Ed Walsh & Thomas Hazel | A New Database Architecture for Supercloud
(bright music) >> Hi, everybody, this is Dave Vellante, welcome back to Supercloud 2. Last August, at the first Supercloud event, we invited the broader community to help further define Supercloud, we assessed its viability, and identified the critical elements and deployment models of the concept. The objectives here at Supercloud too are, first of all, to continue to tighten and test the concept, the second is, we want to get real world input from practitioners on the problems that they're facing and the viability of Supercloud in terms of applying it to their business. So on the program, we got companies like Walmart, Sachs, Western Union, Ionis Pharmaceuticals, NASDAQ, and others. And the third thing that we want to do is we want to drill into the intersection of cloud and data to project what the future looks like in the context of Supercloud. So in this segment, we want to explore the concept of data architectures and what's going to be required for Supercloud. And I'm pleased to welcome one of our Supercloud sponsors, ChaosSearch, Ed Walsh is the CEO of the company, with Thomas Hazel, who's the Founder, CTO, and Chief Scientist. Guys, good to see you again, thanks for coming into our Marlborough studio. >> Always great. >> Great to be here. >> Okay, so there's a little debate, I'm going to put you right in the spot. (Ed chuckling) A little debate going on in the community started by Bob Muglia, a former CEO of Snowflake, and he was at Microsoft for a long time, and he looked at the Supercloud definition, said, "I think you need to tighten it up a little bit." So, here's what he came up with. He said, "A Supercloud is a platform that provides a programmatically consistent set of services hosted on heterogeneous cloud providers." So he's calling it a platform, not an architecture, which was kind of interesting. And so presumably the platform owner is going to be responsible for the architecture, but Dr. Nelu Mihai, who's a computer scientist behind the Cloud of Clouds Project, he chimed in and responded with the following. He said, "Cloud is a programming paradigm supporting the entire lifecycle of applications with data and logic natively distributed. Supercloud is an open architecture that integrates heterogeneous clouds in an agnostic manner." So, Ed, words matter. Is this an architecture or is it a platform? >> Put us on the spot. So, I'm sure you have concepts, I would say it's an architectural or design principle. Listen, I look at Supercloud as a mega trend, just like cloud, just like data analytics. And some companies are using the principle, design principles, to literally get dramatically ahead of everyone else. I mean, things you couldn't possibly do if you didn't use cloud principles, right? So I think it's a Supercloud effect, you're able to do things you're not able to. So I think it's more a design principle, but if you do it right, you get dramatic effect as far as customer value. >> So the conversation that we were having with Muglia, and Tristan Handy of dbt Labs, was, I'll set it up as the following, and, Thomas, would love to get your thoughts, if you have a CRM, think about applications today, it's all about forms and codifying business processes, you type a bunch of stuff into Salesforce, and all the salespeople do it, and this machine generates a forecast. What if you have this new type of data app that pulls data from the transaction system, the e-commerce, the supply chain, the partner ecosystem, et cetera, and then, without humans, actually comes up with a plan. That's their vision. And Muglia was saying, in order to do that, you need to rethink data architectures and database architectures specifically, you need to get down to the level of how the data is stored on the disc. What are your thoughts on that? Well, first of all, I'm going to cop out, I think it's actually both. I do think it's a design principle, I think it's not open technology, but open APIs, open access, and you can build a platform on that design principle architecture. Now, I'm a database person, I love solving the database problems. >> I'm waited for you to launch into this. >> Yeah, so I mean, you know, Snowflake is a database, right? It's a distributed database. And we wanted to crack those codes, because, multi-region, multi-cloud, customers wanted access to their data, and their data is in a variety of forms, all these services that you're talked about. And so what I saw as a core principle was cloud object storage, everyone streams their data to cloud object storage. From there we said, well, how about we rethink database architecture, rethink file format, so that we can take each one of these services and bring them together, whether distributively or centrally, such that customers can access and get answers, whether it's operational data, whether it's business data, AKA search, or SQL, complex distributed joins. But we had to rethink the architecture. I like to say we're not a first generation, or a second, we're a third generation distributed database on pure, pure cloud storage, no caching, no SSDs. Why? Because all that availability, the cost of time, is a struggle, and cloud object storage, we think, is the answer. >> So when you're saying no caching, so when I think about how companies are solving some, you know, pretty hairy problems, take MySQL Heatwave, everybody thought Oracle was going to just forget about MySQL, well, they come out with Heatwave. And the way they solve problems, and you see their benchmarks against Amazon, "Oh, we crush everybody," is they put it all in memory. So you said no caching? You're not getting performance through caching? How is that true, and how are you getting performance? >> Well, so five, six years ago, right? When you realize that cloud object storage is going to be everywhere, and it's going to be a core foundational, if you will, fabric, what would you do? Well, a lot of times the second generation say, "We'll take it out of cloud storage, put in SSDs or something, and put into cache." And that adds a lot of time, adds a lot of costs. But I said, what if, what if we could actually make the first read hot, the first read distributed joins and searching? And so what we went out to do was said, we can't cache, because that's adds time, that adds cost. We have to make cloud object storage high performance, like it feels like a caching SSD. That's where our patents are, that's where our technology is, and we've spent many years working towards this. So, to me, if you can crack that code, a lot of these issues we're talking about, multi-region, multicloud, different services, everybody wants to send their data to the data lake, but then they move it out, we said, "Keep it right there." >> You nailed it, the data gravity. So, Bob's right, the data's coming in, and you need to get the data from everywhere, but you need an environment that you can deal with all that different schema, all the different type of technology, but also at scale. Bob's right, you cannot use memory or SSDs to cache that, that doesn't scale, it doesn't scale cost effectively. But if you could, and what you did, is you made object storage, S3 first, but object storage, the only persistence by doing that. And then we get performance, we should talk about it, it's literally, you know, hundreds of terabytes of queries, and it's done in seconds, it's done without memory caching. We have concepts of caching, but the only caching, the only persistence, is actually when we're doing caching, we're just keeping another side-eye track of things on the S3 itself. So we're using, actually, the object storage to be a database, which is kind of where Bob was saying, we agree, but that's what you started at, people thought you were crazy. >> And maybe make it live. Don't think of it as archival or temporary space, make it live, real time streaming, operational data. What we do is make it smart, we see the data coming in, we uniquely index it such that you can get your use cases, that are search, observability, security, or backend operational. But we don't have to have this, I dunno, static, fixed, siloed type of architecture technologies that were traditionally built prior to Supercloud thinking. >> And you don't have to move everything, essentially, you can do it wherever the data lands, whatever cloud across the globe, you're able to bring it together, you get the cost effectiveness, because the only persistence is the cheapest storage persistent layer you can buy. But the key thing is you cracked the code. >> We had to crack the code, right? That was the key thing. >> That's where the plans are. >> And then once you do that, then everything else gets easier to scale, your architecture, across regions, across cloud. >> Now, it's a general purpose database, as Bob was saying, but we use that database to solve a particular issue, which is around operational data, right? So, we agree with Bob's. >> Interesting. So this brings me to this concept of data, Jimata Gan is one of our speakers, you know, we talk about data fabric, which is a NetApp, originally NetApp concept, Gartner's kind of co-opted it. But so, the basic concept is, data lives everywhere, whether it's an S3 bucket, or a SQL database, or a data lake, it's just a node on the data mesh. So in your view, how does this fit in with Supercloud? Ed, you've said that you've built, essentially, an enabler for that, for the data mesh, I think you're an enabler for the Supercloud-like principles. This is a big, chewy opportunity, and it requires, you know, a team approach. There's got to be an ecosystem, there's not going to be one Supercloud to rule them all, so where does the ecosystem fit into the discussion, and where do you fit into the ecosystem? >> Right, so we agree completely, there's not one Supercloud in effect, but we use Supercloud principles to build our platform, and then, you know, the ecosystem's going to be built on leveraging what everyone else's secret powers are, right? So our power, our superpower, based upon what we built is, we deal with, if you're having any scale, or cost effective scale issues, with data, machine generated data, like business observability or security data, we are your force multiplier, we will take that in singularly, just let it, simply put it in your object storage wherever it sits, and we give you uniformity access to that using OpenAPI access, SQL, or you know, Elasticsearch API. So, that's what we do, that's our superpower. So I'll play it into data mesh, that's a perfect, we are a node on a data mesh, but I'll play it in the soup about how, the ecosystem, we see it kind of playing, and we talked about it in just in the last couple days, how we see this kind of possibly. Short term, our superpowers, we deal with this data that's coming at these environments, people, customers, building out observability or security environments, or vendors that are selling their own Supercloud, I do observability, the Datadogs of the world, dot dot dot, the Splunks of the world, dot dot dot, and security. So what we do is we fit in naturally. What we do is a cost effective scale, just land it anywhere in the world, we deal with ingest, and it's a cost effective, an order of magnitude, or two or three order magnitudes more cost effective. Allows them, their customers are asking them to do the impossible, "Give me fast monitoring alerting. I want it snappy, but I want it to keep two years of data, (laughs) and I want it cost effective." It doesn't work. They're good at the fast monitoring alerting, we're good at the long-term retention. And yet there's some gray area between those two, but one to one is actually cheaper, so we would partner. So the first ecosystem plays, who wants to have the ability to, really, all the data's in those same environments, the security observability players, they can literally, just through API, drag our data into their point to grab. We can make it seamless for customers. Right now, we make it helpful to customers. Your Datadog, we make a button, easy go from Datadog to us for logs, save you money. Same thing with Grafana. But you can also look at ecosystem, those same vendors, it used to be a year ago it was, you know, its all about how can you grow, like it's growth at all costs, now it's about cogs. So literally we can go an environment, you supply what your customer wants, but we can help with cogs. And one-on one in a partnership is better than you trying to build on your own. >> Thomas, you were saying you make the first read fast, so you think about Snowflake. Everybody wants to talk about Snowflake and Databricks. So, Snowflake, great, but you got to get the data in there. All right, so that's, can you help with that problem? >> I mean we want simple in, right? And if you have to have structure in, you're not simple. So the idea that you have a simple in, data lake, schema read type philosophy, but schema right type performance. And so what I wanted to do, what we have done, is have that simple lake, and stream that data real time, and those access points of Search or SQL, to go after whatever business case you need, security observability, warehouse integration. But the key thing is, how do I make that click, click, click answer, and do it quickly? And so what we want to do is, that first read has to be fast. Why? 'Cause then you're going to do all this siloing, layers, complexity. If your first read's not fast, you're at a disadvantage, particularly in cost. And nobody says I want less data, but everyone has to, whether they say we're going to shorten the window, we're going to use AI to choose, but in a security moment, when you don't have that answer, you're in trouble. And that's why we are this service, this Supercloud service, if you will, providing access, well-known search, well-known SQL type access, that if you just have one access point, you're at a disadvantage. >> We actually talked about Snowflake and BigQuery, and a different platform, Data Bricks. That's kind of where we see the phase two of ecosystem. One is easy, the low-hanging fruit is observability and security firms. But the next one is, what we do, our super power is dealing with this messy data that schema is changing like night and day. Pipelines are tough, and it's changing all the time, but you want these things fast, and it's big data around the world. That's the next point, just use us alongside, or inside, one of their platforms, and now we get the best of both worlds. Our superpower is keeping this messy data as a streaming, okay, not a batch thing, allow you to do that. So, that's the second one. And then to be honest, the third one, which plays you to Supercloud, it also plays perfectly in the data mesh, is if you really go to the ultimate thing, what we have done is made object storage, S3, GCS, and blob storage, we made it a database. Put, get, complex query with big joins. You know, so back to your original thing, and Muglia teed it up perfectly, we've done that. Now imagine if that's an ecosystem, who would want that? If it's, again, it's uniform available across all the regions, across all the clouds, and it's right next to where you are building a service, or a client's trying, that's where the ecosystem, I think people are going to use Superclouds for their superpowers. We're really good at this, allows that short term. I think the Snowflakes and the Data Bricks are the medium term, you know? And then I think eventually gets to, hey, listen if you can make object storage fast, you can just go after it with simple SQL queries, or elastic. Who would want that? I think that's where people are going to leverage it. It's not going to be one Supercloud, and we leverage the super clouds. >> Our viewpoint is smart object storage can be programmable, and so we agree with Bob, but we're not saying do it here, do it here. This core, fundamental layer across regions, across clouds, that everyone has? Simple in. Right now, it's hard to get data in for access for analysis. So we said, simply, we'll automate the entire process, give you API access across regions, across clouds. And again, how do you do a distributed join that's fast? How do you do a distributed join that doesn't cost you an arm or a leg? And how do you do it at scale? And that's where we've been focused. >> So prior, the cloud object store was a niche. >> Yeah. >> S3 obviously changed that. How standard is, essentially, object store across the different cloud platforms? Is that a problem for you? Is that an easy thing to solve? >> Well, let's talk about it. I mean we've fundamentally, yeah we've extracted it, but fundamentally, cloud object storage, put, get, and list. That's why it's so scalable, 'cause it doesn't have all these other components. That complexity is where we have moved up, and provide direct analytical API access. So because of its simplicity, and costs, and security, and reliability, it can scale naturally. I mean, really, distributed object storage is easy, it's put-get anywhere, now what we've done is we put a layer of intelligence, you know, call it smart object storage, where access is simple. So whether it's multi-region, do a query across, or multicloud, do a query across, or hunting, searching. >> We've had clients doing Amazon and Google, we have some Azure, but we see Amazon and Google more, and it's a consistent service across all of them. Just literally put your data in the bucket of choice, or folder of choice, click a couple buttons, literally click that to say "that's hot," and after that, it's hot, you can see it. But we're not moving data, the data gravity issue, that's the other. That it's already natively flowing to these pools of object storage across different regions and clouds. We don't move it, we index it right there, we're spinning up stateless compute, back to the Supercloud concept. But now that allows us to do all these other things, right? >> And it's no longer just cheap and deep object storage. Right? >> Yeah, we make it the same, like you have an analytic platform regardless of where you're at, you don't have to worry about that. Yeah, we deal with that, we deal with a stateless compute coming up -- >> And make it programmable. Be able to say, "I want this bucket to provide these answers." Right, that's really the hope, the vision. And the complexity to build the entire stack, and then connect them together, we said, the fabric is cloud storage, we just provide the intelligence on top. >> Let's bring it back to the customers, and one of the things we're exploring in Supercloud too is, you know, is Supercloud a solution looking for a problem? Is a multicloud really a problem? I mean, you hear, you know, a lot of the vendor marketing says, "Oh, it's a disaster, because it's all different across the clouds." And I talked to a lot of customers even as part of Supercloud too, they're like, "Well, I solved that problem by just going mono cloud." Well, but then you're not able to take advantage of a lot of the capabilities and the primitives that, you know, like Google's data, or you like Microsoft's simplicity, their RPA, whatever it is. So what are customers telling you, what are their near term problems that they're trying to solve today, and how are they thinking about the future? >> Listen, it's a real problem. I think it started, I think this is a a mega trend, just like cloud. Just, cloud data, and I always add, analytics, are the mega trends. If you're looking at those, if you're not considering using the Supercloud principles, in other words, leveraging what I have, abstracting it out, and getting the most out of that, and then build value on top, I think you're not going to be able to keep up, In fact, no way you're going to keep up with this data volume. It's a geometric challenge, and you're trying to do linear things. So clients aren't necessarily asking, hey, for Supercloud, but they're really saying, I need to have a better mechanism to simplify this and get value across it, and how do you abstract that out to do that? And that's where they're obviously, our conversations are more amazed what we're able to do, and what they're able to do with our platform, because if you think of what we've done, the S3, or GCS, or object storage, is they can't imagine the ingest, they can't imagine how easy, time to glass, one minute, no matter where it lands in the world, querying this in seconds for hundreds of terabytes squared. People are amazed, but that's kind of, so they're not asking for that, but they are amazed. And then when you start talking on it, if you're an enterprise person, you're building a big cloud data platform, or doing data or analytics, if you're not trying to leverage the public clouds, and somehow leverage all of them, and then build on top, then I think you're missing it. So they might not be asking for it, but they're doing it. >> And they're looking for a lens, you mentioned all these different services, how do I bring those together quickly? You know, our viewpoint, our service, is I have all these streams of data, create a lens where they want to go after it via search, go after via SQL, bring them together instantly, no e-tailing out, no define this table, put into this database. We said, let's have a service that creates a lens across all these streams, and then make those connections. I want to take my CRM with my Google AdWords, and maybe my Salesforce, how do I do analysis? Maybe I want to hunt first, maybe I want to join, maybe I want to add another stream to it. And so our viewpoint is, it's so natural to get into these lake platforms and then provide lenses to get that access. >> And they don't want it separate, they don't want something different here, and different there. They want it basically -- >> So this is our industry, right? If something new comes out, remember virtualization came out, "Oh my God, this is so great, it's going to solve all these problems." And all of a sudden it just got to be this big, more complex thing. Same thing with cloud, you know? It started out with S3, and then EC2, and now hundreds and hundreds of different services. So, it's a complex matter for a lot of people, and this creates problems for customers, especially when you got divisions that are using different clouds, and you're saying that the solution, or a solution for the part of the problem, is to really allow the data to stay in place on S3, use that standard, super simple, but then give it what, Ed, you've called superpower a couple of times, to make it fast, make it inexpensive, and allow you to do that across clouds. >> Yeah, yeah. >> I'll give you guys the last word on that. >> No, listen, I think, we think Supercloud allows you to do a lot more. And for us, data, everyone says more data, more problems, more budget issue, everyone knows more data is better, and we show you how to do it cost effectively at scale. And we couldn't have done it without the design principles of we're leveraging the Supercloud to get capabilities, and because we use super, just the object storage, we're able to get these capabilities of ingest, scale, cost effectiveness, and then we built on top of this. In the end, a database is a data platform that allows you to go after everything distributed, and to get one platform for analytics, no matter where it lands, that's where we think the Supercloud concepts are perfect, that's where our clients are seeing it, and we're kind of excited about it. >> Yeah a third generation database, Supercloud database, however we want to phrase it, and make it simple, but provide the value, and make it instant. >> Guys, thanks so much for coming into the studio today, I really thank you for your support of theCUBE, and theCUBE community, it allows us to provide events like this and free content. I really appreciate it. >> Oh, thank you. >> Thank you. >> All right, this is Dave Vellante for John Furrier in theCUBE community, thanks for being with us today. You're watching Supercloud 2, keep it right there for more thought provoking discussions around the future of cloud and data. (bright music)
SUMMARY :
And the third thing that we want to do I'm going to put you right but if you do it right, So the conversation that we were having I like to say we're not a and you see their So, to me, if you can crack that code, and you need to get the you can get your use cases, But the key thing is you cracked the code. We had to crack the code, right? And then once you do that, So, we agree with Bob's. and where do you fit into the ecosystem? and we give you uniformity access to that so you think about Snowflake. So the idea that you have are the medium term, you know? and so we agree with Bob, So prior, the cloud that an easy thing to solve? you know, call it smart object storage, and after that, it's hot, you can see it. And it's no longer just you don't have to worry about And the complexity to and one of the things we're and how do you abstract it's so natural to get and different there. and allow you to do that across clouds. I'll give you guys and we show you how to do it but provide the value, I really thank you for around the future of cloud and data.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Walmart | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Thomas | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
Ionis Pharmaceuticals | ORGANIZATION | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Ed Walsh | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
Sachs | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two years | QUANTITY | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
first | QUANTITY | 0.99+ |
Last August | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
dbt Labs | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Ed | PERSON | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Jimata Gan | PERSON | 0.99+ |
third one | QUANTITY | 0.99+ |
one minute | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first generation | QUANTITY | 0.99+ |
third generation | QUANTITY | 0.99+ |
Grafana | ORGANIZATION | 0.99+ |
second generation | QUANTITY | 0.99+ |
second one | QUANTITY | 0.99+ |
hundreds of terabytes | QUANTITY | 0.98+ |
SQL | TITLE | 0.98+ |
five | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
Databricks | ORGANIZATION | 0.98+ |
a year ago | DATE | 0.98+ |
ChaosSearch | ORGANIZATION | 0.98+ |
Muglia | PERSON | 0.98+ |
MySQL | TITLE | 0.98+ |
both worlds | QUANTITY | 0.98+ |
third thing | QUANTITY | 0.97+ |
Marlborough | LOCATION | 0.97+ |
theCUBE | ORGANIZATION | 0.97+ |
today | DATE | 0.97+ |
Supercloud | ORGANIZATION | 0.97+ |
Elasticsearch | TITLE | 0.96+ |
NetApp | TITLE | 0.96+ |
Datadog | ORGANIZATION | 0.96+ |
One | QUANTITY | 0.96+ |
EC2 | TITLE | 0.96+ |
each one | QUANTITY | 0.96+ |
S3 | TITLE | 0.96+ |
one platform | QUANTITY | 0.95+ |
Supercloud 2 | EVENT | 0.95+ |
first read | QUANTITY | 0.95+ |
six years ago | DATE | 0.95+ |
Discussion about Walmart's Approach | Supercloud2
(upbeat electronic music) >> Okay, welcome back to Supercloud 2, live here in Palo Alto. I'm John Furrier, with Dave Vellante. Again, all day wall-to-wall coverage, just had a great interview with Walmart, we've got a Next interview coming up, you're going to hear from Bob Muglia and Tristan Handy, two experts, both experienced entrepreneurs, executives in technology. We're here to break down what just happened with Walmart, and what's coming up with George Gilbert, former colleague, Wikibon analyst, Gartner Analyst, and now independent investor and expert. George, great to see you, I know you're following this space. Like you read about it, remember the first days when Dataverse came out, we were talking about them coming out of Berkeley? >> Dave: Snowflake. >> John: Snowflake. >> Dave: Snowflake In the early days. >> We, collectively, have been chronicling the data movement since 2010, you were part of our team, now you've got your nose to the grindstone, you're seeing the next wave. What's this all about? Walmart building their own super cloud, we got Bob Muglia talking about how these next wave of apps are coming. What are the super apps? What's the super cloud to you? >> Well, this key's off Dave's really interesting questions to Walmart, which was like, how are they building their supercloud? 'Cause it makes a concrete example. But what was most interesting about his description of the Walmart WCMP, I forgot what it stood for. >> Dave: Walmart Cloud Native Platform. >> Walmart, okay. He was describing where the logic could run in these stateless containers, and maybe eventually serverless functions. But that's just it, and that's the paradigm of microservices, where the logic is in this stateless thing, where you can shoot it, or it fails, and you can spin up another one, and you've lost nothing. >> That was their triplet model. >> Yeah, in fact, and that was what they were trying to move to, where these things move fluidly between data centers. >> But there's a but, right? Which is they're all stateless apps in the cloud. >> George: Yeah. >> And all their stateful apps are on-prem and VMs. >> Or the stateful part of the apps are in VMs. >> Okay. >> And so if they really want to lift their super cloud layer off of this different provider's infrastructure, they're going to need a much more advanced software platform that manages data. And that goes to the -- >> Muglia and Handy, that you and I did, that's coming up next. So the big takeaway there, George, was, I'll set it up and you can chime in, a new breed of data apps is emerging, and this highly decentralized infrastructure. And Tristan Handy of DBT Labs has a sort of a solution to begin the journey today, Muglia is working on something that's way out there, describe what you learned from it. >> Okay. So to talk about what the new data apps are, and then the platform to run them, I go back to the using what will probably be seen as one of the first data app examples, was Uber, where you're describing entities in the real world, riders, drivers, routes, city, like a city plan, these are all defined by data. And the data is described in a structure called a knowledge graph, for lack of a, no one's come up with a better term. But that means the tough, the stuff that Jack built, which was all stateless and sits above cloud vendors' infrastructure, it needs an entirely different type of software that's much, much harder to build. And the way Bob described it is, you're going to need an entirely new data management infrastructure to handle this. But where, you know, we had this really colorful interview where it was like Rock 'Em Sock 'Em, but they weren't really that much in opposition to each other, because Tristan is going to define this layer, starting with like business intelligence metrics, where you're defining things like bookings, billings, and revenue, in business terms, not in SQL terms -- >> Well, business terms, if I can interrupt, he said the one thing we haven't figured out how to APIify is KPIs that sit inside of a data warehouse, and that's essentially what he's doing. >> George: That's what he's doing, yes. >> Right. And so then you can now expose those APIs, those KPIs, that sit inside of a data warehouse, or a data lake, a data store, whatever, through APIs. >> George: And the difference -- >> So what does that do for you? >> Okay, so all of a sudden, instead of working at technical data terms, where you're dealing with tables and columns and rows, you're dealing instead with business entities, using the Uber example of drivers, riders, routes, you know, ETA prices. But you can define, DBT will be able to define those progressively in richer terms, today they're just doing things like bookings, billings, and revenue. But Bob's point was, today, the data warehouse that actually runs that stuff, whereas DBT defines it, the data warehouse that runs it, you can't do it with relational technology >> Dave: Relational totality, cashing architecture. >> SQL, you can't -- >> SQL caching architectures in memory, you can't do it, you've got to rethink down to the way the data lake is laid out on the disk or cache. Which by the way, Thomas Hazel, who's speaking later, he's the chief scientist and founder at Chaos Search, he says, "I've actually done this," basically leave it in an S3 bucket, and I'm going to query it, you know, with no caching. >> All right, so what I hear you saying then, tell me if I got this right, there are some some things that are inadequate in today's world, that's not compatible with the Supercloud wave. >> Yeah. >> Specifically how you're using storage, and data, and stateful. >> Yes. >> And then the software that makes it run, is that what you're saying? >> George: Yeah. >> There's one other thing you mentioned to me, it's like, when you're using a CRM system, a human is inputting data. >> George: Nothing happens till the human does something. >> Right, nothing happens until that data entry occurs. What you're talking about is a world that self forms, polling data from the transaction system, or the ERP system, and then builds a plan without human intervention. >> Yeah. Something in the real world happens, where the user says, "I want a ride." And then the software goes out and says, "Okay, we got to match a driver to the rider, we got to calculate how long it takes to get there, how long to deliver 'em." That's not driven by a form, other than the first person hitting a button and saying, "I want a ride." All the other stuff happens autonomously, driven by data and analytics. >> But my question was different, Dave, so I want to get specific, because this is where the startups are going to come in, this is the disruption. Snowflake is a data warehouse that's in the cloud, they call it a data cloud, they refactored it, they did it differently, the success, we all know it looks like. These areas where it's inadequate for the future are areas that'll probably be either disrupted, or refactored. What is that? >> That's what Muglia's contention is, that the DBT can start adding that layer where you define these business entities, they're like mini digital twins, you can define them, but the data warehouse isn't strong enough to actually manage and run them. And Muglia is behind a company that is rethinking the database, really in a fundamental way that hasn't been done in 40 or 50 years. It's the first, in his contention, the first real rethink of database technology in a fundamental way since the rise of the relational database 50 years ago. >> And I think you admit it's a real Hail Mary, I mean it's quite a long shot right? >> George: Yes. >> Huge potential. >> But they're pretty far along. >> Well, we've been talking on theCUBE for 12 years, and what, 10 years going to AWS Reinvent, Dave, that no one database will rule the world, Amazon kind of showed that with them. What's different, is it databases are changing, or you can have multiple databases, or? >> It's a good question. And the reason we've had multiple different types of databases, each one specialized for a different type of workload, but actually what Muglia is behind is a new engine that would essentially, you'll never get rid of the data warehouse, or the equivalent engine in like a Databricks datalake house, but it's a new engine that manages the thing that describes all the data and holds it together, and that's the new application platform. >> George, we have one minute left, I want to get real quick thought, you're an investor, and we know your history, and the folks watching, George's got a deep pedigree in investment data, and we can testify against that. If you're going to invest in a company right now, if you're a customer, I got to make a bet, what does success look like for me, what do I want walking through my door, and what do I want to send out? What companies do I want to look at? What's the kind of of vendor do I want to evaluate? Which ones do I want to send home? >> Well, the first thing a customer really has to do when they're thinking about next gen applications, all the people have told you guys, "we got to get our data in order," getting that data in order means building an integrated view of all your data landscape, which is data coming out of all your applications. It starts with the data model, so, today, you basically extract data from all your operational systems, put it in this one giant, central place, like a warehouse or lake house, but eventually you want this, whether you call it a fabric or a mesh, it's all the data that describes how everything hangs together as in one big knowledge graph. There's different ways to implement that. And that's the most critical thing, 'cause that describes your Uber landscape, your Uber platform. >> That's going to power the digital transformation, which will power the business transformation, which powers the business model, which allows the builders to build -- >> Yes. >> Coders to code. That's Supercloud application. >> Yeah. >> George, great stuff. Next interview you're going to see right here is Bob Muglia and Tristan Handy, they're going to unpack this new wave. Great segment, really worth unpacking and reading between the lines with George, and Dave Vellante, and those two great guests. And then we'll come back here for the studio for more of the live coverage of Supercloud 2. Thanks for watching. (upbeat electronic music)
SUMMARY :
remember the first days What's the super cloud to you? of the Walmart WCMP, I and that's the paradigm of microservices, and that was what they stateless apps in the cloud. And all their stateful of the apps are in VMs. And that goes to the -- Muglia and Handy, that you and I did, But that means the tough, he said the one thing we haven't And so then you can now the data warehouse that runs it, Dave: Relational totality, Which by the way, Thomas I hear you saying then, and data, and stateful. thing you mentioned to me, George: Nothing happens polling data from the transaction Something in the real world happens, that's in the cloud, that the DBT can start adding that layer Amazon kind of showed that with them. and that's the new application platform. and the folks watching, all the people have told you guys, Coders to code. for more of the live
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Chaos Search | ORGANIZATION | 0.99+ |
Jack | PERSON | 0.99+ |
Tristan | PERSON | 0.99+ |
12 years | QUANTITY | 0.99+ |
Berkeley | LOCATION | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
10 years | QUANTITY | 0.99+ |
two experts | QUANTITY | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
Muglia | ORGANIZATION | 0.99+ |
one minute | QUANTITY | 0.99+ |
40 | QUANTITY | 0.99+ |
two great guests | QUANTITY | 0.98+ |
Wikibon | ORGANIZATION | 0.98+ |
50 years | QUANTITY | 0.98+ |
John | PERSON | 0.98+ |
Rock 'Em Sock 'Em | TITLE | 0.98+ |
today | DATE | 0.98+ |
first person | QUANTITY | 0.98+ |
Databricks | ORGANIZATION | 0.98+ |
S3 | COMMERCIAL_ITEM | 0.97+ |
50 years ago | DATE | 0.97+ |
2010 | DATE | 0.97+ |
Mary | PERSON | 0.96+ |
first days | QUANTITY | 0.96+ |
SQL | TITLE | 0.96+ |
one | QUANTITY | 0.95+ |
Supercloud wave | EVENT | 0.95+ |
each one | QUANTITY | 0.93+ |
DBT | ORGANIZATION | 0.91+ |
Supercloud | TITLE | 0.91+ |
Supercloud2 | TITLE | 0.91+ |
Supercloud 2 | ORGANIZATION | 0.89+ |
Snowflake | TITLE | 0.86+ |
Dataverse | ORGANIZATION | 0.83+ |
triplet | QUANTITY | 0.78+ |
Breaking Analysis: Enterprise Technology Predictions 2023
(upbeat music beginning) >> From the Cube Studios in Palo Alto and Boston, bringing you data-driven insights from the Cube and ETR, this is "Breaking Analysis" with Dave Vellante. >> Making predictions about the future of enterprise tech is more challenging if you strive to lay down forecasts that are measurable. In other words, if you make a prediction, you should be able to look back a year later and say, with some degree of certainty, whether the prediction came true or not, with evidence to back that up. Hello and welcome to this week's Wikibon Cube Insights, powered by ETR. In this breaking analysis, we aim to do just that, with predictions about the macro IT spending environment, cost optimization, security, lots to talk about there, generative AI, cloud, and of course supercloud, blockchain adoption, data platforms, including commentary on Databricks, snowflake, and other key players, automation, events, and we may even have some bonus predictions around quantum computing, and perhaps some other areas. To make all this happen, we welcome back, for the third year in a row, my colleague and friend Eric Bradley from ETR. Eric, thanks for all you do for the community, and thanks for being part of this program. Again. >> I wouldn't miss it for the world. I always enjoy this one. Dave, good to see you. >> Yeah, so let me bring up this next slide and show you, actually come back to me if you would. I got to show the audience this. These are the inbounds that we got from PR firms starting in October around predictions. They know we do prediction posts. And so they'll send literally thousands and thousands of predictions from hundreds of experts in the industry, technologists, consultants, et cetera. And if you bring up the slide I can show you sort of the pattern that developed here. 40% of these thousands of predictions were from cyber. You had AI and data. If you combine those, it's still not close to cyber. Cost optimization was a big thing. Of course, cloud, some on DevOps, and software. Digital... Digital transformation got, you know, some lip service and SaaS. And then there was other, it's kind of around 2%. So quite remarkable, when you think about the focus on cyber, Eric. >> Yeah, there's two reasons why I think it makes sense, though. One, the cybersecurity companies have a lot of cash, so therefore the PR firms might be working a little bit harder for them than some of their other clients. (laughs) And then secondly, as you know, for multiple years now, when we do our macro survey, we ask, "What's your number one spending priority?" And again, it's security. It just isn't going anywhere. It just stays at the top. So I'm actually not that surprised by that little pie chart there, but I was shocked that SaaS was only 5%. You know, going back 10 years ago, that would've been the only thing anyone was talking about. >> Yeah. So true. All right, let's get into it. First prediction, we always start with kind of tech spending. Number one is tech spending increases between four and 5%. ETR has currently got it at 4.6% coming into 2023. This has been a consistently downward trend all year. We started, you know, much, much higher as we've been reporting. Bottom line is the fed is still in control. They're going to ease up on tightening, is the expectation, they're going to shoot for a soft landing. But you know, my feeling is this slingshot economy is going to continue, and it's going to continue to confound, whether it's supply chains or spending. The, the interesting thing about the ETR data, Eric, and I want you to comment on this, the largest companies are the most aggressive to cut. They're laying off, smaller firms are spending faster. They're actually growing at a much larger, faster rate as are companies in EMEA. And that's a surprise. That's outpacing the US and APAC. Chime in on this, Eric. >> Yeah, I was surprised on all of that. First on the higher level spending, we are definitely seeing it coming down, but the interesting thing here is headlines are making it worse. The huge research shop recently said 0% growth. We're coming in at 4.6%. And just so everyone knows, this is not us guessing, we asked 1,525 IT decision-makers what their budget growth will be, and they came in at 4.6%. Now there's a huge disparity, as you mentioned. The Fortune 500, global 2000, barely at 2% growth, but small, it's at 7%. So we're at a situation right now where the smaller companies are still playing a little bit of catch up on digital transformation, and they're spending money. The largest companies that have the most to lose from a recession are being more trepidatious, obviously. So they're playing a "Wait and see." And I hope we don't talk ourselves into a recession. Certainly the headlines and some of their research shops are helping it along. But another interesting comment here is, you know, energy and utilities used to be called an orphan and widow stock group, right? They are spending more than anyone, more than financials insurance, more than retail consumer. So right now it's being driven by mid, small, and energy and utilities. They're all spending like gangbusters, like nothing's happening. And it's the rest of everyone else that's being very cautious. >> Yeah, so very unpredictable right now. All right, let's go to number two. Cost optimization remains a major theme in 2023. We've been reporting on this. You've, we've shown a chart here. What's the primary method that your organization plans to use? You asked this question of those individuals that cited that they were going to reduce their spend and- >> Mhm. >> consolidating redundant vendors, you know, still leads the way, you know, far behind, cloud optimization is second, but it, but cloud continues to outpace legacy on-prem spending, no doubt. Somebody, it was, the guy's name was Alexander Feiglstorfer from Storyblok, sent in a prediction, said "All in one becomes extinct." Now, generally I would say I disagree with that because, you know, as we know over the years, suites tend to win out over, you know, individual, you know, point products. But I think what's going to happen is all in one is going to remain the norm for these larger companies that are cutting back. They want to consolidate redundant vendors, and the smaller companies are going to stick with that best of breed and be more aggressive and try to compete more effectively. What's your take on that? >> Yeah, I'm seeing much more consolidation in vendors, but also consolidation in functionality. We're seeing people building out new functionality, whether it's, we're going to talk about this later, so I don't want to steal too much of our thunder right now, but data and security also, we're seeing a functionality creep. So I think there's further consolidation happening here. I think niche solutions are going to be less likely, and platform solutions are going to be more likely in a spending environment where you want to reduce your vendors. You want to have one bill to pay, not 10. Another thing on this slide, real quick if I can before I move on, is we had a bunch of people write in and some of the answer options that aren't on this graph but did get cited a lot, unfortunately, is the obvious reduction in staff, hiring freezes, and delaying hardware, were three of the top write-ins. And another one was offshore outsourcing. So in addition to what we're seeing here, there were a lot of write-in options, and I just thought it would be important to state that, but essentially the cost optimization is by and far the highest one, and it's growing. So it's actually increased in our citations over the last year. >> And yeah, specifically consolidating redundant vendors. And so I actually thank you for bringing that other up, 'cause I had asked you, Eric, is there any evidence that repatriation is going on and we don't see it in the numbers, we don't see it even in the other, there was, I think very little or no mention of cloud repatriation, even though it might be happening in this in a smattering. >> Not a single mention, not one single mention. I went through it for you. Yep. Not one write-in. >> All right, let's move on. Number three, security leads M&A in 2023. Now you might say, "Oh, well that's a layup," but let me set this up Eric, because I didn't really do a great job with the slide. I hid the, what you've done, because you basically took, this is from the emerging technology survey with 1,181 responses from November. And what we did is we took Palo Alto and looked at the overlap in Palo Alto Networks accounts with these vendors that were showing on this chart. And Eric, I'm going to ask you to explain why we put a circle around OneTrust, but let me just set it up, and then have you comment on the slide and take, give us more detail. We're seeing private company valuations are off, you know, 10 to 40%. We saw a sneak, do a down round, but pretty good actually only down 12%. We've seen much higher down rounds. Palo Alto Networks we think is going to get busy. Again, they're an inquisitive company, they've been sort of quiet lately, and we think CrowdStrike, Cisco, Microsoft, Zscaler, we're predicting all of those will make some acquisitions and we're thinking that the targets are somewhere in this mess of security taxonomy. Other thing we're predicting AI meets cyber big time in 2023, we're going to probably going to see some acquisitions of those companies that are leaning into AI. We've seen some of that with Palo Alto. And then, you know, your comment to me, Eric, was "The RSA conference is going to be insane, hopping mad, "crazy this April," (Eric laughing) but give us your take on this data, and why the red circle around OneTrust? Take us back to that slide if you would, Alex. >> Sure. There's a few things here. First, let me explain what we're looking at. So because we separate the public companies and the private companies into two separate surveys, this allows us the ability to cross-reference that data. So what we're doing here is in our public survey, the tesis, everyone who cited some spending with Palo Alto, meaning they're a Palo Alto customer, we then cross-reference that with the private tech companies. Who also are they spending with? So what you're seeing here is an overlap. These companies that we have circled are doing the best in Palo Alto's accounts. Now, Palo Alto went and bought Twistlock a few years ago, which this data slide predicted, to be quite honest. And so I don't know if they necessarily are going to go after Snyk. Snyk, sorry. They already have something in that space. What they do need, however, is more on the authentication space. So I'm looking at OneTrust, with a 45% overlap in their overall net sentiment. That is a company that's already existing in their accounts and could be very synergistic to them. BeyondTrust as well, authentication identity. This is something that Palo needs to do to move more down that zero trust path. Now why did I pick Palo first? Because usually they're very inquisitive. They've been a little quiet lately. Secondly, if you look at the backdrop in the markets, the IPO freeze isn't going to last forever. Sooner or later, the IPO markets are going to open up, and some of these private companies are going to tap into public equity. In the meantime, however, cash funding on the private side is drying up. If they need another round, they're not going to get it, and they're certainly not going to get it at the valuations they were getting. So we're seeing valuations maybe come down where they're a touch more attractive, and Palo knows this isn't going to last forever. Cisco knows that, CrowdStrike, Zscaler, all these companies that are trying to make a push to become that vendor that you're consolidating in, around, they have a chance now, they have a window where they need to go make some acquisitions. And that's why I believe leading up to RSA, we're going to see some movement. I think it's going to pretty, a really exciting time in security right now. >> Awesome. Thank you. Great explanation. All right, let's go on the next one. Number four is, it relates to security. Let's stay there. Zero trust moves from hype to reality in 2023. Now again, you might say, "Oh yeah, that's a layup." A lot of these inbounds that we got are very, you know, kind of self-serving, but we always try to put some meat in the bone. So first thing we do is we pull out some commentary from, Eric, your roundtable, your insights roundtable. And we have a CISO from a global hospitality firm says, "For me that's the highest priority." He's talking about zero trust because it's the best ROI, it's the most forward-looking, and it enables a lot of the business transformation activities that we want to do. CISOs tell me that they actually can drive forward transformation projects that have zero trust, and because they can accelerate them, because they don't have to go through the hurdle of, you know, getting, making sure that it's secure. Second comment, zero trust closes that last mile where once you're authenticated, they open up the resource to you in a zero trust way. That's a CISO of a, and a managing director of a cyber risk services enterprise. Your thoughts on this? >> I can be here all day, so I'm going to try to be quick on this one. This is not a fluff piece on this one. There's a couple of other reasons this is happening. One, the board finally gets it. Zero trust at first was just a marketing hype term. Now the board understands it, and that's why CISOs are able to push through it. And what they finally did was redefine what it means. Zero trust simply means moving away from hardware security, moving towards software-defined security, with authentication as its base. The board finally gets that, and now they understand that this is necessary and it's being moved forward. The other reason it's happening now is hybrid work is here to stay. We weren't really sure at first, large companies were still trying to push people back to the office, and it's going to happen. The pendulum will swing back, but hybrid work's not going anywhere. By basically on our own data, we're seeing that 69% of companies expect remote and hybrid to be permanent, with only 30% permanent in office. Zero trust works for a hybrid environment. So all of that is the reason why this is happening right now. And going back to our previous prediction, this is why we're picking Palo, this is why we're picking Zscaler to make these acquisitions. Palo Alto needs to be better on the authentication side, and so does Zscaler. They're both fantastic on zero trust network access, but they need the authentication software defined aspect, and that's why we think this is going to happen. One last thing, in that CISO round table, I also had somebody say, "Listen, Zscaler is incredible. "They're doing incredibly well pervading the enterprise, "but their pricing's getting a little high," and they actually think Palo Alto is well-suited to start taking some of that share, if Palo can make one move. >> Yeah, Palo Alto's consolidation story is very strong. Here's my question and challenge. Do you and me, so I'm always hardcore about, okay, you've got to have evidence. I want to look back at these things a year from now and say, "Did we get it right? Yes or no?" If we got it wrong, we'll tell you we got it wrong. So how are we going to measure this? I'd say a couple things, and you can chime in. One is just the number of vendors talking about it. That's, but the marketing always leads the reality. So the second part of that is we got to get evidence from the buying community. Can you help us with that? >> (laughs) Luckily, that's what I do. I have a data company that asks thousands of IT decision-makers what they're adopting and what they're increasing spend on, as well as what they're decreasing spend on and what they're replacing. So I have snapshots in time over the last 11 years where I can go ahead and compare and contrast whether this adoption is happening or not. So come back to me in 12 months and I'll let you know. >> Now, you know, I will. Okay, let's bring up the next one. Number five, generative AI hits where the Metaverse missed. Of course everybody's talking about ChatGPT, we just wrote last week in a breaking analysis with John Furrier and Sarjeet Joha our take on that. We think 2023 does mark a pivot point as natural language processing really infiltrates enterprise tech just as Amazon turned the data center into an API. We think going forward, you're going to be interacting with technology through natural language, through English commands or other, you know, foreign language commands, and investors are lining up, all the VCs are getting excited about creating something competitive to ChatGPT, according to (indistinct) a hundred million dollars gets you a seat at the table, gets you into the game. (laughing) That's before you have to start doing promotion. But he thinks that's what it takes to actually create a clone or something equivalent. We've seen stuff from, you know, the head of Facebook's, you know, AI saying, "Oh, it's really not that sophisticated, ChatGPT, "it's kind of like IBM Watson, it's great engineering, "but you know, we've got more advanced technology." We know Google's working on some really interesting stuff. But here's the thing. ETR just launched this survey for the February survey. It's in the field now. We circle open AI in this category. They weren't even in the survey, Eric, last quarter. So 52% of the ETR survey respondents indicated a positive sentiment toward open AI. I added up all the sort of different bars, we could double click on that. And then I got this inbound from Scott Stevenson of Deep Graham. He said "AI is recession-proof." I don't know if that's the case, but it's a good quote. So bring this back up and take us through this. Explain this chart for us, if you would. >> First of all, I like Scott's quote better than the Facebook one. I think that's some sour grapes. Meta just spent an insane amount of money on the Metaverse and that's a dud. Microsoft just spent money on open AI and it is hot, undoubtedly hot. We've only been in the field with our current ETS survey for a week. So my caveat is it's preliminary data, but I don't care if it's preliminary data. (laughing) We're getting a sneak peek here at what is the number one net sentiment and mindshare leader in the entire machine-learning AI sector within a week. It's beating Data- >> 600. 600 in. >> It's beating Databricks. And we all know Databricks is a huge established enterprise company, not only in machine-learning AI, but it's in the top 10 in the entire survey. We have over 400 vendors in this survey. It's number eight overall, already. In a week. This is not hype. This is real. And I could go on the NLP stuff for a while. Not only here are we seeing it in open AI and machine-learning and AI, but we're seeing NLP in security. It's huge in email security. It's completely transforming that area. It's one of the reasons I thought Palo might take Abnormal out. They're doing such a great job with NLP in this email side, and also in the data prep tools. NLP is going to take out data prep tools. If we have time, I'll discuss that later. But yeah, this is, to me this is a no-brainer, and we're already seeing it in the data. >> Yeah, John Furrier called, you know, the ChatGPT introduction. He said it reminded him of the Netscape moment, when we all first saw Netscape Navigator and went, "Wow, it really could be transformative." All right, number six, the cloud expands to supercloud as edge computing accelerates and CloudFlare is a big winner in 2023. We've reported obviously on cloud, multi-cloud, supercloud and CloudFlare, basically saying what multi-cloud should have been. We pulled this quote from Atif Kahn, who is the founder and CTO of Alkira, thanks, one of the inbounds, thank you. "In 2023, highly distributed IT environments "will become more the norm "as organizations increasingly deploy hybrid cloud, "multi-cloud and edge settings..." Eric, from one of your round tables, "If my sources from edge computing are coming "from the cloud, that means I have my workloads "running in the cloud. "There is no one better than CloudFlare," That's a senior director of IT architecture at a huge financial firm. And then your analysis shows CloudFlare really growing in pervasion, that sort of market presence in the dataset, dramatically, to near 20%, leading, I think you had told me that they're even ahead of Google Cloud in terms of momentum right now. >> That was probably the biggest shock to me in our January 2023 tesis, which covers the public companies in the cloud computing sector. CloudFlare has now overtaken GCP in overall spending, and I was shocked by that. It's already extremely pervasive in networking, of course, for the edge networking side, and also in security. This is the number one leader in SaaSi, web access firewall, DDoS, bot protection, by your definition of supercloud, which we just did a couple of weeks ago, and I really enjoyed that by the way Dave, I think CloudFlare is the one that fits your definition best, because it's bringing all of these aspects together, and most importantly, it's cloud agnostic. It does not need to rely on Azure or AWS to do this. It has its own cloud. So I just think it's, when we look at your definition of supercloud, CloudFlare is the poster child. >> You know, what's interesting about that too, is a lot of people are poo-pooing CloudFlare, "Ah, it's, you know, really kind of not that sophisticated." "You don't have as many tools," but to your point, you're can have those tools in the cloud, Cloudflare's doing serverless on steroids, trying to keep things really simple, doing a phenomenal job at, you know, various locations around the world. And they're definitely one to watch. Somebody put them on my radar (laughing) a while ago and said, "Dave, you got to do a breaking analysis on CloudFlare." And so I want to thank that person. I can't really name them, 'cause they work inside of a giant hyperscaler. But- (Eric laughing) (Dave chuckling) >> Real quickly, if I can from a competitive perspective too, who else is there? They've already taken share from Akamai, and Fastly is their really only other direct comp, and they're not there. And these guys are in poll position and they're the only game in town right now. I just, I don't see it slowing down. >> I thought one of your comments from your roundtable I was reading, one of the folks said, you know, CloudFlare, if my workloads are in the cloud, they are, you know, dominant, they said not as strong with on-prem. And so Akamai is doing better there. I'm like, "Okay, where would you want to be?" (laughing) >> Yeah, which one of those two would you rather be? >> Right? Anyway, all right, let's move on. Number seven, blockchain continues to look for a home in the enterprise, but devs will slowly begin to adopt in 2023. You know, blockchains have got a lot of buzz, obviously crypto is, you know, the killer app for blockchain. Senior IT architect in financial services from your, one of your insight roundtables said quote, "For enterprises to adopt a new technology, "there have to be proven turnkey solutions. "My experience in talking with my peers are, "blockchain is still an open-source component "where you have to build around it." Now I want to thank Ravi Mayuram, who's the CTO of Couchbase sent in, you know, one of the predictions, he said, "DevOps will adopt blockchain, specifically Ethereum." And he referenced actually in his email to me, Solidity, which is the programming language for Ethereum, "will be in every DevOps pro's playbook, "mirroring the boom in machine-learning. "Newer programming languages like Solidity "will enter the toolkits of devs." His point there, you know, Solidity for those of you don't know, you know, Bitcoin is not programmable. Solidity, you know, came out and that was their whole shtick, and they've been improving that, and so forth. But it, Eric, it's true, it really hasn't found its home despite, you know, the potential for smart contracts. IBM's pushing it, VMware has had announcements, and others, really hasn't found its way in the enterprise yet. >> Yeah, and I got to be honest, I don't think it's going to, either. So when we did our top trends series, this was basically chosen as an anti-prediction, I would guess, that it just continues to not gain hold. And the reason why was that first comment, right? It's very much a niche solution that requires a ton of custom work around it. You can't just plug and play it. And at the end of the day, let's be very real what this technology is, it's a database ledger, and we already have database ledgers in the enterprise. So why is this a priority to move to a different database ledger? It's going to be very niche cases. I like the CTO comment from Couchbase about it being adopted by DevOps. I agree with that, but it has to be a DevOps in a very specific use case, and a very sophisticated use case in financial services, most likely. And that's not across the entire enterprise. So I just think it's still going to struggle to get its foothold for a little bit longer, if ever. >> Great, thanks. Okay, let's move on. Number eight, AWS Databricks, Google Snowflake lead the data charge with Microsoft. Keeping it simple. So let's unpack this a little bit. This is the shared accounts peer position for, I pulled data platforms in for analytics, machine-learning and AI and database. So I could grab all these accounts or these vendors and see how they compare in those three sectors. Analytics, machine-learning and database. Snowflake and Databricks, you know, they're on a crash course, as you and I have talked about. They're battling to be the single source of truth in analytics. They're, there's going to be a big focus. They're already started. It's going to be accelerated in 2023 on open formats. Iceberg, Python, you know, they're all the rage. We heard about Iceberg at Snowflake Summit, last summer or last June. Not a lot of people had heard of it, but of course the Databricks crowd, who knows it well. A lot of other open source tooling. There's a company called DBT Labs, which you're going to talk about in a minute. George Gilbert put them on our radar. We just had Tristan Handy, the CEO of DBT labs, on at supercloud last week. They are a new disruptor in data that's, they're essentially making, they're API-ifying, if you will, KPIs inside the data warehouse and dramatically simplifying that whole data pipeline. So really, you know, the ETL guys should be shaking in their boots with them. Coming back to the slide. Google really remains focused on BigQuery adoption. Customers have complained to me that they would like to use Snowflake with Google's AI tools, but they're being forced to go to BigQuery. I got to ask Google about that. AWS continues to stitch together its bespoke data stores, that's gone down that "Right tool for the right job" path. David Foyer two years ago said, "AWS absolutely is going to have to solve that problem." We saw them start to do it in, at Reinvent, bringing together NoETL between Aurora and Redshift, and really trying to simplify those worlds. There's going to be more of that. And then Microsoft, they're just making it cheap and easy to use their stuff, you know, despite some of the complaints that we hear in the community, you know, about things like Cosmos, but Eric, your take? >> Yeah, my concern here is that Snowflake and Databricks are fighting each other, and it's allowing AWS and Microsoft to kind of catch up against them, and I don't know if that's the right move for either of those two companies individually, Azure and AWS are building out functionality. Are they as good? No they're not. The other thing to remember too is that AWS and Azure get paid anyway, because both Databricks and Snowflake run on top of 'em. So (laughing) they're basically collecting their toll, while these two fight it out with each other, and they build out functionality. I think they need to stop focusing on each other, a little bit, and think about the overall strategy. Now for Databricks, we know they came out first as a machine-learning AI tool. They were known better for that spot, and now they're really trying to play catch-up on that data storage compute spot, and inversely for Snowflake, they were killing it with the compute separation from storage, and now they're trying to get into the MLAI spot. I actually wouldn't be surprised to see them make some sort of acquisition. Frank Slootman has been a little bit quiet, in my opinion there. The other thing to mention is your comment about DBT Labs. If we look at our emerging technology survey, last survey when this came out, DBT labs, number one leader in that data integration space, I'm going to just pull it up real quickly. It looks like they had a 33% overall net sentiment to lead data analytics integration. So they are clearly growing, it's fourth straight survey consecutively that they've grown. The other name we're seeing there a little bit is Cribl, but DBT labs is by far the number one player in this space. >> All right. Okay, cool. Moving on, let's go to number nine. With Automation mixer resurgence in 2023, we're showing again data. The x axis is overlap or presence in the dataset, and the vertical axis is shared net score. Net score is a measure of spending momentum. As always, you've seen UI path and Microsoft Power Automate up until the right, that red line, that 40% line is generally considered elevated. UI path is really separating, creating some distance from Automation Anywhere, they, you know, previous quarters they were much closer. Microsoft Power Automate came on the scene in a big way, they loom large with this "Good enough" approach. I will say this, I, somebody sent me a results of a (indistinct) survey, which showed UiPath actually had more mentions than Power Automate, which was surprising, but I think that's not been the case in the ETR data set. We're definitely seeing a shift from back office to front soft office kind of workloads. Having said that, software testing is emerging as a mainstream use case, we're seeing ML and AI become embedded in end-to-end automations, and low-code is serving the line of business. And so this, we think, is going to increasingly have appeal to organizations in the coming year, who want to automate as much as possible and not necessarily, we've seen a lot of layoffs in tech, and people... You're going to have to fill the gaps with automation. That's a trend that's going to continue. >> Yep, agreed. At first that comment about Microsoft Power Automate having less citations than UiPath, that's shocking to me. I'm looking at my chart right here where Microsoft Power Automate was cited by over 60% of our entire survey takers, and UiPath at around 38%. Now don't get me wrong, 38% pervasion's fantastic, but you know you're not going to beat an entrenched Microsoft. So I don't really know where that comment came from. So UiPath, looking at it alone, it's doing incredibly well. It had a huge rebound in its net score this last survey. It had dropped going through the back half of 2022, but we saw a big spike in the last one. So it's got a net score of over 55%. A lot of people citing adoption and increasing. So that's really what you want to see for a name like this. The problem is that just Microsoft is doing its playbook. At the end of the day, I'm going to do a POC, why am I going to pay more for UiPath, or even take on another separate bill, when we know everyone's consolidating vendors, if my license already includes Microsoft Power Automate? It might not be perfect, it might not be as good, but what I'm hearing all the time is it's good enough, and I really don't want another invoice. >> Right. So how does UiPath, you know, and Automation Anywhere, how do they compete with that? Well, the way they compete with it is they got to have a better product. They got a product that's 10 times better. You know, they- >> Right. >> they're not going to compete based on where the lowest cost, Microsoft's got that locked up, or where the easiest to, you know, Microsoft basically give it away for free, and that's their playbook. So that's, you know, up to UiPath. UiPath brought on Rob Ensslin, I've interviewed him. Very, very capable individual, is now Co-CEO. So he's kind of bringing that adult supervision in, and really tightening up the go to market. So, you know, we know this company has been a rocket ship, and so getting some control on that and really getting focused like a laser, you know, could be good things ahead there for that company. Okay. >> One of the problems, if I could real quick Dave, is what the use cases are. When we first came out with RPA, everyone was super excited about like, "No, UiPath is going to be great for super powerful "projects, use cases." That's not what RPA is being used for. As you mentioned, it's being used for mundane tasks, so it's not automating complex things, which I think UiPath was built for. So if you were going to get UiPath, and choose that over Microsoft, it's going to be 'cause you're doing it for more powerful use case, where it is better. But the problem is that's not where the enterprise is using it. The enterprise are using this for base rote tasks, and simply, Microsoft Power Automate can do that. >> Yeah, it's interesting. I've had people on theCube that are both Microsoft Power Automate customers and UiPath customers, and I've asked them, "Well you know, "how do you differentiate between the two?" And they've said to me, "Look, our users and personal productivity users, "they like Power Automate, "they can use it themselves, and you know, "it doesn't take a lot of, you know, support on our end." The flip side is you could do that with UiPath, but like you said, there's more of a focus now on end-to-end enterprise automation and building out those capabilities. So it's increasingly a value play, and that's going to be obviously the challenge going forward. Okay, my last one, and then I think you've got some bonus ones. Number 10, hybrid events are the new category. Look it, if I can get a thousand inbounds that are largely self-serving, I can do my own here, 'cause we're in the events business. (Eric chuckling) Here's the prediction though, and this is a trend we're seeing, the number of physical events is going to dramatically increase. That might surprise people, but most of the big giant events are going to get smaller. The exception is AWS with Reinvent, I think Snowflake's going to continue to grow. So there are examples of physical events that are growing, but generally, most of the big ones are getting smaller, and there's going to be many more smaller intimate regional events and road shows. These micro-events, they're going to be stitched together. Digital is becoming a first class citizen, so people really got to get their digital acts together, and brands are prioritizing earned media, and they're beginning to build their own news networks, going direct to their customers. And so that's a trend we see, and I, you know, we're right in the middle of it, Eric, so you know we're going to, you mentioned RSA, I think that's perhaps going to be one of those crazy ones that continues to grow. It's shrunk, and then it, you know, 'cause last year- >> Yeah, it did shrink. >> right, it was the last one before the pandemic, and then they sort of made another run at it last year. It was smaller but it was very vibrant, and I think this year's going to be huge. Global World Congress is another one, we're going to be there end of Feb. That's obviously a big big show, but in general, the brands and the technology vendors, even Oracle is going to scale down. I don't know about Salesforce. We'll see. You had a couple of bonus predictions. Quantum and maybe some others? Bring us home. >> Yeah, sure. I got a few more. I think we touched upon one, but I definitely think the data prep tools are facing extinction, unfortunately, you know, the Talons Informatica is some of those names. The problem there is that the BI tools are kind of including data prep into it already. You know, an example of that is Tableau Prep Builder, and then in addition, Advanced NLP is being worked in as well. ThoughtSpot, Intelius, both often say that as their selling point, Tableau has Ask Data, Click has Insight Bot, so you don't have to really be intelligent on data prep anymore. A regular business user can just self-query, using either the search bar, or even just speaking into what it needs, and these tools are kind of doing the data prep for it. I don't think that's a, you know, an out in left field type of prediction, but it's the time is nigh. The other one I would also state is that I think knowledge graphs are going to break through this year. Neo4j in our survey is growing in pervasion in Mindshare. So more and more people are citing it, AWS Neptune's getting its act together, and we're seeing that spending intentions are growing there. Tiger Graph is also growing in our survey sample. I just think that the time is now for knowledge graphs to break through, and if I had to do one more, I'd say real-time streaming analytics moves from the very, very rich big enterprises to downstream, to more people are actually going to be moving towards real-time streaming, again, because the data prep tools and the data pipelines have gotten easier to use, and I think the ROI on real-time streaming is obviously there. So those are three that didn't make the cut, but I thought deserved an honorable mention. >> Yeah, I'm glad you did. Several weeks ago, we did an analyst prediction roundtable, if you will, a cube session power panel with a number of data analysts and that, you know, streaming, real-time streaming was top of mind. So glad you brought that up. Eric, as always, thank you very much. I appreciate the time you put in beforehand. I know it's been crazy, because you guys are wrapping up, you know, the last quarter survey in- >> Been a nuts three weeks for us. (laughing) >> job. I love the fact that you're doing, you know, the ETS survey now, I think it's quarterly now, right? Is that right? >> Yep. >> Yep. So that's phenomenal. >> Four times a year. I'll be happy to jump on with you when we get that done. I know you were really impressed with that last time. >> It's unbelievable. This is so much data at ETR. Okay. Hey, that's a wrap. Thanks again. >> Take care Dave. Good seeing you. >> All right, many thanks to our team here, Alex Myerson as production, he manages the podcast force. Ken Schiffman as well is a critical component of our East Coast studio. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hoof is our editor-in-chief. He's at siliconangle.com. He's just a great editing for us. Thank you all. Remember all these episodes that are available as podcasts, wherever you listen, podcast is doing great. Just search "Breaking analysis podcast." Really appreciate you guys listening. I publish each week on wikibon.com and siliconangle.com, or you can email me directly if you want to get in touch, david.vellante@siliconangle.com. That's how I got all these. I really appreciate it. I went through every single one with a yellow highlighter. It took some time, (laughing) but I appreciate it. You could DM me at dvellante, or comment on our LinkedIn post and please check out etr.ai. Its data is amazing. Best survey data in the enterprise tech business. This is Dave Vellante for theCube Insights, powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis." (upbeat music beginning) (upbeat music ending)
SUMMARY :
insights from the Cube and ETR, do for the community, Dave, good to see you. actually come back to me if you would. It just stays at the top. the most aggressive to cut. that have the most to lose What's the primary method still leads the way, you know, So in addition to what we're seeing here, And so I actually thank you I went through it for you. I'm going to ask you to explain and they're certainly not going to get it to you in a zero trust way. So all of that is the One is just the number of So come back to me in 12 So 52% of the ETR survey amount of money on the Metaverse and also in the data prep tools. the cloud expands to the biggest shock to me "Ah, it's, you know, really and Fastly is their really the folks said, you know, for a home in the enterprise, Yeah, and I got to be honest, in the community, you know, and I don't know if that's the right move and the vertical axis is shared net score. So that's really what you want Well, the way they compete So that's, you know, One of the problems, if and that's going to be obviously even Oracle is going to scale down. and the data pipelines and that, you know, Been a nuts three I love the fact I know you were really is so much data at ETR. and we'll see you next time
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Eric | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Rob Hoof | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Ravi Mayuram | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Atif Kahn | PERSON | 0.99+ |
November | DATE | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
APAC | ORGANIZATION | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
Palo | ORGANIZATION | 0.99+ |
David Foyer | PERSON | 0.99+ |
February | DATE | 0.99+ |
January 2023 | DATE | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
October | DATE | 0.99+ |
Rob Ensslin | PERSON | 0.99+ |
Scott Stevenson | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
69% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
CrowdStrike | ORGANIZATION | 0.99+ |
4.6% | QUANTITY | 0.99+ |
10 times | QUANTITY | 0.99+ |
2023 | DATE | 0.99+ |
Scott | PERSON | 0.99+ |
1,181 responses | QUANTITY | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
third year | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
Alex | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
OneTrust | ORGANIZATION | 0.99+ |
45% | QUANTITY | 0.99+ |
33% | QUANTITY | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
two reasons | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
BeyondTrust | ORGANIZATION | 0.99+ |
7% | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Breaking Analysis: Supercloud2 Explores Cloud Practitioner Realities & the Future of Data Apps
>> Narrator: From theCUBE Studios in Palo Alto and Boston bringing you data-driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante >> Enterprise tech practitioners, like most of us they want to make their lives easier so they can focus on delivering more value to their businesses. And to do so, they want to tap best of breed services in the public cloud, but at the same time connect their on-prem intellectual property to emerging applications which drive top line revenue and bottom line profits. But creating a consistent experience across clouds and on-prem estates has been an elusive capability for most organizations, forcing trade-offs and injecting friction into the system. The need to create seamless experiences is clear and the technology industry is starting to respond with platforms, architectures, and visions of what we've called the Supercloud. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis we give you a preview of Supercloud 2, the second event of its kind that we've had on the topic. Yes, folks that's right Supercloud 2 is here. As of this recording, it's just about four days away 33 guests, 21 sessions, combining live discussions and fireside chats from theCUBE's Palo Alto Studio with prerecorded conversations on the future of cloud and data. You can register for free at supercloud.world. And we are super excited about the Supercloud 2 lineup of guests whereas Supercloud 22 in August, was all about refining the definition of Supercloud testing its technical feasibility and understanding various deployment models. Supercloud 2 features practitioners, technologists and analysts discussing what customers need with real-world examples of Supercloud and will expose thinking around a new breed of cross-cloud apps, data apps, if you will that change the way machines and humans interact with each other. Now the example we'd use if you think about applications today, say a CRM system, sales reps, what are they doing? They're entering data into opportunities they're choosing products they're importing contacts, et cetera. And sure the machine can then take all that data and spit out a forecast by rep, by region, by product, et cetera. But today's applications are largely about filling in forms and or codifying processes. In the future, the Supercloud community sees a new breed of applications emerging where data resides on different clouds, in different data storages, databases, Lakehouse, et cetera. And the machine uses AI to inspect the e-commerce system the inventory data, supply chain information and other systems, and puts together a plan without any human intervention whatsoever. Think about a system that orchestrates people, places and things like an Uber for business. So at Supercloud 2, you'll hear about this vision along with some of today's challenges facing practitioners. Zhamak Dehghani, the founder of Data Mesh is a headliner. Kit Colbert also is headlining. He laid out at the first Supercloud an initial architecture for what that's going to look like. That was last August. And he's going to present his most current thinking on the topic. Veronika Durgin of Sachs will be featured and talk about data sharing across clouds and you know what she needs in the future. One of the main highlights of Supercloud 2 is a dive into Walmart's Supercloud. Other featured practitioners include Western Union Ionis Pharmaceuticals, Warner Media. We've got deep, deep technology dives with folks like Bob Muglia, David Flynn Tristan Handy of DBT Labs, Nir Zuk, the founder of Palo Alto Networks focused on security. Thomas Hazel, who's going to talk about a new type of database for Supercloud. It's several analysts including Keith Townsend Maribel Lopez, George Gilbert, Sanjeev Mohan and so many more guests, we don't have time to list them all. They're all up on supercloud.world with a full agenda, so you can check that out. Now let's take a look at some of the things that we're exploring in more detail starting with the Walmart Cloud native platform, they call it WCNP. We definitely see this as a Supercloud and we dig into it with Jack Greenfield. He's the head of architecture at Walmart. Here's a quote from Jack. "WCNP is an implementation of Kubernetes for the Walmart ecosystem. We've taken Kubernetes off the shelf as open source." By the way, they do the same thing with OpenStack. "And we have integrated it with a number of foundational services that provide other aspects of our computational environment. Kubernetes off the shelf doesn't do everything." And so what Walmart chose to do, they took a do-it-yourself approach to build a Supercloud for a variety of reasons that Jack will explain, along with Walmart's so-called triplet architecture connecting on-prem, Azure and GCP. No surprise, there's no Amazon at Walmart for obvious reasons. And what they do is they create a common experience for devs across clouds. Jack is going to talk about how Walmart is evolving its Supercloud in the future. You don't want to miss that. Now, next, let's take a look at how Veronica Durgin of SAKS thinks about data sharing across clouds. Data sharing we think is a potential killer use case for Supercloud. In fact, let's hear it in Veronica's own words. Please play the clip. >> How do we talk to each other? And more importantly, how do we data share? You know, I work with data, you know this is what I do. So if you know I want to get data from a company that's using, say Google, how do we share it in a smooth way where it doesn't have to be this crazy I don't know, SFTP file moving? So that's where I think Supercloud comes to me in my mind, is like practical applications. How do we create that mesh, that network that we can easily share data with each other? >> Now data mesh is a possible architectural approach that will enable more facile data sharing and the monetization of data products. You'll hear Zhamak Dehghani live in studio talking about what standards are missing to make this vision a reality across the Supercloud. Now one of the other things that we're really excited about is digging deeper into the right approach for Supercloud adoption. And we're going to share a preview of a debate that's going on right now in the community. Bob Muglia, former CEO of Snowflake and Microsoft Exec was kind enough to spend some time looking at the community's supercloud definition and he felt that it needed to be simplified. So in near real time he came up with the following definition that we're showing here. I'll read it. "A Supercloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers." So not only did Bob simplify the initial definition he's stressed that the Supercloud is a platform versus an architecture implying that the platform provider eg Snowflake, VMware, Databricks, Cohesity, et cetera is responsible for determining the architecture. Now interestingly in the shared Google doc that the working group uses to collaborate on the supercloud de definition, Dr. Nelu Mihai who is actually building a Supercloud responded as follows to Bob's assertion "We need to avoid creating many Supercloud platforms with their own architectures. If we do that, then we create other proprietary clouds on top of existing ones. We need to define an architecture of how Supercloud interfaces with all other clouds. What is the information model? What is the execution model and how users will interact with Supercloud?" What does this seemingly nuanced point tell us and why does it matter? Well, history suggests that de facto standards will emerge more quickly to resolve real world practitioner problems and catch on more quickly than consensus-based architectures and standards-based architectures. But in the long run, the ladder may serve customers better. So we'll be exploring this topic in more detail in Supercloud 2, and of course we'd love to hear what you think platform, architecture, both? Now one of the real technical gurus that we'll have in studio at Supercloud two is David Flynn. He's one of the people behind the the movement that enabled enterprise flash adoption, that craze. And he did that with Fusion IO and he is now working on a system to enable read write data access to any user in any application in any data center or on any cloud anywhere. So think of this company as a Supercloud enabler. Allow me to share an excerpt from a conversation David Flore and I had with David Flynn last year. He as well gave a lot of thought to the Supercloud definition and was really helpful with an opinionated point of view. He said something to us that was, we thought relevant. "What is the operating system for a decentralized cloud? The main two functions of an operating system or an operating environment are one the process scheduler and two, the file system. The strongest argument for supercloud is made when you go down to the platform layer and talk about it as an operating environment on which you can run all forms of applications." So a couple of implications here that will be exploring with David Flynn in studio. First we're inferring from his comment that he's in the platform camp where the platform owner is responsible for the architecture and there are obviously trade-offs there and benefits but we'll have to clarify that with him. And second, he's basically saying, you kill the concept the further you move up the stack. So the weak, the further you move the stack the weaker the supercloud argument becomes because it's just becoming SaaS. Now this is something we're going to explore to better understand is thinking on this, but also whether the existing notion of SaaS is changing and whether or not a new breed of Supercloud apps will emerge. Which brings us to this really interesting fellow that George Gilbert and I RIFed with ahead of Supercloud two. Tristan Handy, he's the founder and CEO of DBT Labs and he has a highly opinionated and technical mind. Here's what he said, "One of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse inside of your data lake. These are core concepts that the business should be able to create applications around very easily. In fact, that's not the case because it involves a lot of data engineering pipeline and other work to make these available. So if you really want to make it easy to create these data experiences for users you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes and they don't need to." A lot of implications to this statement that will explore at Supercloud two versus Jamma Dani's data mesh comes into play here with her critique of hyper specialized data pipeline experts with little or no domain knowledge. Also the need for simplified self-service infrastructure which Kit Colbert is likely going to touch upon. Veronica Durgin of SAKS and her ideal state for data shearing along with Harveer Singh of Western Union. They got to deal with 200 locations around the world in data privacy issues, data sovereignty how do you share data safely? Same with Nick Taylor of Ionis Pharmaceutical. And not to blow your mind but Thomas Hazel and Bob Muglia deposit that to make data apps a reality across the Supercloud you have to rethink everything. You can't just let in memory databases and caching architectures take care of everything in a brute force manner. Rather you have to get down to really detailed levels even things like how data is laid out on disk, ie flash and think about rewriting applications for the Supercloud and the MLAI era. All of this and more at Supercloud two which wouldn't be complete without some data. So we pinged our friends from ETR Eric Bradley and Darren Bramberm to see if they had any data on Supercloud that we could tap. And so we're going to be analyzing a number of the players as well at Supercloud two. Now, many of you are familiar with this graphic here we show some of the players involved in delivering or enabling Supercloud-like capabilities. On the Y axis is spending momentum and on the horizontal accesses market presence or pervasiveness in the data. So netscore versus what they call overlap or end in the data. And the table insert shows how the dots are plotted now not to steal ETR's thunder but the first point is you really can't have supercloud without the hyperscale cloud platforms which is shown on this graphic. But the exciting aspect of Supercloud is the opportunity to build value on top of that hyperscale infrastructure. Snowflake here continues to show strong spending velocity as those Databricks, Hashi, Rubrik. VMware Tanzu, which we all put under the magnifying glass after the Broadcom announcements, is also showing momentum. Unfortunately due to a scheduling conflict we weren't able to get Red Hat on the program but they're clearly a player here. And we've put Cohesity and Veeam on the chart as well because backup is a likely use case across clouds and on-premises. And now one other call out that we drill down on at Supercloud two is CloudFlare, which actually uses the term supercloud maybe in a different way. They look at Supercloud really as you know, serverless on steroids. And so the data brains at ETR will have more to say on this topic at Supercloud two along with many others. Okay, so why should you attend Supercloud two? What's in it for me kind of thing? So first of all, if you're a practitioner and you want to understand what the possibilities are for doing cross-cloud services for monetizing data how your peers are doing data sharing, how some of your peers are actually building out a Supercloud you're going to get real world input from practitioners. If you're a technologist, you're trying to figure out various ways to solve problems around data, data sharing, cross-cloud service deployment there's going to be a number of deep technology experts that are going to share how they're doing it. We're also going to drill down with Walmart into a practical example of Supercloud with some other examples of how practitioners are dealing with cross-cloud complexity. Some of them, by the way, are kind of thrown up their hands and saying, Hey, we're going mono cloud. And we'll talk about the potential implications and dangers and risks of doing that. And also some of the benefits. You know, there's a question, right? Is Supercloud the same wine new bottle or is it truly something different that can drive substantive business value? So look, go to Supercloud.world it's January 17th at 9:00 AM Pacific. You can register for free and participate directly in the program. Okay, that's a wrap. I want to give a shout out to the Supercloud supporters. VMware has been a great partner as our anchor sponsor Chaos Search Proximo, and Alura as well. For contributing to the effort I want to thank Alex Myerson who's on production and manages the podcast. Ken Schiffman is his supporting cast as well. Kristen Martin and Cheryl Knight to help get the word out on social media and at our newsletters. And Rob Ho is our editor-in-chief over at Silicon Angle. Thank you all. Remember, these episodes are all available as podcast. Wherever you listen we really appreciate the support that you've given. We just saw some stats from from Buzz Sprout, we hit the top 25% we're almost at 400,000 downloads last year. So really appreciate your participation. All you got to do is search Breaking Analysis podcast and you'll find those I publish each week on wikibon.com and siliconangle.com. Or if you want to get ahold of me you can email me directly at David.Vellante@siliconangle.com or dm me DVellante or comment on our LinkedIn post. I want you to check out etr.ai. They've got the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. We'll see you next week at Supercloud two or next time on breaking analysis. (light music)
SUMMARY :
with Dave Vellante of the things that we're So if you know I want to get data and on the horizontal
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Bob Muglia | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
David Flynn | PERSON | 0.99+ |
Veronica | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
Nick Taylor | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Veronica Durgin | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Rob Ho | PERSON | 0.99+ |
Warner Media | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Veronika Durgin | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Ionis Pharmaceutical | ORGANIZATION | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
David Flore | PERSON | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Bob | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
21 sessions | QUANTITY | 0.99+ |
Darren Bramberm | PERSON | 0.99+ |
33 guests | QUANTITY | 0.99+ |
Nir Zuk | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Harveer Singh | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Sanjeev Mohan | PERSON | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Cohesity | ORGANIZATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
200 locations | QUANTITY | 0.99+ |
August | DATE | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
Data Mesh | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
David.Vellante@siliconangle.com | OTHER | 0.99+ |
next week | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first point | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.98+ |
Silicon Angle | ORGANIZATION | 0.98+ |
ETR | ORGANIZATION | 0.98+ |
Eric Bradley | PERSON | 0.98+ |
two | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Sachs | ORGANIZATION | 0.98+ |
SAKS | ORGANIZATION | 0.98+ |
Supercloud | EVENT | 0.98+ |
last August | DATE | 0.98+ |
each week | QUANTITY | 0.98+ |
Why Should Customers Care About SuperCloud
Hello and welcome back to Supercloud 2 where we examine the intersection of cloud and data in the 2020s. My name is Dave Vellante. Our Supercloud panel, our power panel is back. Maribel Lopez is the founder and principal analyst at Lopez Research. Sanjeev Mohan is former Gartner analyst and principal at Sanjeev Mohan. And Keith Townsend is the CTO advisor. Folks, welcome back and thanks for your participation today. Good to see you. >> Okay, great. >> Great to see you. >> Thanks. Let me start, Maribel, with you. Bob Muglia, we had a conversation as part of Supercloud the other day. And he said, "Dave, I like the work, you got to simplify this a little bit." So he said, quote, "A Supercloud is a platform." He said, "Think of it as a platform that provides programmatically consistent services hosted on heterogeneous cloud providers." And then Nelu Mihai said, "Well, wait a minute. This is just going to create more stove pipes. We need more standards in an architecture," which is kind of what Berkeley Sky Computing initiative is all about. So there's a sort of a debate going on. Is supercloud an architecture, a platform? Or maybe it's just another buzzword. Maribel, do you have a thought on this? >> Well, the easy answer would be to say it's just a buzzword. And then we could just kill the conversation and be done with it. But I think the term, it's more than that, right? The term actually isn't new. You can go back to at least 2016 and find references to supercloud in Cornell University or assist in other documents. So, having said this, I think we've been talking about Supercloud for a while, so I assume it's more than just a fancy buzzword. But I think it really speaks to that undeniable trend of moving towards an abstraction layer to deal with the chaos of what we consider managing multiple public and private clouds today, right? So one definition of the technology platform speaks to a set of services that allows companies to build and run that technology smoothly without worrying about the underlying infrastructure, which really gets back to something that Bob said. And some of the question is where that lives. And you could call that an abstraction layer. You could call it cross-cloud services, hybrid cloud management. So I see momentum there, like legitimate momentum with enterprise IT buyers that are trying to deal with the fact that they have multiple clouds now. So where I think we're moving is trying to define what are the specific attributes and frameworks of that that would make it so that it could be consistent across clouds. What is that layer? And maybe that's what the supercloud is. But one of the things I struggle with with supercloud is. What are we really trying to do here? Are we trying to create differentiated services in the supercloud layer? Is a supercloud just another variant of what AWS, GCP, or others do? You spoken to Walmart about its cloud native platform, and that's an example of somebody deciding to do it themselves because they need to deal with this today and not wait for some big standards thing to happen. So whatever it is, I do think it's something. I think we're trying to maybe create an architecture out of it would be a better way of saying it so that it does get to those set of principles, but it also needs to be edge aware. I think whenever we talk about supercloud, we're always talking about like the big centralized cloud. And I think we need to think about all the distributed clouds that we're looking at in edge as well. So that might be one of the ways that supercloud evolves. >> So thank you, Maribel. Keith, Brian Gracely, Gracely's law, things kind of repeat themselves. We've seen it all before. And so what Muglia brought to the forefront is this idea of a platform where the platform provider is really responsible for the architecture. Of course, the drawback is then you get a a bunch of stove pipes architectures. But practically speaking, that's kind of the way the industry has always evolved, right? >> So if we look at this from the practitioner's perspective and we talk about platforms, traditionally vendors have provided the platforms for us, whether it's distribution of lineage managed by or provided by Red Hat, Windows, servers, .NET, databases, Oracle. We think of those as platforms, things that are fundamental we can build on top. Supercloud isn't today that. It is a framework or idea, kind of a visionary goal to get to a point that we can have a platform or a framework. But what we're seeing repeated throughout the industry in customers, whether it's the Walmarts that's kind of supersized the idea of supercloud, or if it's regular end user organizations that are coming out with platform groups, groups who normalize cloud native infrastructure, AWS multi-cloud, VMware resources to look like one thing internally to their developers. We're seeing this trend that there's a desire for a platform that provides the capabilities of a supercloud. >> Thank you for that. Sanjeev, we often use Snowflake as a supercloud example, and now would presumably would be a platform with an architecture that's determined by the vendor. Maybe Databricks is pushing for a more open architecture, maybe more of that nirvana that we were talking about before to solve for supercloud. But regardless, the practitioner discussions show. At least currently, there's not a lot of cross-cloud data sharing. I think it could be a killer use case, egress charges or a barrier. But how do you see it? Will that change? Will we hide that underlying complexity and start sharing data across cloud? Is that something that you think Snowflake or others will be able to achieve? >> So I think we are already starting to see some of that happen. Snowflake is definitely one example that gets cited a lot. But even we don't talk about MongoDB in this like, but you could have a MongoDB cluster, for instance, with nodes sitting in different cloud providers. So there are companies that are starting to do it. The advantage that these companies have, let's take Snowflake as an example, it's a centralized proprietary platform. And they are building the capabilities that are needed for supercloud. So they're building things like you can push down your data transformations. They have the entire security and privacy suite. Data ops, they're adding those capabilities. And if I'm not mistaken, it'll be very soon, we will see them offer data observability. So it's all works great as long as you are in one platform. And if you want resilience, then Snowflake, Supercloud, great example. But if your primary goal is to choose the most cost-effective service irrespective of which cloud it sits in, then things start falling sideways. For example, I may be a very big Snowflake user. And I like Snowflake's resilience. I can move from one cloud to another cloud. Snowflake does it for me. But what if I want to train a very large model? Maybe Databricks is a better platform for that. So how do I do move my workload from one platform to another platform? That tooling does not exist. So we need server hybrid, cross-cloud, data ops platform. Walmart has done a great job, but they built it by themselves. Not every company is Walmart. Like Maribel and Keith said, we need standards, we need reference architectures, we need some sort of a cost control. I was just reading recently, Accenture has been public about their AWS bill. Every time they get the bill is tens of millions of lines, tens of millions 'cause there are over thousand teams using AWS. If we have not been able to corral a usage of a single cloud, now we're talking about supercloud, we've got multiple clouds, and hybrid, on-prem, and edge. So till we've got some cross-platform tooling in place, I think this will still take quite some time for it to take shape. >> It's interesting. Maribel, Walmart would tell you that their on-prem infrastructure is cheaper to run than the stuff in the cloud. but at the same time, they want the flexibility and the resiliency of their three-legged stool model. So the point as Sanjeev was making about hybrid. It's an interesting balance, isn't it, between getting your lowest cost and at the same time having best of breed and scale? >> It's basically what you're trying to optimize for, as you said, right? And by the way, to the earlier point, not everybody is at Walmart's scale, so it's not actually cheaper for everybody to have the purchasing power to make the cloud cheaper to have it on-prem. But I think what you see almost every company, large or small, moving towards is this concept of like, where do I find the agility? And is the agility in building the infrastructure for me? And typically, the thing that gives you outside advantage as an organization is not how you constructed your cloud computing infrastructure. It might be how you structured your data analytics as an example, which cloud is related to that. But how do you marry those two things? And getting back to sort of Sanjeev's point. We're in a real struggle now where one hand we want to have best of breed services and on the other hand we want it to be really easy to manage, secure, do data governance. And those two things are really at odds with each other right now. So if you want all the knobs and switches of a service like geospatial analytics and big query, you're going to have to use Google tools, right? Whereas if you want visibility across all the clouds for your application of state and understand the security and governance of that, you're kind of looking for something that's more cross-cloud tooling at that point. But whenever you talk to somebody about cross-cloud tooling, they look at you like that's not really possible. So it's a very interesting time in the market. Now, we're kind of layering this concept of supercloud on it. And some people think supercloud's about basically multi-cloud tooling, and some people think it's about a whole new architectural stack. So we're just not there yet. But it's not all about cost. I mean, cloud has not been about cost for a very, very long time. Cloud has been about how do you really make the most of your data. And this gets back to cross-cloud services like Snowflake. Why did they even exist? They existed because we had data everywhere, but we need to treat data as a unified object so that we can analyze it and get insight from it. And so that's where some of the benefit of these cross-cloud services are moving today. Still a long way to go, though, Dave. >> Keith, I reached out to my friends at ETR given the macro headwinds, And you're right, Maribel, cloud hasn't really been about just about cost savings. But I reached out to the ETR, guys, what's your data show in terms of how customers are dealing with the economic headwinds? And they said, by far, their number one strategy to cut cost is consolidating redundant vendors. And a distant second, but still notable was optimizing cloud costs. Maybe using reserve instances, or using more volume buying. Nowhere in there. And I asked them to, "Could you go look and see if you can find it?" Do we see repatriation? And you hear this a lot. You hear people whispering as analysts, "You better look into that repatriation trend." It's pretty big. You can't find it. But some of the Walmarts in the world, maybe even not repatriating, but they maybe have better cost structure on-prem. Keith, what are you seeing from the practitioners that you talk to in terms of how they're dealing with these headwinds? >> Yeah, I just got into a conversation about this just this morning with (indistinct) who is an analyst over at GigaHome. He's reading the same headlines. Repatriation is happening at large scale. I think this is kind of, we have these quiet terms now. We have quiet quitting, we have quiet hiring. I think we have quiet repatriation. Most people haven't done away with their data centers. They're still there. Whether they're completely on-premises data centers, and they own assets, or they're partnerships with QTX, Equinix, et cetera, they have these private cloud resources. What I'm seeing practically is a rebalancing of workloads. Do I really need to pay AWS for this instance of SAP that's on 24 hours a day versus just having it on-prem, moving it back to my data center? I've talked to quite a few customers who were early on to moving their static SAP workloads onto the public cloud, and they simply moved them back. Surprising, I was at VMware Explore. And we can talk about this a little bit later on. But our customers, net new, not a lot that were born in the cloud. And they get to this point where their workloads are static. And they look at something like a Kubernetes, or a OpenShift, or VMware Tanzu. And they ask the question, "Do I need the scalability of cloud?" I might consider being a net new VMware customer to deliver this base capability. So are we seeing repatriation as the number one reason? No, I think internal IT operations are just naturally come to this realization. Hey, I have these resources on premises. The private cloud technologies have moved far along enough that I can just simply move this workload back. I'm not calling it repatriation, I'm calling it rightsizing for the operating model that I have. >> Makes sense. Yeah. >> Go ahead. >> If I missed something, Dave, why we are on this topic of repatriation. I'm actually surprised that we are talking about repatriation as a very big thing. I think repatriation is happening, no doubt, but it's such a small percentage of cloud migration that to me it's a rounding error in my opinion. I think there's a bigger problem. The problem is that people don't know where the cost is. If they knew where the cost was being wasted in the cloud, they could do something about it. But if you don't know, then the easy answer is cloud costs a lot and moving it back to on-premises. I mean, take like Capital One as an example. They got rid of all the data centers. Where are they going to repatriate to? They're all in the cloud at this point. So I think my point is that data observability is one of the places that has seen a lot of traction is because of cost. Data observability, when it first came into existence, it was all about data quality. Then it was all about data pipeline reliability. And now, the number one killer use case is FinOps. >> Maribel, you had a comment? >> Yeah, I'm kind of in violent agreement with both Sanjeev and Keith. So what are we seeing here? So the first thing that we see is that many people wildly overspent in the big public cloud. They had stranded cloud credits, so to speak. The second thing is, some of them still had infrastructure that was useful. So why not use it if you find the right workloads to what Keith was talking about, if they were more static workloads, if it was already there? So there is a balancing that's going on. And then I think fundamentally, from a trend standpoint, these things aren't binary. Everybody, for a while, everything was going to go to the public cloud and then people are like, "Oh, it's kind of expensive." Then they're like, "Oh no, they're going to bring it all on-prem 'cause it's really expensive." And it's like, "Well, that doesn't necessarily get me some of the new features and functionalities I might want for some of my new workloads." So I'm going to put the workloads that have a certain set of characteristics that require cloud in the cloud. And if I have enough capability on-prem and enough IT resources to manage certain things on site, then I'm going to do that there 'cause that's a more cost-effective thing for me to do. It's not binary. That's why we went to hybrid. And then we went to multi just to describe the fact that people added multiple public clouds. And now we're talking about super, right? So I don't look at it as a one-size-fits-all for any of this. >> A a number of practitioners leading up to Supercloud2 have told us that they're solving their cloud complexity by going in monocloud. So they're putting on the blinders. Even though across the organization, there's other groups using other clouds. You're like, "In my group, we use AWS, or my group, we use Azure. And those guys over there, they use Google. We just kind of keep it separate." Are you guys hearing this in your view? Is that risky? Are they missing out on some potential to tap best of breed? What do you guys think about that? >> Everybody thinks they're monocloud. Is anybody really monocloud? It's like a group is monocloud, right? >> Right. >> This genie is out of the bottle. We're not putting the genie back in the bottle. You might think your monocloud and you go like three doors down and figure out the guy or gal is on a fundamentally different cloud, running some analytics workload that you didn't know about. So, to Sanjeev's earlier point, they don't even know where their cloud spend is. So I think the concept of monocloud, how that's actually really realized by practitioners is primary and then secondary sources. So they have a primary cloud that they run most of their stuff on, and that they try to optimize. And we still have forked workloads. Somebody decides, "Okay, this SAP runs really well on this, or these analytics workloads run really well on that cloud." And maybe that's how they parse it. But if you really looked at it, there's very few companies, if you really peaked under the hood and did an analysis that you could find an actual monocloud structure. They just want to pull it back in and make it more manageable. And I respect that. You want to do what you can to try to streamline the complexity of that. >> Yeah, we're- >> Sorry, go ahead, Keith. >> Yeah, we're doing this thing where we review AWS service every day. Just in your inbox, learn about a new AWS service cursory. There's 238 AWS products just on the AWS cloud itself. Some of them are redundant, but you get the idea. So the concept of monocloud, I'm in filing agreement with Maribel on this that, yes, a group might say I want a primary cloud. And that primary cloud may be the AWS. But have you tried the licensed Oracle database on AWS? It is really tempting to license Oracle on Oracle Cloud, Microsoft on Microsoft. And I can't get RDS anywhere but Amazon. So while I'm driven to desire the simplicity, the reality is whether be it M&A, licensing, data sovereignty. I am forced into a multi-cloud management style. But I do agree most people kind of do this one, this primary cloud, secondary cloud. And I guarantee you're going to have a third cloud or a fourth cloud whether you want to or not via shadow IT, latency, technical reasons, et cetera. >> Thank you. Sanjeev, you had a comment? >> Yeah, so I just wanted to mention, as an organization, I'm complete agreement, no organization is monocloud, at least if it's a large organization. Large organizations use all kinds of combinations of cloud providers. But when you talk about a single workload, that's where the program arises. As Keith said, the 238 services in AWS. How in the world am I going to be an expert in AWS, but then say let me bring GCP or Azure into a single workload? And that's where I think we probably will still see monocloud as being predominant because the team has developed its expertise on a particular cloud provider, and they just don't have the time of the day to go learn yet another stack. However, there are some interesting things that are happening. For example, if you look at a multi-cloud example where Oracle and Microsoft Azure have that interconnect, so that's a beautiful thing that they've done because now in the newest iteration, it's literally a few clicks. And then behind the scene, your .NET application and your Oracle database in OCI will be configured, the identities in active directory are federated. And you can just start using a database in one cloud, which is OCI, and an application, your .NET in Azure. So till we see this kind of a solution coming out of the providers, I think it's is unrealistic to expect the end users to be able to figure out multiple clouds. >> Well, I have to share with you. I can't remember if he said this on camera or if it was off camera so I'll hold off. I won't tell you who it is, but this individual was sort of complaining a little bit saying, "With AWS, I can take their best AI tools like SageMaker and I can run them on my Snowflake." He said, "I can't do that in Google. Google forces me to go to BigQuery if I want their excellent AI tools." So he was sort of pushing, kind of tweaking a little bit. Some of the vendor talked that, "Oh yeah, we're so customer-focused." Not to pick on Google, but I mean everybody will say that. And then you say, "If you're so customer-focused, why wouldn't you do a ABC?" So it's going to be interesting to see who leads that integration and how broadly it's applied. But I digress. Keith, at our first supercloud event, that was on August 9th. And it was only a few months after Broadcom announced the VMware acquisition. A lot of people, myself included said, "All right, cuts are coming." Generally, Tanzu is probably going to be under the radar, but it's Supercloud 22 and presumably VMware Explore, the company really... Well, certainly the US touted its Tanzu capabilities. I wasn't at VMware Explore Europe, but I bet you heard similar things. Hawk Tan has been blogging and very vocal about cross-cloud services and multi-cloud, which doesn't happen without Tanzu. So what did you hear, Keith, in Europe? What's your latest thinking on VMware's prospects in cross-cloud services/supercloud? >> So I think our friend and Cube, along host still be even more offended at this statement than he was when I sat in the Cube. This was maybe five years ago. There's no company better suited to help industries or companies, cross-cloud chasm than VMware. That's not a compliment. That's a reality of the industry. This is a very difficult, almost intractable problem. What I heard that VMware Europe were customers serious about this problem, even more so than the US data sovereignty is a real problem in the EU. Try being a company in Switzerland and having the Swiss data solvency issues. And there's no local cloud presence there large enough to accommodate your data needs. They had very serious questions about this. I talked to open source project leaders. Open source project leaders were asking me, why should I use the public cloud to host Kubernetes-based workloads, my projects that are building around Kubernetes, and the CNCF infrastructure? Why should I use AWS, Google, or even Azure to host these projects when that's undifferentiated? I know how to run Kubernetes, so why not run it on-premises? I don't want to deal with the hardware problems. So again, really great questions. And then there was always the specter of the problem, I think, we all had with the acquisition of VMware by Broadcom potentially. 4.5 billion in increased profitability in three years is a unbelievable amount of money when you look at the size of the problem. So a lot of the conversation in Europe was about industry at large. How do we do what regulators are asking us to do in a practical way from a true technology sense? Is VMware cross-cloud great? >> Yeah. So, VMware, obviously, to your point. OpenStack is another way of it. Actually, OpenStack, uptake is still alive and well, especially in those regions where there may not be a public cloud, or there's public policy dictating that. Walmart's using OpenStack. As you know in IT, some things never die. Question for Sanjeev. And it relates to this new breed of data apps. And Bob Muglia and Tristan Handy from DBT Labs who are participating in this program really got us thinking about this. You got data that resides in different clouds, it maybe even on-prem. And the machine polls data from different systems. No humans involved, e-commerce, ERP, et cetera. It creates a plan, outcomes. No human involvement. Today, you're on a CRM system, you're inputting, you're doing forms, you're, you're automating processes. We're talking about a new breed of apps. What are your thoughts on this? Is it real? Is it just way off in the distance? How does machine intelligence fit in? And how does supercloud fit? >> So great point. In fact, the data apps that you're talking about, I call them data products. Data products first came into limelight in the last couple of years when Jamal Duggan started talking about data mesh. I am taking data products out of the data mesh concept because data mesh, whether data mesh happens or not is analogous to data products. Data products, basically, are taking a product management view of bringing data from different sources based on what the consumer needs. We were talking earlier today about maybe it's my vacation rentals, or it may be a retail data product, it may be an investment data product. So it's a pre-packaged extraction of data from different sources. But now I have a product that has a whole lifecycle. I can version it. I have new features that get added. And it's a very business data consumer centric. It uses machine learning. For instance, I may be able to tell whether this data product has stale data. Who is using that data? Based on the usage of the data, I may have a new data products that get allocated. I may even have the ability to take existing data products, mash them up into something that I need. So if I'm going to have that kind of power to create a data product, then having a common substrate underneath, it can be very useful. And that could be supercloud where I am making API calls. I don't care where the ERP, the CRM, the survey data, the pricing engine where they sit. For me, there's a logical abstraction. And then I'm building my data product on top of that. So I see a new breed of data products coming out. To answer your question, how early we are or is this even possible? My prediction is that in 2023, we will start seeing more of data products. And then it'll take maybe two to three years for data products to become mainstream. But it's starting this year. >> A subprime mortgages were a data product, definitely were humans involved. All right, let's talk about some of the supercloud, multi-cloud players and what their future looks like. You can kind of pick your favorites. VMware, Snowflake, Databricks, Red Hat, Cisco, Dell, HP, Hashi, IBM, CloudFlare. There's many others. cohesive rubric. Keith, I wanted to start with CloudFlare because they actually use the term supercloud. and just simplifying what they said. They look at it as taking serverless to the max. You write your code and then you can deploy it in seconds worldwide, of course, across the CloudFlare infrastructure. You don't have to spin up containers, you don't go to provision instances. CloudFlare worries about all that infrastructure. What are your thoughts on CloudFlare this approach and their chances to disrupt the current cloud landscape? >> As Larry Ellison said famously once before, the network is the computer, right? I thought that was Scott McNeley. >> It wasn't Scott McNeley. I knew it was on Oracle Align. >> Oracle owns that now, owns that line. >> By purpose or acquisition. >> They should have just called it cloud. >> Yeah, they should have just called it cloud. >> Easier. >> Get ahead. >> But if you think about the CloudFlare capability, CloudFlare in its own right is becoming a decent sized cloud provider. If you have compute out at the edge, when we talk about edge in the sense of CloudFlare and points of presence, literally across the globe, you have all of this excess computer, what do you do with it? First offering, let's disrupt data in the cloud. We can't start the conversation talking about data. When they say we're going to give you object-oriented or object storage in the cloud without egress charges, that's disruptive. That we can start to think about supercloud capability of having compute EC2 run in AWS, pushing and pulling data from CloudFlare. And now, I've disrupted this roach motel data structure, and that I'm freely giving away bandwidth, basically. Well, the next layer is not that much more difficult. And I think part of CloudFlare's serverless approach or supercloud approaches so that they don't have to commit to a certain type of compute. It is advantageous. It is a feature for me to be able to go to EC2 and pick a memory heavy model, or a compute heavy model, or a network heavy model, CloudFlare is taken away those knobs. and I'm just giving code and allowing that to run. CloudFlare has a massive network. If I can put the code closest using the CloudFlare workers, if I can put that code closest to where the data is at or residing, super compelling observation. The question is, does it scale? I don't get the 238 services. While Server List is great, I have to know what I'm going to build. I don't have a Cognito, or RDS, or all these other services that make AWS, GCP, and Azure appealing from a builder's perspective. So it is a very interesting nascent start. It's great because now they can hide compute. If they don't have the capacity, they can outsource that maybe at a cost to one of the other cloud providers, but kind of hiding the compute behind the surplus architecture is a really unique approach. >> Yeah. And they're dipping their toe in the water. And they've announced an object store and a database platform and more to come. We got to wrap. So I wonder, Sanjeev and Maribel, if you could maybe pick some of your favorites from a competitive standpoint. Sanjeev, I felt like just watching Snowflake, I said, okay, in my opinion, they had the right strategy, which was to run on all the clouds, and then try to create that abstraction layer and data sharing across clouds. Even though, let's face it, most of it might be happening across regions if it's happening, but certainly outside of an individual account. But I felt like just observing them that anybody who's traditional on-prem player moving into the clouds or anybody who's a cloud native, it just makes total sense to write to the various clouds. And to the extent that you can simplify that for users, it seems to be a logical strategy. Maybe as I said before, what multi-cloud should have been. But are there companies that you're watching that you think are ahead in the game , or ones that you think are a good model for the future? >> Yes, Snowflake, definitely. In fact, one of the things we have not touched upon very much, and Keith mentioned a little bit, was data sovereignty. Data residency rules can require that certain data should be written into certain region of a certain cloud. And if my cloud provider can abstract that or my database provider, then that's perfect for me. So right now, I see Snowflake is way ahead of this pack. I would not put MongoDB too far behind. They don't really talk about this thing. They are in a different space, but now they have a lakehouse, and they've got all of these other SQL access and new capabilities that they're announcing. So I think they would be quite good with that. Oracle is always a dark forest. Oracle seems to have revived its Cloud Mojo to some extent. And it's doing some interesting stuff. Databricks is the other one. I have not seen Databricks. They've been very focused on lakehouse, unity, data catalog, and some of those pieces. But they would be the obvious challenger. And if they come into this space of supercloud, then they may bring some open source technologies that others can rely on like Delta Lake as a table format. >> Yeah. One of these infrastructure players, Dell, HPE, Cisco, even IBM. I mean, I would be making my infrastructure as programmable and cloud friendly as possible. That seems like table stakes. But Maribel, any companies that stand out to you that we should be paying attention to? >> Well, we already mentioned a bunch of them, so maybe I'll go a slightly different route. I'm watching two companies pretty closely to see what kind of traction they get in their established companies. One we already talked about, which is VMware. And the thing that's interesting about VMware is they're everywhere. And they also have the benefit of having a foot in both camps. If you want to do it the old way, the way you've always done it with VMware, they got all that going on. If you want to try to do a more cross-cloud, multi-cloud native style thing, they're really trying to build tools for that. So I think they have really good access to buyers. And that's one of the reasons why I'm interested in them to see how they progress. The other thing, I think, could be a sleeping horse oddly enough is Google Cloud. They've spent a lot of work and time on Anthos. They really need to create a certain set of differentiators. Well, it's not necessarily in their best interest to be the best multi-cloud player. If they decide that they want to differentiate on a different layer of the stack, let's say they want to be like the person that is really transformative, they talk about transformation cloud with analytics workloads, then maybe they do spend a good deal of time trying to help people abstract all of the other underlying infrastructure and make sure that they get the sexiest, most meaningful workloads into their cloud. So those are two people that you might not have expected me to go with, but I think it's interesting to see not just on the things that might be considered, either startups or more established independent companies, but how some of the traditional providers are trying to reinvent themselves as well. >> I'm glad you brought that up because if you think about what Google's done with Kubernetes. I mean, would Google even be relevant in the cloud without Kubernetes? I could argue both sides of that. But it was quite a gift to the industry. And there's a motivation there to do something unique and different from maybe the other cloud providers. And I'd throw in Red Hat as well. They're obviously a key player and Kubernetes. And Hashi Corp seems to be becoming the standard for application deployment, and terraform, or cross-clouds, and there are many, many others. I know we're leaving lots out, but we're out of time. Folks, I got to thank you so much for your insights and your participation in Supercloud2. Really appreciate it. >> Thank you. >> Thank you. >> Thank you. >> This is Dave Vellante for John Furrier and the entire Cube community. Keep it right there for more content from Supercloud2.
SUMMARY :
And Keith Townsend is the CTO advisor. And he said, "Dave, I like the work, So that might be one of the that's kind of the way the that we can have a Is that something that you think Snowflake that are starting to do it. and the resiliency of their and on the other hand we want it But I reached out to the ETR, guys, And they get to this point Yeah. that to me it's a rounding So the first thing that we see is to Supercloud2 have told us Is anybody really monocloud? and that they try to optimize. And that primary cloud may be the AWS. Sanjeev, you had a comment? of a solution coming out of the providers, So it's going to be interesting So a lot of the conversation And it relates to this So if I'm going to have that kind of power and their chances to disrupt the network is the computer, right? I knew it was on Oracle Align. Oracle owns that now, Yeah, they should have so that they don't have to commit And to the extent that you And if my cloud provider can abstract that that stand out to you And that's one of the reasons Folks, I got to thank you and the entire Cube community.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Keith | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jamal Duggan | PERSON | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Maribel | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Europe | LOCATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
Larry Ellison | PERSON | 0.99+ |
Brian Gracely | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
HP | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Equinix | ORGANIZATION | 0.99+ |
QTX | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Maribel Lopez | PERSON | 0.99+ |
August 9th | DATE | 0.99+ |
Dave | PERSON | 0.99+ |
Gracely | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Walmarts | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Sanjeev | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Hashi | ORGANIZATION | 0.99+ |
GigaHome | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
Hawk Tan | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
two companies | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
Broadcom | ORGANIZATION | 0.99+ |
Switzerland | LOCATION | 0.99+ |
Snowflake | TITLE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
238 services | QUANTITY | 0.99+ |
two people | QUANTITY | 0.99+ |
2016 | DATE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
tens of millions | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
fourth cloud | QUANTITY | 0.99+ |
Bob Muglia, George Gilbert & Tristan Handy | How Supercloud will Support a new Class of Data Apps
(upbeat music) >> Hello, everybody. This is Dave Vellante. Welcome back to Supercloud2, where we're exploring the intersection of data analytics and the future of cloud. In this segment, we're going to look at how the Supercloud will support a new class of applications, not just work that runs on multiple clouds, but rather a new breed of apps that can orchestrate things in the real world. Think Uber for many types of businesses. These applications, they're not about codifying forms or business processes. They're about orchestrating people, places, and things in a business ecosystem. And I'm pleased to welcome my colleague and friend, George Gilbert, former Gartner Analyst, Wiki Bond market analyst, former equities analyst as my co-host. And we're thrilled to have Tristan Handy, who's the founder and CEO of DBT Labs and Bob Muglia, who's the former President of Microsoft's Enterprise business and former CEO of Snowflake. Welcome all, gentlemen. Thank you for coming on the program. >> Good to be here. >> Thanks for having us. >> Hey, look, I'm going to start actually with the SuperCloud because both Tristan and Bob, you've read the definition. Thank you for doing that. And Bob, you have some really good input, some thoughts on maybe some of the drawbacks and how we can advance this. So what are your thoughts in reading that definition around SuperCloud? >> Well, I thought first of all that you did a very good job of laying out all of the characteristics of it and helping to define it overall. But I do think it can be tightened a bit, and I think it's helpful to do it in as short a way as possible. And so in the last day I've spent a little time thinking about how to take it and write a crisp definition. And here's my go at it. This is one day old, so gimme a break if it's going to change. And of course we have to follow the industry, and so that, and whatever the industry decides, but let's give this a try. So in the way I think you're defining it, what I would say is a SuperCloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers. >> Boom. Nice. Okay, great. I'm going to go back and read the script on that one and tighten that up a bit. Thank you for spending the time thinking about that. Tristan, would you add anything to that or what are your thoughts on the whole SuperCloud concept? >> So as I read through this, I fully realize that we need a word for this thing because I have experienced the inability to talk about it as well. But for many of us who have been living in the Confluence, Snowflake, you know, this world of like new infrastructure, this seems fairly uncontroversial. Like I read through this, and I'm just like, yeah, this is like the world I've been living in for years now. And I noticed that you called out Snowflake for being an example of this, but I think that there are like many folks, myself included, for whom this world like fully exists today. >> Yeah, I think that's a fair, I dunno if it's criticism, but people observe, well, what's the big deal here? It's just kind of what we're living in today. It reminds me of, you know, Tim Burns Lee saying, well, this is what the internet was supposed to be. It was supposed to be Web 2.0, so maybe this is what multi-cloud was supposed to be. Let's turn our attention to apps. Bob first and then go to Tristan. Bob, what are data apps to you? When people talk about data products, is that what they mean? Are we talking about something more, different? What are data apps to you? >> Well, to understand data apps, it's useful to contrast them to something, and I just use the simple term people apps. I know that's a little bit awkward, but it's clear. And almost everything we work with, almost every application that we're familiar with, be it email or Salesforce or any consumer app, those are applications that are targeted at responding to people. You know, in contrast, a data application reacts to changes in data and uses some set of analytic services to autonomously take action. So where applications that we're familiar with respond to people, data apps respond to changes in data. And they both do something, but they do it for different reasons. >> Got it. You know, George, you and I were talking about, you know, it comes back to SuperCloud, broad definition, narrow definition. Tristan, how do you see it? Do you see it the same way? Do you have a different take on data apps? >> Oh, geez. This is like a conversation that I don't know has an end. It's like been, I write a substack, and there's like this little community of people who all write substack. We argue with each other about these kinds of things. Like, you know, as many different takes on this question as you can find, but the way that I think about it is that data products are atomic units of functionality that are fundamentally data driven in nature. So a data product can be as simple as an interactive dashboard that is like actually had design thinking put into it and serves a particular user group and has like actually gone through kind of a product development life cycle. And then a data app or data application is a kind of cohesive end-to-end experience that often encompasses like many different data products. So from my perspective there, this is very, very related to the way that these things are produced, the kinds of experiences that they're provided, that like data innovates every product that we've been building in, you know, software engineering for, you know, as long as there have been computers. >> You know, Jamak Dagani oftentimes uses the, you know, she doesn't name Spotify, but I think it's Spotify as that kind of example she uses. But I wonder if we can maybe try to take some examples. If you take, like George, if you take a CRM system today, you're inputting leads, you got opportunities, it's driven by humans, they're really inputting the data, and then you got this system that kind of orchestrates the business process, like runs a forecast. But in this data driven future, are we talking about the app itself pulling data in and automatically looking at data from the transaction systems, the call center, the supply chain and then actually building a plan? George, is that how you see it? >> I go back to the example of Uber, may not be the most sophisticated data app that we build now, but it was like one of the first where you do have users interacting with their devices as riders trying to call a car or driver. But the app then looks at the location of all the drivers in proximity, and it matches a driver to a rider. It calculates an ETA to the rider. It calculates an ETA then to the destination, and it calculates a price. Those are all activities that are done sort of autonomously that don't require a human to type something into a form. The application is using changes in data to calculate an analytic product and then to operationalize that, to assign the driver to, you know, calculate a price. Those are, that's an example of what I would think of as a data app. And my question then I guess for Tristan is if we don't have all the pieces in place for sort of mainstream companies to build those sorts of apps easily yet, like how would we get started? What's the role of a semantic layer in making that easier for mainstream companies to build? And how do we get started, you know, say with metrics? How does that, how does that take us down that path? >> So what we've seen in the past, I dunno, decade or so, is that one of the most successful business models in infrastructure is taking hard things and rolling 'em up behind APIs. You take messaging, you take payments, and you all of a sudden increase the capability of kind of your median application developer. And you say, you know, previously you were spending all your time being focused on how do you accept credit cards, how do you send SMS payments, and now you can focus on your business logic, and just create the thing. One of, interestingly, one of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse, inside of your data lake. These are core concepts that, you know, you would imagine that the business would be able to create applications around very easily, but in fact that's not the case. It's actually quite challenging to, and involves a lot of data engineering pipeline and all this work to make these available. And so if you really want to make it very easy to create some of these data experiences for users, you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes, and they don't need to. >> So how rich can that API layer grow if you start with metric definitions that you've defined? And DBT has, you know, the metric, the dimensions, the time grain, things like that, that's a well scoped sort of API that people can work within. How much can you extend that to say non-calculated business rules or governance information like data reliability rules, things like that, or even, you know, features for an AIML feature store. In other words, it starts, you started pragmatically, but how far can you grow? >> Bob is waiting with bated breath to answer this question. I'm, just really quickly, I think that we as a company and DBT as a product tend to be very pragmatic. We try to release the simplest possible version of a thing, get it out there, and see if people use it. But the idea that, the concept of a metric is really just a first landing pad. The really, there is a physical manifestation of the data and then there's a logical manifestation of the data. And what we're trying to do here is make it very easy to access the logical manifestation of the data, and metric is a way to look at that. Maybe an entity, a customer, a user is another way to look at that. And I'm sure that there will be more kind of logical structures as well. >> So, Bob, chime in on this. You know, what's your thoughts on the right architecture behind this, and how do we get there? >> Yeah, well first of all, I think one of the ways we get there is by what companies like DBT Labs and Tristan is doing, which is incrementally taking and building on the modern data stack and extending that to add a semantic layer that describes the data. Now the way I tend to think about this is a fairly major shift in the way we think about writing applications, which is today a code first approach to moving to a world that is model driven. And I think that's what the big change will be is that where today we think about data, we think about writing code, and we use that to produce APIs as Tristan said, which encapsulates those things together in some form of services that are useful for organizations. And that idea of that encapsulation is never going to go away. It's very, that concept of an API is incredibly useful and will exist well into the future. But what I think will happen is that in the next 10 years, we're going to move to a world where organizations are defining models first of their data, but then ultimately of their business process, their entire business process. Now the concept of a model driven world is a very old concept. I mean, I first started thinking about this and playing around with some early model driven tools, probably before Tristan was born in the early 1980s. And those tools didn't work because the semantics associated with executing the model were too complex to be written in anything other than a procedural language. We're now reaching a time where that is changing, and you see it everywhere. You see it first of all in the world of machine learning and machine learning models, which are taking over more and more of what applications are doing. And I think that's an incredibly important step. And learned models are an important part of what people will do. But if you look at the world today, I will claim that we've always been modeling. Modeling has existed in computers since there have been integrated circuits and any form of computers. But what we do is what I would call implicit modeling, which means that it's the model is written on a whiteboard. It's in a bunch of Slack messages. It's on a set of napkins in conversations that happen and during Zoom. That's where the model gets defined today. It's implicit. There is one in the system. It is hard coded inside application logic that exists across many applications with humans being the glue that connects those models together. And really there is no central place you can go to understand the full attributes of the business, all of the business rules, all of the business logic, the business data. That's going to change in the next 10 years. And we'll start to have a world where we can define models about what we're doing. Now in the short run, the most important models to build are data models and to describe all of the attributes of the data and their relationships. And that's work that DBT Labs is doing. A number of other companies are doing that. We're taking steps along that way with catalogs. People are trying to build more complete ontologies associated with that. The underlying infrastructure is still super, super nascent. But what I think we'll see is this infrastructure that exists today that's building learned models in the form of machine learning programs. You know, some of these incredible machine learning programs in foundation models like GPT and DALL-E and all of the things that are happening in these global scale models, but also all of that needs to get applied to the domains that are appropriate for a business. And I think we'll see the infrastructure developing for that, that can take this concept of learned models and put it together with more explicitly defined models. And this is where the concept of knowledge graphs come in and then the technology that underlies that to actually implement and execute that, which I believe are relational knowledge graphs. >> Oh, oh wow. There's a lot to unpack there. So let me ask the Colombo question, Tristan, we've been making fun of your youth. We're just, we're just jealous. Colombo, I'll explain it offline maybe. >> I watch Colombo. >> Okay. All right, good. So but today if you think about the application stack and the data stack, which is largely an analytics pipeline. They're separate. Do they, those worlds, do they have to come together in order to achieve Bob's vision? When I talk to practitioners about that, they're like, well, I don't want to complexify the application stack cause the data stack today is so, you know, hard to manage. But but do those worlds have to come together? And you know, through that model, I guess abstraction or translation that Bob was just describing, how do you guys think about that? Who wants to take that? >> I think it's inevitable that data and AI are going to become closer together? I think that the infrastructure there has been moving in that direction for a long time. Whether you want to use the Lakehouse portmanteau or not. There's also, there's a next generation of data tech that is still in the like early stage of being developed. There's a company that I love that is essentially Cross Cloud Lambda, and it's just a wonderful abstraction for computing. So I think that, you know, people have been predicting that these worlds are going to come together for awhile. A16Z wrote a great post on this back in I think 2020, predicting this, and I've been predicting this since since 2020. But what's not clear is the timeline, but I think that this is still just as inevitable as it's been. >> Who's that that does Cross Cloud? >> Let me follow up on. >> Who's that, Tristan, that does Cross Cloud Lambda? Can you name names? >> Oh, they're called Modal Labs. >> Modal Labs, yeah, of course. All right, go ahead, George. >> Let me ask about this vision of trying to put the semantics or the code that represents the business with the data. It gets us to a world that's sort of more data centric, where data's not locked inside or behind the APIs of different applications so that we don't have silos. But at the same time, Bob, I've heard you talk about building the semantics gradually on top of, into a knowledge graph that maybe grows out of a data catalog. And the vision of getting to that point, essentially the enterprise's metadata and then the semantics you're going to add onto it are really stored in something that's separate from the underlying operational and analytic data. So at the same time then why couldn't we gradually build semantics beyond the metric definitions that DBT has today? In other words, you build more and more of the semantics in some layer that DBT defines and that sits above the data management layer, but any requests for data have to go through the DBT layer. Is that a workable alternative? Or where, what type of limitations would you face? >> Well, I think that it is the way the world will evolve is to start with the modern data stack and, you know, which is operational applications going through a data pipeline into some form of data lake, data warehouse, the Lakehouse, whatever you want to call it. And then, you know, this wide variety of analytics services that are built together. To the point that Tristan made about machine learning and data coming together, you see that in every major data cloud provider. Snowflake certainly now supports Python and Java. Databricks is of course building their data warehouse. Certainly Google, Microsoft and Amazon are doing very, very similar things in terms of building complete solutions that bring together an analytics stack that typically supports languages like Python together with the data stack and the data warehouse. I mean, all of those things are going to evolve, and they're not going to go away because that infrastructure is relatively new. It's just being deployed by companies, and it solves the problem of working with petabytes of data if you need to work with petabytes of data, and nothing will do that for a long time. What's missing is a layer that understands and can model the semantics of all of this. And if you need to, if you want to model all, if you want to talk about all the semantics of even data, you need to think about all of the relationships. You need to think about how these things connect together. And unfortunately, there really is no platform today. None of our existing platforms are ultimately sufficient for this. It was interesting, I was just talking to a customer yesterday, you know, a large financial organization that is building out these semantic layers. They're further along than many companies are. And you know, I asked what they're building it on, and you know, it's not surprising they're using a, they're using combinations of some form of search together with, you know, textual based search together with a document oriented database. In this case it was Cosmos. And that really is kind of the state of the art right now. And yet those products were not built for this. They don't really, they can't manage the complicated relationships that are required. They can't issue the queries that are required. And so a new generation of database needs to be developed. And fortunately, you know, that is happening. The world is developing a new set of relational algorithms that will be able to work with hundreds of different relations. If you look at a SQL database like Snowflake or a big query, you know, you get tens of different joins coming together, and that query is going to take a really long time. Well, fortunately, technology is evolving, and it's possible with new join algorithms, worst case, optimal join algorithms they're called, where you can join hundreds of different relations together and run semantic queries that you simply couldn't run. Now that technology is nascent, but it's really important, and I think that will be a requirement to have this semantically reach its full potential. In the meantime, Tristan can do a lot of great things by building up on what he's got today and solve some problems that are very real. But in the long run I think we'll see a new set of databases to support these models. >> So Tristan, you got to respond to that, right? You got to, so take the example of Snowflake. We know it doesn't deal well with complex joins, but they're, they've got big aspirations. They're building an ecosystem to really solve some of these problems. Tristan, you guys are part of that ecosystem, and others, but please, your thoughts on what Bob just shared. >> Bob, I'm curious if, I would have no idea what you were talking about except that you introduced me to somebody who gave me a demo of a thing and do you not want to go there right now? >> No, I can talk about it. I mean, we can talk about it. Look, the company I've been working with is Relational AI, and they're doing this work to actually first of all work across the industry with academics and research, you know, across many, many different, over 20 different research institutions across the world to develop this new set of algorithms. They're all fully published, just like SQL, the underlying algorithms that are used by SQL databases are. If you look today, every single SQL database uses a similar set of relational algorithms underneath that. And those algorithms actually go back to system R and what IBM developed in the 1970s. We're just, there's an opportunity for us to build something new that allows you to take, for example, instead of taking data and grouping it together in tables, treat all data as individual relations, you know, a key and a set of values and then be able to perform purely relational operations on it. If you go back to what, to Codd, and what he wrote, he defined two things. He defined a relational calculus and relational algebra. And essentially SQL is a query language that is translated by the query processor into relational algebra. But however, the calculus of SQL is not even close to the full semantics of the relational mathematics. And it's possible to have systems that can do everything and that can store all of the attributes of the data model or ultimately the business model in a form that is much more natural to work with. >> So here's like my short answer to this. I think that we're dealing in different time scales. I think that there is actually a tremendous amount of work to do in the semantic layer using the kind of technology that we have on the ground today. And I think that there's, I don't know, let's say five years of like really solid work that there is to do for the entire industry, if not more. But the wonderful thing about DBT is that it's independent of what the compute substrate is beneath it. And so if we develop new platforms, new capabilities to describe semantic models in more fine grain detail, more procedural, then we're going to support that too. And so I'm excited about all of it. >> Yeah, so interpreting that short answer, you're basically saying, cause Bob was just kind of pointing to you as incremental, but you're saying, yeah, okay, we're applying it for incremental use cases today, but we can accommodate a much broader set of examples in the future. Is that correct, Tristan? >> I think you're using the word incremental as if it's not good, but I think that incremental is great. We have always been about applying incremental improvement on top of what exists today, but allowing practitioners to like use different workflows to actually make use of that technology. So yeah, yeah, we are a very incremental company. We're going to continue being that way. >> Well, I think Bob was using incremental as a pejorative. I mean, I, but to your point, a lot. >> No, I don't think so. I want to stop that. No, I don't think it's pejorative at all. I think incremental, incremental is usually the most successful path. >> Yes, of course. >> In my experience. >> We agree, we agree on that. >> Having tried many, many moonshot things in my Microsoft days, I can tell you that being incremental is a good thing. And I'm a very big believer that that's the way the world's going to go. I just think that there is a need for us to build something new and that ultimately that will be the solution. Now you can argue whether it's two years, three years, five years, or 10 years, but I'd be shocked if it didn't happen in 10 years. >> Yeah, so we all agree that incremental is less disruptive. Boom, but Tristan, you're, I think I'm inferring that you believe you have the architecture to accommodate Bob's vision, and then Bob, and I'm inferring from Bob's comments that maybe you don't think that's the case, but please. >> No, no, no. I think that, so Bob, let me put words into your mouth and you tell me if you disagree, DBT is completely useless in a world where a large scale cloud data warehouse doesn't exist. We were not able to bring the power of Python to our users until these platforms started supporting Python. Like DBT is a layer on top of large scale computing platforms. And to the extent that those platforms extend their functionality to bring more capabilities, we will also service those capabilities. >> Let me try and bridge the two. >> Yeah, yeah, so Bob, Bob, Bob, do you concur with what Tristan just said? >> Absolutely, I mean there's nothing to argue with in what Tristan just said. >> I wanted. >> And it's what he's doing. It'll continue to, I believe he'll continue to do it, and I think it's a very good thing for the industry. You know, I'm just simply saying that on top of that, I would like to provide Tristan and all of those who are following similar paths to him with a new type of database that can actually solve these problems in a much more architected way. And when I talk about Cosmos with something like Mongo or Cosmos together with Elastic, you're using Elastic as the join engine, okay. That's the purpose of it. It becomes a poor man's join engine. And I kind of go, I know there's a better answer than that. I know there is, but that's kind of where we are state of the art right now. >> George, we got to wrap it. So give us the last word here. Go ahead, George. >> Okay, I just, I think there's a way to tie together what Tristan and Bob are both talking about, and I want them to validate it, which is for five years we're going to be adding or some number of years more and more semantics to the operational and analytic data that we have, starting with metric definitions. My question is for Bob, as DBT accumulates more and more of those semantics for different enterprises, can that layer not run on top of a relational knowledge graph? And what would we lose by not having, by having the knowledge graph store sort of the joins, all the complex relationships among the data, but having the semantics in the DBT layer? >> Well, I think this, okay, I think first of all that DBT will be an environment where many of these semantics are defined. The question we're asking is how are they stored and how are they processed? And what I predict will happen is that over time, as companies like DBT begin to build more and more richness into their semantic layer, they will begin to experience challenges that customers want to run queries, they want to ask questions, they want to use this for things where the underlying infrastructure becomes an obstacle. I mean, this has happened in always in the history, right? I mean, you see major advances in computer science when the data model changes. And I think we're on the verge of a very significant change in the way data is stored and structured, or at least metadata is stored and structured. Again, I'm not saying that anytime in the next 10 years, SQL is going to go away. In fact, more SQL will be written in the future than has been written in the past. And those platforms will mature to become the engines, the slicer dicers of data. I mean that's what they are today. They're incredibly powerful at working with large amounts of data, and that infrastructure is maturing very rapidly. What is not maturing is the infrastructure to handle all of the metadata and the semantics that that requires. And that's where I say knowledge graphs are what I believe will be the solution to that. >> But Tristan, bring us home here. It sounds like, let me put pause at this, is that whatever happens in the future, we're going to leverage the vast system that has become cloud that we're talking about a supercloud, sort of where data lives irrespective of physical location. We're going to have to tap that data. It's not necessarily going to be in one place, but give us your final thoughts, please. >> 100% agree. I think that the data is going to live everywhere. It is the responsibility for both the metadata systems and the data processing engines themselves to make sure that we can join data across cloud providers, that we can join data across different physical regions and that we as practitioners are going to kind of start forgetting about details like that. And we're going to start thinking more about how we want to arrange our teams, how does the tooling that we use support our team structures? And that's when data mesh I think really starts to get very, very critical as a concept. >> Guys, great conversation. It was really awesome to have you. I can't thank you enough for spending time with us. Really appreciate it. >> Thanks a lot. >> All right. This is Dave Vellante for George Gilbert, John Furrier, and the entire Cube community. Keep it right there for more content. You're watching SuperCloud2. (upbeat music)
SUMMARY :
and the future of cloud. And Bob, you have some really and I think it's helpful to do it I'm going to go back and And I noticed that you is that what they mean? that we're familiar with, you know, it comes back to SuperCloud, is that data products are George, is that how you see it? that don't require a human to is that one of the most And DBT has, you know, the And I'm sure that there will be more on the right architecture is that in the next 10 years, So let me ask the Colombo and the data stack, which is that is still in the like Modal Labs, yeah, of course. and that sits above the and that query is going to So Tristan, you got to and that can store all of the that there is to do for the pointing to you as incremental, but allowing practitioners to I mean, I, but to your point, a lot. the most successful path. that that's the way the that you believe you have the architecture and you tell me if you disagree, there's nothing to argue with And I kind of go, I know there's George, we got to wrap it. and more of those semantics and the semantics that that requires. is that whatever happens in the future, and that we as practitioners I can't thank you enough John Furrier, and the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tristan | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
John | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Steve Mullaney | PERSON | 0.99+ |
Katie | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Charles | PERSON | 0.99+ |
Mike Dooley | PERSON | 0.99+ |
Peter Burris | PERSON | 0.99+ |
Chris | PERSON | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Maribel Lopez | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Mike Wolf | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Merim | PERSON | 0.99+ |
Adrian Cockcroft | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Brian | PERSON | 0.99+ |
Brian Rossi | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Chris Wegmann | PERSON | 0.99+ |
Whole Foods | ORGANIZATION | 0.99+ |
Eric | PERSON | 0.99+ |
Chris Hoff | PERSON | 0.99+ |
Jamak Dagani | PERSON | 0.99+ |
Jerry Chen | PERSON | 0.99+ |
Caterpillar | ORGANIZATION | 0.99+ |
John Walls | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Josh | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Jerome | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Lori MacVittie | PERSON | 0.99+ |
2007 | DATE | 0.99+ |
Seattle | LOCATION | 0.99+ |
10 | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Peter McKee | PERSON | 0.99+ |
Nutanix | ORGANIZATION | 0.99+ |
Eric Herzog | PERSON | 0.99+ |
India | LOCATION | 0.99+ |
Mike | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tanuja Randery | PERSON | 0.99+ |
Breaking Analysis: Snowflake caught in the storm clouds
>> From the CUBE Studios in Palo Alto in Boston, bringing you data driven insights from the Cube and ETR. This is Breaking Analysis with Dave Vellante. >> A better than expected earnings report in late August got people excited about Snowflake again, but the negative sentiment in the market is weighed heavily on virtually all growth tech stocks and Snowflake is no exception. As we've stressed many times the company's management is on a long term mission to dramatically simplify the way organizations use data. Snowflake is tapping into a multi hundred billion dollar total available market and continues to grow at a rapid pace. In our view, Snowflake is embarking on its third major wave of innovation data apps, while its first and second waves are still bearing significant fruit. Now for short term traders focused on the next 90 or 180 days, that probably doesn't matter. But those taking a longer view are asking, "Should we still be optimistic about the future of this high flyer or is it just another over hyped tech play?" Hello and welcome to this week's Wiki Bond Cube Insights powered by ETR. Snowflake's Quarter just ended. And in this breaking analysis we take a look at the most recent survey data from ETR to see what clues and nuggets we can extract to predict the near term future in the long term outlook for Snowflake which is going to announce its earnings at the end of this month. Okay, so you know the story. If you've been investor in Snowflake this year, it's been painful. We said at IPO, "If you really want to own this stock on day one, just hold your nose and buy it." But like most IPOs we said there will be likely a better entry point in the future, and not surprisingly that's been the case. Snowflake IPOed a price of 120, which you couldn't touch on day one unless you got into a friends and family Delio. And if you did, you're still up 5% or so. So congratulations. But at one point last year you were up well over 200%. That's been the nature of this volatile stock, and I certainly can't help you with the timing of the market. But longer term Snowflake is targeting 10 billion in revenue for fiscal year 2028. A big number. Is it achievable? Is it big enough? Tell you what, let's come back to that. Now shorter term, our expert trader and breaking analysis contributor Chip Simonton said he got out of the stock a while ago after having taken a shot at what turned out to be a bear market rally. He pointed out that the stock had been bouncing around the 150 level for the last few months and broke that to the downside last Friday. So he'd expect 150 is where the stock is going to find resistance on the way back up, but there's no sign of support right now. He said maybe at 120, which was the July low and of course the IPO price that we just talked about. Now, perhaps earnings will be a catalyst, when Snowflake announces on November 30th, but until the mentality toward growth tech changes, nothing's likely to change dramatically according to Simonton. So now that we have that out of the way, let's take a look at the spending data for Snowflake in the ETR survey. Here's a chart that shows the time series breakdown of snowflake's net score going back to the October, 2021 survey. Now at that time, Snowflake's net score stood at a robust 77%. And remember, net score is a measure of spending velocity. It's a proprietary network, and ETR derives it from a quarterly survey of IT buyers and asks the respondents, "Are you adopting the platform new? Are you spending 6% or more? Is you're spending flat? Is you're spending down 6% or worse? Or are you leaving the platform decommissioning?" You subtract the percent of customers that are spending less or churning from those that are spending more and adopting or adopting and you get a net score. And that's expressed as a percentage of customers responding. In this chart we show Snowflake's in out of the total survey which ranges... The total survey ranges between 1,200 and 1,400 each quarter. And the very last column... Oh sorry, very last row, we show the number of Snowflake respondents that are coming in the survey from the Fortune 500 and the Global 2000. Those are two very important Snowflake constituencies. Now what this data tells us is that Snowflake exited 2021 with very strong momentum in a net score of 82%, which is off the charts and it was actually accelerating from the previous survey. Now by April that sentiment had flipped and Snowflake came down to earth with a 68% net score. Still highly elevated relative to its peers, but meaningfully down. Why was that? Because we saw a drop in new ads and an increase in flat spend. Then into the July and most recent October surveys, you saw a significant drop in the percentage of customers that were spending more. Now, notably, the percentage of customers who are contemplating adding the platform is actually staying pretty strong, but it is off a bit this past survey. And combined with a slight uptick in planned churn, net score is now down to 60%. That uptick from 0% and 1% and then 3%, it's still small, but that net score at 60% is still 20 percentage points higher than our highly elevated benchmark of 40% as you recall from listening to earlier breaking analysis. That 40% range is we consider a milestone. Anything above that is actually quite strong. But again, Snowflake is down and coming back to churn, while 3% churn is very low, in previous quarters we've seen Snowflake 0% or 1% decommissions. Now the last thing to note in this chart is the meaningful uptick in survey respondents that are citing, they're using the Snowflake platform. That's up to 212 in the survey. So look, it's hard to imagine that Snowflake doesn't feel the softening in the market like everyone else. Snowflake is guiding for around 60% growth in product revenue against the tough compare from a year ago with a 2% operating margin. So like every company, the reaction of the street is going to come down to how accurate or conservative the guide is from their CFO. Now, earlier this year, Snowflake acquired a company called Streamlit for around $800 million. Streamlit is an open source Python library and it makes it easier to build data apps with machine learning, obviously a huge trend. And like Snowflake, generally its focus is on simplifying the complex, in this case making data science easier to integrate into data apps that business people can use. So we were excited this summer in the July ETR survey to see that they added some nice data and pick on Streamlit, which we're showing here in comparison to Snowflake's core business on the left hand side. That's the data warehousing, the Streamlit pieces on the right hand side. And we show again net score over time from the previous survey for Snowflake's core database and data warehouse offering again on the left as compared to a Streamlit on the right. Snowflake's core product had 194 responses in the October, 22 survey, Streamlit had an end of 73, which is up from 52 in the July survey. So significant uptick of people responding that they're doing business in adopting Streamlit. That was pretty impressive to us. And it's hard to see, but the net scores stayed pretty constant for Streamlit at 51%. It was 52% I think in the previous quarter, well over that magic 40% mark. But when you blend it with Snowflake, it does sort of bring things down a little bit. Now there are two key points here. One is that the acquisition seems to have gained exposure right out of the gate as evidenced by the large number of responses. And two, the spending momentum. Again while it's lower than Snowflake overall, and when you blend it with Snowflake it does pull it down, it's very healthy and steady. Now let's do a little pure comparison with some of our favorite names in this space. This chart shows net score or spending velocity in the Y-axis, an overlap or presence, pervasiveness if you will, in the data set on the X-axis. That red dotted line again is that 40% highly elevated net score that we like to talk about. And that table inserted informs us as to how the companies are plotted, where the dots set up, the net score, the ins. And we're comparing a number of database players, although just a caution, Oracle includes all of Oracle including its apps. But we just put it in there for reference because it is the leader in database. Right off the bat, Snowflake jumps out with a net score of 64%. The 60% from the earlier chart, again included Streamlit. So you can see its core database, data warehouse business actually is higher than the total company average that we showed you before 'cause the Streamlit is blended in. So when you separate it out, Streamlit is right on top of data bricks. Isn't that ironic? Only Snowflake and Databricks in this selection of names are above the 40% level. You see Mongo and Couchbase, they know they're solid and Teradata cloud actually showing pretty well compared to some of the earlier survey results. Now let's isolate on the database data platform sector and see how that shapes up. And for this analysis, same XY dimensions, we've added the big giants, AWS and Microsoft and Google. And notice that those three plus Snowflake are just at or above the 40% line. Snowflake continues to lead by a significant margin in spending momentum and it keeps creeping to the right. That's that end that we talked about earlier. Now here's an interesting tidbit. Snowflake is often asked, and I've asked them myself many times, "How are you faring relative to AWS, Microsoft and Google, these big whales with Redshift and Synapse and Big Query?" And Snowflake has been telling folks that 80% of its business comes from AWS. And when Microsoft heard that, they said, "Whoa, wait a minute, Snowflake, let's partner up." 'Cause Microsoft is smart, and they understand that the market is enormous. And if they could do better with Snowflake, one, they may steal some business from AWS. And two, even if Snowflake is winning against some of the Microsoft database products, if it wins on Azure, Microsoft is going to sell more compute and more storage, more AI tools, more other stuff to these customers. Now AWS is really aggressive from a partnering standpoint with Snowflake. They're openly negotiating, not openly, but they're negotiating better prices. They're realizing that when it comes to data, the cheaper that you make the offering, the more people are going to consume. At scale economies and operating leverage are really powerful things at volume that kick in. Now Microsoft, they're coming along, they obviously get it, but Google is seemingly resistant to that type of go to market partnership. Rather than lean into Snowflake as a great partner Google's field force is kind of fighting fashion. Google itself at Cloud next heavily messaged what they call the open data cloud, which is a direct rip off of Snowflake. So what can we say about Google? They continue to be kind of behind the curve when it comes to go to market. Now just a brief aside on the competitive posture. I've seen Slootman, Frank Slootman, CEO of Snowflake in action with his prior companies and how he depositioned the competition. At Data Domain, he eviscerated a company called Avamar with their, what he called their expensive and slow post process architecture. I think he actually called it garbage, if I recall at one conference I heard him speak at. And that sort of destroyed BMC when he was at ServiceNow, kind of positioning them as the equivalent of the department of motor vehicles. And so it's interesting to hear how Snowflake openly talks about the data platforms of AWS, Microsoft, Google, and data bricks. I'll give you this sort of short bumper sticker. Redshift is just an on-prem database that AWS morphed to the cloud, which by the way is kind of true. They actually did a brilliant job of it, but it's basically a fact. Microsoft Excel, a collection of legacy databases, which also kind of morphed to run in the cloud. And even Big Query, which is considered cloud native by many if not most, is being positioned by Snowflake as originally an on-prem database to support Google's ad business, maybe. And data bricks is for those people smart enough to get it to Berkeley that love complexity. And now Snowflake doesn't, they don't mention Berkeley as far as I know. That's my addition. But you get the point. And the interesting thing about Databricks and Snowflake is a while ago in the cube I said that there was a new workload type emerging around data where you have AWS cloud, Snowflake obviously for the cloud database and Databricks data for the data science and EML, you bring those things together and there's this new workload emerging that's going to be very powerful in the future. And it's interesting to see now the aspirations of all three of these platforms are colliding. That's quite a dynamic, especially when you see both Snowflake and Databricks putting venture money and getting their hooks into the loyalties of the same companies like DBT labs and Calibra. Anyway, Snowflake's posture is that we are the pioneer in cloud native data warehouse, data sharing and now data apps. And our platform is designed for business people that want simplicity. The other guys, yes, they're formidable, but we Snowflake have an architectural lead and of course we run in multiple clouds. So it's pretty strong positioning or depositioning, you have to admit. Now I'm not sure I agree with the big query knockoffs completely. I think that's a bit of a stretch, but snowflake, as we see in the ETR survey data is winning. So in thinking about the longer term future, let's talk about what's different with Snowflake, where it's headed and what the opportunities are for the company. Snowflake put itself on the map by focusing on simplifying data analytics. What's interesting about that is the company's founders are as you probably know from Oracle. And rather than focusing on transactional data, which is Oracle's sweet spot, the stuff they worked on when they were at Oracle, the founder said, "We're going to go somewhere else. We're going to attack the data warehousing problem and the data analytics problem." And they completely re-imagined the database and how it could be applied to solve those challenges and reimagine what was possible if you had virtually unlimited compute and storage capacity. And of course Snowflake became famous for separating the compute from storage and being able to completely shut down compute so you didn't have to pay for it when you're not using it. And the ability to have multiple clusters hit the same data without making endless copies and a consumption/cloud pricing model. And then of course everyone on the planet realized, "Wow, that's a pretty good idea." Every venture capitalist in Silicon Valley has been funding companies to copy that move. And that today has pretty much become mainstream in table stakes. But I would argue that Snowflake not only had the lead, but when you look at how others are approaching this problem, it's not necessarily as clean and as elegant. Some of the startups, the early startups I think get it and maybe had an advantage of starting later, which can be a disadvantage too. But AWS is a good example of what I'm saying here. Is its version of separating compute from storage was an afterthought and it's good, it's... Given what they had it was actually quite clever and customers like it, but it's more of a, "Okay, we're going to tier to storage to lower cost, we're going to sort of dial down the compute not completely, we're not going to shut it off, we're going to minimize the compute required." It's really not true as separation is like for instance Snowflake has. But having said that, we're talking about competitors with lots of resources and cohort offerings. And so I don't want to make this necessarily all about the product, but all things being equal architecture matters, okay? So that's the cloud S-curve, the first one we're showing. Snowflake's still on that S-curve, and in and of itself it's got legs, but it's not what's going to power the company to 10 billion. The next S-curve we denote is the multi-cloud in the middle. And now while 80% of Snowflake's revenue is AWS, Microsoft is ramping up and Google, well, we'll see. But the interesting part of that curve is data sharing, and this idea of data clean rooms. I mean it really should be called the data sharing curve, but I have my reasons for calling it multi-cloud. And this is all about network effects and data gravity, and you're seeing this play out today, especially in industries like financial services and healthcare and government that are highly regulated verticals where folks are super paranoid about compliance. There not going to share data if they're going to get sued for it, if they're going to be in the front page of the Wall Street Journal for some kind of privacy breach. And what Snowflake has done is said, "Put all the data in our cloud." Now, of course now that triggers a lot of people because it's a walled garden, okay? It is. That's the trade off. It's not the Wild West, it's not Windows, it's Mac, it's more controlled. But the idea is that as different parts of the organization or even partners begin to share data that they need, it's got to be governed, it's got to be secure, it's got to be compliant, it's got to be trusted. So Snowflake introduced the idea of, they call these things stable edges. I think that's the term that they use. And they track a metric around stable edges. And so a stable edge, or think of it as a persistent edge is an ongoing relationship between two parties that last for some period of time, more than a month. It's not just a one shot deal, one a done type of, "Oh guys shared it for a day, done." It sent you an FTP, it's done. No, it's got to have trajectory over time. Four weeks or six weeks or some period of time that's meaningful. And that metric is growing. Now I think sort of a different metric that they track. I think around 20% of Snowflake customers are actively sharing data today and then they track the number of those edge relationships that exist. So that's something that's unique. Because again, most data sharing is all about making copies of data. That's great for storage companies, it's bad for auditors, and it's bad for compliance officers. And that trend is just starting out, that middle S-curve, it's going to kind of hit the base of that steep part of the S-curve and it's going to have legs through this decade we think. And then finally the third wave that we show here is what we call super cloud. That's why I called it multi-cloud before, so it could invoke super cloud. The idea that you've built a PAS layer that is purpose built for a specific objective, and in this case it's building data apps that are cloud native, shareable and governed. And is a long-term trend that's going to take some time to develop. I mean, application development platforms can take five to 10 years to mature and gain significant adoption, but this one's unique. This is a critical play for Snowflake. If it's going to compete with the big cloud players, it has to have an app development framework like Snowpark. It has to accommodate new data types like transactional data. That's why it announced this thing called UniStore last June, Snowflake a summit. And the pattern that's forming here is Snowflake is building layer upon layer with its architecture at the core. It's not currently anyway, it's not going out and saying, "All right, we're going to buy a company that's got to another billion dollars in revenue and that's how we're going to get to 10 billion." So it's not buying its way into new markets through revenue. It's actually buying smaller companies that can complement Snowflake and that it can turn into revenue for growth that fit in to the data cloud. Now as to the 10 billion by fiscal year 28, is that achievable? That's the question. Yeah, I think so. Would the momentum resources go to market product and management prowess that Snowflake has? Yes, it's definitely achievable. And one could argue to $10 billion is too conservative. Indeed, Snowflake CFO, Mike Scarpelli will fully admit his forecaster built on existing offerings. He's not including revenue as I understand it from all the new stuff that's in the pipeline because he doesn't know what it's going to look like. He doesn't know what the adoption is going to look like. He doesn't have data on that adoption, not just yet anyway. And now of course things can change quite dramatically. It's possible that is forecast for existing businesses don't materialize or competition picks them off or a company like Databricks actually is able in the longer term replicate the functionality of Snowflake with open source technologies, which would be a very competitive source of innovation. But in our view, there's plenty of room for growth, the market is enormous and the real key is, can and will Snowflake deliver on the promises of simplifying data? Of course we've heard this before from data warehouse, the data mars and data legs and master data management and ETLs and data movers and data copiers and Hadoop and a raft of technologies that have not lived up to expectations. And we've also, by the way, seen some tremendous successes in the software business with the likes of ServiceNow and Salesforce. So will Snowflake be the next great software name and hit that 10 billion magic mark? I think so. Let's reconnect in 2028 and see. Okay, we'll leave it there today. I want to thank Chip Simonton for his input to today's episode. Thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hove is our Editor in Chief over at Silicon Angle. He does some great editing for us. Check it out for all the news. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me to get in touch David.vallante@siliconangle.com. DM me @dvellante or comment on our LinkedIn post. And please do check out etr.ai, they've got the best survey data in the enterprise tech business. This is Dave Vellante for the CUBE Insights, powered by ETR. Thanks for watching, thanks for listening and we'll see you next time on breaking analysis. (upbeat music)
SUMMARY :
insights from the Cube and ETR. And the ability to have multiple
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Mike Scarpelli | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
November 30th | DATE | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Chip Simonton | PERSON | 0.99+ |
October, 2021 | DATE | 0.99+ |
Rob Hove | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
Four weeks | QUANTITY | 0.99+ |
July | DATE | 0.99+ |
six weeks | QUANTITY | 0.99+ |
10 billion | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Slootman | PERSON | 0.99+ |
BMC | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
6% | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
October | DATE | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
40% | QUANTITY | 0.99+ |
1,400 | QUANTITY | 0.99+ |
$10 billion | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
April | DATE | 0.99+ |
3% | QUANTITY | 0.99+ |
77% | QUANTITY | 0.99+ |
64% | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
194 responses | QUANTITY | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
two parties | QUANTITY | 0.99+ |
51% | QUANTITY | 0.99+ |
2% | QUANTITY | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
fiscal year 28 | DATE | 0.99+ |
billion dollars | QUANTITY | 0.99+ |
0% | QUANTITY | 0.99+ |
Avamar | ORGANIZATION | 0.99+ |
52% | QUANTITY | 0.99+ |
Berkeley | LOCATION | 0.99+ |
2028 | DATE | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Data Domain | ORGANIZATION | 0.99+ |
1% | QUANTITY | 0.99+ |
late August | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
fiscal year 2028 | DATE | 0.99+ |