Collibra Data Citizens 22
>>Collibra is a company that was founded in 2008 right before the so-called modern big data era kicked into high gear. The company was one of the first to focus its business on data governance. Now, historically, data governance and data quality initiatives, they were back office functions and they were largely confined to regulatory regulated industries that had to comply with public policy mandates. But as the cloud went mainstream, the tech giants showed us how valuable data could become and the value proposition for data quality and trust. It evolved from primarily a compliance driven issue to becoming a lynchpin of competitive advantage. But data in the decade of the 2010s was largely about getting the technology to work. You had these highly centralized technical teams that were formed and they had hyper specialized skills to develop data architectures and processes to serve the myriad data needs of organizations. >>And it resulted in a lot of frustration with data initiatives for most organizations that didn't have the resources of the cloud guys and the social media giants to really attack their data problems and turn data into gold. This is why today for example, this quite a bit of momentum to rethinking monolithic data architectures. You see, you hear about initiatives like data mesh and the idea of data as a product. They're gaining traction as a way to better serve the the data needs of decentralized business Uni users, you hear a lot about data democratization. So these decentralization efforts around data, they're great, but they create a new set of problems. Specifically, how do you deliver like a self-service infrastructure to business users and domain experts? Now the cloud is definitely helping with that, but also how do you automate governance? This becomes especially tricky as protecting data privacy has become more and more important. >>In other words, while it's enticing to experiment and run fast and loose with data initiatives kinda like the Wild West, to find new veins of gold, it has to be done responsibly. As such, the idea of data governance has had to evolve to become more automated. And intelligence governance and data lineage is still fundamental to ensuring trust as data. It moves like water through an organization. No one is gonna use data that isn't trusted. Metadata has become increasingly important for data discovery and data classification. As data flows through an organization, the continuously ability to check for data flaws and automating that data quality, they become a functional requirement of any modern data management platform. And finally, data privacy has become a critical adjacency to cyber security. So you can see how data governance has evolved into a much richer set of capabilities than it was 10 or 15 years ago. >>Hello and welcome to the Cube's coverage of Data Citizens made possible by Calibra, a leader in so-called Data intelligence and the host of Data Citizens 2022, which is taking place in San Diego. My name is Dave Ante and I'm one of the hosts of our program, which is running in parallel to data citizens. Now at the Cube we like to say we extract the signal from the noise, and over the, the next couple of days, we're gonna feature some of the themes from the keynote speakers at Data Citizens and we'll hear from several of the executives. Felix Von Dala, who is the co-founder and CEO of Collibra, will join us along with one of the other founders of Collibra, Stan Christians, who's gonna join my colleague Lisa Martin. I'm gonna also sit down with Laura Sellers, she's the Chief Product Officer at Collibra. We'll talk about some of the, the announcements and innovations they're making at the event, and then we'll dig in further to data quality with Kirk Hasselbeck. >>He's the vice president of Data quality at Collibra. He's an amazingly smart dude who founded Owl dq, a company that he sold to Col to Collibra last year. Now many companies, they didn't make it through the Hado era, you know, they missed the industry waves and they became Driftwood. Collibra, on the other hand, has evolved its business. They've leveraged the cloud, expanded its product portfolio, and leaned in heavily to some major partnerships with cloud providers, as well as receiving a strategic investment from Snowflake earlier this year. So it's a really interesting story that we're thrilled to be sharing with you. Thanks for watching and I hope you enjoy the program. >>Last year, the Cube Covered Data Citizens Collibra's customer event. And the premise that we put forth prior to that event was that despite all the innovation that's gone on over the last decade or more with data, you know, starting with the Hado movement, we had data lakes, we'd spark the ascendancy of programming languages like Python, the introduction of frameworks like TensorFlow, the rise of ai, low code, no code, et cetera. Businesses still find it's too difficult to get more value from their data initiatives. And we said at the time, you know, maybe it's time to rethink data innovation. While a lot of the effort has been focused on, you know, more efficiently storing and processing data, perhaps more energy needs to go into thinking about the people and the process side of the equation, meaning making it easier for domain experts to both gain insights for data, trust the data, and begin to use that data in new ways, fueling data, products, monetization and insights data citizens 2022 is back and we're pleased to have Felix Van Dema, who is the founder and CEO of Collibra. He's on the cube or excited to have you, Felix. Good to see you again. >>Likewise Dave. Thanks for having me again. >>You bet. All right, we're gonna get the update from Felix on the current data landscape, how he sees it, why data intelligence is more important now than ever and get current on what Collibra has been up to over the past year and what's changed since Data Citizens 2021. And we may even touch on some of the product news. So Felix, we're living in a very different world today with businesses and consumers. They're struggling with things like supply chains, uncertain economic trends, and we're not just snapping back to the 2010s. That's clear, and that's really true as well in the world of data. So what's different in your mind, in the data landscape of the 2020s from the previous decade, and what challenges does that bring for your customers? >>Yeah, absolutely. And, and I think you said it well, Dave, and and the intro that that rising complexity and fragmentation in the broader data landscape, that hasn't gotten any better over the last couple of years. When when we talk to our customers, that level of fragmentation, the complexity, how do we find data that we can trust, that we know we can use has only gotten kinda more, more difficult. So that trend that's continuing, I think what is changing is that trend has become much more acute. Well, the other thing we've seen over the last couple of years is that the level of scrutiny that organizations are under respect to data, as data becomes more mission critical, as data becomes more impactful than important, the level of scrutiny with respect to privacy, security, regulatory compliance, as only increasing as well, which again, is really difficult in this environment of continuous innovation, continuous change, continuous growing complexity and fragmentation. >>So it's become much more acute. And, and to your earlier point, we do live in a different world and and the the past couple of years we could probably just kind of brute for it, right? We could focus on, on the top line. There was enough kind of investments to be, to be had. I think nowadays organizations are focused or are, are, are, are, are, are in a very different environment where there's much more focus on cost control, productivity, efficiency, How do we truly get value from that data? So again, I think it just another incentive for organization to now truly look at data and to scale it data, not just from a a technology and infrastructure perspective, but how do you actually scale data from an organizational perspective, right? You said at the the people and process, how do we do that at scale? And that's only, only only becoming much more important. And we do believe that the, the economic environment that we find ourselves in today is gonna be catalyst for organizations to really dig out more seriously if, if, if, if you will, than they maybe have in the have in the best. >>You know, I don't know when you guys founded Collibra, if, if you had a sense as to how complicated it was gonna get, but you've been on a mission to really address these problems from the beginning. How would you describe your, your, your mission and what are you doing to address these challenges? >>Yeah, absolutely. We, we started Colli in 2008. So in some sense and the, the last kind of financial crisis, and that was really the, the start of Colli where we found product market fit, working with large finance institutions to help them cope with the increasing compliance requirements that they were faced with because of the, of the financial crisis and kind of here we are again in a very different environment, of course 15 years, almost 15 years later. But data only becoming more important. But our mission to deliver trusted data for every user, every use case and across every source, frankly, has only become more important. So what has been an incredible journey over the last 14, 15 years, I think we're still relatively early in our mission to again, be able to provide everyone, and that's why we call it data citizens. We truly believe that everyone in the organization should be able to use trusted data in an easy, easy matter. That mission is is only becoming more important, more relevant. We definitely have a lot more work ahead of us because we are still relatively early in that, in that journey. >>Well, that's interesting because, you know, in my observation it takes seven to 10 years to actually build a company and then the fact that you're still in the early days is kind of interesting. I mean, you, Collibra's had a good 12 months or so since we last spoke at Data Citizens. Give us the latest update on your business. What do people need to know about your, your current momentum? >>Yeah, absolutely. Again, there's, there's a lot of tail organizations that are only maturing the data practices and we've seen it kind of transform or, or, or influence a lot of our business growth that we've seen, broader adoption of the platform. We work at some of the largest organizations in the world where it's Adobe, Heineken, Bank of America, and many more. We have now over 600 enterprise customers, all industry leaders and every single vertical. So it's, it's really exciting to see that and continue to partner with those organizations. On the partnership side, again, a lot of momentum in the org in, in the, in the markets with some of the cloud partners like Google, Amazon, Snowflake, data bricks and, and others, right? As those kind of new modern data infrastructures, modern data architectures that are definitely all moving to the cloud, a great opportunity for us, our partners and of course our customers to help them kind of transition to the cloud even faster. >>And so we see a lot of excitement and momentum there within an acquisition about 18 months ago around data quality, data observability, which we believe is an enormous opportunity. Of course, data quality isn't new, but I think there's a lot of reasons why we're so excited about quality and observability now. One is around leveraging ai, machine learning, again to drive more automation. And the second is that those data pipelines that are now being created in the cloud, in these modern data architecture arch architectures, they've become mission critical. They've become real time. And so monitoring, observing those data pipelines continuously has become absolutely critical so that they're really excited about about that as well. And on the organizational side, I'm sure you've heard a term around kind of data mesh, something that's gaining a lot of momentum, rightfully so. It's really the type of governance that we always believe. Then federated focused on domains, giving a lot of ownership to different teams. I think that's the way to scale data organizations. And so that aligns really well with our vision and, and from a product perspective, we've seen a lot of momentum with our customers there as well. >>Yeah, you know, a couple things there. I mean, the acquisition of i l dq, you know, Kirk Hasselbeck and, and their team, it's interesting, you know, the whole data quality used to be this back office function and, and really confined to highly regulated industries. It's come to the front office, it's top of mind for chief data officers, data mesh. You mentioned you guys are a connective tissue for all these different nodes on the data mesh. That's key. And of course we see you at all the shows. You're, you're a critical part of many ecosystems and you're developing your own ecosystem. So let's chat a little bit about the, the products. We're gonna go deeper in into products later on at, at Data Citizens 22, but we know you're debuting some, some new innovations, you know, whether it's, you know, the, the the under the covers in security, sort of making data more accessible for people just dealing with workflows and processes as you talked about earlier. Tell us a little bit about what you're introducing. >>Yeah, absolutely. We're super excited, a ton of innovation. And if we think about the big theme and like, like I said, we're still relatively early in this, in this journey towards kind of that mission of data intelligence that really bolts and compelling mission, either customers are still start, are just starting on that, on that journey. We wanna make it as easy as possible for the, for our organization to actually get started because we know that's important that they do. And for our organization and customers that have been with us for some time, there's still a tremendous amount of opportunity to kind of expand the platform further. And again, to make it easier for really to, to accomplish that mission and vision around that data citizen that everyone has access to trustworthy data in a very easy, easy way. So that's really the theme of a lot of the innovation that we're driving. >>A lot of kind of ease of adoption, ease of use, but also then how do we make sure that lio becomes this kind of mission critical enterprise platform from a security performance architecture scale supportability that we're truly able to deliver that kind of an enterprise mission critical platform. And so that's the big theme from an innovation perspective, From a product perspective, a lot of new innovation that we're really excited about. A couple of highlights. One is around data marketplace. Again, a lot of our customers have plans in that direction, how to make it easy. How do we make, how do we make available to true kind of shopping experience that anybody in your organization can, in a very easy search first way, find the right data product, find the right dataset, that data can then consume usage analytics. How do you, how do we help organizations drive adoption, tell them where they're working really well and where they have opportunities homepages again to, to make things easy for, for people, for anyone in your organization to kind of get started with ppia, you mentioned workflow designer, again, we have a very powerful enterprise platform. >>One of our key differentiators is the ability to really drive a lot of automation through workflows. And now we provided a new low code, no code kind of workflow designer experience. So, so really customers can take it to the next level. There's a lot more new product around K Bear Protect, which in partnership with Snowflake, which has been a strategic investor in kib, focused on how do we make access governance easier? How do we, how do we, how are we able to make sure that as you move to the cloud, things like access management, masking around sensitive data, PII data is managed as much more effective, effective rate, really excited about that product. There's more around data quality. Again, how do we, how do we get that deployed as easily and quickly and widely as we can? Moving that to the cloud has been a big part of our strategy. >>So we launch more data quality cloud product as well as making use of those, those native compute capabilities in platforms like Snowflake, Data, Bricks, Google, Amazon, and others. And so we are bettering a capability, a capability that we call push down. So actually pushing down the computer and data quality, the monitoring into the underlying platform, which again, from a scale performance and ease of use perspective is gonna make a massive difference. And then more broadly, we, we talked a little bit about the ecosystem. Again, integrations, we talk about being able to connect to every source. Integrations are absolutely critical and we're really excited to deliver new integrations with Snowflake, Azure and Google Cloud storage as well. So there's a lot coming out. The, the team has been work at work really hard and we are really, really excited about what we are coming, what we're bringing to markets. >>Yeah, a lot going on there. I wonder if you could give us your, your closing thoughts. I mean, you, you talked about, you know, the marketplace, you know, you think about data mesh, you think of data as product, one of the key principles you think about monetization. This is really different than what we've been used to in data, which is just getting the technology to work has been been so hard. So how do you see sort of the future and, you know, give us the, your closing thoughts please? >>Yeah, absolutely. And I, and I think we we're really at this pivotal moment, and I think you said it well. We, we all know the constraint and the challenges with data, how to actually do data at scale. And while we've seen a ton of innovation on the infrastructure side, we fundamentally believe that just getting a faster database is important, but it's not gonna fully solve the challenges and truly kind of deliver on the opportunity. And that's why now is really the time to deliver this data intelligence vision, this data intelligence platform. We are still early, making it as easy as we can. It's kind of, of our, it's our mission. And so I'm really, really excited to see what we, what we are gonna, how the marks gonna evolve over the next, next few quarters and years. I think the trend is clearly there when we talk about data mesh, this kind of federated approach folks on data products is just another signal that we believe that a lot of our organization are now at the time. >>The understanding need to go beyond just the technology. I really, really think about how do we actually scale data as a business function, just like we've done with it, with, with hr, with, with sales and marketing, with finance. That's how we need to think about data. I think now is the time given the economic environment that we are in much more focus on control, much more focused on productivity efficiency and now's the time. We need to look beyond just the technology and infrastructure to think of how to scale data, how to manage data at scale. >>Yeah, it's a new era. The next 10 years of data won't be like the last, as I always say. Felix, thanks so much and good luck in, in San Diego. I know you're gonna crush it out there. >>Thank you Dave. >>Yeah, it's a great spot for an in-person event and, and of course the content post event is gonna be available@collibra.com and you can of course catch the cube coverage@thecube.net and all the news@siliconangle.com. This is Dave Valante for the cube, your leader in enterprise and emerging tech coverage. >>Hi, I'm Jay from Collibra's Data Office. Today I want to talk to you about Collibra's data intelligence cloud. We often say Collibra is a single system of engagement for all of your data. Now, when I say data, I mean data in the broadest sense of the word, including reference and metadata. Think of metrics, reports, APIs, systems, policies, and even business processes that produce or consume data. Now, the beauty of this platform is that it ensures all of your users have an easy way to find, understand, trust, and access data. But how do you get started? Well, here are seven steps to help you get going. One, start with the data. What's data intelligence? Without data leverage the Collibra data catalog to automatically profile and classify your enterprise data wherever that data lives, databases, data lakes or data warehouses, whether on the cloud or on premise. >>Two, you'll then wanna organize the data and you'll do that with data communities. This can be by department, find a business or functional team, however your organization organizes work and accountability. And for that you'll establish community owners, communities, make it easy for people to navigate through the platform, find the data and will help create a sense of belonging for users. An important and related side note here, we find it's typical in many organizations that data is thought of is just an asset and IT and data offices are viewed as the owners of it and who are really the central teams performing analytics as a service provider to the enterprise. We believe data is more than an asset, it's a true product that can be converted to value. And that also means establishing business ownership of data where that strategy and ROI come together with subject matter expertise. >>Okay, three. Next, back to those communities there, the data owners should explain and define their data, not just the tables and columns, but also the related business terms, metrics and KPIs. These objects we call these assets are typically organized into business glossaries and data dictionaries. I definitely recommend starting with the topics that are most important to the business. Four, those steps that enable you and your users to have some fun with it. Linking everything together builds your knowledge graph and also known as a metadata graph by linking or relating these assets together. For example, a data set to a KPI to a report now enables your users to see what we call the lineage diagram that visualizes where the data in your dashboards actually came from and what the data means and who's responsible for it. Speaking of which, here's five. Leverage the calibra trusted business reporting solution on the marketplace, which comes with workflows for those owners to certify their reports, KPIs, and data sets. >>This helps them force their trust in their data. Six, easy to navigate dashboards or landing pages right in your platform for your company's business processes are the most effective way for everyone to better understand and take action on data. Here's a pro tip, use the dashboard design kit on the marketplace to help you build compelling dashboards. Finally, seven, promote the value of this to your users and be sure to schedule enablement office hours and new employee onboarding sessions to get folks excited about what you've built and implemented. Better yet, invite all of those community and data owners to these sessions so that they can show off the value that they've created. Those are my seven tips to get going with Collibra. I hope these have been useful. For more information, be sure to visit collibra.com. >>Welcome to the Cube's coverage of Data Citizens 2022 Collibra's customer event. My name is Dave Valante. With us is Kirk Hasselbeck, who's the vice president of Data Quality of Collibra Kirk, good to see you. Welcome. >>Thanks for having me, Dave. Excited to be here. >>You bet. Okay, we're gonna discuss data quality observability. It's a hot trend right now. You founded a data quality company, OWL dq, and it was acquired by Collibra last year. Congratulations. And now you lead data quality at Collibra. So we're hearing a lot about data quality right now. Why is it such a priority? Take us through your thoughts on that. >>Yeah, absolutely. It's, it's definitely exciting times for data quality, which you're right, has been around for a long time. So why now and why is it so much more exciting than it used to be? I think it's a bit stale, but we all know that companies use more data than ever before and the variety has changed and the volume has grown. And, and while I think that remains true, there are a couple other hidden factors at play that everyone's so interested in as, as to why this is becoming so important now. And, and I guess you could kind of break this down simply and think about if Dave, you and I were gonna build, you know, a new healthcare application and monitor the heartbeat of individuals, imagine if we get that wrong, you know, what the ramifications could be, what, what those incidents would look like, or maybe better yet, we try to build a, a new trading algorithm with a crossover strategy where the 50 day crosses the, the 10 day average. >>And imagine if the data underlying the inputs to that is incorrect. We will probably have major financial ramifications in that sense. So, you know, it kind of starts there where everybody's realizing that we're all data companies and if we are using bad data, we're likely making incorrect business decisions. But I think there's kind of two other things at play. You know, I, I bought a car not too long ago and my dad called and said, How many cylinders does it have? And I realized in that moment, you know, I might have failed him because, cause I didn't know. And, and I used to ask those types of questions about any lock brakes and cylinders and, and you know, if it's manual or, or automatic and, and I realized I now just buy a car that I hope works. And it's so complicated with all the computer chips, I, I really don't know that much about it. >>And, and that's what's happening with data. We're just loading so much of it. And it's so complex that the way companies consume them in the IT function is that they bring in a lot of data and then they syndicate it out to the business. And it turns out that the, the individuals loading and consuming all of this data for the company actually may not know that much about the data itself, and that's not even their job anymore. So we'll talk more about that in a minute, but that's really what's setting the foreground for this observability play and why everybody's so interested. It, it's because we're becoming less close to the intricacies of the data and we just expect it to always be there and be correct. >>You know, the other thing too about data quality, and for years we did the MIT CDO IQ event, we didn't do it last year, Covid messed everything up. But the observation I would make there thoughts is, is it data quality? Used to be information quality used to be this back office function, and then it became sort of front office with financial services and government and healthcare, these highly regulated industries. And then the whole chief data officer thing happened and people were realizing, well, they sort of flipped the bit from sort of a data as a, a risk to data as a, as an asset. And now as we say, we're gonna talk about observability. And so it's really become front and center just the whole quality issue because data's so fundamental, hasn't it? >>Yeah, absolutely. I mean, let's imagine we pull up our phones right now and I go to my, my favorite stock ticker app and I check out the NASDAQ market cap. I really have no idea if that's the correct number. I know it's a number, it looks large, it's in a numeric field. And, and that's kind of what's going on. There's, there's so many numbers and they're coming from all of these different sources and data providers and they're getting consumed and passed along. But there isn't really a way to tactically put controls on every number and metric across every field we plan to monitor, but with the scale that we've achieved in early days, even before calibra. And what's been so exciting is we have these types of observation techniques, these data monitors that can actually track past performance of every field at scale. And why that's so interesting and why I think the CDO is, is listening right intently nowadays to this topic is, so maybe we could surface all of these problems with the right solution of data observability and with the right scale and then just be alerted on breaking trends. So we're sort of shifting away from this world of must write a condition and then when that condition breaks, that was always known as a break record. But what about breaking trends and root cause analysis? And is it possible to do that, you know, with less human intervention? And so I think most people are seeing now that it's going to have to be a software tool and a computer system. It's, it's not ever going to be based on one or two domain experts anymore. >>So, So how does data observability relate to data quality? Are they sort of two sides of the same coin? Are they, are they cousins? What's your perspective on that? >>Yeah, it's, it's super interesting. It's an emerging market. So the language is changing a lot of the topic and areas changing the way that I like to say it or break it down because the, the lingo is constantly moving is, you know, as a target on this space is really breaking records versus breaking trends. And I could write a condition when this thing happens, it's wrong and when it doesn't it's correct. Or I could look for a trend and I'll give you a good example. You know, everybody's talking about fresh data and stale data and, and why would that matter? Well, if your data never arrived or only part of it arrived or didn't arrive on time, it's likely stale and there will not be a condition that you could write that would show you all the good in the bads. That was kind of your, your traditional approach of data quality break records. But your modern day approach is you lost a significant portion of your data, or it did not arrive on time to make that decision accurately on time. And that's a hidden concern. Some people call this freshness, we call it stale data, but it all points to the same idea of the thing that you're observing may not be a data quality condition anymore. It may be a breakdown in the data pipeline. And with thousands of data pipelines in play for every company out there there, there's more than a couple of these happening every day. >>So what's the Collibra angle on all this stuff made the acquisition, you got data quality observability coming together, you guys have a lot of expertise in, in this area, but you hear providence of data, you just talked about, you know, stale data, you know, the, the whole trend toward real time. How is Calibra approaching the problem and what's unique about your approach? >>Well, I think where we're fortunate is with our background, myself and team, we sort of lived this problem for a long time, you know, in, in the Wall Street days about a decade ago. And we saw it from many different angles. And what we came up with before it was called data observability or reliability was basically the, the underpinnings of that. So we're a little bit ahead of the curve there when most people evaluate our solution, it's more advanced than some of the observation techniques that that currently exist. But we've also always covered data quality and we believe that people want to know more, they need more insights, and they want to see break records and breaking trends together so they can correlate the root cause. And we hear that all the time. I have so many things going wrong, just show me the big picture, help me find the thing that if I were to fix it today would make the most impact. So we're really focused on root cause analysis, business impact, connecting it with lineage and catalog metadata. And as that grows, you can actually achieve total data governance at this point with the acquisition of what was a Lineage company years ago, and then my company Ldq now Collibra, Data quality Collibra may be the best positioned for total data governance and intelligence in the space. >>Well, you mentioned financial services a couple of times and some examples, remember the flash crash in 2010. Nobody had any idea what that was, you know, they just said, Oh, it's a glitch, you know, so they didn't understand the root cause of it. So this is a really interesting topic to me. So we know at Data Citizens 22 that you're announcing, you gotta announce new products, right? You're yearly event what's, what's new. Give us a sense as to what products are coming out, but specifically around data quality and observability. >>Absolutely. There's this, you know, there's always a next thing on the forefront. And the one right now is these hyperscalers in the cloud. So you have databases like Snowflake and Big Query and Data Bricks is Delta Lake and SQL Pushdown. And ultimately what that means is a lot of people are storing in loading data even faster in a SaaS like model. And we've started to hook in to these databases. And while we've always worked with the the same databases in the past, they're supported today we're doing something called Native Database pushdown, where the entire compute and data activity happens in the database. And why that is so interesting and powerful now is everyone's concerned with something called Egress. Did your, my data that I've spent all this time and money with my security team securing ever leave my hands, did it ever leave my secure VPC as they call it? >>And with these native integrations that we're building and about to unveil, here's kind of a sneak peek for, for next week at Data Citizens. We're now doing all compute and data operations in databases like Snowflake. And what that means is with no install and no configuration, you could log into the Collibra data quality app and have all of your data quality running inside the database that you've probably already picked as your your go forward team selection secured database of choice. So we're really excited about that. And I think if you look at the whole landscape of network cost, egress, cost, data storage and compute, what people are realizing is it's extremely efficient to do it in the way that we're about to release here next week. >>So this is interesting because what you just described, you know, you mentioned Snowflake, you mentioned Google, Oh actually you mentioned yeah, data bricks. You know, Snowflake has the data cloud. If you put everything in the data cloud, okay, you're cool, but then Google's got the open data cloud. If you heard, you know, Google next and now data bricks doesn't call it the data cloud, but they have like the open source data cloud. So you have all these different approaches and there's really no way up until now I'm, I'm hearing to, to really understand the relationships between all those and have confidence across, you know, it's like Jak Dani, you should just be a note on the mesh. And I don't care if it's a data warehouse or a data lake or where it comes from, but it's a point on that mesh and I need tooling to be able to have confidence that my data is governed and has the proper lineage, providence. And, and, and that's what you're bringing to the table, Is that right? Did I get that right? >>Yeah, that's right. And it's, for us, it's, it's not that we haven't been working with those great cloud databases, but it's the fact that we can send them the instructions now, we can send them the, the operating ability to crunch all of the calculations, the governance, the quality, and get the answers. And what that's doing, it's basically zero network costs, zero egress cost, zero latency of time. And so when you were to log into Big Query tomorrow using our tool or like, or say Snowflake for example, you have instant data quality metrics, instant profiling, instant lineage and access privacy controls, things of that nature that just become less onerous. What we're seeing is there's so much technology out there, just like all of the major brands that you mentioned, but how do we make it easier? The future is about less clicks, faster time to value, faster scale, and eventually lower cost. And, and we think that this positions us to be the leader there. >>I love this example because, you know, Barry talks about, wow, the cloud guys are gonna own the world and, and of course now we're seeing that the ecosystem is finding so much white space to add value, connect across cloud. Sometimes we call it super cloud and so, or inter clouding. All right, Kirk, give us your, your final thoughts and on on the trends that we've talked about and Data Citizens 22. >>Absolutely. Well, I think, you know, one big trend is discovery and classification. Seeing that across the board, people used to know it was a zip code and nowadays with the amount of data that's out there, they wanna know where everything is, where their sensitive data is. If it's redundant, tell me everything inside of three to five seconds. And with that comes, they want to know in all of these hyperscale databases how fast they can get controls and insights out of their tools. So I think we're gonna see more one click solutions, more SAS based solutions and solutions that hopefully prove faster time to value on, on all of these modern cloud platforms. >>Excellent. All right, Kurt Hasselbeck, thanks so much for coming on the Cube and previewing Data Citizens 22. Appreciate it. >>Thanks for having me, Dave. >>You're welcome. Right, and thank you for watching. Keep it right there for more coverage from the Cube. Welcome to the Cube's virtual Coverage of Data Citizens 2022. My name is Dave Valante and I'm here with Laura Sellers, who's the Chief Product Officer at Collibra, the host of Data Citizens. Laura, welcome. Good to see you. >>Thank you. Nice to be here. >>Yeah, your keynote at Data Citizens this year focused on, you know, your mission to drive ease of use and scale. Now when I think about historically fast access to the right data at the right time in a form that's really easily consumable, it's been kind of challenging, especially for business users. Can can you explain to our audience why this matters so much and what's actually different today in the data ecosystem to make this a reality? >>Yeah, definitely. So I think what we really need and what I hear from customers every single day is that we need a new approach to data management and our product teams. What inspired me to come to Calibra a little bit a over a year ago was really the fact that they're very focused on bringing trusted data to more users across more sources for more use cases. And so as we look at what we're announcing with these innovations of ease of use and scale, it's really about making teams more productive in getting started with and the ability to manage data across the entire organization. So we've been very focused on richer experiences, a broader ecosystem of partners, as well as a platform that delivers performance, scale and security that our users and teams need and demand. So as we look at, Oh, go ahead. >>I was gonna say, you know, when I look back at like the last 10 years, it was all about getting the technology to work and it was just so complicated. But, but please carry on. I'd love to hear more about this. >>Yeah, I, I really, you know, Collibra is a system of engagement for data and we really are working on bringing that entire system of engagement to life for everyone to leverage here and now. So what we're announcing from our ease of use side of the world is first our data marketplace. This is the ability for all users to discover and access data quickly and easily shop for it, if you will. The next thing that we're also introducing is the new homepage. It's really about the ability to drive adoption and have users find data more quickly. And then the two more areas of the ease of use side of the world is our world of usage analytics. And one of the big pushes and passions we have at Collibra is to help with this data driven culture that all companies are trying to create. And also helping with data literacy, with something like usage analytics, it's really about driving adoption of the CLE platform, understanding what's working, who's accessing it, what's not. And then finally we're also introducing what's called workflow designer. And we love our workflows at Libra, it's a big differentiator to be able to automate business processes. The designer is really about a way for more people to be able to create those workflows, collaborate on those workflow flows, as well as people to be able to easily interact with them. So a lot of exciting things when it comes to ease of use to make it easier for all users to find data. >>Y yes, there's definitely a lot to unpack there. I I, you know, you mentioned this idea of, of of, of shopping for the data. That's interesting to me. Why this analogy, metaphor or analogy, I always get those confused. I let's go with analogy. Why is it so important to data consumers? >>I think when you look at the world of data, and I talked about this system of engagement, it's really about making it more accessible to the masses. And what users are used to is a shopping experience like your Amazon, if you will. And so having a consumer grade experience where users can quickly go in and find the data, trust that data, understand where the data's coming from, and then be able to quickly access it, is the idea of being able to shop for it, just making it as simple as possible and really speeding the time to value for any of the business analysts, data analysts out there. >>Yeah, I think when you, you, you see a lot of discussion about rethinking data architectures, putting data in the hands of the users and business people, decentralized data and of course that's awesome. I love that. But of course then you have to have self-service infrastructure and you have to have governance. And those are really challenging. And I think so many organizations, they're facing adoption challenges, you know, when it comes to enabling teams generally, especially domain experts to adopt new data technologies, you know, like the, the tech comes fast and furious. You got all these open source projects and get really confusing. Of course it risks security, governance and all that good stuff. You got all this jargon. So where do you see, you know, the friction in adopting new data technologies? What's your point of view and how can organizations overcome these challenges? >>You're, you're dead on. There's so much technology and there's so much to stay on top of, which is part of the friction, right? It's just being able to stay ahead of, of and understand all the technologies that are coming. You also look at as there's so many more sources of data and people are migrating data to the cloud and they're migrating to new sources. Where the friction comes is really that ability to understand where the data came from, where it's moving to, and then also to be able to put the access controls on top of it. So people are only getting access to the data that they should be getting access to. So one of the other things we're announcing with, with all of the innovations that are coming is what we're doing around performance and scale. So with all of the data movement, with all of the data that's out there, the first thing we're launching in the world of performance and scale is our world of data quality. >>It's something that Collibra has been working on for the past year and a half, but we're launching the ability to have data quality in the cloud. So it's currently an on-premise offering, but we'll now be able to carry that over into the cloud for us to manage that way. We're also introducing the ability to push down data quality into Snowflake. So this is, again, one of those challenges is making sure that that data that you have is d is is high quality as you move forward. And so really another, we're just reducing friction. You already have Snowflake stood up. It's not another machine for you to manage, it's just push down capabilities into Snowflake to be able to track that quality. Another thing that we're launching with that is what we call Collibra Protect. And this is that ability for users to be able to ingest metadata, understand where the PII data is, and then set policies up on top of it. So very quickly be able to set policies and have them enforced at the data level. So anybody in the organization is only getting access to the data they should have access to. >>Here's Topica data quality is interesting. It's something that I've followed for a number of years. It used to be a back office function, you know, and really confined only to highly regulated industries like financial services and healthcare and government. You know, you look back over a decade ago, you didn't have this worry about personal information, g gdpr, and, you know, California Consumer Privacy Act all becomes, becomes so much important. The cloud is really changed things in terms of performance and scale and of course partnering for, for, with Snowflake it's all about sharing data and monetization, anything but a back office function. So it was kind of smart that you guys were early on and of course attracting them and as a, as an investor as well was very strong validation. What can you tell us about the nature of the relationship with Snowflake and specifically inter interested in sort of joint engineering or, and product innovation efforts, you know, beyond the standard go to market stuff? >>Definitely. So you mentioned there were a strategic investor in Calibra about a year ago. A little less than that I guess. We've been working with them though for over a year really tightly with their product and engineering teams to make sure that Collibra is adding real value. Our unified platform is touching pieces of our unified platform or touching all pieces of Snowflake. And when I say that, what I mean is we're first, you know, able to ingest data with Snowflake, which, which has always existed. We're able to profile and classify that data we're announcing with Calibra Protect this week that you're now able to create those policies on top of Snowflake and have them enforce. So again, people can get more value out of their snowflake more quickly as far as time to value with, with our policies for all business users to be able to create. >>We're also announcing Snowflake Lineage 2.0. So this is the ability to take stored procedures in Snowflake and understand the lineage of where did the data come from, how was it transformed with within Snowflake as well as the data quality. Pushdown, as I mentioned, data quality, you brought it up. It is a new, it is a, a big industry push and you know, one of the things I think Gartner mentioned is people are losing up to $15 million without having great data quality. So this push down capability for Snowflake really is again, a big ease of use push for us at Collibra of that ability to, to push it into snowflake, take advantage of the data, the data source, and the engine that already lives there and get the right and make sure you have the right quality. >>I mean, the nice thing about Snowflake, if you play in the Snowflake sandbox, you, you, you, you can get sort of a, you know, high degree of confidence that the data sharing can be done in a safe way. Bringing, you know, Collibra into the, into the story allows me to have that data quality and, and that governance that I, that I need. You know, we've said many times on the cube that one of the notable differences in cloud this decade versus last decade, I mean ob there are obvious differences just in terms of scale and scope, but it's shaping up to be about the strength of the ecosystems. That's really a hallmark of these big cloud players. I mean they're, it's a key factor for innovating, accelerating product delivery, filling gaps in, in the hyperscale offerings cuz you got more stack, you know, mature stack capabilities and you know, it creates this flywheel momentum as we often say. But, so my question is, how do you work with the hyperscalers? Like whether it's AWS or Google, whomever, and what do you see as your role and what's the Collibra sweet spot? >>Yeah, definitely. So, you know, one of the things I mentioned early on is the broader ecosystem of partners is what it's all about. And so we have that strong partnership with Snowflake. We also are doing more with Google around, you know, GCP and kbra protect there, but also tighter data plex integration. So similar to what you've seen with our strategic moves around Snowflake and, and really covering the broad ecosystem of what Collibra can do on top of that data source. We're extending that to the world of Google as well and the world of data plex. We also have great partners in SI's Infosys is somebody we spoke with at the conference who's done a lot of great work with Levi's as they're really important to help people with their whole data strategy and driving that data driven culture and, and Collibra being the core of it. >>Hi Laura, we're gonna, we're gonna end it there, but I wonder if you could kind of put a bow on, you know, this year, the event your, your perspectives. So just give us your closing thoughts. >>Yeah, definitely. So I, I wanna say this is one of the biggest releases Collibra's ever had. Definitely the biggest one since I've been with the company a little over a year. We have all these great new product innovations coming to really drive the ease of use to make data more valuable for users everywhere and, and companies everywhere. And so it's all about everybody being able to easily find, understand, and trust and get access to that data going forward. >>Well congratulations on all the pro progress. It was great to have you on the cube first time I believe, and really appreciate you, you taking the time with us. >>Yes, thank you for your time. >>You're very welcome. Okay, you're watching the coverage of Data Citizens 2022 on the cube, your leader in enterprise and emerging tech coverage. >>So data modernization oftentimes means moving some of your storage and computer to the cloud where you get the benefit of scale and security and so on. But ultimately it doesn't take away the silos that you have. We have more locations, more tools and more processes with which we try to get value from this data. To do that at scale in an organization, people involved in this process, they have to understand each other. So you need to unite those people across those tools, processes, and systems with a shared language. When I say customer, do you understand the same thing as you hearing customer? Are we counting them in the same way so that shared language unites us and that gives the opportunity for the organization as a whole to get the maximum value out of their data assets and then they can democratize data so everyone can properly use that shared language to find, understand, and trust the data asset that's available. >>And that's where Collibra comes in. We provide a centralized system of engagement that works across all of those locations and combines all of those different user types across the whole business. At Collibra, we say United by data and that also means that we're united by data with our customers. So here is some data about some of our customers. There was the case of an online do it yourself platform who grew their revenue almost three times from a marketing campaign that provided the right product in the right hands of the right people. In other case that comes to mind is from a financial services organization who saved over 800 K every year because they were able to reuse the same data in different kinds of reports and before there was spread out over different tools and processes and silos, and now the platform brought them together so they realized, oh, we're actually using the same data, let's find a way to make this more efficient. And the last example that comes to mind is that of a large home loan, home mortgage, mortgage loan provider where they have a very complex landscape, a very complex architecture legacy in the cloud, et cetera. And they're using our software, they're using our platform to unite all the people and those processes and tools to get a common view of data to manage their compliance at scale. >>Hey everyone, I'm Lisa Martin covering Data Citizens 22, brought to you by Collibra. This next conversation is gonna focus on the importance of data culture. One of our Cube alumni is back, Stan Christians is Collibra's co-founder and it's Chief Data citizens. Stan, it's great to have you back on the cube. >>Hey Lisa, nice to be. >>So we're gonna be talking about the importance of data culture, data intelligence, maturity, all those great things. When we think about the data revolution that every business is going through, you know, it's so much more than technology innovation. It also really re requires cultural transformation, community transformation. Those are challenging for customers to undertake. Talk to us about what you mean by data citizenship and the role that creating a data culture plays in that journey. >>Right. So as you know, our event is called Data Citizens because we believe that in the end, a data citizen is anyone who uses data to do their job. And we believe that today's organizations, you have a lot of people, most of the employees in an organization are somehow gonna to be a data citizen, right? So you need to make sure that these people are aware of it. You need that. People have skills and competencies to do with data what necessary and that's on, all right? So what does it mean to have a good data culture? It means that if you're building a beautiful dashboard to try and convince your boss, we need to make this decision that your boss is also open to and able to interpret, you know, the data presented in dashboard to actually make that decision and take that action. Right? >>And once you have that why to the organization, that's when you have a good data culture. Now that's continuous effort for most organizations because they're always moving, somehow they're hiring new people and it has to be continuous effort because we've seen that on the hand. Organizations continue challenged their data sources and where all the data is flowing, right? Which in itself creates a lot of risk. But also on the other set hand of the equation, you have the benefit. You know, you might look at regulatory drivers like, we have to do this, right? But it's, it's much better right now to consider the competitive drivers, for example, and we did an IDC study earlier this year, quite interesting. I can recommend anyone to it. And one of the conclusions they found as they surveyed over a thousand people across organizations worldwide is that the ones who are higher in maturity. >>So the, the organizations that really look at data as an asset, look at data as a product and actively try to be better at it, don't have three times as good a business outcome as the ones who are lower on the maturity scale, right? So you can say, ok, I'm doing this, you know, data culture for everyone, awakening them up as data citizens. I'm doing this for competitive reasons, I'm doing this re reasons you're trying to bring both of those together and the ones that get data intelligence right, are successful and competitive. That's, and that's what we're seeing out there in the market. >>Absolutely. We know that just generally stand right, the organizations that are, are really creating a, a data culture and enabling everybody within the organization to become data citizens are, We know that in theory they're more competitive, they're more successful. But the IDC study that you just mentioned demonstrates they're three times more successful and competitive than their peers. Talk about how Collibra advises customers to create that community, that culture of data when it might be challenging for an organization to adapt culturally. >>Of course, of course it's difficult for an organization to adapt but it's also necessary, as you just said, imagine that, you know, you're a modern day organization, laptops, what have you, you're not using those, right? Or you know, you're delivering them throughout organization, but not enabling your colleagues to actually do something with that asset. Same thing as through with data today, right? If you're not properly using the data asset and competitors are, they're gonna to get more advantage. So as to how you get this done, establish this. There's angles to look at, Lisa. So one angle is obviously the leadership whereby whoever is the boss of data in the organization, you typically have multiple bosses there, like achieve data officers. Sometimes there's, there's multiple, but they may have a different title, right? So I'm just gonna summarize it as a data leader for a second. >>So whoever that is, they need to make sure that there's a clear vision, a clear strategy for data. And that strategy needs to include the monetization aspect. How are you going to get value from data? Yes. Now that's one part because then you can leadership in the organization and also the business value. And that's important. Cause those people, their job in essence really is to make everyone in the organization think about data as an asset. And I think that's the second part of the equation of getting that right, is it's not enough to just have that leadership out there, but you also have to get the hearts and minds of the data champions across the organization. You, I really have to win them over. And if you have those two combined and obviously a good technology to, you know, connect those people and have them execute on their responsibilities such as a data intelligence platform like s then the in place to really start upgrading that culture inch by inch if you'll, >>Yes, I like that. The recipe for success. So you are the co-founder of Collibra. You've worn many different hats along this journey. Now you're building Collibra's own data office. I like how before we went live, we were talking about Calibra is drinking its own champagne. I always loved to hear stories about that. You're speaking at Data Citizens 2022. Talk to us about how you are building a data culture within Collibra and what maybe some of the specific projects are that Collibra's data office is working on. >>Yes, and it is indeed data citizens. There are a ton of speaks here, are very excited. You know, we have Barb from m MIT speaking about data monetization. We have Dilla at the last minute. So really exciting agen agenda. Can't wait to get back out there essentially. So over the years at, we've doing this since two and eight, so a good years and I think we have another decade of work ahead in the market, just to be very clear. Data is here to stick around as are we. And myself, you know, when you start a company, we were for people in a, if you, so everybody's wearing all sorts of hat at time. But over the years I've run, you know, presales that sales partnerships, product cetera. And as our company got a little bit biggish, we're now thousand two. Something like people in the company. >>I believe systems and processes become a lot important. So we said you CBRA isn't the size our customers we're getting there in of organization structure, process systems, et cetera. So we said it's really time for us to put our money where is and to our own data office, which is what we were seeing customers', organizations worldwide. And they organizations have HR units, they have a finance unit and over time they'll all have a department if you'll, that is responsible somehow for the data. So we said, ok, let's try to set an examples that other people can take away with it, right? Can take away from it. So we set up a data strategy, we started building data products, took care of the data infrastructure. That's sort of good stuff. And in doing all of that, ISA exactly as you said, we said, okay, we need to also use our product and our own practices and from that use, learn how we can make the product better, learn how we make, can make the practice better and share that learning with all the, and on, on the Monday mornings, we sometimes refer to eating our dog foods on Friday evenings. >>We referred to that drinking our own champagne. I like it. So we, we had a, we had the driver to do this. You know, there's a clear business reason. So we involved, we included that in the data strategy and that's a little bit of our origin. Now how, how do we organize this? We have three pillars, and by no means is this a template that everyone should, this is just the organization that works at our company, but it can serve as an inspiration. So we have a pillar, which is data science. The data product builders, if you'll or the people who help the business build data products. We have the data engineers who help keep the lights on for that data platform to make sure that the products, the data products can run, the data can flow and you know, the quality can be checked. >>And then we have a data intelligence or data governance builders where we have those data governance, data intelligence stakeholders who help the business as a sort of data partner to the business stakeholders. So that's how we've organized it. And then we started following the CBRA approach, which is, well, what are the challenges that our business stakeholders have in hr, finance, sales, marketing all over? And how can data help overcome those challenges? And from those use cases, we then just started to build a map and started execution use of the use case. And a important ones are very simple. We them with our, our customers as well, people talking about the cata, right? The catalog for the data scientists to know what's in their data lake, for example, and for the people in and privacy. So they have their process registry and they can see how the data flows. >>So that's a starting place and that turns into a marketplace so that if new analysts and data citizens join kbra, they immediately have a place to go to, to look at, see, ok, what data is out there for me as an analyst or a data scientist or whatever to do my job, right? So they can immediately get access data. And another one that we is around trusted business. We're seeing that since, you know, self-service BI allowed everyone to make beautiful dashboards, you know, pie, pie charts. I always, my pet pee is the pie chart because I love buy and you shouldn't always be using pie charts. But essentially there's become proliferation of those reports. And now executives don't really know, okay, should I trust this report or that report the reporting on the same thing. But the numbers seem different, right? So that's why we have trusted this reporting. So we know if a, the dashboard, a data product essentially is built, we not that all the right steps are being followed and that whoever is consuming that can be quite confident in the result either, Right. And that silver browser, right? Absolutely >>Decay. >>Exactly. Yes, >>Absolutely. Talk a little bit about some of the, the key performance indicators that you're using to measure the success of the data office. What are some of those KPIs? >>KPIs and measuring is a big topic in the, in the data chief data officer profession, I would say, and again, it always varies with to your organization, but there's a few that we use that might be of interest. Use those pillars, right? And we have metrics across those pillars. So for example, a pillar on the data engineering side is gonna be more related to that uptime, right? Are the, is the data platform up and running? Are the data products up and running? Is the quality in them good enough? Is it going up? Is it going down? What's the usage? But also, and especially if you're in the cloud and if consumption's a big thing, you have metrics around cost, for example, right? So that's one set of examples. Another one is around the data sciences and products. Are people using them? Are they getting value from it? >>Can we calculate that value in ay perspective, right? Yeah. So that we can to the rest of the business continue to say we're tracking all those numbers and those numbers indicate that value is generated and how much value estimated in that region. And then you have some data intelligence, data governance metrics, which is, for example, you have a number of domains in a data mesh. People talk about being the owner of a data domain, for example, like product or, or customer. So how many of those domains do you have covered? How many of them are already part of the program? How many of them have owners assigned? How well are these owners organized, executing on their responsibilities? How many tickets are open closed? How many data products are built according to process? And so and so forth. So these are an set of examples of, of KPIs. There's a, there's a lot more, but hopefully those can already inspire the audience. >>Absolutely. So we've, we've talked about the rise cheap data offices, it's only accelerating. You mentioned this is like a 10 year journey. So if you were to look into a crystal ball, what do you see in terms of the maturation of data offices over the next decade? >>So we, we've seen indeed the, the role sort of grow up, I think in, in thousand 10 there may have been like 10 achieve data officers or something. Gartner has exact numbers on them, but then they grew, you know, industries and the number is estimated to be about 20,000 right now. Wow. And they evolved in a sort of stack of competencies, defensive data strategy, because the first chief data officers were more regulatory driven, offensive data strategy support for the digital program. And now all about data products, right? So as a data leader, you now need all of those competences and need to include them in, in your strategy. >>How is that going to evolve for the next couple of years? I wish I had one of those balls, right? But essentially I think for the next couple of years there's gonna be a lot of people, you know, still moving along with those four levels of the stack. A lot of people I see are still in version one and version two of the chief data. So you'll see over the years that's gonna evolve more digital and more data products. So for next years, my, my prediction is it's all products because it's an immediate link between data and, and the essentially, right? Right. So that's gonna be important and quite likely a new, some new things will be added on, which nobody can predict yet. But we'll see those pop up in a few years. I think there's gonna be a continued challenge for the chief officer role to become a real executive role as opposed to, you know, somebody who claims that they're executive, but then they're not, right? >>So the real reporting level into the board, into the CEO for example, will continue to be a challenging point. But the ones who do get that done will be the ones that are successful and the ones who get that will the ones that do it on the basis of data monetization, right? Connecting value to the data and making that value clear to all the data citizens in the organization, right? And in that sense, they'll need to have both, you know, technical audiences and non-technical audiences aligned of course. And they'll need to focus on adoption. Again, it's not enough to just have your data office be involved in this. It's really important that you're waking up data citizens across the organization and you make everyone in the organization think about data as an asset. >>Absolutely. Because there's so much value that can be extracted. Organizations really strategically build that data office and democratize access across all those data citizens. Stan, this is an exciting arena. We're definitely gonna keep our eyes on this. Sounds like a lot of evolution and maturation coming from the data office perspective. From the data citizen perspective. And as the data show that you mentioned in that IDC study, you mentioned Gartner as well, organizations have so much more likelihood of being successful and being competitive. So we're gonna watch this space. Stan, thank you so much for joining me on the cube at Data Citizens 22. We appreciate it. >>Thanks for having me over >>From Data Citizens 22, I'm Lisa Martin, you're watching The Cube, the leader in live tech coverage. >>Okay, this concludes our coverage of Data Citizens 2022, brought to you by Collibra. Remember, all these videos are available on demand@thecube.net. And don't forget to check out silicon angle.com for all the news and wiki bod.com for our weekly breaking analysis series where we cover many data topics and share survey research from our partner ETR Enterprise Technology Research. If you want more information on the products announced at Data Citizens, go to collibra.com. There are tons of resources there. You'll find analyst reports, product demos. It's really worthwhile to check those out. Thanks for watching our program and digging into Data Citizens 2022 on the Cube, your leader in enterprise and emerging tech coverage. We'll see you soon.
SUMMARY :
largely about getting the technology to work. Now the cloud is definitely helping with that, but also how do you automate governance? So you can see how data governance has evolved into to say we extract the signal from the noise, and over the, the next couple of days, we're gonna feature some of the So it's a really interesting story that we're thrilled to be sharing And we said at the time, you know, maybe it's time to rethink data innovation. 2020s from the previous decade, and what challenges does that bring for your customers? as data becomes more impactful than important, the level of scrutiny with respect to privacy, So again, I think it just another incentive for organization to now truly look at data You know, I don't know when you guys founded Collibra, if, if you had a sense as to how complicated the last kind of financial crisis, and that was really the, the start of Colli where we found product market Well, that's interesting because, you know, in my observation it takes seven to 10 years to actually build a again, a lot of momentum in the org in, in the, in the markets with some of the cloud partners And the second is that those data pipelines that are now being created in the cloud, I mean, the acquisition of i l dq, you know, So that's really the theme of a lot of the innovation that we're driving. And so that's the big theme from an innovation perspective, One of our key differentiators is the ability to really drive a lot of automation through workflows. So actually pushing down the computer and data quality, one of the key principles you think about monetization. And I, and I think we we're really at this pivotal moment, and I think you said it well. We need to look beyond just the I know you're gonna crush it out there. This is Dave Valante for the cube, your leader in enterprise and Without data leverage the Collibra data catalog to automatically And for that you'll establish community owners, a data set to a KPI to a report now enables your users to see what Finally, seven, promote the value of this to your users and Welcome to the Cube's coverage of Data Citizens 2022 Collibra's customer event. And now you lead data quality at Collibra. imagine if we get that wrong, you know, what the ramifications could be, And I realized in that moment, you know, I might have failed him because, cause I didn't know. And it's so complex that the way companies consume them in the IT function is And so it's really become front and center just the whole quality issue because data's so fundamental, nowadays to this topic is, so maybe we could surface all of these problems with So the language is changing a you know, stale data, you know, the, the whole trend toward real time. we sort of lived this problem for a long time, you know, in, in the Wall Street days about a decade you know, they just said, Oh, it's a glitch, you know, so they didn't understand the root cause of it. And the one right now is these hyperscalers in the cloud. And I think if you look at the whole So this is interesting because what you just described, you know, you mentioned Snowflake, And so when you were to log into Big Query tomorrow using our I love this example because, you know, Barry talks about, wow, the cloud guys are gonna own the world and, Seeing that across the board, people used to know it was a zip code and nowadays Appreciate it. Right, and thank you for watching. Nice to be here. Can can you explain to our audience why the ability to manage data across the entire organization. I was gonna say, you know, when I look back at like the last 10 years, it was all about getting the technology to work and it And one of the big pushes and passions we have at Collibra is to help with I I, you know, you mentioned this idea of, and really speeding the time to value for any of the business analysts, So where do you see, you know, the friction in adopting new data technologies? So one of the other things we're announcing with, with all of the innovations that are coming is So anybody in the organization is only getting access to the data they should have access to. So it was kind of smart that you guys were early on and We're able to profile and classify that data we're announcing with Calibra Protect this week that and get the right and make sure you have the right quality. I mean, the nice thing about Snowflake, if you play in the Snowflake sandbox, you, you, you, you can get sort of a, We also are doing more with Google around, you know, GCP and kbra protect there, you know, this year, the event your, your perspectives. And so it's all about everybody being able to easily It was great to have you on the cube first time I believe, cube, your leader in enterprise and emerging tech coverage. the cloud where you get the benefit of scale and security and so on. And the last example that comes to mind is that of a large home loan, home mortgage, Stan, it's great to have you back on the cube. Talk to us about what you mean by data citizenship and the And we believe that today's organizations, you have a lot of people, And one of the conclusions they found as they So you can say, ok, I'm doing this, you know, data culture for everyone, awakening them But the IDC study that you just mentioned demonstrates they're three times So as to how you get this done, establish this. part of the equation of getting that right, is it's not enough to just have that leadership out Talk to us about how you are building a data culture within Collibra and But over the years I've run, you know, So we said you the data products can run, the data can flow and you know, the quality can be checked. The catalog for the data scientists to know what's in their data lake, and data citizens join kbra, they immediately have a place to go to, Yes, success of the data office. So for example, a pillar on the data engineering side is gonna be more related So how many of those domains do you have covered? to look into a crystal ball, what do you see in terms of the maturation industries and the number is estimated to be about 20,000 right now. How is that going to evolve for the next couple of years? And in that sense, they'll need to have both, you know, technical audiences and non-technical audiences And as the data show that you mentioned in that IDC study, the leader in live tech coverage. Okay, this concludes our coverage of Data Citizens 2022, brought to you by Collibra.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Laura | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Heineken | ORGANIZATION | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Laura Sellers | PERSON | 0.99+ |
2008 | DATE | 0.99+ |
Collibra | ORGANIZATION | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
Felix Von Dala | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Felix Van Dema | PERSON | 0.99+ |
seven | QUANTITY | 0.99+ |
Stan Christians | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Lisa | PERSON | 0.99+ |
San Diego | LOCATION | 0.99+ |
Jay | PERSON | 0.99+ |
50 day | QUANTITY | 0.99+ |
Felix | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Kurt Hasselbeck | PERSON | 0.99+ |
Bank of America | ORGANIZATION | 0.99+ |
10 year | QUANTITY | 0.99+ |
California Consumer Privacy Act | TITLE | 0.99+ |
10 day | QUANTITY | 0.99+ |
Six | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Dave Ante | PERSON | 0.99+ |
Last year | DATE | 0.99+ |
demand@thecube.net | OTHER | 0.99+ |
ETR Enterprise Technology Research | ORGANIZATION | 0.99+ |
Barry | PERSON | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
one part | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
2010s | DATE | 0.99+ |
2020s | DATE | 0.99+ |
Calibra | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
Calibra | ORGANIZATION | 0.99+ |
K Bear Protect | ORGANIZATION | 0.99+ |
two sides | QUANTITY | 0.99+ |
Kirk Hasselbeck | PERSON | 0.99+ |
12 months | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Barb | PERSON | 0.99+ |
Stan | PERSON | 0.99+ |
Data Citizens | ORGANIZATION | 0.99+ |
Ankit Goel, Aravind Jagannathan, & Atif Malik
>>From around the globe. It's the cube covering data citizens. 21 brought to you by Colibra >>Welcome to the cubes coverage of Collibra data citizens 21. I'm Lisa Martin. I have three guests with me here today. Colibra customer Freddie Mac, please welcome JAG chief data officer and vice president of single family data and decisions. Jog. Welcome to the cube. >>Thank you, Lisa. Look forward to be, >>Uh, excellent on Kiko LSU as well. Vice president data transformation and analytics solution on Kay. Good to have you on the program. >>Thank you, Lisa. Great to be here and >>A teeth Malik senior director from the single family division at Freddie Mac is here as well. A team welcome. So we have big congratulations in order. Uh, pretty Mac was just announced at data citizens as the winners of the Colibra excellence award for data program of the year. Congratulations on that. We're going to unpack that. Talk about what that means, but I'd love to get familiar with the 3d Jack. Start with you. Talk to me a little bit about your background, your current role as chief data officer. >>Appreciate it, Lisa, thank you for the opportunity to share our story. Uh, my name is Arvind calls me Jack. And as you said, I'm just single-family chief data officer at Freddie Mac, but those that don't know, Freddie Mac is a Garland sponsored entity that supports the U S housing finance system and single family deals with the residential side of the marketplace, as CDO are responsible for our managed content data lineage, data governance, business architecture, which Cleaver plays a integral role, uh, in, in depth, that function as well as, uh, support our shared assets across the enterprise and our data monetization efforts, data, product execution, decision modeling, as well as our business intelligence capabilities, including AI and ML for various use cases as a background, starting my career in New York and then moved to Boston and last 20 years of living in the Northern Virginia DC area and fortunate to have been responsible for business operations, as well as led and, um, executed large transformation efforts. That background has reinforced the power of data and how, how it's so critical to meeting our business objectives. Look forward to our dialogue today, Lisa, once again. >>Excellent. You have a great background and clearly not a dull moment in your job with Freddy, Matt. And tell me a little bit about your background, your role, what you're doing at Freddie >>Mac. Definitely. Um, hi everyone. I'm,, I'm vice president of data transformation and analytics solutions. And I worked for JAG. I'm responsible for many of the things he said, including leading our transformation to the cloud and migrating all our existing data assets front of that transformation journey. I'm also responsible for our business information and business data architecture, decision modeling, business intelligence, and some of the analytics and artificial intelligence. I started my career back in the day as a computer engineer, but I've always been in the financial industry up in New York. And now in the Northern Virginia area, I called myself that bridge between business and technology. And I would say, I think over the last six years with data found that perfect spot where business and technology actually come together to solve real problems and, and really lead, um, you know, businesses to the next stage of, so thank you Lisa for the opportunity today. Excellent. >>And we're going to unpack you call yourself the bridge between business and it that's always such an important bridge. We're going to talk about that in just a minute, but I want to get your background, tell our audience about you. >>Uh, I'm Alec Malek, I'm senior director of business, data architecture, data transformation, and Freddie Mac. Uh, I'm responsible for the overall business data architecture and transformation of the existing data onto the cloud data lake. Uh, my team is responsible for the Kleberg platform and the business analysts that are using and maintaining the data in Libra and also driving the data architecture in close collaboration with our engineering teams. My background is I'm a engineer at heart. I still do a lot of development. This is my first time as of crossing over onto the bridge onto business side of maintaining data and working with data teams. >>Jan, let's talk about digital transformation. Freddie Mac is a 50 year old and growing company. I always love talking with established businesses about digital transformation. It's pretty challenging. Talk to me about your initial plan and what some of the main challenges were that you were looking to solve. >>Uh, great question, Lisa, and, uh, it's definitely pertinent as you say, in our digital world or figuring out how we need to accomplish it. If I look at our data, modernization is it is a major program and, uh, effort, uh, in, in our, in our division, what started as a reducing cost or looking at an infrastructure play, moving from physical data assets to the cloud, as well as enhancing our resiliency as quickly morphed into meeting business demand and objectives, whether it be for sourcing, servicing or securitization of our loan products. So where are we as we think about creating this digital data marketplace, we are, we are basically forming, empowering a new data ecosystem, which Columbia is definitely playing a major role. It's more than just a cloud native data lake, but it's bringing in some of our current assets and capabilities into this new data landscape. >>So as we think about creating an information hub, part of the challenges, as you say, 50 years of having millions of loans and millions of data across multiple assets, it's frigging out that you still have to care and feed legacy while you're building the new highway and figuring out how you best have to transform and translate and move data and assets to this new platform. What we've been striving for is looking at what is the business demand or what is the business use case, and what's the value to help prioritize that transformation. Exciting part is, as you think about new uses of acquiring and distribution of data, as well as news new use cases for prescriptive and predictive analytics, the power of what we're building in our daily, this new data ecosystem, we're feeling comfortable, we'll meet the business demand, but as any CTO will tell you demand is always, uh, outpaces our capacity. And that's why we want to be very diligent in terms of our execution plan. So we're very excited as to what we've accomplished so far this year and looking forward as we offered a remainder year. And as you go into 2022. Excellent, >>Thanks JAG. Uh, two books go to you. As I mentioned in the intro of that Freddie Mac has won the Culebra excellence award for data program of the year. Again, congratulations on that, but I'd love to understand the Kleber center of excellence that you're building at Freddie Mac. First of all, define what a center of excellence is to Freddie Mac and then what you're specifically building. Yeah, sure. >>So the Cleaver center of excellence provides us the overall framework from a people and process standpoint to focus in on our use of Colibra and for adopting best practices. Uh, we can have teams that are focused just on developing best practices and implementing workflows and lineage within Collibra and implementing and adopting a number of different aspects of Libra. It provides the central hub of people being domain experts on the tool that can then be leveraged by different groups within the organization to maintain, uh, the tool. >>Put another follow on question a T for you. How does Freddie Mac define, uh, dated citizens as anybody in finance or sales or marketing or operations? What does that definition of data citizen? >>It's really everyone it's within the organization. They all consume data in different ways and we provide a way of governing data and for them to get a better understanding of data from Collibra itself. So it's really everyone within the organization that way. >>Excellent. Okay. Let's go over to you a big topic at data citizens. 21 is collaboration. That's probably a word that we used a ton in the last 15 plus months or so it was every business really pivoted quickly to figure out how do we best collaborate. But something that you talked about in your intro is being the bridge between business and it, I want to understand from your perspective, how can data teams help to drive improved collaboration between business and it, >>The collaboration between business and technology have been a key focus area for us over the last few years, we actually started an agile transformation journey two years ago that we called modern delivery. And that was about moving away from project teams to persistent product teams that brought business and technology together. And we've really been able to pioneer that in the data space within Freddie Mac, where we have now teams with product owners coming from the data team and then full stack ID developers with them creating these combined teams to meet the business needs. We found that bringing these teams together really remove the barriers that were there in the interaction and the employee satisfaction has been high. And like you said, over the last 16 months with the pandemic, we've actually seen the productivity stay same or even go up because the teams were all working together, they work as a unit and they all have the sense of ownership versus working on a project that has a finite end date to fail. So we've, um, you know, we've been really lucky with having started this two years ago. Well, and >>That's great. And congratulations about either maintaining productivity or having it go up during the last 16 months, which had been incredibly challenging. Jack. I want to ask you what does winning this award from Collibra what does this mean to you and your team and does this signify that you're really establishing a data first culture? >>Great question, Lisa again. Um, I think winning the award, uh, just from a team standpoint, it's a great honor. Uh, Kleber has been a fantastic partner. And when I think about the journey of going from spread sheets, right, that all of us had in the past to now having all our business class returns lineage, and really being at the forefront of our data monetization. So as we think about moving to the cloud Beliebers step in step with us in terms of our integral part of that holistic delivery model, when I ultimately, as a CDO, it's really the team's honor and effort, cause this has been a multi-year journey to get here. And it's great that Libra as a, as a partner has helped us achieve some of these goals, but also recognized, um, where we are in terms of, uh, as looking at data as a product and some of our, um, leading forefront and using that holistic delivery, uh, to, uh, to meet our business objectives. So overall poorly jazzed when, uh, we've been found that we wanted the data program here at Collibra and very honored, um, uh, to, to win this award. That's >>Where we got to bring back I'm jazzed. I liked that jug sticking with you, let's unpack a little bit, some of those positive results, those business outcomes that you've seen so far from the data program. What are those? >>Yeah. So again, if you were thinking about a traditional CDO model, what were the terms that would have been used few years ago? It was around governance and may have been viewed as an oversight. Um, maybe less talking, um, monetization of what it was, the business values that you needed to accomplish collectively. It's really those three building blocks managing content. You got to trust the source, but ultimately it's empowering the business. So the best success that I could say at Freddy, as you're moving to this digital world, it's really empowering the business to figure out the new capabilities and demand and objectives that we're meeting. We're not going to be able to transform the mortgage industry. We're not going to be able or any, any industry, if we're still stuck in old world thinking, and ultimately data is going to be the blood that has to enable those capabilities. >>So if you tell me the business best success, we're no longer talking a okay, I got my data governance, what do we have to do? It's all embedded together. And as I alluded to that partnership between business and it informing that data is a product where you now you're delivering capabilities holistically from program teams all across data. It's no longer an afterthought. As I said, a few minutes ago, you're able to then meet the demand what's current. And how do we want to think about going forward? So it's no longer buzzwords of digital data marketplace. What is the value of that? And that's what the success, I think if our group collectively working across the organization, it's just not one team it's across the organization. Um, and we have our partners, our operations, everyone from business owners, all swimming in the same direction with, and I would say critical management support. So top of the house, our, our head of business, my, my boss was the COO full supportive in terms of how we're trying to execute and I've makes us, um, it's critical because when there is a potential, trade-offs, we're all looking at it collectively as an organization, >>Right. And that's the best viewpoint to have is that sort of centralized unified vision. And as you say, JAG, the support from, from up top, uh, I'd see if I want to ask you, you establish the Culebra center of excellence. What are you focused on now? >>So we really focused in allowing our users to consume data and understand data and really democratizing data so that they can really get a better understanding of that. So that's a lot of our focus and engaging with Collibra and getting them to start to define things in Colibra law form. That's a lot of focus right now. >>Excellent. Want to stay with you one more question and take that I'm gonna ask to all of you, what are you most excited about a lot of success that you've talked about transforming a legacy institution? What are you most excited about and what are the next steps for the data program? Uh, teak what's are your thoughts? >>Yeah, so really modernizing onto, uh, onto a cloud data lake and allowing all of the users and, uh, Freddie Mac to consume data with the level of governance that we need around. It is a exciting proposition for me. >>What would you say is most exciting to you? >>I'm really looking forward to the opportunities that artificial intelligence has to offer, not just in the augmented analytics space, but in the overall data management life cycle. There's still a lot of things that are manual in the data management space. And, uh, I personally believe, uh, artificial intelligence has a huge role to play there. And Jackson >>Question to you, it seems like you have a really strong collaborative team. You have a very collaborative relationship with management and with Collibra, what are you excited about? What's coming down the pipe. >>So Lisa, if I look at it, you know, we sit back here June, 2021, where were we a year ago? And you think about a lot of the capabilities and some of the advancements that we may just in a year sitting virtually using that word jazzed or induced or feeling really great about. We made a lot of accomplishments. I'm excited what we're going to be doing for the next year. So there's other use cases, and I could talk about AIML and OCHA talks about, you know, our new ecosystem. Seeing those use cases come to fruition so that we're, we are contributing to value from a business standpoint. The organization is what really keeps me up. Uh, keeps me up at night. It gets me up in the morning and I'm really feeling dues for the entire division. Excellent. >>Well, thank you. I want to thank all three of you for joining me today. Talking about the successes that Freddie Mac has had transforming in partnership with Colibra again, congratulations on the Culebra excellence award for the data program. It's been a pleasure talking to all three of you. I'm Lisa Martin. You're watching the cubes coverage of Collibra data citizens 21.
SUMMARY :
21 brought to you by Colibra Welcome to the cubes coverage of Collibra data citizens 21. Good to have you on the program. but I'd love to get familiar with the 3d Jack. has reinforced the power of data and how, how it's so critical to And tell me a little bit about your background, your role, what you're doing at Freddie to solve real problems and, and really lead, um, you know, businesses to the next stage of, We're going to talk about that in just a minute, but I want to get your background, tell our audience about you. Uh, I'm responsible for the overall business data architecture and transformation Talk to me about your initial plan and what some of the main challenges were that Uh, great question, Lisa, and, uh, it's definitely pertinent as you say, building the new highway and figuring out how you best have to transform and translate As I mentioned in the intro of that Freddie Mac has won So the Cleaver center of excellence provides us the overall framework from a people What does that definition of data citizen? So it's really everyone within the organization is being the bridge between business and it, I want to understand from your perspective, over the last 16 months with the pandemic, we've actually seen the productivity this award from Collibra what does this mean to you and your team and the past to now having all our business class returns lineage, I liked that jug sticking with you, let's unpack a little bit, it's really empowering the business to figure out the new capabilities and demand and objectives that we're meeting. And as I alluded to And as you say, JAG, the support from, from up top, uh, I'd see if I want to ask you, So that's a lot of our focus and engaging with Collibra and getting them to Want to stay with you one more question and take that I'm gonna ask to all of you, what are you most excited all of the users and, uh, Freddie Mac to consume data with the I'm really looking forward to the opportunities that artificial intelligence has to offer, with Collibra, what are you excited about? So Lisa, if I look at it, you know, we sit back here June, 2021, where were we a year ago? congratulations on the Culebra excellence award for the data program.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Atif Malik | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Alec Malek | PERSON | 0.99+ |
June, 2021 | DATE | 0.99+ |
Boston | LOCATION | 0.99+ |
Ankit Goel | PERSON | 0.99+ |
New York | LOCATION | 0.99+ |
Jack | PERSON | 0.99+ |
Freddie Mac | ORGANIZATION | 0.99+ |
50 years | QUANTITY | 0.99+ |
Arvind | PERSON | 0.99+ |
Aravind Jagannathan | PERSON | 0.99+ |
JAG | PERSON | 0.99+ |
Collibra | ORGANIZATION | 0.99+ |
2022 | DATE | 0.99+ |
Kay | PERSON | 0.99+ |
Jackson | PERSON | 0.99+ |
two books | QUANTITY | 0.99+ |
Matt | PERSON | 0.99+ |
Northern Virginia DC | LOCATION | 0.99+ |
Freddie | ORGANIZATION | 0.99+ |
Northern Virginia | LOCATION | 0.99+ |
three guests | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
next year | DATE | 0.99+ |
two years ago | DATE | 0.99+ |
a year ago | DATE | 0.98+ |
Colibra | TITLE | 0.98+ |
first time | QUANTITY | 0.98+ |
this year | DATE | 0.97+ |
Freddy | ORGANIZATION | 0.97+ |
pandemic | EVENT | 0.97+ |
OCHA | ORGANIZATION | 0.97+ |
three | QUANTITY | 0.97+ |
three building blocks | QUANTITY | 0.97+ |
Kleber | ORGANIZATION | 0.96+ |
CDO | ORGANIZATION | 0.96+ |
Freddy | PERSON | 0.94+ |
last 16 months | DATE | 0.94+ |
Mac | ORGANIZATION | 0.94+ |
Colibra | ORGANIZATION | 0.93+ |
one more question | QUANTITY | 0.93+ |
First | QUANTITY | 0.93+ |
50 year old | QUANTITY | 0.92+ |
Kleber | PERSON | 0.91+ |
millions of data | QUANTITY | 0.9+ |
millions of loans | QUANTITY | 0.9+ |
single | QUANTITY | 0.89+ |
few years ago | DATE | 0.89+ |
AIML | ORGANIZATION | 0.86+ |
Culebra excellence award | TITLE | 0.85+ |
Cleaver | PERSON | 0.83+ |
one team | QUANTITY | 0.83+ |
few minutes ago | DATE | 0.82+ |
Freddie Mac | ORGANIZATION | 0.81+ |
3d | QUANTITY | 0.81+ |
Culebra | ORGANIZATION | 0.8+ |
Libra | TITLE | 0.8+ |
U | LOCATION | 0.8+ |
last six years | DATE | 0.78+ |
Garland | ORGANIZATION | 0.78+ |
Columbia | LOCATION | 0.74+ |
Malik | PERSON | 0.74+ |
Kleberg | ORGANIZATION | 0.73+ |
Libra | ORGANIZATION | 0.72+ |
Stijn Paul Fireside Chat Accessible Data | Data Citizens'21
>>Really excited about this year's data, citizens with so many of you together. Uh, I'm going to talk today about accessible data, because what good is the data. If you can get it into your hands and shop for it, but you can't understand it. Uh, and I'm here today with, uh, bald, really thrilled to be here with Paul. Paul is an award-winning author on all topics data. I think 20 books with 21st on the way over 300 articles, he's been a frequent speaker. He's an expert in future trends. Uh, he's a VP at cognitive systems, uh, over at IBM teachers' data also, um, at the business school and as a champion of diversity initiatives. Paul, thank you for being here, really the conformance, uh, to the session with you. >>Oh, thanks for having me. It's a privilege. >>So let's get started with, uh, our origins and data poll. Um, and I'll start with a little story of my own. So, uh, I trained as an engineer way back when, uh, and, um, in one of the courses we got as an engineer, it was about databases. So we got the stick thick book of CQL and me being in it for the programming. I was like, well, who needs this stuff? And, uh, I wanted to do my part in terms of making data accessible. So essentially I, I was the only book that I sold on. Uh, obviously I learned some hard lessons, uh, later on, as I did a master's in AI after that, and then joined the database research lab at the university that Libra spun off from. Uh, but Hey, we all learned along the way. And, uh, Paula, I'm really curious. Um, when did you awaken first to data? If you will? >>You know, it's really interesting Stan, because I come from the opposite side, an undergrad in economics, uh, with some, uh, information systems research at the higher level. And so I think I was always attuned to what data could do, but I didn't understand how to get at it and the kinds of nuances around it. So then I started this job, a database company, like 27 years ago, and it started there, but I would say the awakening has never stopped because the data game is always changing. Like I look at these epochs that I've been through data. I was a real relational databases thinking third normal form, and then no SQL databases. And then I watch no SQL be about no don't use SQL, then wait a minute. Not only sequel. And today it's really for the data citizens about wait, no, I need SQL. So, um, I think I'm always waking up in data, so I'll call it a continuum if you will. But that was it. It was trying to figure out the technology behind driving analytics in which I took in school. >>Excellent. And I fully agree with you there. Uh, every couple of years they seem to reinvent new stuff and they want to be able to know SQL models. Let me see. I saw those come and go. Uh, obviously, and I think that's, that's a challenge for most people because in a way, data is a very abstract concepts, um, until you get down in the weeds and then it starts to become really, really messy, uh, until you, you know, from that end button extract a certain insights. Um, and as the next thing I want to talk about with you is that challenging organizations, we're hearing a lot about data, being valuable data, being the new oil data, being the new soil, the new gold, uh, data as an asset is being used as a slogan all over. Uh, people are investing a lot in data over multiple decades. Now there's a lot of new data technologies, always, but still, it seems that organizations fundamentally struggle with getting people access to data. What do you think are some of the key challenges that are underlying the struggles that mud, that organizations seem to face when it comes to data? >>Yeah. Listen, Stan, I'll tell you a lot of people I think are stuck on what I call their data, acumen curves, and you know, data is like a gym membership. If you don't use it, you're not going to get any value on it. And that's what I mean by accurate. And so I like to think that you use the analogy of some mud. There's like three layers that are holding a lot of organizations back at first is just the amount of data. Now, I'm not going to give you some stat about how many times I can go to the moon and back with the data regenerate, but I will give you one. I found interesting stat. The average human being in their lifetime will generate a petabyte of data. How much data is that? If that was my apple music playlist, it would be about 2000 years of nonstop music. >>So that's some kind of playlist. And I think what's happening for the first layer of mud is when I first started writing about data warehousing and analytics, I would be like, go find a needle in the haystack. But now it's really finding a needle in a stack of needles. So much data. So little time that's level one of mine. I think the second thing is people are looking for some kind of magic solution, like Cinderella's glass slipper, and you put it on her. She turns into a princess that's for Disney movies, right? And there's nothing magical about it. It is about skill and acumen and up-skilling. And I think if you're familiar with the duper, you recall the Hadoop craze, that's exactly what happened, right? Like people brought all their data together and everyone was going to be able to access it and give insights. >>And it teams said it was pretty successful, but every line of business I ever talked to said it was a complete failure. And the third layer is governance. That's actually where you're going to find some magic. And the problem in governance is every client I talked to is all about least effort to comply. They don't want to violate GDPR or California consumer protection act or whatever governance overlooks, where they do business and governance. When you don't lead me separate to comply and try not to get fine, but as an accelerant to your analytics, and that gets you out of that third layer of mud. So you start to invoke what I call the wisdom of the crowd. Now imagine taking all these different people with intelligence about the business and giving them access and acumen to hypothesize on thousands of ideas that turn into hundreds, we test and maybe dozens that go to production. So those are three layers that I think every organization is facing. >>Well. Um, I definitely follow on all the days, especially the one where people see governance as a, oh, I have to comply to this, which always hurts me a little bit, honestly, because all good governance is about making things easier while also making sure that they're less riskier. Um, but I do want to touch on that Hadoop thing a little bit, uh, because for me in my a decade or more over at Libra, we saw it come as well as go, let's say around 2015 to 2020 issue. So, and it's still around. Obviously once you put your data in something, it's very hard to make it go away, but I've always felt that had do, you know, it seemed like, oh, now we have a bunch of clusters and a bunch of network engineers. So what, >>Yeah. You know, Stan, I fell for, I wrote the book to do for dummies and it had such great promise. I think the problem is there wasn't enough education on how to extract value out of it. And that's why I say it thinks it's great. They liked clusters and engineers that you just said, but it didn't drive lineup >>Business. Got it. So do you think that the whole paradigm with the clouds that we're now on is going to fundamentally change that or is just an architectural change? >>Yeah. You know, it's, it's a great comment. What you're seeing today now is the movement for the data lake. Maybe a way from repositories, like Hadoop into cloud object stores, right? And then you look at CQL or other interfaces over that not allows me to really scale compute and storage separately, but that's all the technical stuff at the end of the day, whether you're on premise hybrid cloud, into cloud software, as a service, if you don't have the acumen for your entire organization to know how to work with data, get value from data, this whole data citizen thing. Um, you're not going to get the kind of value that goes into your investment, right? And I think that's the key thing that business leaders need to understand is it's not about analytics for kind of science project sakes. It's about analytics to drive. >>Absolutely. We fully agree with that. And I want to touch on that point. You mentioned about the wisdom of the crowds, the concept that I love about, right, and your organization is a big grout full of what we call data citizens. Now, if I remember correctly from the book of the wisdom of the crowds, there's, there's two points that really, you have to take Canada. What is, uh, for the wisdom of the grounds to work, you have to have all the individuals enabled, uh, for them to have access to the right information and to be able to share that information safely kept from the bias from others. Otherwise you're just biasing the outcome. And second, you need to be able to somehow aggregate that wisdom up to a certain decision. Uh, so as Felix mentioned earlier, we all are United by data and it's a data citizen topic. >>I want to touch on with you a little bit, because at Collibra we look at it as anyone who uses data to do their job, right. And 2020 has sort of accelerated digitization. Uh, but apart from that, I've always believed that, uh, you don't have to have data in your title, like a data analyst or a data scientist to be a data citizen. If I take a look at the example inside of Libra, we have product managers and they're trying to figure out which features are most important and how are they used and what patterns of behavior is there. You have a gal managers, and they're always trying to know the most they can about their specific accounts, uh, to be able to serve as them best. So for me, the data citizen is really in its broadest sense. Uh, anyone who uses data to do their job, does that, does that resonate with you? >>Yeah, absolutely. It reminds me of myself. And to be honest in my eyes where I got started from, and I agree, you don't need the word data in your title. What you need to have is curiosity, and that is in your culture and in your being. And, and I think as we look at organizations to transform and take full advantage of their, their data investments, they're going to need great governance. I guarantee you that, but then you're going to have to invest in this data citizen concept. And the first thing I'll tell you is, you know, that kind of acumen, if you will, as a team sport, it's not a departmental sport. So you need to think about what are the upskilling programs of where we can reach across to the technical and the non-technical, you know, lots and lots of businesses rely on Microsoft Excel. >>You have data citizens right there, but then there's other folks who are just flat out curious about stuff. And so now you have to open this up and invest in those people. Like, why are you paying people to think about your business without giving the data? It would be like hiring Tom Brady as a quarterback and telling him not to throw a pass. Right. And I see it all the time. So we kind of limit what we define as data citizen. And that's why I love what you said. You don't need the word data in your title and more so if you don't build the acumen, you don't know how to bring the data together, maybe how to wrangle it, but where did it come from? And where can you fixings? One company I worked with had 17 definitions for a sales individual, 17 definitions, and the talent team and HR couldn't drive to a single definition because they didn't have the data accurate. So when you start thinking of the data citizen, concept it about enabling everybody to shop for data much. Like I would look for a USB cable on Amazon, but also to attach to a business glossary for definition. So we have a common version of what a word means, the lineage of the data who owns it, who did it come from? What did it do? So bring that all together. And, uh, I will tell you companies that invest in the data, citizen concept, outperform companies that don't >>For all of that, I definitely fully agree that there's enough research out there that shows that the ones who are data-driven are capturing the most markets, but also capturing the most growth. So they're capturing the market even faster. And I love what you said, Paul, about, um, uh, the brains, right? You've already paid for the brains you've already invested in. So you may as well leverage them. Um, you may as well recognize and, and enable the data citizens, uh, to get access to the assets that they need to really do their job properly. That's what I want to touch on just a little bit, if, if you're capable, because for me, okay. Getting access to data is one thing, right? And I think you already touched on a few items there, but I'm shopping for data. Now I have it. I have a cul results set in my hands. Let's say, but I'm unable to read and write data. Right? I don't know how to analyze it. I don't know maybe about bias. Uh, maybe I, I, I don't know how to best visualize it. And maybe if I do, maybe I don't know how to craft a compelling persuasion narrative around it to change my bosses decisions. So from your viewpoint, do you think that it's wise for companies to continuously invest in data literacy to continuously upgrade that data citizens? If you will. >>Yeah, absolutely. Forest. I'm going to tell you right now, data literacy years are like dog years stage. So fast, new data types, new sources of data, new ways to get data like API APIs and microservices. But let me take it away from the technical concept for a bit. I want to talk to you about the movie. A star is born. I'm sure most of you have seen it or heard it Bradley Cooper, lady Gaga. So everyone knows the movie. What most people probably don't know is when lady Gaga teamed up with Bradley Cooper to do this movie, she demanded that he sing everything like nothing could be auto-tuned everything line. This is one of the leading actors of Hollywood. They filmed this remake in 42 days and Bradley Cooper spent 18 months on singing lessons. 18 months on a guitar lessons had a voice coach and it's so much and so forth. >>And so I think here's the point. If one of the best actors in the world has to invest three and a half years for 42 days to hit a movie out of the park. Why do we think we don't need a continuous investment in data literacy? Even once you've done your initial training, if you will, over the data, citizen, things are going to change. I don't, you don't. If I, you Stan, if you go to the gym and workout every day for three months, you'll never have to work out for the rest of your life. You would tell me I was ridiculous. So your data literacy is no different. And I will tell you, I have managed thousands of individuals, some of the most technical people around distinguished engineers, fellows, and data literacy comes from curiosity and a culture of never ending learning. That is the number one thing to success. >>And that curiosity, I hire people who are curious, I'll give you one more story. It's about Mozart. And this 21 year old comes to Mozart and he says, Mozart, can you teach me how to compose a symphony? And Mozart looks at this person that says, no, no, you're too young, too young. You compose your fourth symphony when you were 12 and Mozart looks at him and says, yeah, but I didn't go around asking people how to compose a symphony. Right? And so the notion of that story is curiosity. And those people who show up in always want to learn, they're your home run individuals. And they will bring data literacy across the organization. >>I love it. And I'm not going to try and be Mozart, but you know, three and a half years, I think you said two times, 18 months, uh, maybe there's hope for me yet in a singing, you'll be a good singer. Um, Duchy on the, on the, some of the sports references you've made, uh, Paul McGuire, we first connected, uh, I'm not gonna like disclose where you're from, but, uh, I saw he did come up and I know it all sorts of sports that drive to measure everything they can right on the field of the field. So let's imagine that you've done the best analysis, right? You're the most advanced data scientists schooled in the classics, as well as the modernist methods, the best tools you've made a beautiful analysis, beautiful dashboards. And now your coach just wants to put their favorite player on the game, despite what you're building to them. How do you deal with that kind of coaches? >>Yeah. Listen, this is a great question. I think for your data analytics strategy, but also for anyone listening and watching, who wants to just figure out how to drive a career forward? I would give the same advice. So the story you're talking about, indeed hockey, you can figure out where I'm from, but it's around the Ottawa senators, general manager. And he made a quote in an interview and he said, sometimes I want to punch my analytics, people in the head. Now I'm going to tell you, that's not a good culture for analytics. And he goes on to say, they tell me not to play this one player. This one player is very tough. You know, throws four or five hits a game. And he goes, I'd love my analytics people to get hit by bore a wacky and tell me how it feels. That's the player. >>Sure. I'm sure he hits hard, but here's the deal. When he's on the ice, the opposing team gets more shots on goal than the senators do on the opposing team. They score more goals, they lose. And so I think whenever you're trying to convince a movement forward, be it management, be it a project you're trying to fund. I always try to teach something that someone didn't previously know before and make them think, well, I never thought of it that way before. And I think the great opportunity right now, if you're trying to get moving in a data analytics strategy is around this post COVID era. You know, we've seen post COVID now really accelerate, or at least post COVID in certain parts of the world, but accelerate the appetite for digital transformation by about half a decade. Okay. And getting the data within your systems, as you digitize will give you all kinds of types of projects to make people think differently than the way they thought before. >>About data. I call this data exhaust. I'll give you a great example, Uber. I think we're all familiar with Uber. If we all remember back in the days when Uber would offer you search pricing. Okay? So basically you put Uber on your phone, they know everything about you, right? Who are your friends, where you going, uh, even how much batteries on your phone? Well, in a data science paper, I read a long time ago. They recognize that there was a 70% chance that you would accept a surge price. If you had less than 10% of your battery. So 10% of battery on your phone is an example of data exhaust all the lawns that you generate on your digital front end properties. Those are logs. You can take those together and maybe show executive management with data. We can understand why people abandoned their cart at the shipping phase, or what is the amount of shipping, which they abandoned it. When is the signal when our systems are about to go to go down. So, uh, I think that's a tremendous way. And if you look back to the sports, I mean the Atlanta Falcons NFL team, and they monitor their athletes, sleep performance, the Toronto Raptors basketball, they're running AI analytics on people's personalities and everything they tweet and every interview to see if the personality fits. So in sports, I think athletes are the most important commodity, if you will, or asset a yet all these teams are investing in analytics. So I think that's pretty telling, >>Okay, Paul, it looks like we're almost out of time. So in 30 seconds or less, what would you recommend to the data citizens out there? >>Okay. I'm going to give you a four tips in 30 seconds. Number one, remember learning never ends be curious forever. You'll drive your career. Number two, remember companies that invest in analytics and data, citizens outperform those that don't McKinsey says it's about 1.4 times across many KPIs. Number three, stop just collecting the dots and start connecting them with that. You need a strong governance strategy and that's going to help you for the future because the biggest thing in the future is not going to be about analytics, accuracy. It's going to be about analytics, explainability. So accuracy is no longer going to be enough. You're going to have to explain your decisions and finally stay positive and forever test negative. >>Love it. Thank you very much fall. Um, and for all the data seasons is out there. Um, when it comes down to access to data, it's more than just getting your hands on the data. It's also knowing what you can do with it, how you can do that and what you definitely shouldn't be doing with it. Uh, thank you everyone out there and enjoy your learning and interaction with the community. Stay healthy. Bye-bye.
SUMMARY :
If you can get it into your hands and shop for it, but you can't understand it. It's a privilege. Um, when did you awaken first to data? And so I think I was always attuned to what data could do, but I didn't understand how to get Um, and as the next thing I want to talk about with you is And so I like to think that you use And I think if you're familiar with the duper, you recall the Hadoop craze, And the problem in governance is every client I talked to is Obviously once you put your They liked clusters and engineers that you just said, So do you think that the whole paradigm with the clouds that And then you look at CQL or other interfaces over that not allows me to really scale you have to have all the individuals enabled, uh, uh, you don't have to have data in your title, like a data analyst or a data scientist to be a data citizen. and I agree, you don't need the word data in your title. And so now you have to open this up and invest in those people. And I think you already touched on a few items there, but I'm shopping for data. I'm going to tell you right now, data literacy years are like dog years I don't, you don't. And that curiosity, I hire people who are curious, I'll give you one more story. And I'm not going to try and be Mozart, but you know, And he goes on to say, they tell me not to play this one player. And I think the great opportunity And if you look back to the sports, what would you recommend to the data citizens out there? You need a strong governance strategy and that's going to help you for the future thank you everyone out there and enjoy your learning and interaction with the community.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Paul | PERSON | 0.99+ |
Toronto Raptors | ORGANIZATION | 0.99+ |
Paula | PERSON | 0.99+ |
Paul McGuire | PERSON | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
17 definitions | QUANTITY | 0.99+ |
Tom Brady | PERSON | 0.99+ |
Mozart | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Bradley Cooper | PERSON | 0.99+ |
70% | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
18 months | QUANTITY | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
20 books | QUANTITY | 0.99+ |
12 | QUANTITY | 0.99+ |
hundreds | QUANTITY | 0.99+ |
42 days | QUANTITY | 0.99+ |
fourth symphony | QUANTITY | 0.99+ |
two times | QUANTITY | 0.99+ |
three months | QUANTITY | 0.99+ |
Atlanta Falcons | ORGANIZATION | 0.99+ |
lady Gaga | PERSON | 0.99+ |
Bradley Cooper | PERSON | 0.99+ |
Stan | PERSON | 0.99+ |
2020 | DATE | 0.99+ |
10% | QUANTITY | 0.99+ |
21st | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
one player | QUANTITY | 0.99+ |
CQL | TITLE | 0.99+ |
Cinderella | PERSON | 0.99+ |
second thing | QUANTITY | 0.99+ |
GDPR | TITLE | 0.99+ |
two points | QUANTITY | 0.99+ |
Felix | PERSON | 0.99+ |
dozens | QUANTITY | 0.99+ |
three and a half years | QUANTITY | 0.99+ |
single definition | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
less than 10% | QUANTITY | 0.98+ |
Collibra | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.98+ |
third layer | QUANTITY | 0.98+ |
three layers | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
2015 | DATE | 0.98+ |
about 2000 years | QUANTITY | 0.98+ |
Canada | LOCATION | 0.98+ |
California consumer protection act | TITLE | 0.98+ |
four tips | QUANTITY | 0.97+ |
Disney | ORGANIZATION | 0.97+ |
third | QUANTITY | 0.97+ |
SQL | TITLE | 0.97+ |
Microsoft | ORGANIZATION | 0.97+ |
this year | DATE | 0.96+ |
Hollywood | ORGANIZATION | 0.96+ |
one more story | QUANTITY | 0.96+ |
over 300 articles | QUANTITY | 0.94+ |
27 years ago | DATE | 0.94+ |
one thing | QUANTITY | 0.94+ |
a decade | QUANTITY | 0.94+ |
Duchy | PERSON | 0.93+ |
level one | QUANTITY | 0.92+ |
Rachel Botsman, University of Oxford | Coupa Insp!re EMEA 2019
>> Announcer: From London, England, it's theCUBE! Covering Coupa Insp!re'19 EMEA. Brought to you by Coupa. >> Hey, welcome to theCUBE. Lisa Martin on the ground in London at Coupa Insp!re'19. Can you hear all the buzz around me? You probably can hear it, it's electric. The keynote just ended, and I'm very pleased to welcome, fresh from the keynote stage, we have Rachel Botsman, author and trust expert from Oxford University. Rachel, welcome to theCUBE! >> Thank you for having me. >> Your talk this morning about the intersection of trust and technology, to say it's interesting is an understatement. You had some great examples where you showed some technology brands, that we all know, and have different relationships with: Uber, Facebook, and Amazon. And the way that you measured the audience is great, you know, clap the brand that you trust the most. And it was so interesting, because we expect these technology brands to, they should be preserving our information, but we've also seen recent history, some big examples, of that trust being broken. >> Rachel: Yeah, yeah. >> Talk to us about your perspectives. >> So what I thought was interesting, well kind of unexpected for me, was no one clapped for Facebook, not one person in the room. And this is really interesting to me, because the point that I was making is that trust is really, really contextual, right? So if I had said to people, do you trust on Facebook that you can find your friends from college, they probably would've clapped. But do I trust them with my data, no. And this distinction is so important, because if you lose trust in one area as a company or a brand, and it can take time, you lose that ability to interact with people. So our relationship and our trust relationship with brands is incredibly complicated. But I think, particular tech brands, what they're realizing is that, how badly things go wrong when they're in a trust crisis. >> Talk to me about trust as a currency. You gave some great examples this morning. Money is the currency for transactions, where trust is the currency of interactions. >> Yeah, well I was trying to frame things, not because they sound nice, but how do you create a lens where people can really understand, like what is the value of this thing, and what is the role that it plays? And I'm never going to say money's not important; money is very important. But people can understand money; people value money. And I think that's because it has a physical, you can touch it, and it has an agreed value, right? Trust I actually don't believe can be measured. Trust is, what is it? It's something there, there's a connection between people. So you know when you have trust because you can interact with people. You know when you have trust because you can place their faith in them, you can share things about yourself and also share things back. So it's kind of this idea that, think of it as a currency, think of it as something that you should really value that is incredibly fragile in any situation in any organization. >> How does a company like Coupa, or an Amazon or a Facebook, how do they leverage trust and turn it into a valuable asset? >> Yeah, I don't like the idea that you sort of unlock trust. I think companies that really get it right are companies that think day in and day out around behaviors and culture. If you get behaviors and culture right, like the way people behave, whether they have empathy, whether they have integrity, whether you feel like you can depend on them, trust naturally flows from that. But the other thing that often you find with brands is they think of trust as like this reservoir, right? So it's different from awareness and loyalty; it's not like this thing that, you can have this really full up battery which means then you can launch some crazy products and everyone will trust it. We've seen this with like, Mattel, the toy brand. They launched a smart system for children called Aristotle, and within six months they had to pull it because people didn't trust what it was recording and watching in people's bedrooms. We were talking about Facebook and the cryptocurrency Libra, their new smart assistants; I wouldn't trust that. Amazon have introduced smart locks; I don't know if you've seen these? >> Lisa: Yes. >> Where if you're not home, it's inconvenient for a very annoying package slip. So you put in an Amazon lock and the delivery person will walk into your home. I trust Amazon to deliver my parcels; I don't trust them to give access to my home. So what we do with the trust and how we tap into that, it really depends on the risk that we're asking people to take. >> That's a great point that you bring about Amazon, because you look at how they are infiltrating our lives in so many different ways. There's a lot of benefits to it, in terms of convenience. I trust Amazon, because I know when I order something it's going to arrive when they say it will. But when you said about trust being contextual and said do you trust that Amazon pays their taxes, I went wow, I hadn't thought of it in that way. Would I want to trust them to come into my home to drop off a package, no. >> Rachel: Yeah. >> But the, I don't know if I want to say infiltration, into our lives, it's happening whether we like it or not. >> Well I think Amazon is really interesting. First of all because so often as consumers, and I'm guilty, we let convenience trump trust. So we talk about trust, but, you know what, like, if I don't really trust that Uber driver but I really want to get somewhere, I'll get in the car, right? I don't really trust the ethics of Amazon as a company or like what they're doing in the world, but I like the convenience. I predict that Amazon is actually going to go through a major trust crisis. >> Lisa: Really? >> Yeah. The reason why is because their trust is largely, I talked about capability and character. Amazon's trust is really built around capability. The capability of their fulfillment centers, like how efficient they are. Character wobbles, right? Like, does Bezos have integrity? Do we really feel like they care about the bookshops they're eating up? Or they want us to spend money on the right things? And when you have a brand and the trust is purely built around capability and the character piece is missing, it's quite a precarious place to be. >> Lisa: I saw a tweet that you tweeted recently. >> Uh oh! (laughs) >> Lisa: On the difference between capability and character. >> Yes, yeah. >> Lisa: And it was fascinating because you mentioned some big examples, Boeing. >> Yes. >> The two big air disasters in the last year. Facebook, obviously, the security breach. WeWork, this overly aggressive business model. And you said these companies are placing the blame, I'm not sure if that's the right word-- >> No no, the blame, yeah. >> On product or service capabilities, and you say it really is character. Can you talk to our audience about the difference, and why character is so important. >> Yeah, it's so interesting. So you know, sometimes you post things. I actually post more on LinkedIn, and suddenly like, you hit a nerve, right? Because I don't know, it's something you're summarizing that many people are feeling. And so the point of that was like, if you look at Boeing, Theranos was another example, WeWork, hundreds of banks, when something goes wrong they say it was a flaw in the product, it was a flaw in the system, it's a capability problem. And I don't think that's the case. Because the root cause of capability problems come from character and culture. And so, capability is really about the competence and reliability of someone or a product or service. Character is how someone behaves. Character gets to their intentions and motives. Character gets to, did they know about it and not tell us. Even VW is another example. >> Lisa: Yes. >> So it's not the product that is the issue. And I think we as consumers and citizens and customers, where many companies get it wrong in a trust crisis is they talk about the product fix. We won't forgive them, or we won't start giving them our trust again until we really believe something's changed about their character. I'm not sure anything has changed with Facebook's culture and character, which is why they're struggling with every move that they take, even though their intentions might be good. That's not how people in the world are viewing them. >> Do you think, taking Boeing as an example, I fly a lot, I'm sure you do as well. >> Rachel: Yeah. >> When those accidents happened, I'm sure everybody, including myself, was checking, what plane is this? >> Rachel: Yeah. >> Because when you know, especially once data starts being revealed, that demonstrated pilots, test pilots, were clearly saying something isn't right here, why do you think a company like Boeing isn't coming out and addressing that head on from an integrity perspective? Do you think that could go a long way in helping their brand reputation? >> I never, I mean I do get it, I'm married to a lawyer so I understand, legal gets involved, governance gets involved, so it's like, let's not disclose that. They're so worried about the implications. But it's this belief they can keep things hidden. It's a continual pattern, right? And that they try to show empathy, but really it comes across as some weird kind of sympathy. They don't really show humility. And so, when the CEO sits there, I have to believe he feels the pain of the human consequence of what happened. But more importantly, I have to believe it will never happen again. And again, it's not necessarily, do I trust the products Boeing creates, it's do I trust the people? Do I trust the decisions that they're making? And so it's really interesting to watch companies, Samsung, right? You can recover from a product crisis, with the phones, and they kind of go away. But it's much harder to recover from what, Boeing is a perfect example, has become a cultural crisis. >> Right, right. Talk to us about the evolution of trust. You talked about these three waves. Tell our audience about that, and what the third wave is and why we're in it, benefits? And also things to be aware of. >> Yes! (laughs) I didn't really talk about this today, because it's all about inspiration. So just to give you a sense, the way I think about trust is three chapters of human history. So the first one is called local trust; all running around villages and communities. I knew you, I knew your sister, I knew whoever was in that village. And it was largely based on reputation. So, I borrowed money from someone I knew, I went to the baker. Now this type of trust, it was actually phenomenally effective, but we couldn't scale it. So when we wanted to trade globally, the Industrial Revolution, moving to cities, we invented what I call institutional trust. And that's everything from financial systems to insurance products, all these mechanisms that allow trust to flow on a different level. Now what's happening today, it's not those two things are going away and they're not important; they are. It's that what technology inherently does, particularly networks, marketplaces, and platforms, is it takes this trust that used to be very hierarchical and linear, we used to look up to the CEO, we used to look up to the expert, and it distributes it around networks and platforms. So you can see that at Coupa, right? And this is amazing because it can unlock value, it can create marketplaces. It can change the way we share, connect, collaborate. But I think what's happened is that, sort of the idealism around this and the empowerment is slightly tinged, in a healthy way, realizing a lot can go wrong. So distributed trust doesn't necessarily mean distributed responsibility. My biggest insight from observing many of these communities is that, we like the idea of empowerment, we like the idea of collaboration, and we like the idea of control, but when things go wrong, they need a center. Does that make sense? >> Lisa: Absolutely, yes. >> So, a lot of the mess that we're seeing in the world today is actually caused by distributed trust. So when I like, read a piece of information that isn't from a trusted source and I make a decision to vote for someone, just an example. And so we're trying to figure out, what is the role of the institution in this distributed world? And that's why I think things have got incredibly messy. >> It certainly has the potential for that, right? Looking at, one of the things that I also saw that you were talking about, I think it was one of your TED Talks, is reputation capital. And you said you believe that will be more powerful than credit history in the 21st century. How can people, like you and I, get, I want to say control, over our reputation, when we're doing so many transactions digitally-- >> Rachel: I know. >> And like I think you were saying in one of your talks, moving from one country to another and your credit history doesn't follow you. How can somebody really control their trust capital and creative positive power from it? >> They can't. >> They can't? Oh no! >> I don't want to disappoint you, but there's always something in a TED speech that you wish you could take out, like 10 years later, and be like, not that you got it wrong, but that there's a naivety, right? So it is working in some senses. So what is really hard is like, if I have a reputation on Airbnb, I have a reputation on Amazon, on either side of the marketplace, I feel like I own that, right? That's my value, and I should be able to aggregate that and use that to get a loan, or get a better insurance, because it's a predictor of how I behave in the future. So I don't believe credit scores are a good predictor of behavior. That is very hard to do, because the marketplaces, they believe they own the data, and they have no incentive to share the reputation. So believe me, like so many companies after, actually it was wonderful after that TED Talk, many tried to figure out how to aggregate reputation. Where I have seen it play out as an idea, and this is really very rewarding, is many entrepreneurs have taken the idea and gone to emerging markets, or situations where people have no credit history. So Tala is a really good example, which is a lending company. Insurance companies are starting to look at this. There's a company called Traity. Where they can't get a loan, they can't get a product, they can't even open a bank account because they have no traditional credit history. Everyone has a reputation somewhere, so they can tap into these networks and use that to have access to things that were previously inaccessible. So that's the application I'm more excited about versus having a trust score. >> A trust score that we would be able to then use for our own advantages, whether it's getting a job, getting a loan. >> Yeah, and then unfortunately what also happened was China, and God forbid that I in any way inspired this decision, decided they would have a national trust score. So they would take what you're buying online and what you were saying online, all these thousands of interactions, and that the government would create a trust score that would really impact your life: the schools that your children could go to, and there's a blacklist, and you know, if you jaywalk your face is projected and your score goes down. Like, this is like an episode of Black Mirror. >> It's terrifying. >> Yeah. >> There's a fine line there. Rachel, I wish we had more time, because we could keep going on and on and on. But I want to thank you-- >> A pleasure. >> For coming right from the keynote stage to our set; it was a pleasure to meet you. >> On that dark note. >> Yes! (laughing) For Rachel Botsman, I'm Lisa Martin. You're watching theCUBE from Coupa Insp!re London '19. Thanks for watching. (digital music)
SUMMARY :
Brought to you by Coupa. Can you hear all the buzz around me? And the way that you measured the audience is great, So if I had said to people, do you trust on Facebook Talk to me about trust as a currency. So you know when you have trust Yeah, I don't like the idea that you sort of unlock trust. and the delivery person will walk into your home. and said do you trust that Amazon pays their taxes, But the, I don't know if I want to say infiltration, So we talk about trust, but, you know what, And when you have a brand and the trust you mentioned some big examples, And you said these companies are placing the blame, and you say it really is character. And so the point of that was like, So it's not the product that is the issue. I fly a lot, I'm sure you do as well. And that they try to show empathy, And also things to be aware of. So just to give you a sense, the way I think about trust So, a lot of the mess that we're seeing in the world today I also saw that you were talking about, And like I think you were saying in one of your talks, and be like, not that you got it wrong, A trust score that we would be able and what you were saying online, But I want to thank you-- For coming right from the keynote stage to our set; Yes!
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amazon | ORGANIZATION | 0.99+ |
Rachel Botsman | PERSON | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
Rachel | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Coupa | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Black Mirror | TITLE | 0.99+ |
Samsung | ORGANIZATION | 0.99+ |
Mattel | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
three chapters | QUANTITY | 0.99+ |
London, England | LOCATION | 0.99+ |
21st century | DATE | 0.99+ |
Oxford University | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
University of Oxford | ORGANIZATION | 0.99+ |
VW | ORGANIZATION | 0.99+ |
two things | QUANTITY | 0.99+ |
first one | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
10 years later | DATE | 0.98+ |
Tala | ORGANIZATION | 0.98+ |
Bezos | PERSON | 0.98+ |
two big air disasters | QUANTITY | 0.98+ |
TED Talk | TITLE | 0.98+ |
today | DATE | 0.98+ |
Theranos | ORGANIZATION | 0.98+ |
six months | QUANTITY | 0.97+ |
one person | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
hundreds of banks | QUANTITY | 0.97+ |
Aristotle | ORGANIZATION | 0.96+ |
theCUBE | ORGANIZATION | 0.95+ |
third wave | EVENT | 0.95+ |
First | QUANTITY | 0.94+ |
one area | QUANTITY | 0.94+ |
Industrial Revolution | EVENT | 0.93+ |
TED Talks | TITLE | 0.93+ |
China | LOCATION | 0.92+ |
one country | QUANTITY | 0.91+ |
Coupa Insp! | ORGANIZATION | 0.82+ |
WeWork | ORGANIZATION | 0.82+ |
Traity | ORGANIZATION | 0.78+ |
three waves | EVENT | 0.76+ |
theCUBE! | ORGANIZATION | 0.74+ |
this morning | DATE | 0.74+ |
EMEA 2019 | EVENT | 0.7+ |
John Curran & Jim Benedetto, Core Scientific | Pure Accelerate 2019
>> Announcer: From Austin, Texas, it's theCUBE Covering Pure Storage Accelerate 2019. Brought to you by Pure Storage. >> Welcome back to theCUBE, Lisa Martin live on the Pure Accelerate floor in Austin, Texas. Dave Vellante is joining me and we're pleased to welcome a couple of guests from Core Scientific for the first time to theCUBE. We have Jim Benedetto, Chief Data Officer and John Curran, the SVP of Business Development. Gentlemen, welcome to theCUBE. >> Both: Thank you. >> Pleasure to be here. >> So John, we're going to start with you. Give our audience an overview of who Core Scientific is, what you guys do, what you deliver. >> Sure, well, we're a two year old start up. Headquartered out of Bellevue, Washington and we really focus on two primary businesses. We have a blockchain business and we have an AI business. In blockchain, we are one of the largest blockchain cryptocurrency hosting companies in North America. We've got facilities, four facilities in North Carolina, South Carolina, Georgia, and Kentucky. And really the business there is helping companies to be able to take advantage of blockchain and then position them for the future, you know. And then on the AI side of our business, really we operate that in two ways. One is we can also co-locate and host people, just like we do on the blockchain side. But primarily, we're focused on creating a public cloud focused on GPU centric computing and artificial intelligence and we're there to help really usher in the new age of AI. >> So you guys you founded, you said two years ago. >> Yes. >> From what I can tell you haven't raised a ton of dough. Is that true or are you guys quiet about that? >> John: We're very well capitalized. >> Okay, so it hasn't hit crunch base yet. >> Yeah, no. So we're a very well capitalized company. We've got, you know, to give you-- >> 'Cause what you do is not cheap. >> No, no, we've got about 675 megawatts of power under contract so each one of our facilities is about 50 megawatts plus in size. So no, it's not cheap. They're large installations and large build outs. >> And to even give you a comparison, a standard data center is about five to 10 megawatts. We won't even look at a facility or a plot of land unless we can supply at least 50 megawatts of power. >> So I was going to ask you kind of describe what's different between sort of blockchain hosting at conventional data bases or data centers. You kind of just did, but are there other sort of technical factors that you guys consider? >> Absolutely. We custom build our own data centers from the ground up. We've got patent pending technology, and if you look at virtually every data center in the world today, it's built with one thing at it's core and that's the CPU. The CPU is fundamentally different than the GPU and if you try to retrofit CPU based data centers for GPUs you're not going to fully maximize the performance and the capabilities of the GPU. So we build from the ground up data centers focused with the GPU at the center and not the CPU at the center. >> And is center in quotes because I mean, you have all this alternative processing, GPUs in particular that are popping up all over the place. As opposed to traditional CPU, which is, okay, just jam as much as I can on the real estate as possible, is that a factor? >> Well there's also a lot, the GPU at the center but there's also a lot of supporting infrastructure. So you got to look at first off the power density is very, very different. GPU, they require significantly a lot more power than CPUs do and then also just from a fluid dynamic prospective, it's very, the heating and cooling of them is again fundamentally different. You're not looking at standard hot, cold aisles and raised floors. But the overall goal also is to be able to provide a supporting infrastructure, which is from an AI ready design, is the interconnected networking and also the incredibly fast storage behind it. Because the name of the game with GPUs is different than with CPUs. With GPUs, the one thing you want to do is you want to get as much data into the GPU as fast as possible. Because compute will very rarely be your limiting factor with the GPU so the supporting infrastructure is significantly more important than it is when you're dealing with CPUs. >> So the standard narrative is, well, I don't know about cryptocurrency but the underlying technology of blockchain has a lot of potential. I personally think they're very much related and I wonder if you guys can comment on that. You started during the real, sort of the latest, most recent sort of big uptick, I know it's bounced back in cryptocurrency and so must you must've had a lot of activity in really, in your early days. And then maybe the crypto winter affected you, maybe it didn't. Some of those companies were so well capitalized, it was kind of their time to innovate, right? And yeah, there were some bad actors but that's really not the core of it. So I wonder what you guys have seen in the blockchain market. We'll get to AI and Pure and all that other stuff but this is a great topic, so I wonder if you could comment. >> So you know, yes, there's certainly classicality in the blockchain market, right? I think one of the key things is being well capitalized allows you to invest through the down turns to position to come out stronger as the market came out and you know, we've certainly seen that. Our growth in blockchain continues to really be substantial. And you know, we're making all the right strategic investments, right? Whether it's blockchain or AI, because you have such significant power requirements you know, you got to be very strategic about where you put the facilities. You're looking for facilities that have large sustained power capabilities, green. You know we've seen carbon taxes come in, that'll adversely affect folks. We want to make sure we're positioned for long term in terms of the capabilities. And then some geo political uncertainty is certainly affected, you know. The blockchain side of the business and it's driven more business to North America which has been fantastic for us. >> To me you're hosting innovation, you're talking blockchain and AI and like you're saying include crypto in there, you have some cryptocurrency guys, right? >> We do blockchain or cryptocurrency mining for ourselves as well. >> For yourselves, okay. But so my take on it is a whole new internet is being built and the crypto craze actually has funded a lot of that innovation. New protocol, when's the last time, the protocols of the internet, SMTP, HTDP, they're all government funded or education funded, academic institutions and the big internet companies sort of co-opted them. So you had a dirt of innovation, that's now come back. And you guys are hosting that innovation, that's kind of how I look at it. And I feel like we've seated the base and there's going to be this massive explosion of innovation, both in blockchain, crypto, AI automation and you're in the heart of it. >> Yeah I agree, I think cryptocurrencies or digital currencies are really just the first successful experiment of the blockchain and I agree with you, I think that is is as revolutionary and is going to change as many industries as the internet did and we're still very in a nascent stage of the technology but at Core, we're working to position ourselves to really be the underlying platform, almost like the alchemy of the early days of the internet. The underlying platform and the plumbing for both blockchain and AI applications. >> Right, whether it's smart contracts, like I say, new innovation, AI, it's all powering next generation of distributed apps. Really okay, so, sorry, I love this topic. >> I know you do. (laughs) >> Okay so where do these guys fit in? >> John: So do we. >> I mean, it's just so exciting. I think it's misunderstood. I mean the people who are into it are believers. I mean like myself, I really believe in a value store, I believe in smart contracts, immutability, you know, and I believe in responsibility too and that other good stuff but so. >> Innovation in private blockchain is just starting. If you look at it, I think there's going to be multiple waves in the blockchain side and we want to be there to make sure that we're helping power and position folks from both an infrastructure as well as a software perspective. >> Every financial institution, you got VMware doing stuff, Libra, I love Libra even though it's getting a lot of criticism, it just shined a light on the whole topic but bring us back to sort of commercial mainstream, what are you guys doing here, what's going on with Pure? >> So we have built, we're the first AI ready certified data center and we've actually partnered very closely with Pure and INVIDIA. As we went through the selection process of what type of storage we're going to be using to back our GPUs, we went through a variety of different evaluation criteria and Pure came out ahead and we've decided that we're going with Pure and we, again, for me it boils down to one thing as a Chief Data Officer is how much data can I get into those GPUs as fast as possible? And what you see is if you look at a existing, current Cloud providers, you'll see that their retro fitting CPU based centers for GPUs and you see a lot of problems with that where the storage that they provide is not fast enough to drive quote unquote warm or cold data into the GPUs so people end up adding more and more GPUs, it's actually just increased GPU memory when they're usually running around a couple percents, like one or two percent, five percent compute but you have to add more just for the memory because the storage is so slow. >> So you, how Jim you were saying before when we were chatting earlier, that you have had 20 years of experience looking at different storage vendors, working with them, what were some of the criteria, you talked about the speed and the performance, but in terms of, you also mentioned John that green was, is an important component of the way that you build data centers, where was Pure's vision on sustainability, ever green, where was that a factor in the decision to go with Pure? >> If you look at Pure's power density requirements and things like that, I think it's important. One thing that also, and this does apply from the sustainability perspective, where a lot of other storage vendors say that they're horizontally scalable forever but they're actually running different heads and in a variety of different ways. Pure is the only storage vendor that I've ever come across that is truly horizontally scalable. And when you start to try to build stuff like that you get into all the different things of super computing where you got, you know, split brain scenarios and fencing and it's very complex but their ability to scale horizontally with just, not even disc, but just the storage is something that was really important to us. >> I think the other thing that's certainly interesting for our customers is you're looking at important workloads that they're driving out and so the ability to do in place upgrades, business continuity, right, to make sure that we're able to deliver them technology that doesn't disrupt their business when their business needs the results, it's critically important so Pure is a great choice for us from that perspective and the innovations they're driving on that side of the business has really been helpful. >> I read a stat on the Pure website where users of Core Scientific infrastructure are seeing performance improvements of up to 800%. Are you delighting the heck out of data scientists now? >> Yeah, I mean. >> Are those the primary users? >> That is, it again references what we see with people using GPUs in the public Cloud. Again, going back to the thing that I keep hammering on, driving data into that GPU. We had one customer that had somewhere 14 or 15 GPUs running an analytics application in the public Cloud and we told them keep all your CPU compute in one of the largest Cloud providers but move just your GPU compute to us and they went from 14 or 15 GPUs down to two. GV-100 and a DGX-1 and backed by Pure Storage with Arista and from 14 GPUs to two GPUs, they saw an 800% in performance. >> Wow. >> And there's a really important additional part to that, let's say if I'm running a dashboard or running a query and a .5 second query gets an 800% increase in performance, how much do I really care? Now if I'm the guy running a 100 queries every single day, I probably do but it's not just that, it's the fact that it allows, it doesn't just speed up things, it allows you to look at data you were never able to look at before. So it's not just that they have an 800% performance increase, it's that instead of having tables with 100s of millions of rows, they now can have tables with billions of rows. So data that was previously not looked at before, data that was previously not turned into the actionable information to help drive their business, is now, they're now getting visibility into data they didn't have access to before. >> So you're a CDO that, it sounds like you have technical chops. >> Yeah, I'm a tech nerd at heart. >> It's kind rare actually for a CDO, I've interviewed a lot of CDOs and most of them are kind of come from a data quality background or a governance and compliance world, they don't dress like you (laughs) They dress like I do. (laughs) Even quite a bit better. But the reason I ask that, it sounds like you're a different type of CDO, like even a business like yours, I almost think you're a data scientist. So describe your role. >> I've actually held, I was with the company from the beginning so I've held quite a few roles actually. I think this might be my third title at this point. >> Okay. >> But in general, I'm a very technical person. I'm hands on, I love technology. I've held CTO titles in the past as well. >> Dave: Right. >> But I kind of, I've always been very interested in data and interested in storage because that's where data lives and it's a great fit for me. >> So I've always been interested in this because you know the narrative is that CDOs shouldn't be technical, they should be business and I get all that but the flip side of that is when you talk to CDOs about AI projects, which is you know, not digital transformation but specifically AI projects, they're not, most CDOs in healthcare, financial services, even government, they're not intimately involved, they're kind of like yeah, Chief Data Officer, we'll let you know when we have a data quality problem and I don't think that's right. I mean the CDO should be intimately involved. >> I agree. >> In those AI projects. >> I think a lot of times if you ask them, you ask, a lot of people, they'll say are you interested in deploying AI in your organization? And the answer is 100% yes and then the next follow up question is what would you like to do with it? And most of the time the answer is we don't know. I don't know. So what I have found is I go into organizations, I don't ask if people want to use AI, I ask what are your problems and I think what problems are you facing, what KPIs are you trying to optimize for and there are some of those problems, there are some problems on that list that might not be able to be helped by AI but usually there are problems on that list that can be helped by AI with the right data and the right place. >> So my translation of what you're asking is how can you make more money? (laughs) >> That what it comes down to. >> That's what you're asking, how can you cut costs or raise revenue, that's really ultimately what you're getting to. >> Data. >> Find new customers. I think the other interesting thing about our partnership with Pure and especially with regards to AIRE, AIRE's is an exciting technology but for a lot of companies is they're looking to get started in AI, there's almost this moment of pause, of how do I get started and then if I look at some of the greatest technology out there, it's like, okay, well now I have to retrofit my data center to get it in there, right. There's a bunch of technical barriers that slow down the progression and what we've been able to do with AIRE and the Cloud is really to be able to help people jumpstart, to get started right away. So rather than you know, let me think for six months or 12 months or 18 months on what would I analyze, start analyzing, get started and you can do it on a very cost effective outback's model as opposed to a capital intensive CAMP-X model. >> Alright, so I got to ask you. >> Yeah. >> And Pure will be pissed off I'm asking this question because you're talking about AIRE as a, it's real and I want some color on that but I felt like when the first announcement came out with Invida, it was rushed so that Pure could have another first. (laughs) Ink was drying, like we beat the competition but the way you're talking is AIRE is real, you're using it, it's a tangible solution. It's a value to your business. >> It's a core solution in our facility. >> Dave: It's a year ago. >> It's a core thing that we go to market with and it's something that you know, we're seeing customer demand to go out and really start to drive some business value. So you know, absolutely. >> A core component of helping them jumpstart that AI. Well you guys just, I think an hour or so ago, announced your new partnership level with Pure. John, take us away as we wrap here with the news please. >> Yeah, so well we're really excited. We're one of a handful of elite level MSP partners for Pure. I think there's only a few of us in the world so that's something and we're really the one who is focused on bringing ARIE to the Cloud and so it's a unique partnership. It's a deep partnership and it allows us to really coordinate our technical teams, our sales teams, you know, and be able to bring this technology across the industry and so we're excited, it's just the start but it's a great start and we're looking forward to nothing but upside from here. >> Fantastic, you'll have to come back guys and talk to us about a customer's who's done a jumpstart with ARIE and just taking the world by storm. So we thank you both for stopping by theCUBE. >> Absolutely, we'll love to do that. >> Lisa: Alright John, Jim, thank you so much for your time. >> Thank you. >> Absolutely. >> John: Really appreciate it. >> For Dave Vellante, I'm Lisa Martin, you're watching theCUBE from Pure Accelerate 2019. (upbeat techno music)
SUMMARY :
Brought to you by Pure Storage. and John Curran, the SVP of Business Development. what you guys do, what you deliver. and then position them for the future, you know. Is that true or are you guys quiet about that? We've got, you know, to give you-- So no, it's not cheap. And to even give you a comparison, that you guys consider? and if you look at virtually every data center you have all this alternative processing, GPUs in particular With GPUs, the one thing you want to do and I wonder if you guys can comment on that. as the market came out and you know, We do blockchain or cryptocurrency mining and the crypto craze actually has funded a lot and is going to change as many industries of distributed apps. I know you do. I mean the people who are into it are believers. If you look at it, I think there's going to be multiple waves and you see a lot of problems And when you start to try to build stuff like that from that perspective and the innovations they're driving I read a stat on the Pure website where in one of the largest Cloud providers it allows you to look at data you were never able you have technical chops. they don't dress like you from the beginning so I've held quite a few roles actually. But in general, I'm a very technical person. and it's a great fit for me. and I get all that but the flip side is what would you like to do with it? how can you cut costs or raise revenue, and you can do it on a very cost effective but the way you're talking is AIRE is real, and it's something that you know, Well you guys just, I think an hour or so ago, you know, and be able to bring this technology and just taking the world by storm. you're watching theCUBE from Pure Accelerate 2019.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim Benedetto | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
John Curran | PERSON | 0.99+ |
John | PERSON | 0.99+ |
five percent | QUANTITY | 0.99+ |
Kentucky | LOCATION | 0.99+ |
Core Scientific | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Jim | PERSON | 0.99+ |
Georgia | LOCATION | 0.99+ |
20 years | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
14 | QUANTITY | 0.99+ |
800% | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
Lisa | PERSON | 0.99+ |
North America | LOCATION | 0.99+ |
14 GPUs | QUANTITY | 0.99+ |
12 months | QUANTITY | 0.99+ |
AIRE | ORGANIZATION | 0.99+ |
two percent | QUANTITY | 0.99+ |
18 months | QUANTITY | 0.99+ |
two year | QUANTITY | 0.99+ |
South Carolina | LOCATION | 0.99+ |
Austin, Texas | LOCATION | 0.99+ |
Pure | ORGANIZATION | 0.99+ |
North Carolina | LOCATION | 0.99+ |
15 GPUs | QUANTITY | 0.99+ |
two GPUs | QUANTITY | 0.99+ |
third title | QUANTITY | 0.99+ |
two ways | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
INVIDIA | ORGANIZATION | 0.99+ |
one customer | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
Both | QUANTITY | 0.98+ |
100 queries | QUANTITY | 0.98+ |
ARIE | ORGANIZATION | 0.98+ |
up to 800% | QUANTITY | 0.98+ |
first announcement | QUANTITY | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
two years ago | DATE | 0.98+ |
Libra | ORGANIZATION | 0.98+ |
Pure Storage | ORGANIZATION | 0.98+ |
two | QUANTITY | 0.98+ |
a year ago | DATE | 0.98+ |
VMware | ORGANIZATION | 0.98+ |
Bellevue, Washington | LOCATION | 0.98+ |
both | QUANTITY | 0.97+ |
billions of rows | QUANTITY | 0.97+ |
10 megawatts | QUANTITY | 0.97+ |
each one | QUANTITY | 0.97+ |
an hour or so ago | DATE | 0.97+ |
two primary businesses | QUANTITY | 0.95+ |
one thing | QUANTITY | 0.95+ |
about 50 megawatts | QUANTITY | 0.94+ |