERSON

0.99+

threeQUANTITY

0.99+

24 hoursQUANTITY

0.99+

two-weekQUANTITY

0.99+

6%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

two hoursQUANTITY

0.99+

South AfricaLOCATION

0.99+

less than 4,000 placesQUANTITY

0.99+

99 percentQUANTITY

0.99+

Standard BankORGANIZATION

0.99+

99%QUANTITY

0.99+

21st centuryDATE

0.99+

6QUANTITY

0.99+

second componentQUANTITY

0.99+

hundreds of branchesQUANTITY

0.99+

2019DATE

0.99+

first stepQUANTITY

0.99+

five yearsQUANTITY

0.99+

first bankQUANTITY

0.99+

1%QUANTITY

0.98+

five years agoDATE

0.98+

first timeQUANTITY

0.98+

BostonLOCATION

0.98+

99QUANTITY

0.98+

each departmentQUANTITY

0.98+

firstQUANTITY

0.98+

late 90sDATE

0.97+

six weeks laterDATE

0.97+

todayDATE

0.97+

three monthQUANTITY

0.97+

ten years agoDATE

0.96+

an hourQUANTITY

0.96+

a hundred and fifty eight years oldQUANTITY

0.96+

firstlyQUANTITY

0.95+

second oneQUANTITY

0.95+

first weekendQUANTITY

0.94+

one productQUANTITY

0.94+

nineteenQUANTITY

0.94+

first pictureQUANTITY

0.93+

each business unitQUANTITY

0.91+

eachQUANTITY

0.91+

KumalPERSON

0.89+

single transactionQUANTITY

0.89+

Big BangEVENT

0.88+

first oneQUANTITY

0.88+

once every six monthsQUANTITY

0.87+

2020DATE

0.86+

LedgerORGANIZATION

0.85+

first use caseQUANTITY

0.84+

every branchQUANTITY

0.83+

about three years agoDATE

0.82+

ChristPERSON

0.81+

oneQUANTITY

0.8+

Itumeleng MonalePERSON

0.79+

DevOpsTITLE

0.78+

two great use casesQUANTITY

0.78+

yearsQUANTITY

0.77+

Standard Bank of SouthORGANIZATION

0.76+

DharmaORGANIZATION

0.76+

early this yearDATE

0.74+

l councilORGANIZATION

0.71+

FDAORGANIZATION

0.7+

endDATE

0.69+

this yearDATE

0.68+

Moore's LawTITLE

0.67+

IBM DataOpsORGANIZATION

0.65+

DanaPERSON

0.63+

every businessQUANTITY

0.62+