Bill Stratton, Snowflake | Snowflake Summit 2022
(ethereal music) >> Good morning, everyone, and welcome to theCUBE's day-two coverage of Snowflake Summit '22. Lisa Martin here with Dave Vellante. We are live in Las Vegas at Caesar's Forum, looking forward to an action-packed day here on theCUBE. Our first guest joins us, Bill Stratton, the global industry lead, media, entertainment and advertising at Snowflake. Bill, great to have you on the program talking about industry specifics. >> Glad to be here, excited to have a conversation. >> Yeah, the media and entertainment industry has been keeping a lot of us alive the last couple of years, probably more of a dependence on it than we've seen stuck at home. Talk to us about the data culture in the media, entertainment and advertising landscape, how is data being used today? >> Sure. Well, let's start with what you just mentioned, these last couple of years, I think, coming out of the pandemic, a lot of trends and impact to the media industry. I think there were some things happening prior to COVID, right? Streaming services were starting to accelerate. And obviously, Netflix was an early mover. Disney launched their streaming service right before the pandemic, Disney+, with ESPN+ as well. I think then, as the pandemic occurred these last two years, the acceleration of consumers' habits, obviously, of not just unbundling their cable subscription, but then choosing, you know, what services they want to subscribe to, right? I mean, I think we all sort of grew up in this era of, okay, the bundle was the bundle, you had sports, you had news, you had entertainment, whether you watched the channel or not, you had the bundle. And what the pandemic has accelerated is what I call, and I think a lot of folks call, the golden age of content. And really, the golden age of content is about the consumer. They're in control now, they pick and choose what services they want, what they watch, when they watch it. And I think that has extremely, sort of accelerated this adoption on the consumer side, and then it's creating this data ecosystem, as a result of companies like Disney having a direct-to-consumer relationship for the first time. It used to be a Disney or an NBC was a wholesaler, and the cable or satellite company had the consumer data and relationship. Now, the companies that are producing the content have the data and the consumer relationships. It's a fascinating time. >> And they're still coming over the top on the Telco networks, right? >> Absolutely right. >> Telco's playing in this game? >> Yeah, Telco is, I think what the interesting dynamic with Telco is, how do you bundle access, high speed, everybody still needs high speed at their home, with content? And so I think it's a similar bundle, but it takes on a different characteristic, because the cable and Telcos are not taking the content risk. AT&T sold Warner Media recently, and I think they looked at it and said, we're going to stay with the infrastructure, let somebody else do the content. >> And I think I heard, did I hear this right the other day, that Roku is now getting into the content business? >> Roku is getting into it. And they were early mover, right? They said the TVs aren't, the operating system in the television is not changing fast enough for content. So their dongle that you would slide into a TV was a great way to get content on connected televisions, which is the fastest growing platform. >> I was going to say, what are the economics like in this business? Because the bundles were sort of a limiting factor, in terms of the TAM. >> Yeah. >> And now, we get great content, all right, to watch "Better Call Saul", I have to get AMC+ or whatever. >> You know, your comment, your question about the economics and the TAM is an interesting one, because I think we're still working through it. One of the things, I think, that's coming to the forefront is that you have to have a subscription revenue stream. Okay? Netflix had a subscription revenue stream for the last six, eight, 10 years, significantly, but I think you even see with Netflix that they have to go to a second revenue model, which is going to be an ad-supported model, right? We see it in the press these last couple days with Reid Hastings. So I think you're going to see, obviously subscription, obviously ad-supported, but the biggest thing, back to the consumer, is that the consumer's not going to sit through two minutes of advertising to watch a 22 minute show. >> Dave: No way. >> Right? So what's then going to happen is that the content companies want to know what's relevant to you, in terms of advertising. So if I have relevancy in my ad experience, then it doesn't quite feel, it's not intrusive, and it's relevant to my experience. >> And the other vector in the TAM, just one last follow-up, is you see Amazon, with Prime, going consumption. >> Bill: That's right. >> You get it with Prime, it's sort of there, and the movies aren't the best in the world, but you can buy pretty much any movie you want on a consumption basis. >> Yeah. Just to your last quick point, there is, we saw last week, the Boston Red Sox are bundling tickets, season tickets, with a subscription to their streaming service. >> NESN+, I think it is, yeah. So just like Prime, NESN+- >> And it's like 30 bucks a month. >> -just like Prime bundling with your delivery service, you're going to start to see all kinds of bundles happen. >> Dave: Interesting. >> Man, the sky is the limit, it's like it just keeps going and proliferating. >> Bill: It does. >> You talk about, on the ad side for a second, you mentioned the relevance, and we expect that as consumers, we're so demanding, (clears throat) excuse me, we don't have the patience, one of the things I think that was in short supply during COVID, and probably still is, is patience. >> That's right. >> I think with all of us, but we expect that brands know us enough to surf up the content that they think we watched, we watched "Breaking Bad", "Better Call Saul", don't show me other things that aren't relevant to the patterns I've been showing you, the content creators have to adapt quickly to the rising and changing demands of the consumer. >> That's right. Some people even think, as you go forward and consumers have this expectation, like you just mentioned, that brands not only need to understand their own view of the consumer, and this is going to come into the Snowflake points that we talk about in a minute, but the larger view that a brand has about a consumer, not just their own view, but how they consume content, where they consume it, what other brands they even like, that all builds that picture of making it relevant for the consumer and viewer. >> Where does privacy come into the mix? So we want it to be relevant and personalized in a non-creepy way. Talk to us about the data clean rooms that Snowflake launched, >> Bill: That's right. >> and how is that facilitating from a PII perspective, or is it? >> Yeah. Great question. So I think the other major development, in addition to the pandemic, driving people watching all these shows is the fact that privacy legislation is increasing. So we started with California with the CCPA, we had GDPR in Europe, and what we're starting to see is state by state roll out different privacy legislations. At some point, it may be true that we have a federal privacy legislation, and there are some bills that are working through the legislature right now. Hard to tell what's going to happen. But to your question, the importance of privacy, and respecting privacy, is exactly happening at the same time that media companies and publishers need to piece together all the viewing habits that you have. You've probably watched, already this morning, on your PC, on your phone, and in order to bring that experience together a media company has to be able to tie that together, right? Collaborate. So you have collaboration on one side, and then you have privacy on the other, and they're not necessarily, normally, go together, Right? They're opposing forces. So now though, with Snowflake, and our data clean room, we like to call it a data collaboration platform, okay? It's not really what a data warehouse function traditionally has been, right? So if I can take data collaboration, and our clean room, what it does is it brings privacy controls to the participants. So if I'm an advertiser, and I'm a publisher, and I want to collaborate to create an advertising campaign, they both can design how they want to do that privacy-based collaboration, Because it's interesting, one company might have a different perspective of privacy, on a risk profile, than another company. So it's very hard to say one size is going to fit all. So what we at Snowflake do, with our infrastructure, is let you design how you create your own clean room. >> Is that a differentiator for Snowflake, the clean rooms? >> It's absolutely a very big differentiator. Two reasons, or probably two, three reasons, really. One is, it's cross cloud. So all the advertisers aren't going to be in the same cloud, all the publishers aren't going to be in the same cloud. One big differentiator there. Second big differentiator is, we want to be able to bring applications to the data, so our clean room can enable you to create measurement against an ad campaign without moving your data. So bringing measurement to the data, versus sending data to applications then improves the privacy. And then the third one is, frankly, our pricing model. You only pay for Snowflake what you use. So in the advertising world, there's what's called an ad tech tax, there is no ad tech tax for Snowflake, because we're simply a pay-as-you-go service. So it's a very interesting dynamic. >> So what's that stack look like, in your world? So I've pulled up Frank's chart, I took a picture of his, he's called it the new, modern data stack, I think he called it, but it had infrastructure in the bottom, okay, that's AWS, Google, Azure, and then a lot of you, live data, that would be the media data cloud, the workload execution, the specific workload here is media and entertainment, and then application development, that's a new layer of value that you're bringing in, marketplace, which is the whole ecosystem, and then monetization comes from building on top. >> Bill: Yes. >> So I got AWS in there, and other clouds, you got a big chunk of that, where do your customers add value on top of that? >> Yeah. So the way you described it, I think, with Frank's point, is right on. You have the infrastructure. We know that a lot of advertisers, for example, aren't going to use Amazon, because the retailer competes with Amazon, So they want to might be in Google or Azure. And then sort of as you go up the stack, for the data layer that is Snowflake, especially what we call first-party data, is sitting in that Snowflake environment, right? But that Snowflake environment is a distributed environment, so a Disney, who was on stage with me yesterday, she talked about, Jaya talked about their first-party datas in Snowflake, their advertisers' datas in their own Snowflake account, in their own infrastructure. And then what's interesting is is that application layer is coming to the data, and so what we're really seeing is an acceleration of companies building that application natively on Snowflake to do measurement, to do targeting, to do activation. And so, that growth of that final application layer is what we're seeing as the acceleration in the stack. >> So the more data that's in that massive distributed data cloud, the more value your customers can get out of it. And I would imagine you're just looking to tick things off that where customers are going outside of the Snowflake data cloud, let's attack that so they don't have to. >> Yeah, I think these partners, (clears throat) excuse me, and customers, it's an interesting dynamic, because they're customers of ours. But now, because anybody who is already in Snowflake can be their customer, then they're becoming our partner. So it's an interesting dynamic, because we're bringing advertisers to a Disney or an NBCU, because they already have their data in Snowflake. So the network effect that's getting created because of this layer that's being built is accelerated. >> In 2013, right after the second reinvent, I wrote a piece called "How to Compete with the Amazon Gorilla." And it seemed to us pretty obvious at the time, you're not going to win an infrastructure again, you got to build on top of it, you got to build ecosystems within industries, and the data, the connection points, that network effect that you just talked about, it's actually quite thrilling to see you guys building that. >> Well, and I think you know this too, I mean, Amazon's a great partner of ours as well, right? So they're part of our media data cloud, as Amazon, right? So we're making it easier and easier for companies to be able to spin up a clean room in places like AWS, so that they get the privacy controls and the governance that's required as well. >> What do you advise to, say, the next generation of media and advertising companies who may be really early in the data journey? Obviously, there's competition right here in the rear view mirror, but we've seen services that launch and fail, what do you advise to those folks that maybe are early in the journey and how can Snowflake help them accelerate that to be able to launch services they can monetize, and get those consumers watching? >> I think the first thing for a lot of these brands is that they need to really own their data. And what I mean by that is, they need to understand the consumer relationship that they have, they need to take the privacy and the governance very seriously, and they need to start building that muscle. It's almost, it's a routine and a muscle that they just need to continue to kind of build up, because if you think about it, a media company spends two, three hours a day with their customer. You might watch two hours of a streaming show, but how much time do you spend with a single brand a day? Maybe 30 seconds, maybe 10 seconds, right? And so, their need to build the muscle, to be able to collect the data in a privacy-compliant way, build the intelligence off of that, and then leverage the intelligence. We talked about it a few days ago, and you look at a retailer, as a really good example, a retailer is using Snowflake and the retail data cloud to optimize their supply chain. Okay? But their supply chain extends beyond their own infrastructure to the advertising and marketing community, because if I can't predict demand, how do I then connect it to my supply chain? So our media data cloud is helping retailers and consumer product goods companies actually drive demand into their reconstructed supply chain. So they both work together. >> So you have a big focus, obviously, on the monetization piece, of course, that's a great place to start. Where do you see the media data cloud going? >> Yeah. I think we'll start to expand beyond advertising and beyond marketing. There's really important sub-segments of media. Gaming is one. You talk about the pandemic and teenagers playing games on their phones. So we'll have an emphasis around gaming. We'll have an emphasis in sports. Sports is going through a big change in an ecosystem. And there's a big opportunity to connect the dots in those ecosystems as well. And then I think, to what we were just talking about, I think connecting commerce and media is a very important area. And I think the two are still very loosely connected today. It used to be, could I buy the Jennifer Aniston sweater from "Friends", right? That was always the analogy. Now, media and social media, and TikTok and everything else, are combining media and commerce very closely. So I think we'll start to see more focus around that as well. So that adds to your monetization. >> Right, right. And you can NFT that. (Lisa laughs) >> Bill: That's right, there you go, you can mint an NFT on that. >> It's the tip of the iceberg. >> Absolutely. >> There's so much more potential to go. Bill, thank you so much for joining us bright and early this morning, talking about what snowflake is doing in media, entertainment and advertising. Exciting stuff, relevant to all of us, we appreciate your insights and your forward-looking statements. >> Thank you for having me. I enjoyed it. >> Our pleasure. >> Thank you. >> Good >> Bill: Bye now. >> For our guest and Dave Vellante, I'm Lisa Martin, you're up early with us watching theCUBE's day-two coverage of Snowflake Summit '22. We'll be back in a moment with our next guest. (upbeat music)
SUMMARY :
Bill, great to have you on the program Glad to be here, excited in the media, entertainment and the cable or satellite company are not taking the content risk. So their dongle that you in terms of the TAM. I have to get AMC+ or whatever. is that the consumer's not going to sit is that the content companies want to know And the other vector in the and the movies aren't Just to your last quick point, there is, So just like Prime, NESN+- with your delivery service, Man, the sky is the limit, one of the things I think the content creators have to adapt quickly and this is going to come Where does privacy come into the mix? and in order to bring So in the advertising world, of his, he's called it the So the way you described it, I think, So the more data So the network effect and the data, the connection points, and the governance and the retail data cloud to on the monetization piece, of course, So that adds to your monetization. And you can NFT that. Bill: That's right, there you go, There's so much more potential to go. Thank you for having me. We'll be back in a moment
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Disney | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
NBCU | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
NBC | ORGANIZATION | 0.99+ |
Telcos | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Frank | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Warner Media | ORGANIZATION | 0.99+ |
two hours | QUANTITY | 0.99+ |
Bill Stratton | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
Better Call Saul | TITLE | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
Breaking Bad | TITLE | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
10 seconds | QUANTITY | 0.99+ |
Two reasons | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
two minutes | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
eight | QUANTITY | 0.99+ |
Bill | PERSON | 0.99+ |
22 minute | QUANTITY | 0.99+ |
Europe | LOCATION | 0.99+ |
Lisa | PERSON | 0.99+ |
last week | DATE | 0.99+ |
Roku | ORGANIZATION | 0.99+ |
TikTok | ORGANIZATION | 0.99+ |
Jaya | PERSON | 0.99+ |
Boston Red Sox | ORGANIZATION | 0.99+ |
10 years | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
Prime | COMMERCIAL_ITEM | 0.99+ |
three reason | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
first guest | QUANTITY | 0.99+ |
one size | QUANTITY | 0.98+ |
third one | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
pandemic | EVENT | 0.98+ |
one | QUANTITY | 0.97+ |
Snowflake Summit '22 | EVENT | 0.97+ |
one company | QUANTITY | 0.97+ |
30 bucks a month | QUANTITY | 0.97+ |
CCPA | ORGANIZATION | 0.97+ |
Snowflake | TITLE | 0.97+ |
one side | QUANTITY | 0.97+ |
theCUBE | ORGANIZATION | 0.96+ |
Snowflake Summit 2022 | EVENT | 0.96+ |
GDPR | TITLE | 0.95+ |
Boris Renski, Mirantis | OpenStack Summit 2018
(upbeat electronic music) >> Announcer: Live from Vancouver, Canada, it's The Cube, covering OpenStack Summit North America 2018. Brought to you by Red Hat, the OpenStack foundation, and its ecosystem partners. >> Welcome back to The Cube's coverage of OpenStack Summit 2018 here in beautiful Vancouver, British Columbia. I'm Stu Miniman, with my co-host John Troyer. Happy to welcome back to the program, it's been a couple of years, actually, Boris Renski, who is the co-founder and CMO of Merantis And also is on the keynote stage for the OpenDev part of this show here. Boris, great to see you, thanks for joining us. >> Good to see you guys, and great to be back. Thank you for having me back. >> Absolutely, so we're going to talk about OpenDev, we're going to talk about a few things, but let's start with Merantis, your company. I think back to some of my first experiences at the OpenStack show. First of all, Merantis always does great keynotes, I remember there was dancing on stage, there's fun T-shirts I actually coveted. I don't go after swag much, but it was like the Heisenburg 99.999%-- >> I remember that T-shirt, yeah. >> Pure T-shirt for the Breaking Bad fans out there, to date myself on this, but always bring some energy and excitement and Merantis was one of the companies really super glued to OpenStack, so bring us up to 2018. When I think of Merantis, what should I be thinking of and let's get into it from there. >> Yeah, so let me see. We are still super glued to OpenStack. We did go through some changes and some evolutions. I think given how long it's been since we've talked, the notable changes have been a change to our delivery approach and with it some of the changes to actually the underlying software stack, so the most common thing is that we've evolved Merantis OpenStack into what we now call Merantis Cloud Platform and the key difference is how we approach actually the life cycle management of the OpenStack itself. Before our tool for installing and basically updating OpenStack was Fuel which was very prescriptive and monolithic type of delivery method and what we realized is most of it, large customers that we have, they have a fairly heterogeneous reference architectures that you have to cater to and you have to be able to do that in such a way that it is cost effective, so we've rebuilt Fuel for to a new tool called DriveTrain which uses a continuous delivery pattern to manage and deliver updates to OpenStack and with that we've also tweaked out delivery model a little bit. Before we just followed traditional distro-model where we just throw out our software out there. You can download and play with it and call us and we'll support you. When it comes to complicated distributive systems like OpenStack, that are life-cycled following a continuous delivery pattern, most of the companies simply don't have the in-house talent and skills to just take it and start deriving value, so we've moved to what we refer to as a build, operate, transfer model where we actually come in and we set up the environment, we manage an environment to an SLA, give a customer four nines SLA on the up time of the OpenStack environment we're managing and after a period of a year, give the customer an opportunity to gradually take over the operations and by operations I mean, patches, updates, et cetera until after some time we just completely go away or we just take a role of a software support vendor, effectively. So that's on the core business side. Since we haven't talked in a while, so it's a little bit of a long update, sorry. >> Stu: Yeah, yeah, it's okay. >> The thing that we've been talking a lot about recently has been the new thing we launched in beta about a month and a half ago called Merantis application platform, so Merantis Cloud Platform is OpenStack, is our core business. Merantis Application Platform is a new thing that we have launched about month and a half ago that is based on Spinnaker and Spinnaker is this continuous delivery open source tool that's been built by Netflix, originally. >> Yeah, so before we get into the OpenDev and Spinnaker and all that stuff, want your viewpoint on the OpenStack piece, so really appreciate that update. There were years that we thought, oh, it's the battle for who's going to do distributions and as you said, it's not that easy and maybe we had poor expectations as an industry as to where we could take it and where it should be used, so how should people be thinking about OpenStack in general? Can you give us one or two of the key use cases you see in your customer base? >> Yeah, so, I think that what we realized is that when it comes to general purpose cloud, so to speak, there is not tremendous value, at least among the customers that we have the opportunity to interface with, to use OpenStack. You have something that's already in place and you don't touch it and that's usually VMware or you want something new general purpose, people go to public cloud, but there is an enormous opportunity for what we refer to as tuned stacks or clouds that are tuned to particular business use cases and this is where I think is an opportunity for OpenStack to excel and this is historically where we as Merantis been actually delivering value to our customers. So speaking of the use cases, our customer base is split, we split it into enterprise and telco. More than half of the customers, actually, are from the telco side. So telco clouds, there is a variety of use cases. Typically those use cases are function of the, and the overarching use case is NFE, virtually network function virtualization. The specificity and the reference architecture of the actual infrastructure environment is a function of the VNF that is running on that cloud and in some instances if you were to categorize this for telco space, you can think of it in terms of a big cloud for VNFs that don't need to be close to the edge and those that are stretching out to the smaller footprint all the way to the edge and those are vastly different reference architectures and you do different performance optimizations and tuning and this is something that you can only do with something like OpenStack. Now when it comes to the enterprise side, the actually emerging use case that we've been seeing quite a bit of is HPC, because, again, HPC is full of purpose-built equipment, you do networking differently, you do a lot of things differently and a lot of the times the general purpose public clouds don't work for it, so for HPC again, we have a set of reference architectures that are modeled within the Drivetrain that we can just deploy fairly easily out of the box that cater specifically to the HPC use case and the enterprise. >> Boris, do you think HPC then either includes now or evolves into ML and AI as well, again, bespoke hardware, very specific use case? >> Yes, eventually. I think that there is an opportunity there for some of the reference architectures and deployment topologies currently used for HPC to evolve towards some of the AI use cases. Again, I think that, when it comes to enterprise and AI, it's a bit early, so yeah. >> Boris, the tagline of the company is, The Managed Open Cloud Company, and you talked about managing, being a managed cloud. That's been a fascinating development over the last few years. We're seeing it at the OpenStack level and for instance at the kubernetes level as well. Can you talk a little bit about that approach and who are the customers that need that entry ramp or accelerator for these private cloud installations? >> Yeah, yeah, yeah. I think that... There are two types of ways to implement infrastructure, implement the cloud. There is those that are trying to, they are looking at public cloud and they are saying, okay, this is like, I see what Amazon's doing, what Google's doing is great. I want the same thing and I want it in-house, for security reasons, for whatever, compliance reasons, doesn't matter. So all of these guys that fall into this category, I think for them to become successful with the cloud on-prem, should follow the managed approach. Again, I'm a little bit biased on this in that I'm selling this-- >> That was always the hit against running your own private cloud is you didn't have, one did not have the expertise in-house-- >> Boris: Yeah, that's exactly correct. >> That's what we need. >> First of all, the whole evolution between Fuel to Drivetrain and using the CD pattern to life-cycling the infrastructure stack is something that there isn't talent out there, there isn't DNA out there and enterprises simply are not able to just go ahead and start doing it and the whole model that, when you go to Amazon, you just have this cloud that is continuously updated for you, you don't have to worry about anything, so this model implies that you focus on delivering the end service rather than delivering the software. When you go to Amazon, you don't get software, you don't get to pick and choose. You just get certain reference architecture that is delivered for you. The guys that want to replicate the Amazon on-premise effectively, in my view, have to be gradually on ramped onto that. You can't just grab the software, do DIY, and expect you'll have an Amazon. There's a second category and the second category is basically like the software guys, the guys that, they are not looking for Amazon, they are looking for cheaper VMware, which is a different experience. I have my own team, I have my opps guys, VMware is great, but it's too expensive, I don't want be locked into it, give me something that is different. So there is value in that, but this is not the segment of the market that we are going after and I don't think that cheaper VMware is what most people refer to when they talk about cloud. So I hope that answers the question. >> Absolutely, so you brought up Spinnaker before. Want to get your thoughts on the things usually, typically on top of OpenStack, but kubernetes, Spinnaker, containers in general. What's Merantis' position on this. What are you hearing from your customers and would love to tease out some of the Spinnaker stuff a bit more. >> Yeah, yeah. Spinnaker thing is fairly new for us. We've been tracking the space and Spinnaker in particular, probably for a year, although have come out publicly just recently about it. The reason why the space was interesting to us was because I think that everybody who is undergoing digital transformation and embracing cloud as a byproduct of it, is really after being able to run the company like a startup, being able to release faster, being able to release more often and in fact, when we'd come to our customers our opening pitch even for OpenStack has always been, buy OpenStack, that'll help you build software faster. On the one hand, it's kind of like a cool pitch, on the other hand, I think everybody in the company, including myself, we're not entirely comfortable with making that leap. OpenStack means I can have an API for my VM's and maybe containers, release software faster. How do you connect the two, right? So, we decided to, in trying to solve this problem of helping companies release software faster, for once rid ourselves of our existing business and our infrastructure centric views of the world and unpack the problem and see what are the real big issues with releasing software faster today. What we realized is that one of the biggest bottlenecks is actually the continuous delivery part because when it comes to continuous delivery or even not to use fancy terms just to, deploying anything to production in the enterprise. It's a very complicated process that requires coordination between multiple teams like the application team, the SRE team, the SEC opps team, all of these teams are using different tools and the handoff process and the handshakes between are very loose, generally so a developer can build something very quickly, but for it to hit production environment, and for the enterprise to actually get feedback from the customers on this, it takes a very long time. So we started thinking about how do you actually shorten that cycle? What can you do? With that kind of frame of mind, we've come across Spinnaker and what we realized is that Spinnaker is actually, in a sense, to continuous delivery what OpenStack is to infrastructure, because the reason why OpenStack became popular is because it's effectively, on one hand, has all these plugins for diverse infrastructure, and on the other hand you can automate the orchestration process of bringing up a VM, instead of having your server people come in, put in the server, your operating people come in and install operating system, the network people come in, configure the network, et cetera, it's actually built a workflow and orchestrated the whole thing automatically without necessarily requiring companies to throw away their existing infrastructure investment. And if you go to the CD space, the situation's kind of similar. You have all these different teams, you have all these different tools, and you need to find a way to automate and orchestrate this process so that you minimize the number of human steps and this is exactly the problem space that Spinnaker's been tackling, so it's a portent of this plugability and having a single API for the entire CD chain and the best implementation would be the one like Netflix has is where the actual developers are able to just deploy to production directly. All of this orchestration between all the testing and all the stuff is done by Spinnaker behind the scenes, so we feel that actually tackling that problem and bringing this innovation into the enterprise is going to be something very dramatic at producing something at an order of magnitude performance gains for our customers. >> Of course, one of the things the foundation announced was the Zule CI/CD. Can you help us reconcile Zule and Spinnaker? >> Zule is from what I would characterize it, primarily deals with VCI side of the spectrum and I mentioned this in my talk, so one of the things we learned as a company is if you unpack CI/CD, which most people, at least in the infrastructure space look at it like it's one thing, like oh CI/CD thing, it's like one thing, basically. In reality, it's not one thing, it's completely separate things, so CI primarily has to do with actually building the code into something that can be deployed, into some deployable artifact and CD takes on from there. So Zule deals primarily with the CI part and it deals with it in a particular way for a set of specific use cases, so Zule emerged as the CI infrastructure for OpenStack Project itself and OpenStack is a very peculiar project in that, there's thousands of developers with different viewpoints on the world that are highly distributed, building many different components that are loosely coupled that all need to come together somehow. So you need to have distributed CI systems that talk to each other and you can merge all of this code and test it all together, so that use case is very relevant for large open source projects and it's probably relevant for enterprises who want to adopt similar type of practices for software development internally, so if you want to some extent de-silo many distributed Dev teams that you have internally as an enterprise and overlay standard process for the CI piece of it for everybody, I think Zule is a good solution and Spinnaker then comes after that, as an additive that does the deployment part. >> John: Yep, that makes sense. >> Alright, for us unfortunately we're running low on time, not going to have much time to dig in to the OpenDev piece. Last question I actually wanted to ask you is what do you say to the naysayers out there. People that aren't here sometimes tend to throw stones at OpenStack failed, OpenStack is dead, all the VCs pulled out years ago. Merantis has been through it and you've got customers. We've had a good experience this week, but it's a different OpenStack than it was a few years ago, so just if you could give us the final word on that. >> Yeah, so, good question. I think that... Basically, OpenStack was at this insane hype back in the day and it's natural to expect that the higher the hype, the bigger going to be the drop, but I think that all technologies ultimately, they can not sustain the hype. You have to level out at a certain point that is equal to the true customer value that you are delivering. So I think that the naysaying is a function of very high hype that has now leveled to the... What it should be, really, in terms of the value being delivered by OpenStack. And there's this pool, it generated this big pool of the naysayers that are walking around and saying that it is dead and the reason why there's the pool is because indeed there is a lot of investment, there is enormous amount of startups that kind of like, ah, we are the cool guys, we are going to change the world, we are going to kill Amazon, whatever, that now are completely gone and now of course they are naysayers and saying that the whole thing's dead, but on the flip side of that, if you just walk around the summit, you can see that there's many more users, there's many more customers that are actually talking about real use cases and then the companies that did stay and stick around, like ourselves, like Red Hat, like Canonical and SUSE, actually, are seeing continued growth and increased usage, so just a nice closing comment is our biggest customer for OpenStack is AT&T. We've been with them for five years now and they've been very excited about it and then, no it's all going to be dead, it's going to be containers now, and nuh nuh nuh, but despite all of that, the usage is continuing to grow and there is 10,000 nodes plus now running physical servers with OpenStack and it continues to work and it just, workloads are moving to it and AT&T is not the only one. There is plenty more that are following this trend, so it's a very long answer to your question, but I remain optimistic. For us it's still very much core of our business and we're continuing to see growth and usage and we are sticking around and sticking to OpenStack. >> Alright, well Boris Renski, it's, as you know, one of our earliest taglines was helping to extract the signal from the noise. We appreciate you helping us to understand the reality outside the hype. So for John Troyer, I'm Stu Miniman, more coverage here from the OpenStack Summit 2018 in Vancouver. Thank you for watching The Cube. (upbeat electronic music) (soft piano music)
SUMMARY :
Brought to you by Red Hat, the OpenStack foundation, for the OpenDev part of this show here. and great to be back. at the OpenStack show. Pure T-shirt for the Breaking Bad fans out there, Merantis Cloud Platform and the key difference has been the new thing we launched in beta and all that stuff, and a lot of the times the general purpose public clouds for some of the reference architectures and for instance at the kubernetes level as well. I think for them to become successful and the whole model that, when you go to Amazon, Absolutely, so you brought up Spinnaker before. and for the enterprise to actually get feedback Of course, one of the things the foundation announced that talk to each other and you can merge People that aren't here sometimes tend to throw stones that the higher the hype, the bigger going to be the drop, the reality outside the hype.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Boris Renski | PERSON | 0.99+ |
John Troyer | PERSON | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Boris | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
AT&T | ORGANIZATION | 0.99+ |
telco | ORGANIZATION | 0.99+ |
Vancouver | LOCATION | 0.99+ |
OpenStack | ORGANIZATION | 0.99+ |
second category | QUANTITY | 0.99+ |
five years | QUANTITY | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Canonical | ORGANIZATION | 0.99+ |
two types | QUANTITY | 0.99+ |
Mirantis | PERSON | 0.99+ |
AT&T. | ORGANIZATION | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
2018 | DATE | 0.99+ |
Breaking Bad | TITLE | 0.99+ |
Vancouver, Canada | LOCATION | 0.99+ |
SUSE | ORGANIZATION | 0.99+ |
OpenStack Summit 2018 | EVENT | 0.99+ |
two | QUANTITY | 0.99+ |
SEC | ORGANIZATION | 0.99+ |
Merantis | ORGANIZATION | 0.99+ |
OpenStack | TITLE | 0.99+ |
Vancouver, British Columbia | LOCATION | 0.99+ |
Spinnaker | ORGANIZATION | 0.98+ |
DriveTrain | TITLE | 0.98+ |
OpenStack Summit North America 2018 | EVENT | 0.98+ |
this week | DATE | 0.98+ |
The Cube | TITLE | 0.97+ |
Merantis | PERSON | 0.97+ |
The Cube | ORGANIZATION | 0.96+ |
10,000 nodes | QUANTITY | 0.95+ |
first experiences | QUANTITY | 0.94+ |
More than half | QUANTITY | 0.94+ |
Zule | ORGANIZATION | 0.94+ |
thousands of developers | QUANTITY | 0.94+ |
OpenDev | EVENT | 0.93+ |
a year | QUANTITY | 0.93+ |
Stu | PERSON | 0.92+ |
SRE | ORGANIZATION | 0.91+ |
about a month and a half ago | DATE | 0.91+ |
today | DATE | 0.91+ |
excel | TITLE | 0.89+ |
Data Science for All: It's a Whole New Game
>> There's a movement that's sweeping across businesses everywhere here in this country and around the world. And it's all about data. Today businesses are being inundated with data. To the tune of over two and a half million gigabytes that'll be generated in the next 60 seconds alone. What do you do with all that data? To extract insights you typically turn to a data scientist. But not necessarily anymore. At least not exclusively. Today the ability to extract value from data is becoming a shared mission. A team effort that spans the organization extending far more widely than ever before. Today, data science is being democratized. >> Data Sciences for All: It's a Whole New Game. >> Welcome everyone, I'm Katie Linendoll. I'm a technology expert writer and I love reporting on all things tech. My fascination with tech started very young. I began coding when I was 12. Received my networking certs by 18 and a degree in IT and new media from Rochester Institute of Technology. So as you can tell, technology has always been a sure passion of mine. Having grown up in the digital age, I love having a career that keeps me at the forefront of science and technology innovations. I spend equal time in the field being hands on as I do on my laptop conducting in depth research. Whether I'm diving underwater with NASA astronauts, witnessing the new ways which mobile technology can help rebuild the Philippine's economy in the wake of super typhoons, or sharing a first look at the newest iPhones on The Today Show, yesterday, I'm always on the hunt for the latest and greatest tech stories. And that's what brought me here. I'll be your host for the next hour and as we explore the new phenomenon that is taking businesses around the world by storm. And data science continues to become democratized and extends beyond the domain of the data scientist. And why there's also a mandate for all of us to become data literate. Now that data science for all drives our AI culture. And we're going to be able to take to the streets and go behind the scenes as we uncover the factors that are fueling this phenomenon and giving rise to a movement that is reshaping how businesses leverage data. And putting organizations on the road to AI. So coming up, I'll be doing interviews with data scientists. We'll see real world demos and take a look at how IBM is changing the game with an open data science platform. We'll also be joined by legendary statistician Nate Silver, founder and editor-in-chief of FiveThirtyEight. Who will shed light on how a data driven mindset is changing everything from business to our culture. We also have a few people who are joining us in our studio, so thank you guys for joining us. Come on, I can do better than that, right? Live studio audience, the fun stuff. And for all of you during the program, I want to remind you to join that conversation on social media using the hashtag DSforAll, it's data science for all. Share your thoughts on what data science and AI means to you and your business. And, let's dive into a whole new game of data science. Now I'd like to welcome my co-host General Manager IBM Analytics, Rob Thomas. >> Hello, Katie. >> Come on guys. >> Yeah, seriously. >> No one's allowed to be quiet during this show, okay? >> Right. >> Or, I'll start calling people out. So Rob, thank you so much. I think you know this conversation, we're calling it a data explosion happening right now. And it's nothing new. And when you and I chatted about it. You've been talking about this for years. You have to ask, is this old news at this point? >> Yeah, I mean, well first of all, the data explosion is not coming, it's here. And everybody's in the middle of it right now. What is different is the economics have changed. And the scale and complexity of the data that organizations are having to deal with has changed. And to this day, 80% of the data in the world still sits behind corporate firewalls. So, that's becoming a problem. It's becoming unmanageable. IT struggles to manage it. The business can't get everything they need. Consumers can't consume it when they want. So we have a challenge here. >> It's challenging in the world of unmanageable. Crazy complexity. If I'm sitting here as an IT manager of my business, I'm probably thinking to myself, this is incredibly frustrating. How in the world am I going to get control of all this data? And probably not just me thinking it. Many individuals here as well. >> Yeah, indeed. Everybody's thinking about how am I going to put data to work in my organization in a way I haven't done before. Look, you've got to have the right expertise, the right tools. The other thing that's happening in the market right now is clients are dealing with multi cloud environments. So data behind the firewall in private cloud, multiple public clouds. And they have to find a way. How am I going to pull meaning out of this data? And that brings us to data science and AI. That's how you get there. >> I understand the data science part but I think we're all starting to hear more about AI. And it's incredible that this buzz word is happening. How do businesses adopt to this AI growth and boom and trend that's happening in this world right now? >> Well, let me define it this way. Data science is a discipline. And machine learning is one technique. And then AI puts both machine learning into practice and applies it to the business. So this is really about how getting your business where it needs to go. And to get to an AI future, you have to lay a data foundation today. I love the phrase, "there's no AI without IA." That means you're not going to get to AI unless you have the right information architecture to start with. >> Can you elaborate though in terms of how businesses can really adopt AI and get started. >> Look, I think there's four things you have to do if you're serious about AI. One is you need a strategy for data acquisition. Two is you need a modern data architecture. Three is you need pervasive automation. And four is you got to expand job roles in the organization. >> Data acquisition. First pillar in this you just discussed. Can we start there and explain why it's so critical in this process? >> Yeah, so let's think about how data acquisition has evolved through the years. 15 years ago, data acquisition was about how do I get data in and out of my ERP system? And that was pretty much solved. Then the mobile revolution happens. And suddenly you've got structured and non-structured data. More than you've ever dealt with. And now you get to where we are today. You're talking terabytes, petabytes of data. >> [Katie] Yottabytes, I heard that word the other day. >> I heard that too. >> Didn't even know what it meant. >> You know how many zeros that is? >> I thought we were in Star Wars. >> Yeah, I think it's a lot of zeroes. >> Yodabytes, it's new. >> So, it's becoming more and more complex in terms of how you acquire data. So that's the new data landscape that every client is dealing with. And if you don't have a strategy for how you acquire that and manage it, you're not going to get to that AI future. >> So a natural segue, if you are one of these businesses, how do you build for the data landscape? >> Yeah, so the question I always hear from customers is we need to evolve our data architecture to be ready for AI. And the way I think about that is it's really about moving from static data repositories to more of a fluid data layer. >> And we continue with the architecture. New data architecture is an interesting buzz word to hear. But it's also one of the four pillars. So if you could dive in there. >> Yeah, I mean it's a new twist on what I would call some core data science concepts. For example, you have to leverage tools with a modern, centralized data warehouse. But your data warehouse can't be stagnant to just what's right there. So you need a way to federate data across different environments. You need to be able to bring your analytics to the data because it's most efficient that way. And ultimately, it's about building an optimized data platform that is designed for data science and AI. Which means it has to be a lot more flexible than what clients have had in the past. >> All right. So we've laid out what you need for driving automation. But where does the machine learning kick in? >> Machine learning is what gives you the ability to automate tasks. And I think about machine learning. It's about predicting and automating. And this will really change the roles of data professionals and IT professionals. For example, a data scientist cannot possibly know every algorithm or every model that they could use. So we can automate the process of algorithm selection. Another example is things like automated data matching. Or metadata creation. Some of these things may not be exciting but they're hugely practical. And so when you think about the real use cases that are driving return on investment today, it's things like that. It's automating the mundane tasks. >> Let's go ahead and come back to something that you mentioned earlier because it's fascinating to be talking about this AI journey, but also significant is the new job roles. And what are those other participants in the analytics pipeline? >> Yeah I think we're just at the start of this idea of new job roles. We have data scientists. We have data engineers. Now you see machine learning engineers. Application developers. What's really happening is that data scientists are no longer allowed to work in their own silo. And so the new job roles is about how does everybody have data first in their mind? And then they're using tools to automate data science, to automate building machine learning into applications. So roles are going to change dramatically in organizations. >> I think that's confusing though because we have several organizations who saying is that highly specialized roles, just for data science? Or is it applicable to everybody across the board? >> Yeah, and that's the big question, right? Cause everybody's thinking how will this apply? Do I want this to be just a small set of people in the organization that will do this? But, our view is data science has to for everybody. It's about bring data science to everybody as a shared mission across the organization. Everybody in the company has to be data literate. And participate in this journey. >> So overall, group effort, has to be a common goal, and we all need to be data literate across the board. >> Absolutely. >> Done deal. But at the end of the day, it's kind of not an easy task. >> It's not. It's not easy but it's maybe not as big of a shift as you would think. Because you have to put data in the hands of people that can do something with it. So, it's very basic. Give access to data. Data's often locked up in a lot of organizations today. Give people the right tools. Embrace the idea of choice or diversity in terms of those tools. That gets you started on this path. >> It's interesting to hear you say essentially you need to train everyone though across the board when it comes to data literacy. And I think people that are coming into the work force don't necessarily have a background or a degree in data science. So how do you manage? >> Yeah, so in many cases that's true. I will tell you some universities are doing amazing work here. One example, University of California Berkeley. They offer a course for all majors. So no matter what you're majoring in, you have a course on foundations of data science. How do you bring data science to every role? So it's starting to happen. We at IBM provide data science courses through CognitiveClass.ai. It's for everybody. It's free. And look, if you want to get your hands on code and just dive right in, you go to datascience.ibm.com. The key point is this though. It's more about attitude than it is aptitude. I think anybody can figure this out. But it's about the attitude to say we're putting data first and we're going to figure out how to make this real in our organization. >> I also have to give a shout out to my alma mater because I have heard that there is an offering in MS in data analytics. And they are always on the forefront of new technologies and new majors and on trend. And I've heard that the placement behind those jobs, people graduating with the MS is high. >> I'm sure it's very high. >> So go Tigers. All right, tangential. Let me get back to something else you touched on earlier because you mentioned that a number of customers ask you how in the world do I get started with AI? It's an overwhelming question. Where do you even begin? What do you tell them? >> Yeah, well things are moving really fast. But the good thing is most organizations I see, they're already on the path, even if they don't know it. They might have a BI practice in place. They've got data warehouses. They've got data lakes. Let me give you an example. AMC Networks. They produce a lot of the shows that I'm sure you watch Katie. >> [Katie] Yes, Breaking Bad, Walking Dead, any fans? >> [Rob] Yeah, we've got a few. >> [Katie] Well you taught me something I didn't even know. Because it's amazing how we have all these different industries, but yet media in itself is impacted too. And this is a good example. >> Absolutely. So, AMC Networks, think about it. They've got ads to place. They want to track viewer behavior. What do people like? What do they dislike? So they have to optimize every aspect of their business from marketing campaigns to promotions to scheduling to ads. And their goal was transform data into business insights and really take the burden off of their IT team that was heavily burdened by obviously a huge increase in data. So their VP of BI took the approach of using machine learning to process large volumes of data. They used a platform that was designed for AI and data processing. It's the IBM analytics system where it's a data warehouse, data science tools are built in. It has in memory data processing. And just like that, they were ready for AI. And they're already seeing that impact in their business. >> Do you think a movement of that nature kind of presses other media conglomerates and organizations to say we need to be doing this too? >> I think it's inevitable that everybody, you're either going to be playing, you're either going to be leading, or you'll be playing catch up. And so, as we talk to clients we think about how do you start down this path now, even if you have to iterate over time? Because otherwise you're going to wake up and you're going to be behind. >> One thing worth noting is we've talked about analytics to the data. It's analytics first to the data, not the other way around. >> Right. So, look. We as a practice, we say you want to bring data to where the data sits. Because it's a lot more efficient that way. It gets you better outcomes in terms of how you train models and it's more efficient. And we think that leads to better outcomes. Other organization will say, "Hey move the data around." And everything becomes a big data movement exercise. But once an organization has started down this path, they're starting to get predictions, they want to do it where it's really easy. And that means analytics applied right where the data sits. >> And worth talking about the role of the data scientist in all of this. It's been called the hot job of the decade. And a Harvard Business Review even dubbed it the sexiest job of the 21st century. >> Yes. >> I want to see this on the cover of Vogue. Like I want to see the first data scientist. Female preferred, on the cover of Vogue. That would be amazing. >> Perhaps you can. >> People agree. So what changes for them? Is this challenging in terms of we talk data science for all. Where do all the data science, is it data science for everyone? And how does it change everything? >> Well, I think of it this way. AI gives software super powers. It really does. It changes the nature of software. And at the center of that is data scientists. So, a data scientist has a set of powers that they've never had before in any organization. And that's why it's a hot profession. Now, on one hand, this has been around for a while. We've had actuaries. We've had statisticians that have really transformed industries. But there are a few things that are new now. We have new tools. New languages. Broader recognition of this need. And while it's important to recognize this critical skill set, you can't just limit it to a few people. This is about scaling it across the organization. And truly making it accessible to all. >> So then do we need more data scientists? Or is this something you train like you said, across the board? >> Well, I think you want to do a little bit of both. We want more. But, we can also train more and make the ones we have more productive. The way I think about it is there's kind of two markets here. And we call it clickers and coders. >> [Katie] I like that. That's good. >> So, let's talk about what that means. So clickers are basically somebody that wants to use tools. Create models visually. It's drag and drop. Something that's very intuitive. Those are the clickers. Nothing wrong with that. It's been valuable for years. There's a new crop of data scientists. They want to code. They want to build with the latest open source tools. They want to write in Python or R. These are the coders. And both approaches are viable. Both approaches are critical. Organizations have to have a way to meet the needs of both of those types. And there's not a lot of things available today that do that. >> Well let's keep going on that. Because I hear you talking about the data scientists role and how it's critical to success, but with the new tools, data science and analytics skills can extend beyond the domain of just the data scientist. >> That's right. So look, we're unifying coders and clickers into a single platform, which we call IBM Data Science Experience. And as the demand for data science expertise grows, so does the need for these kind of tools. To bring them into the same environment. And my view is if you have the right platform, it enables the organization to collaborate. And suddenly you've changed the nature of data science from an individual sport to a team sport. >> So as somebody that, my background is in IT, the question is really is this an additional piece of what IT needs to do in 2017 and beyond? Or is it just another line item to the budget? >> So I'm afraid that some people might view it that way. As just another line item. But, I would challenge that and say data science is going to reinvent IT. It's going to change the nature of IT. And every organization needs to think about what are the skills that are critical? How do we engage a broader team to do this? Because once they get there, this is the chance to reinvent how they're performing IT. >> [Katie] Challenging or not? >> Look it's all a big challenge. Think about everything IT organizations have been through. Some of them were late to things like mobile, but then they caught up. Some were late to cloud, but then they caught up. I would just urge people, don't be late to data science. Use this as your chance to reinvent IT. Start with this notion of clickers and coders. This is a seminal moment. Much like mobile and cloud was. So don't be late. >> And I think it's critical because it could be so costly to wait. And Rob and I were even chatting earlier how data analytics is just moving into all different kinds of industries. And I can tell you even personally being effected by how important the analysis is in working in pediatric cancer for the last seven years. I personally implement virtual reality headsets to pediatric cancer hospitals across the country. And it's great. And it's working phenomenally. And the kids are amazed. And the staff is amazed. But the phase two of this project is putting in little metrics in the hardware that gather the breathing, the heart rate to show that we have data. Proof that we can hand over to the hospitals to continue making this program a success. So just in-- >> That's a great example. >> An interesting example. >> Saving lives? >> Yes. >> That's also applying a lot of what we talked about. >> Exciting stuff in the world of data science. >> Yes. Look, I just add this is an existential moment for every organization. Because what you do in this area is probably going to define how competitive you are going forward. And think about if you don't do something. What if one of your competitors goes and creates an application that's more engaging with clients? So my recommendation is start small. Experiment. Learn. Iterate on projects. Define the business outcomes. Then scale up. It's very doable. But you've got to take the first step. >> First step always critical. And now we're going to get to the fun hands on part of our story. Because in just a moment we're going to take a closer look at what data science can deliver. And where organizations are trying to get to. All right. Thank you Rob and now we've been joined by Siva Anne who is going to help us navigate this demo. First, welcome Siva. Give him a big round of applause. Yeah. All right, Rob break down what we're going to be looking at. You take over this demo. >> All right. So this is going to be pretty interesting. So Siva is going to take us through. So he's going to play the role of a financial adviser. Who wants to help better serve clients through recommendations. And I'm going to really illustrate three things. One is how do you federate data from multiple data sources? Inside the firewall, outside the firewall. How do you apply machine learning to predict and to automate? And then how do you move analytics closer to your data? So, what you're seeing here is a custom application for an investment firm. So, Siva, our financial adviser, welcome. So you can see at the top, we've got market data. We pulled that from an external source. And then we've got Siva's calendar in the middle. He's got clients on the right side. So page down, what else do you see down there Siva? >> [Siva] I can see the recent market news. And in here I can see that JP Morgan is calling for a US dollar rebound in the second half of the year. And, I have upcoming meeting with Leo Rakes. I can get-- >> [Rob] So let's go in there. Why don't you click on Leo Rakes. So, you're sitting at your desk, you're deciding how you're going to spend the day. You know you have a meeting with Leo. So you click on it. You immediately see, all right, so what do we know about him? We've got data governance implemented. So we know his age, we know his degree. We can see he's not that aggressive of a trader. Only six trades in the last few years. But then where it gets interesting is you go to the bottom. You start to see predicted industry affinity. Where did that come from? How do we have that? >> [Siva] So these green lines and red arrows here indicate the trending affinity of Leo Rakes for particular industry stocks. What we've done here is we've built machine learning models using customer's demographic data, his stock portfolios, and browsing behavior to build a model which can predict his affinity for a particular industry. >> [Rob] Interesting. So, I like to think of this, we call it celebrity experiences. So how do you treat every customer like they're a celebrity? So to some extent, we're reading his mind. Because without asking him, we know that he's going to have an affinity for auto stocks. So we go down. Now we look at his portfolio. You can see okay, he's got some different holdings. He's got Amazon, Google, Apple, and then he's got RACE, which is the ticker for Ferrari. You can see that's done incredibly well. And so, as a financial adviser, you look at this and you say, all right, we know he loves auto stocks. Ferrari's done very well. Let's create a hedge. Like what kind of security would interest him as a hedge against his position for Ferrari? Could we go figure that out? >> [Siva] Yes. Given I know that he's gotten an affinity for auto stocks, and I also see that Ferrari has got some terminus gains, I want to lock in these gains by hedging. And I want to do that by picking a auto stock which has got negative correlation with Ferrari. >> [Rob] So this is where we get to the idea of in database analytics. Cause you start clicking that and immediately we're getting instant answers of what's happening. So what did we find here? We're going to compare Ferrari and Honda. >> [Siva] I'm going to compare Ferrari with Honda. And what I see here instantly is that Honda has got a negative correlation with Ferrari, which makes it a perfect mix for his stock portfolio. Given he has an affinity for auto stocks and it correlates negatively with Ferrari. >> [Rob] These are very powerful tools at the hand of a financial adviser. You think about it. As a financial adviser, you wouldn't think about federating data, machine learning, pretty powerful. >> [Siva] Yes. So what we have seen here is that using the common SQL engine, we've been able to federate queries across multiple data sources. Db2 Warehouse in the cloud, IBM's Integrated Analytic System, and Hortonworks powered Hadoop platform for the new speeds. We've been able to use machine learning to derive innovative insights about his stock affinities. And drive the machine learning into the appliance. Closer to where the data resides to deliver high performance analytics. >> [Rob] At scale? >> [Siva] We're able to run millions of these correlations across stocks, currency, other factors. And even score hundreds of customers for their affinities on a daily basis. >> That's great. Siva, thank you for playing the role of financial adviser. So I just want to recap briefly. Cause this really powerful technology that's really simple. So we federated, we aggregated multiple data sources from all over the web and internal systems. And public cloud systems. Machine learning models were built that predicted Leo's affinity for a certain industry. In this case, automotive. And then you see when you deploy analytics next to your data, even a financial adviser, just with the click of a button is getting instant answers so they can go be more productive in their next meeting. This whole idea of celebrity experiences for your customer, that's available for everybody, if you take advantage of these types of capabilities. Katie, I'll hand it back to you. >> Good stuff. Thank you Rob. Thank you Siva. Powerful demonstration on what we've been talking about all afternoon. And thank you again to Siva for helping us navigate. Should be give him one more round of applause? We're going to be back in just a moment to look at how we operationalize all of this data. But in first, here's a message from me. If you're a part of a line of business, your main fear is disruption. You know data is the new goal that can create huge amounts of value. So does your competition. And they may be beating you to it. You're convinced there are new business models and revenue sources hidden in all the data. You just need to figure out how to leverage it. But with the scarcity of data scientists, you really can't rely solely on them. You may need more people throughout the organization that have the ability to extract value from data. And as a data science leader or data scientist, you have a lot of the same concerns. You spend way too much time looking for, prepping, and interpreting data and waiting for models to train. You know you need to operationalize the work you do to provide business value faster. What you want is an easier way to do data prep. And rapidly build models that can be easily deployed, monitored and automatically updated. So whether you're a data scientist, data science leader, or in a line of business, what's the solution? What'll it take to transform the way you work? That's what we're going to explore next. All right, now it's time to delve deeper into the nuts and bolts. The nitty gritty of operationalizing data science and creating a data driven culture. How do you actually do that? Well that's what these experts are here to share with us. I'm joined by Nir Kaldero, who's head of data science at Galvanize, which is an education and training organization. Tricia Wang, who is co-founder of Sudden Compass, a consultancy that helps companies understand people with data. And last, but certainly not least, Michael Li, founder and CEO of Data Incubator, which is a data science train company. All right guys. Shall we get right to it? >> All right. >> So data explosion happening right now. And we are seeing it across the board. I just shared an example of how it's impacting my philanthropic work in pediatric cancer. But you guys each have so many unique roles in your business life. How are you seeing it just blow up in your fields? Nir, your thing? >> Yeah, for example like in Galvanize we train many Fortune 500 companies. And just by looking at the demand of companies that wants us to help them go through this digital transformation is mind-blowing. Data point by itself. >> Okay. Well what we're seeing what's going on is that data science like as a theme, is that it's actually for everyone now. But what's happening is that it's actually meeting non technical people. But what we're seeing is that when non technical people are implementing these tools or coming at these tools without a base line of data literacy, they're often times using it in ways that distance themselves from the customer. Because they're implementing data science tools without a clear purpose, without a clear problem. And so what we do at Sudden Compass is that we work with companies to help them embrace and understand the complexity of their customers. Because often times they are misusing data science to try and flatten their understanding of the customer. As if you can just do more traditional marketing. Where you're putting people into boxes. And I think the whole ROI of data is that you can now understand people's relationships at a much more complex level at a greater scale before. But we have to do this with basic data literacy. And this has to involve technical and non technical people. >> Well you can have all the data in the world, and I think it speaks to, if you're not doing the proper movement with it, forget it. It means nothing at the same time. >> No absolutely. I mean, I think that when you look at the huge explosion in data, that comes with it a huge explosion in data experts. Right, we call them data scientists, data analysts. And sometimes they're people who are very, very talented, like the people here. But sometimes you have people who are maybe re-branding themselves, right? Trying to move up their title one notch to try to attract that higher salary. And I think that that's one of the things that customers are coming to us for, right? They're saying, hey look, there are a lot of people that call themselves data scientists, but we can't really distinguish. So, we have sort of run a fellowship where you help companies hire from a really talented group of folks, who are also truly data scientists and who know all those kind of really important data science tools. And we also help companies internally. Fortune 500 companies who are looking to grow that data science practice that they have. And we help clients like McKinsey, BCG, Bain, train up their customers, also their clients, also their workers to be more data talented. And to build up that data science capabilities. >> And Nir, this is something you work with a lot. A lot of Fortune 500 companies. And when we were speaking earlier, you were saying many of these companies can be in a panic. >> Yeah. >> Explain that. >> Yeah, so you know, not all Fortune 500 companies are fully data driven. And we know that the winners in this fourth industrial revolution, which I like to call the machine intelligence revolution, will be companies who navigate and transform their organization to unlock the power of data science and machine learning. And the companies that are not like that. Or not utilize data science and predictive power well, will pretty much get shredded. So they are in a panic. >> Tricia, companies have to deal with data behind the firewall and in the new multi cloud world. How do organizations start to become driven right to the core? >> I think the most urgent question to become data driven that companies should be asking is how do I bring the complex reality that our customers are experiencing on the ground in to a corporate office? Into the data models. So that question is critical because that's how you actually prevent any big data disasters. And that's how you leverage big data. Because when your data models are really far from your human models, that's when you're going to do things that are really far off from how, it's going to not feel right. That's when Tesco had their terrible big data disaster that they're still recovering from. And so that's why I think it's really important to understand that when you implement big data, you have to further embrace thick data. The qualitative, the emotional stuff, that is difficult to quantify. But then comes the difficult art and science that I think is the next level of data science. Which is that getting non technical and technical people together to ask how do we find those unknown nuggets of insights that are difficult to quantify? Then, how do we do the next step of figuring out how do you mathematically scale those insights into a data model? So that actually is reflective of human understanding? And then we can start making decisions at scale. But you have to have that first. >> That's absolutely right. And I think that when we think about what it means to be a data scientist, right? I always think about it in these sort of three pillars. You have the math side. You have to have that kind of stats, hardcore machine learning background. You have the programming side. You don't work with small amounts of data. You work with large amounts of data. You've got to be able to type the code to make those computers run. But then the last part is that human element. You have to understand the domain expertise. You have to understand what it is that I'm actually analyzing. What's the business proposition? And how are the clients, how are the users actually interacting with the system? That human element that you were talking about. And I think having somebody who understands all of those and not just in isolation, but is able to marry that understanding across those different topics, that's what makes a data scientist. >> But I find that we don't have people with those skill sets. And right now the way I see teams being set up inside companies is that they're creating these isolated data unicorns. These data scientists that have graduated from your programs, which are great. But, they don't involve the people who are the domain experts. They don't involve the designers, the consumer insight people, the people, the salespeople. The people who spend time with the customers day in and day out. Somehow they're left out of the room. They're consulted, but they're not a stakeholder. >> Can I actually >> Yeah, yeah please. >> Can I actually give a quick example? So for example, we at Galvanize train the executives and the managers. And then the technical people, the data scientists and the analysts. But in order to actually see all of the RY behind the data, you also have to have a creative fluid conversation between non technical and technical people. And this is a major trend now. And there's a major gap. And we need to increase awareness and kind of like create a new, kind of like environment where technical people also talks seamlessly with non technical ones. >> [Tricia] We call-- >> That's one of the things that we see a lot. Is one of the trends in-- >> A major trend. >> data science training is it's not just for the data science technical experts. It's not just for one type of person. So a lot of the training we do is sort of data engineers. People who are more on the software engineering side learning more about the stats of math. And then people who are sort of traditionally on the stat side learning more about the engineering. And then managers and people who are data analysts learning about both. >> Michael, I think you said something that was of interest too because I think we can look at IBM Watson as an example. And working in healthcare. The human component. Because often times we talk about machine learning and AI, and data and you get worried that you still need that human component. Especially in the world of healthcare. And I think that's a very strong point when it comes to the data analysis side. Is there any particular example you can speak to of that? >> So I think that there was this really excellent paper a while ago talking about all the neuro net stuff and trained on textual data. So looking at sort of different corpuses. And they found that these models were highly, highly sexist. They would read these corpuses and it's not because neuro nets themselves are sexist. It's because they're reading the things that we write. And it turns out that we write kind of sexist things. And they would sort of find all these patterns in there that were sort of latent, that had a lot of sort of things that maybe we would cringe at if we sort of saw. And I think that's one of the really important aspects of the human element, right? It's being able to come in and sort of say like, okay, I know what the biases of the system are, I know what the biases of the tools are. I need to figure out how to use that to make the tools, make the world a better place. And like another area where this comes up all the time is lending, right? So the federal government has said, and we have a lot of clients in the financial services space, so they're constantly under these kind of rules that they can't make discriminatory lending practices based on a whole set of protected categories. Race, sex, gender, things like that. But, it's very easy when you train a model on credit scores to pick that up. And then to have a model that's inadvertently sexist or racist. And that's where you need the human element to come back in and say okay, look, you're using the classic example would be zip code, you're using zip code as a variable. But when you look at it, zip codes actually highly correlated with race. And you can't do that. So you may inadvertently by sort of following the math and being a little naive about the problem, inadvertently introduce something really horrible into a model and that's where you need a human element to sort of step in and say, okay hold on. Slow things down. This isn't the right way to go. >> And the people who have -- >> I feel like, I can feel her ready to respond. >> Yes, I'm ready. >> She's like let me have at it. >> And the people here it is. And the people who are really great at providing that human intelligence are social scientists. We are trained to look for bias and to understand bias in data. Whether it's quantitative or qualitative. And I really think that we're going to have less of these kind of problems if we had more integrated teams. If it was a mandate from leadership to say no data science team should be without a social scientist, ethnographer, or qualitative researcher of some kind, to be able to help see these biases. >> The talent piece is actually the most crucial-- >> Yeah. >> one here. If you look about how to enable machine intelligence in organization there are the pillars that I have in my head which is the culture, the talent and the technology infrastructure. And I believe and I saw in working very closely with the Fortune 100 and 200 companies that the talent piece is actually the most important crucial hard to get. >> [Tricia] I totally agree. >> It's absolutely true. Yeah, no I mean I think that's sort of like how we came up with our business model. Companies were basically saying hey, I can't hire data scientists. And so we have a fellowship where we get 2,000 applicants each quarter. We take the top 2% and then we sort of train them up. And we work with hiring companies who then want to hire from that population. And so we're sort of helping them solve that problem. And the other half of it is really around training. Cause with a lot of industries, especially if you're sort of in a more regulated industry, there's a lot of nuances to what you're doing. And the fastest way to develop that data science or AI talent may not necessarily be to hire folks who are coming out of a PhD program. It may be to take folks internally who have a lot of that domain knowledge that you have and get them trained up on those data science techniques. So we've had large insurance companies come to us and say hey look, we hire three or four folks from you a quarter. That doesn't move the needle for us. What we really need is take the thousand actuaries and statisticians that we have and get all of them trained up to become a data scientist and become data literate in this new open source world. >> [Katie] Go ahead. >> All right, ladies first. >> Go ahead. >> Are you sure? >> No please, fight first. >> Go ahead. >> Go ahead Nir. >> So this is actually a trend that we have been seeing in the past year or so that companies kind of like start to look how to upscale and look for talent within the organization. So they can actually move them to become more literate and navigate 'em from analyst to data scientist. And from data scientist to machine learner. So this is actually a trend that is happening already for a year or so. >> Yeah, but I also find that after they've gone through that training in getting people skilled up in data science, the next problem that I get is executives coming to say we've invested in all of this. We're still not moving the needle. We've already invested in the right tools. We've gotten the right skills. We have enough scale of people who have these skills. Why are we not moving the needle? And what I explain to them is look, you're still making decisions in the same way. And you're still not involving enough of the non technical people. Especially from marketing, which is now, the CMO's are much more responsible for driving growth in their companies now. But often times it's so hard to change the old way of marketing, which is still like very segmentation. You know, demographic variable based, and we're trying to move people to say no, you have to understand the complexity of customers and not put them in boxes. >> And I think underlying a lot of this discussion is this question of culture, right? >> Yes. >> Absolutely. >> How do you build a data driven culture? And I think that that culture question, one of the ways that comes up quite often in especially in large, Fortune 500 enterprises, is that they are very, they're not very comfortable with sort of example, open source architecture. Open source tools. And there is some sort of residual bias that that's somehow dangerous. So security vulnerability. And I think that that's part of the cultural challenge that they often have in terms of how do I build a more data driven organization? Well a lot of the talent really wants to use these kind of tools. And I mean, just to give you an example, we are partnering with one of the major cloud providers to sort of help make open source tools more user friendly on their platform. So trying to help them attract the best technologists to use their platform because they want and they understand the value of having that kind of open source technology work seamlessly on their platforms. So I think that just sort of goes to show you how important open source is in this movement. And how much large companies and Fortune 500 companies and a lot of the ones we work with have to embrace that. >> Yeah, and I'm seeing it in our work. Even when we're working with Fortune 500 companies, is that they've already gone through the first phase of data science work. Where I explain it was all about the tools and getting the right tools and architecture in place. And then companies started moving into getting the right skill set in place. Getting the right talent. And what you're talking about with culture is really where I think we're talking about the third phase of data science, which is looking at communication of these technical frameworks so that we can get non technical people really comfortable in the same room with data scientists. That is going to be the phase, that's really where I see the pain point. And that's why at Sudden Compass, we're really dedicated to working with each other to figure out how do we solve this problem now? >> And I think that communication between the technical stakeholders and management and leadership. That's a very critical piece of this. You can't have a successful data science organization without that. >> Absolutely. >> And I think that actually some of the most popular trainings we've had recently are from managers and executives who are looking to say, how do I become more data savvy? How do I figure out what is this data science thing and how do I communicate with my data scientists? >> You guys made this way too easy. I was just going to get some popcorn and watch it play out. >> Nir, last 30 seconds. I want to leave you with an opportunity to, anything you want to add to this conversation? >> I think one thing to conclude is to say that companies that are not data driven is about time to hit refresh and figure how they transition the organization to become data driven. To become agile and nimble so they can actually see what opportunities from this important industrial revolution. Otherwise, unfortunately they will have hard time to survive. >> [Katie] All agreed? >> [Tricia] Absolutely, you're right. >> Michael, Trish, Nir, thank you so much. Fascinating discussion. And thank you guys again for joining us. We will be right back with another great demo. Right after this. >> Thank you Katie. >> Once again, thank you for an excellent discussion. Weren't they great guys? And thank you for everyone who's tuning in on the live webcast. As you can hear, we have an amazing studio audience here. And we're going to keep things moving. I'm now joined by Daniel Hernandez and Siva Anne. And we're going to turn our attention to how you can deliver on what they're talking about using data science experience to do data science faster. >> Thank you Katie. Siva and I are going to spend the next 10 minutes showing you how you can deliver on what they were saying using the IBM Data Science Experience to do data science faster. We'll demonstrate through new features we introduced this week how teams can work together more effectively across the entire analytics life cycle. How you can take advantage of any and all data no matter where it is and what it is. How you could use your favorite tools from open source. And finally how you could build models anywhere and employ them close to where your data is. Remember the financial adviser app Rob showed you? To build an app like that, we needed a team of data scientists, developers, data engineers, and IT staff to collaborate. We do this in the Data Science Experience through a concept we call projects. When I create a new project, I can now use the new Github integration feature. We're doing for data science what we've been doing for developers for years. Distributed teams can work together on analytics projects. And take advantage of Github's version management and change management features. This is a huge deal. Let's explore the project we created for the financial adviser app. As you can see, our data engineer Joane, our developer Rob, and others are collaborating this project. Joane got things started by bringing together the trusted data sources we need to build the app. Taking a closer look at the data, we see that our customer and profile data is stored on our recently announced IBM Integrated Analytics System, which runs safely behind our firewall. We also needed macro economic data, which she was able to find in the Federal Reserve. And she stored it in our Db2 Warehouse on Cloud. And finally, she selected stock news data from NASDAQ.com and landed that in a Hadoop cluster, which happens to be powered by Hortonworks. We added a new feature to the Data Science Experience so that when it's installed with Hortonworks, it automatically uses a need of security and governance controls within the cluster so your data is always secure and safe. Now we want to show you the news data we stored in the Hortonworks cluster. This is the mean administrative console. It's powered by an open source project called Ambari. And here's the news data. It's in parquet files stored in HDFS, which happens to be a distributive file system. To get the data from NASDAQ into our cluster, we used IBM's BigIntegrate and BigQuality to create automatic data pipelines that acquire, cleanse, and ingest that news data. Once the data's available, we use IBM's Big SQL to query that data using SQL statements that are much like the ones we would use for any relation of data, including the data that we have in the Integrated Analytics System and Db2 Warehouse on Cloud. This and the federation capabilities that Big SQL offers dramatically simplifies data acquisition. Now we want to show you how we support a brand new tool that we're excited about. Since we launched last summer, the Data Science Experience has supported Jupyter and R for data analysis and visualization. In this week's update, we deeply integrated another great open source project called Apache Zeppelin. It's known for having great visualization support, advanced collaboration features, and is growing in popularity amongst the data science community. This is an example of Apache Zeppelin and the notebook we created through it to explore some of our data. Notice how wonderful and easy the data visualizations are. Now we want to walk you through the Jupyter notebook we created to explore our customer preference for stocks. We use notebooks to understand and explore data. To identify the features that have some predictive power. Ultimately, we're trying to assess what ultimately is driving customer stock preference. Here we did the analysis to identify the attributes of customers that are likely to purchase auto stocks. We used this understanding to build our machine learning model. For building machine learning models, we've always had tools integrated into the Data Science Experience. But sometimes you need to use tools you already invested in. Like our very own SPSS as well as SAS. Through new import feature, you can easily import those models created with those tools. This helps you avoid vendor lock-in, and simplify the development, training, deployment, and management of all your models. To build the models we used in app, we could have coded, but we prefer a visual experience. We used our customer profile data in the Integrated Analytic System. Used the Auto Data Preparation to cleanse our data. Choose the binary classification algorithms. Let the Data Science Experience evaluate between logistic regression and gradient boosted tree. It's doing the heavy work for us. As you can see here, the Data Science Experience generated performance metrics that show us that the gradient boosted tree is the best performing algorithm for the data we gave it. Once we save this model, it's automatically deployed and available for developers to use. Any application developer can take this endpoint and consume it like they would any other API inside of the apps they built. We've made training and creating machine learning models super simple. But what about the operations? A lot of companies are struggling to ensure their model performance remains high over time. In our financial adviser app, we know that customer data changes constantly, so we need to always monitor model performance and ensure that our models are retrained as is necessary. This is a dashboard that shows the performance of our models and lets our teams monitor and retrain those models so that they're always performing to our standards. So far we've been showing you the Data Science Experience available behind the firewall that we're using to build and train models. Through a new publish feature, you can build models and deploy them anywhere. In another environment, private, public, or anywhere else with just a few clicks. So here we're publishing our model to the Watson machine learning service. It happens to be in the IBM cloud. And also deeply integrated with our Data Science Experience. After publishing and switching to the Watson machine learning service, you can see that our stock affinity and model that we just published is there and ready for use. So this is incredibly important. I just want to say it again. The Data Science Experience allows you to train models behind your own firewall, take advantage of your proprietary and sensitive data, and then deploy those models wherever you want with ease. So summarize what we just showed you. First, IBM's Data Science Experience supports all teams. You saw how our data engineer populated our project with trusted data sets. Our data scientists developed, trained, and tested a machine learning model. Our developers used APIs to integrate machine learning into their apps. And how IT can use our Integrated Model Management dashboard to monitor and manage model performance. Second, we support all data. On premises, in the cloud, structured, unstructured, inside of your firewall, and outside of it. We help you bring analytics and governance to where your data is. Third, we support all tools. The data science tools that you depend on are readily available and deeply integrated. This includes capabilities from great partners like Hortonworks. And powerful tools like our very own IBM SPSS. And fourth, and finally, we support all deployments. You can build your models anywhere, and deploy them right next to where your data is. Whether that's in the public cloud, private cloud, or even on the world's most reliable transaction platform, IBM z. So see for yourself. Go to the Data Science Experience website, take us for a spin. And if you happen to be ready right now, our recently created Data Science Elite Team can help you get started and run experiments alongside you with no charge. Thank you very much. >> Thank you very much Daniel. It seems like a great time to get started. And thanks to Siva for taking us through it. Rob and I will be back in just a moment to add some perspective right after this. All right, once again joined by Rob Thomas. And Rob obviously we got a lot of information here. >> Yes, we've covered a lot of ground. >> This is intense. You got to break it down for me cause I think we zoom out and see the big picture. What better data science can deliver to a business? Why is this so important? I mean we've heard it through and through. >> Yeah, well, I heard it a couple times. But it starts with businesses have to embrace a data driven culture. And it is a change. And we need to make data accessible with the right tools in a collaborative culture because we've got diverse skill sets in every organization. But data driven companies succeed when data science tools are in the hands of everyone. And I think that's a new thought. I think most companies think just get your data scientist some tools, you'll be fine. This is about tools in the hands of everyone. I think the panel did a great job of describing about how we get to data science for all. Building a data culture, making it a part of your everyday operations, and the highlights of what Daniel just showed us, that's some pretty cool features for how organizations can get to this, which is you can see IBM's Data Science Experience, how that supports all teams. You saw data analysts, data scientists, application developer, IT staff, all working together. Second, you saw how we support all tools. And your choice of tools. So the most popular data science libraries integrated into one platform. And we saw some new capabilities that help companies avoid lock-in, where you can import existing models created from specialist tools like SPSS or others. And then deploy them and manage them inside of Data Science Experience. That's pretty interesting. And lastly, you see we continue to build on this best of open tools. Partnering with companies like H2O, Hortonworks, and others. Third, you can see how you use all data no matter where it lives. That's a key challenge every organization's going to face. Private, public, federating all data sources. We announced new integration with the Hortonworks data platform where we deploy machine learning models where your data resides. That's been a key theme. Analytics where the data is. And lastly, supporting all types of deployments. Deploy them in your Hadoop cluster. Deploy them in your Integrated Analytic System. Or deploy them in z, just to name a few. A lot of different options here. But look, don't believe anything I say. Go try it for yourself. Data Science Experience, anybody can use it. Go to datascience.ibm.com and look, if you want to start right now, we just created a team that we call Data Science Elite. These are the best data scientists in the world that will come sit down with you and co-create solutions, models, and prove out a proof of concept. >> Good stuff. Thank you Rob. So you might be asking what does an organization look like that embraces data science for all? And how could it transform your role? I'm going to head back to the office and check it out. Let's start with the perspective of the line of business. What's changed? Well, now you're starting to explore new business models. You've uncovered opportunities for new revenue sources and all that hidden data. And being disrupted is no longer keeping you up at night. As a data science leader, you're beginning to collaborate with a line of business to better understand and translate the objectives into the models that are being built. Your data scientists are also starting to collaborate with the less technical team members and analysts who are working closest to the business problem. And as a data scientist, you stop feeling like you're falling behind. Open source tools are keeping you current. You're also starting to operationalize the work that you do. And you get to do more of what you love. Explore data, build models, put your models into production, and create business impact. All in all, it's not a bad scenario. Thanks. All right. We are back and coming up next, oh this is a special time right now. Cause we got a great guest speaker. New York Magazine called him the spreadsheet psychic and number crunching prodigy who went from correctly forecasting baseball games to correctly forecasting presidential elections. He even invented a proprietary algorithm called PECOTA for predicting future performance by baseball players and teams. And his New York Times bestselling book, The Signal and the Noise was named by Amazon.com as the number one best non-fiction book of 2012. He's currently the Editor in Chief of the award winning website, FiveThirtyEight and appears on ESPN as an on air commentator. Big round of applause. My pleasure to welcome Nate Silver. >> Thank you. We met backstage. >> Yes. >> It feels weird to re-shake your hand, but you know, for the audience. >> I had to give the intense firm grip. >> Definitely. >> The ninja grip. So you and I have crossed paths kind of digitally in the past, which it really interesting, is I started my career at ESPN. And I started as a production assistant, then later back on air for sports technology. And I go to you to talk about sports because-- >> Yeah. >> Wow, has ESPN upped their game in terms of understanding the importance of data and analytics. And what it brings. Not just to MLB, but across the board. >> No, it's really infused into the way they present the broadcast. You'll have win probability on the bottom line. And they'll incorporate FiveThirtyEight metrics into how they cover college football for example. So, ESPN ... Sports is maybe the perfect, if you're a data scientist, like the perfect kind of test case. And the reason being that sports consists of problems that have rules. And have structure. And when problems have rules and structure, then it's a lot easier to work with. So it's a great way to kind of improve your skills as a data scientist. Of course, there are also important real world problems that are more open ended, and those present different types of challenges. But it's such a natural fit. The teams. Think about the teams playing the World Series tonight. The Dodgers and the Astros are both like very data driven, especially Houston. Golden State Warriors, the NBA Champions, extremely data driven. New England Patriots, relative to an NFL team, it's shifted a little bit, the NFL bar is lower. But the Patriots are certainly very analytical in how they make decisions. So, you can't talk about sports without talking about analytics. >> And I was going to save the baseball question for later. Cause we are moments away from game seven. >> Yeah. >> Is everyone else watching game seven? It's been an incredible series. Probably one of the best of all time. >> Yeah, I mean-- >> You have a prediction here? >> You can mention that too. So I don't have a prediction. FiveThirtyEight has the Dodgers with a 60% chance of winning. >> [Katie] LA Fans. >> So you have two teams that are about equal. But the Dodgers pitching staff is in better shape at the moment. The end of a seven game series. And they're at home. >> But the statistics behind the two teams is pretty incredible. >> Yeah. It's like the first World Series in I think 56 years or something where you have two 100 win teams facing one another. There have been a lot of parity in baseball for a lot of years. Not that many offensive overall juggernauts. But this year, and last year with the Cubs and the Indians too really. But this year, you have really spectacular teams in the World Series. It kind of is a showcase of modern baseball. Lots of home runs. Lots of strikeouts. >> [Katie] Lots of extra innings. >> Lots of extra innings. Good defense. Lots of pitching changes. So if you love the modern baseball game, it's been about the best example that you've had. If you like a little bit more contact, and fewer strikeouts, maybe not so much. But it's been a spectacular and very exciting World Series. It's amazing to talk. MLB is huge with analysis. I mean, hands down. But across the board, if you can provide a few examples. Because there's so many teams in front offices putting such an, just a heavy intensity on the analysis side. And where the teams are going. And if you could provide any specific examples of teams that have really blown your mind. Especially over the last year or two. Because every year it gets more exciting if you will. I mean, so a big thing in baseball is defensive shifts. So if you watch tonight, you'll probably see a couple of plays where if you're used to watching baseball, a guy makes really solid contact. And there's a fielder there that you don't think should be there. But that's really very data driven where you analyze where's this guy hit the ball. That part's not so hard. But also there's game theory involved. Because you have to adjust for the fact that he knows where you're positioning the defenders. He's trying therefore to make adjustments to his own swing and so that's been a major innovation in how baseball is played. You know, how bullpens are used too. Where teams have realized that actually having a guy, across all sports pretty much, realizing the importance of rest. And of fatigue. And that you can be the best pitcher in the world, but guess what? After four or five innings, you're probably not as good as a guy who has a fresh arm necessarily. So I mean, it really is like, these are not subtle things anymore. It's not just oh, on base percentage is valuable. It really effects kind of every strategic decision in baseball. The NBA, if you watch an NBA game tonight, see how many three point shots are taken. That's in part because of data. And teams realizing hey, three points is worth more than two, once you're more than about five feet from the basket, the shooting percentage gets really flat. And so it's revolutionary, right? Like teams that will shoot almost half their shots from the three point range nowadays. Larry Bird, who wound up being one of the greatest three point shooters of all time, took only eight three pointers his first year in the NBA. It's quite noticeable if you watch baseball or basketball in particular. >> Not to focus too much on sports. One final question. In terms of Major League Soccer, and now in NFL, we're having the analysis and having wearables where it can now showcase if they wanted to on screen, heart rate and breathing and how much exertion. How much data is too much data? And when does it ruin the sport? >> So, I don't think, I mean, again, it goes sport by sport a little bit. I think in basketball you actually have a more exciting game. I think the game is more open now. You have more three pointers. You have guys getting higher assist totals. But you know, I don't know. I'm not one of those people who thinks look, if you love baseball or basketball, and you go in to work for the Astros, the Yankees or the Knicks, they probably need some help, right? You really have to be passionate about that sport. Because it's all based on what questions am I asking? As I'm a fan or I guess an employee of the team. Or a player watching the game. And there isn't really any substitute I don't think for the insight and intuition that a curious human has to kind of ask the right questions. So we can talk at great length about what tools do you then apply when you have those questions, but that still comes from people. I don't think machine learning could help with what questions do I want to ask of the data. It might help you get the answers. >> If you have a mid-fielder in a soccer game though, not exerting, only 80%, and you're seeing that on a screen as a fan, and you're saying could that person get fired at the end of the day? One day, with the data? >> So we found that actually some in soccer in particular, some of the better players are actually more still. So Leo Messi, maybe the best player in the world, doesn't move as much as other soccer players do. And the reason being that A) he kind of knows how to position himself in the first place. B) he realizes that you make a run, and you're out of position. That's quite fatiguing. And particularly soccer, like basketball, is a sport where it's incredibly fatiguing. And so, sometimes the guys who conserve their energy, that kind of old school mentality, you have to hustle at every moment. That is not helpful to the team if you're hustling on an irrelevant play. And therefore, on a critical play, can't get back on defense, for example. >> Sports, but also data is moving exponentially as we're just speaking about today. Tech, healthcare, every different industry. Is there any particular that's a favorite of yours to cover? And I imagine they're all different as well. >> I mean, I do like sports. We cover a lot of politics too. Which is different. I mean in politics I think people aren't intuitively as data driven as they might be in sports for example. It's impressive to follow the breakthroughs in artificial intelligence. It started out just as kind of playing games and playing chess and poker and Go and things like that. But you really have seen a lot of breakthroughs in the last couple of years. But yeah, it's kind of infused into everything really. >> You're known for your work in politics though. Especially presidential campaigns. >> Yeah. >> This year, in particular. Was it insanely challenging? What was the most notable thing that came out of any of your predictions? >> I mean, in some ways, looking at the polling was the easiest lens to look at it. So I think there's kind of a myth that last year's result was a big shock and it wasn't really. If you did the modeling in the right way, then you realized that number one, polls have a margin of error. And so when a candidate has a three point lead, that's not particularly safe. Number two, the outcome between different states is correlated. Meaning that it's not that much of a surprise that Clinton lost Wisconsin and Michigan and Pennsylvania and Ohio. You know I'm from Michigan. Have friends from all those states. Kind of the same types of people in those states. Those outcomes are all correlated. So what people thought was a big upset for the polls I think was an example of how data science done carefully and correctly where you understand probabilities, understand correlations. Our model gave Trump a 30% chance of winning. Others models gave him a 1% chance. And so that was interesting in that it showed that number one, that modeling strategies and skill do matter quite a lot. When you have someone saying 30% versus 1%. I mean, that's a very very big spread. And number two, that these aren't like solved problems necessarily. Although again, the problem with elections is that you only have one election every four years. So I can be very confident that I have a better model. Even one year of data doesn't really prove very much. Even five or 10 years doesn't really prove very much. And so, being aware of the limitations to some extent intrinsically in elections when you only get one kind of new training example every four years, there's not really any way around that. There are ways to be more robust to sparce data environments. But if you're identifying different types of business problems to solve, figuring out what's a solvable problem where I can add value with data science is a really key part of what you're doing. >> You're such a leader in this space. In data and analysis. It would be interesting to kind of peek back the curtain, understand how you operate but also how large is your team? How you're putting together information. How quickly you're putting it out. Cause I think in this right now world where everybody wants things instantly-- >> Yeah. >> There's also, you want to be first too in the world of journalism. But you don't want to be inaccurate because that's your credibility. >> We talked about this before, right? I think on average, speed is a little bit overrated in journalism. >> [Katie] I think it's a big problem in journalism. >> Yeah. >> Especially in the tech world. You have to be first. You have to be first. And it's just pumping out, pumping out. And there's got to be more time spent on stories if I can speak subjectively. >> Yeah, for sure. But at the same time, we are reacting to the news. And so we have people that come in, we hire most of our people actually from journalism. >> [Katie] How many people do you have on your team? >> About 35. But, if you get someone who comes in from an academic track for example, they might be surprised at how fast journalism is. That even though we might be slower than the average website, the fact that there's a tragic event in New York, are there things we have to say about that? A candidate drops out of the presidential race, are things we have to say about that. In periods ranging from minutes to days as opposed to kind of weeks to months to years in the academic world. The corporate world moves faster. What is a little different about journalism is that you are expected to have more precision where people notice when you make a mistake. In corporations, you have maybe less transparency. If you make 10 investments and seven of them turn out well, then you'll get a lot of profit from that, right? In journalism, it's a little different. If you make kind of seven predictions or say seven things, and seven of them are very accurate and three of them aren't, you'll still get criticized a lot for the three. Just because that's kind of the way that journalism is. And so the kind of combination of needing, not having that much tolerance for mistakes, but also needing to be fast. That is tricky. And I criticize other journalists sometimes including for not being data driven enough, but the best excuse any journalist has, this is happening really fast and it's my job to kind of figure out in real time what's going on and provide useful information to the readers. And that's really difficult. Especially in a world where literally, I'll probably get off the stage and check my phone and who knows what President Trump will have tweeted or what things will have happened. But it really is a kind of 24/7. >> Well because it's 24/7 with FiveThirtyEight, one of the most well known sites for data, are you feeling micromanagey on your people? Because you do have to hit this balance. You can't have something come out four or five days later. >> Yeah, I'm not -- >> Are you overseeing everything? >> I'm not by nature a micromanager. And so you try to hire well. You try and let people make mistakes. And the flip side of this is that if a news organization that never had any mistakes, never had any corrections, that's raw, right? You have to have some tolerance for error because you are trying to decide things in real time. And figure things out. I think transparency's a big part of that. Say here's what we think, and here's why we think it. If we have a model to say it's not just the final number, here's a lot of detail about how that's calculated. In some case we release the code and the raw data. Sometimes we don't because there's a proprietary advantage. But quite often we're saying we want you to trust us and it's so important that you trust us, here's the model. Go play around with it yourself. Here's the data. And that's also I think an important value. >> That speaks to open source. And your perspective on that in general. >> Yeah, I mean, look, I'm a big fan of open source. I worry that I think sometimes the trends are a little bit away from open source. But by the way, one thing that happens when you share your data or you share your thinking at least in lieu of the data, and you can definitely do both is that readers will catch embarrassing mistakes that you made. By the way, even having open sourceness within your team, I mean we have editors and copy editors who often save you from really embarrassing mistakes. And by the way, it's not necessarily people who have a training in data science. I would guess that of our 35 people, maybe only five to 10 have a kind of formal background in what you would call data science. >> [Katie] I think that speaks to the theme here. >> Yeah. >> [Katie] That everybody's kind of got to be data literate. >> But yeah, it is like you have a good intuition. You have a good BS detector basically. And you have a good intuition for hey, this looks a little bit out of line to me. And sometimes that can be based on domain knowledge, right? We have one of our copy editors, she's a big college football fan. And we had an algorithm we released that tries to predict what the human being selection committee will do, and she was like, why is LSU rated so high? Cause I know that LSU sucks this year. And we looked at it, and she was right. There was a bug where it had forgotten to account for their last game where they lost to Troy or something and so -- >> That also speaks to the human element as well. >> It does. In general as a rule, if you're designing a kind of regression based model, it's different in machine learning where you have more, when you kind of build in the tolerance for error. But if you're trying to do something more precise, then so much of it is just debugging. It's saying that looks wrong to me. And I'm going to investigate that. And sometimes it's not wrong. Sometimes your model actually has an insight that you didn't have yourself. But fairly often, it is. And I think kind of what you learn is like, hey if there's something that bothers me, I want to go investigate that now and debug that now. Because the last thing you want is where all of a sudden, the answer you're putting out there in the world hinges on a mistake that you made. Cause you never know if you have so to speak, 1,000 lines of code and they all perform something differently. You never know when you get in a weird edge case where this one decision you made winds up being the difference between your having a good forecast and a bad one. In a defensible position and a indefensible one. So we definitely are quite diligent and careful. But it's also kind of knowing like, hey, where is an approximation good enough and where do I need more precision? Cause you could also drive yourself crazy in the other direction where you know, it doesn't matter if the answer is 91.2 versus 90. And so you can kind of go 91.2, three, four and it's like kind of A) false precision and B) not a good use of your time. So that's where I do still spend a lot of time is thinking about which problems are "solvable" or approachable with data and which ones aren't. And when they're not by the way, you're still allowed to report on them. We are a news organization so we do traditional reporting as well. And then kind of figuring out when do you need precision versus when is being pointed in the right direction good enough? >> I would love to get inside your brain and see how you operate on just like an everyday walking to Walgreens movement. It's like oh, if I cross the street in .2-- >> It's not, I mean-- >> Is it like maddening in there? >> No, not really. I mean, I'm like-- >> This is an honest question. >> If I'm looking for airfares, I'm a little more careful. But no, part of it's like you don't want to waste time on unimportant decisions, right? I will sometimes, if I can't decide what to eat at a restaurant, I'll flip a coin. If the chicken and the pasta both sound really good-- >> That's not high tech Nate. We want better. >> But that's the point, right? It's like both the chicken and the pasta are going to be really darn good, right? So I'm not going to waste my time trying to figure it out. I'm just going to have an arbitrary way to decide. >> Serious and business, how organizations in the last three to five years have just evolved with this data boom. How are you seeing it as from a consultant point of view? Do you think it's an exciting time? Do you think it's a you must act now time? >> I mean, we do know that you definitely see a lot of talent among the younger generation now. That so FiveThirtyEight has been at ESPN for four years now. And man, the quality of the interns we get has improved so much in four years. The quality of the kind of young hires that we make straight out of college has improved so much in four years. So you definitely do see a younger generation for which this is just part of their bloodstream and part of their DNA. And also, particular fields that we're interested in. So we're interested in people who have both a data and a journalism background. We're interested in people who have a visualization and a coding background. A lot of what we do is very much interactive graphics and so forth. And so we do see those skill sets coming into play a lot more. And so the kind of shortage of talent that had I think frankly been a problem for a long time, I'm optimistic based on the young people in our office, it's a little anecdotal but you can tell that there are so many more programs that are kind of teaching students the right set of skills that maybe weren't taught as much a few years ago. >> But when you're seeing these big organizations, ESPN as perfect example, moving more towards data and analytics than ever before. >> Yeah. >> You would say that's obviously true. >> Oh for sure. >> If you're not moving that direction, you're going to fall behind quickly. >> Yeah and the thing is, if you read my book or I guess people have a copy of the book. In some ways it's saying hey, there are lot of ways to screw up when you're using data. And we've built bad models. We've had models that were bad and got good results. Good models that got bad results and everything else. But the point is that the reason to be out in front of the problem is so you give yourself more runway to make errors and mistakes. And to learn kind of what works and what doesn't and which people to put on the problem. I sometimes do worry that a company says oh we need data. And everyone kind of agrees on that now. We need data science. Then they have some big test case. And they have a failure. And they maybe have a failure because they didn't know really how to use it well enough. But learning from that and iterating on that. And so by the time that you're on the third generation of kind of a problem that you're trying to solve, and you're watching everyone else make the mistake that you made five years ago, I mean, that's really powerful. But that doesn't mean that getting invested in it now, getting invested both in technology and the human capital side is important. >> Final question for you as we run out of time. 2018 beyond, what is your biggest project in terms of data gathering that you're working on? >> There's a midterm election coming up. That's a big thing for us. We're also doing a lot of work with NBA data. So for four years now, the NBA has been collecting player tracking data. So they have 3D cameras in every arena. So they can actually kind of quantify for example how fast a fast break is, for example. Or literally where a player is and where the ball is. For every NBA game now for the past four or five years. And there hasn't really been an overall metric of player value that's taken advantage of that. The teams do it. But in the NBA, the teams are a little bit ahead of journalists and analysts. So we're trying to have a really truly next generation stat. It's a lot of data. Sometimes I now more oversee things than I once did myself. And so you're parsing through many, many, many lines of code. But yeah, so we hope to have that out at some point in the next few months. >> Anything you've personally been passionate about that you've wanted to work on and kind of solve? >> I mean, the NBA thing, I am a pretty big basketball fan. >> You can do better than that. Come on, I want something real personal that you're like I got to crunch the numbers. >> You know, we tried to figure out where the best burrito in America was a few years ago. >> I'm going to end it there. >> Okay. >> Nate, thank you so much for joining us. It's been an absolute pleasure. Thank you. >> Cool, thank you. >> I thought we were going to chat World Series, you know. Burritos, important. I want to thank everybody here in our audience. Let's give him a big round of applause. >> [Nate] Thank you everyone. >> Perfect way to end the day. And for a replay of today's program, just head on over to ibm.com/dsforall. I'm Katie Linendoll. And this has been Data Science for All: It's a Whole New Game. Test one, two. One, two, three. Hi guys, I just want to quickly let you know as you're exiting. A few heads up. Downstairs right now there's going to be a meet and greet with Nate. And we're going to be doing that with clients and customers who are interested. So I would recommend before the game starts, and you lose Nate, head on downstairs. And also the gallery is open until eight p.m. with demos and activations. And tomorrow, make sure to come back too. Because we have exciting stuff. I'll be joining you as your host. And we're kicking off at nine a.m. So bye everybody, thank you so much. >> [Announcer] Ladies and gentlemen, thank you for attending this evening's webcast. If you are not attending all cloud and cognitive summit tomorrow, we ask that you recycle your name badge at the registration desk. Thank you. Also, please note there are two exits on the back of the room on either side of the room. Have a good evening. Ladies and gentlemen, the meet and greet will be on stage. Thank you.
SUMMARY :
Today the ability to extract value from data is becoming a shared mission. And for all of you during the program, I want to remind you to join that conversation on And when you and I chatted about it. And the scale and complexity of the data that organizations are having to deal with has It's challenging in the world of unmanageable. And they have to find a way. AI. And it's incredible that this buzz word is happening. And to get to an AI future, you have to lay a data foundation today. And four is you got to expand job roles in the organization. First pillar in this you just discussed. And now you get to where we are today. And if you don't have a strategy for how you acquire that and manage it, you're not going And the way I think about that is it's really about moving from static data repositories And we continue with the architecture. So you need a way to federate data across different environments. So we've laid out what you need for driving automation. And so when you think about the real use cases that are driving return on investment today, Let's go ahead and come back to something that you mentioned earlier because it's fascinating And so the new job roles is about how does everybody have data first in their mind? Everybody in the company has to be data literate. So overall, group effort, has to be a common goal, and we all need to be data literate But at the end of the day, it's kind of not an easy task. It's not easy but it's maybe not as big of a shift as you would think. It's interesting to hear you say essentially you need to train everyone though across the And look, if you want to get your hands on code and just dive right in, you go to datascience.ibm.com. And I've heard that the placement behind those jobs, people graduating with the MS is high. Let me get back to something else you touched on earlier because you mentioned that a number They produce a lot of the shows that I'm sure you watch Katie. And this is a good example. So they have to optimize every aspect of their business from marketing campaigns to promotions And so, as we talk to clients we think about how do you start down this path now, even It's analytics first to the data, not the other way around. We as a practice, we say you want to bring data to where the data sits. And a Harvard Business Review even dubbed it the sexiest job of the 21st century. Female preferred, on the cover of Vogue. And how does it change everything? And while it's important to recognize this critical skill set, you can't just limit it And we call it clickers and coders. [Katie] I like that. And there's not a lot of things available today that do that. Because I hear you talking about the data scientists role and how it's critical to success, And my view is if you have the right platform, it enables the organization to collaborate. And every organization needs to think about what are the skills that are critical? Use this as your chance to reinvent IT. And I can tell you even personally being effected by how important the analysis is in working And think about if you don't do something. And now we're going to get to the fun hands on part of our story. And then how do you move analytics closer to your data? And in here I can see that JP Morgan is calling for a US dollar rebound in the second half But then where it gets interesting is you go to the bottom. data, his stock portfolios, and browsing behavior to build a model which can predict his affinity And so, as a financial adviser, you look at this and you say, all right, we know he loves And I want to do that by picking a auto stock which has got negative correlation with Ferrari. Cause you start clicking that and immediately we're getting instant answers of what's happening. And what I see here instantly is that Honda has got a negative correlation with Ferrari, As a financial adviser, you wouldn't think about federating data, machine learning, pretty And drive the machine learning into the appliance. And even score hundreds of customers for their affinities on a daily basis. And then you see when you deploy analytics next to your data, even a financial adviser, And as a data science leader or data scientist, you have a lot of the same concerns. But you guys each have so many unique roles in your business life. And just by looking at the demand of companies that wants us to help them go through this And I think the whole ROI of data is that you can now understand people's relationships Well you can have all the data in the world, and I think it speaks to, if you're not doing And I think that that's one of the things that customers are coming to us for, right? And Nir, this is something you work with a lot. And the companies that are not like that. Tricia, companies have to deal with data behind the firewall and in the new multi cloud And so that's why I think it's really important to understand that when you implement big And how are the clients, how are the users actually interacting with the system? And right now the way I see teams being set up inside companies is that they're creating But in order to actually see all of the RY behind the data, you also have to have a creative That's one of the things that we see a lot. So a lot of the training we do is sort of data engineers. And I think that's a very strong point when it comes to the data analysis side. And that's where you need the human element to come back in and say okay, look, you're And the people who are really great at providing that human intelligence are social scientists. the talent piece is actually the most important crucial hard to get. It may be to take folks internally who have a lot of that domain knowledge that you have And from data scientist to machine learner. And what I explain to them is look, you're still making decisions in the same way. And I mean, just to give you an example, we are partnering with one of the major cloud And what you're talking about with culture is really where I think we're talking about And I think that communication between the technical stakeholders and management You guys made this way too easy. I want to leave you with an opportunity to, anything you want to add to this conversation? I think one thing to conclude is to say that companies that are not data driven is And thank you guys again for joining us. And we're going to turn our attention to how you can deliver on what they're talking about And finally how you could build models anywhere and employ them close to where your data is. And thanks to Siva for taking us through it. You got to break it down for me cause I think we zoom out and see the big picture. And we saw some new capabilities that help companies avoid lock-in, where you can import And as a data scientist, you stop feeling like you're falling behind. We met backstage. And I go to you to talk about sports because-- And what it brings. And the reason being that sports consists of problems that have rules. And I was going to save the baseball question for later. Probably one of the best of all time. FiveThirtyEight has the Dodgers with a 60% chance of winning. So you have two teams that are about equal. It's like the first World Series in I think 56 years or something where you have two 100 And that you can be the best pitcher in the world, but guess what? And when does it ruin the sport? So we can talk at great length about what tools do you then apply when you have those And the reason being that A) he kind of knows how to position himself in the first place. And I imagine they're all different as well. But you really have seen a lot of breakthroughs in the last couple of years. You're known for your work in politics though. What was the most notable thing that came out of any of your predictions? And so, being aware of the limitations to some extent intrinsically in elections when It would be interesting to kind of peek back the curtain, understand how you operate but But you don't want to be inaccurate because that's your credibility. I think on average, speed is a little bit overrated in journalism. And there's got to be more time spent on stories if I can speak subjectively. And so we have people that come in, we hire most of our people actually from journalism. And so the kind of combination of needing, not having that much tolerance for mistakes, Because you do have to hit this balance. And so you try to hire well. And your perspective on that in general. But by the way, one thing that happens when you share your data or you share your thinking And you have a good intuition for hey, this looks a little bit out of line to me. And I think kind of what you learn is like, hey if there's something that bothers me, It's like oh, if I cross the street in .2-- I mean, I'm like-- But no, part of it's like you don't want to waste time on unimportant decisions, right? We want better. It's like both the chicken and the pasta are going to be really darn good, right? Serious and business, how organizations in the last three to five years have just And man, the quality of the interns we get has improved so much in four years. But when you're seeing these big organizations, ESPN as perfect example, moving more towards But the point is that the reason to be out in front of the problem is so you give yourself Final question for you as we run out of time. And so you're parsing through many, many, many lines of code. You can do better than that. You know, we tried to figure out where the best burrito in America was a few years Nate, thank you so much for joining us. I thought we were going to chat World Series, you know. And also the gallery is open until eight p.m. with demos and activations. If you are not attending all cloud and cognitive summit tomorrow, we ask that you recycle your
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tricia Wang | PERSON | 0.99+ |
Katie | PERSON | 0.99+ |
Katie Linendoll | PERSON | 0.99+ |
Rob | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Joane | PERSON | 0.99+ |
Daniel | PERSON | 0.99+ |
Michael Li | PERSON | 0.99+ |
Nate Silver | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
Hortonworks | ORGANIZATION | 0.99+ |
Trump | PERSON | 0.99+ |
Nate | PERSON | 0.99+ |
Honda | ORGANIZATION | 0.99+ |
Siva | PERSON | 0.99+ |
McKinsey | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Larry Bird | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
Michigan | LOCATION | 0.99+ |
Yankees | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Clinton | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Tesco | ORGANIZATION | 0.99+ |
Michael | PERSON | 0.99+ |
America | LOCATION | 0.99+ |
Leo | PERSON | 0.99+ |
four years | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
30% | QUANTITY | 0.99+ |
Astros | ORGANIZATION | 0.99+ |
Trish | PERSON | 0.99+ |
Sudden Compass | ORGANIZATION | 0.99+ |
Leo Messi | PERSON | 0.99+ |
two teams | QUANTITY | 0.99+ |
1,000 lines | QUANTITY | 0.99+ |
one year | QUANTITY | 0.99+ |
10 investments | QUANTITY | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
The Signal and the Noise | TITLE | 0.99+ |
Tricia | PERSON | 0.99+ |
Nir Kaldero | PERSON | 0.99+ |
80% | QUANTITY | 0.99+ |
BCG | ORGANIZATION | 0.99+ |
Daniel Hernandez | PERSON | 0.99+ |
ESPN | ORGANIZATION | 0.99+ |
H2O | ORGANIZATION | 0.99+ |
Ferrari | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
18 | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
Data Incubator | ORGANIZATION | 0.99+ |
Patriots | ORGANIZATION | 0.99+ |