Image Title

Search Results for Standard Bank:

Itumeleng Monale, Standard Bank | IBM DataOps 2020


 

from the cube studios in Palo Alto in Boston connecting with thought leaders all around the world this is a cube conversation hi buddy welcome back to the cube this is Dave Volante and you're watching a special presentation data ops enacted made possible by IBM you know what's what's happening is the innovation engine in the IT economy is really shifted used to be Moore's Law today it's applying machine intelligence and AI to data really scaling that and operationalizing that new knowledge the challenges that is not so easy to operationalize AI and infuse it into the data pipeline but what we're doing in this program is bringing in practitioners who have actually had a great deal of success in doing just that and I'm really excited to have it Kumal a Himalayan Manali is here she's the executive head of data management or personal and business banking at Standard Bank of South Africa the tomb of length thanks so much for coming in the queue thank you for having me Dave you're very welcome and first of all how you holding up with this this bovid situation how are things in Johannesburg um things in Johannesburg are fine we've been on lockdown now I think it's day 33 if I'm not mistaken lost count and but we're really grateful for the swift action of government we we only I mean we have less than 4,000 places in the country and infection rate is is really slow so we've really I think been able to find the curve and we're grateful for being able to be protected in this way so all working from home or learning the new normal and we're all in this together that's great to hear why don't you tell us a little bit about your your role you're a data person we're really going to get into it but here with us you know how you spend your time okay well I head up a date operations function and a data management function which really is the foundational part of the data value chain that then allows other parts of the organization to monetize data and liberate it as as as the use cases apply we monetize it ourselves as well but really we're an enterprise wide organization that ensures that data quality is managed data is governed that we have the effective practices applied to the entire lineage of the data ownership and curation is in place and everything else from a regulatory as well as opportunity perspective then is able to be leveraged upon so historically you know data has been viewed as sort of this expense it's it's big it's growing it needs to be managed deleted after a certain amount of time and then you know ten years ago of the Big Data move data became an asset you had a lot of shadow I people going off and doing things that maybe didn't comply to the corporate ethics probably drove here here you're a part of the organization crazy but talk about that how what has changed but they in the last you know five years or so just in terms of how people approach data oh I mean you know the story I tell my colleague who are all bankers obviously is the fact that the banker in 1989 had to mainly just know debits credits and be able to look someone in the eye and know whether or not they'd be a credit risk or not you know if we lend you money and you pay it back the the banker of the late 90s had to then contend with the emergence of technologies that made their lives easier and allowed for automation and processes to run much more smoothly um in the early two-thousands I would say that digitization was a big focus and in fact my previous role was head of digital banking and at the time we thought digital was the panacea it is the be-all and end-all it's the thing that's gonna make organizations edit lo and behold we realized that once you've gotten all your digital platforms ready they are just the plate or the pipe and nothing is flowing through it and there's no food on the face if data is not the main photo really um it's always been an asset I think organizations just never consciously knew that data was that okay so so what sounds like once you've made that sort of initial digital transformation you really had to work it and what we're hearing from a lot of practitioners like self as challenges related to that involve different parts of the organization different skill sets of challenges and sort of getting everybody to work together on the same page it's better but maybe you could take us back to sort of when you started on this initiative around data Ops what was that like what were some of the challenges that you faced and how'd you get through them okay first and foremost Dave organizations used to believe that data was I t's problem and that's probably why you you then saw the emergence of things like chatter IP but when you really acknowledge that data is an essay just like money is an asset then you you have to then take accountability for it just the same way as you would any other asset in the organization and you will not abdicate its management to a separate function that's not cold to the business and oftentimes IT are seen as a support or an enabling but not quite the main show in most organizations right so what we we then did is first emphasize that data is a business capability the business function it presides in business makes to product management makes to marketing makes to everything else that the business needs for data management also has to be for to every role in every function to different degrees and varying bearing offense and when you take accountability as an owner of a business unit you also take accountability for the data in the systems that support the business unit for us that was the first picture um and convincing my colleagues that data was their problem and not something that we had to worry about they just kind of leave us to to it was was also a journey but that was kind of the first step into it in terms of getting the data operations journey going um you had to first acknowledge please carry on no you just had to first acknowledge that it's something you must take accountability of as a banker not just need to a different part of the organization that's a real cultural mindset you know in the game of rock-paper-scissors you know culture kinda beats everything doesn't it it's almost like a yep a trump card and so so the businesses embrace that but but what did you do to support that is there has to be trust in the data that it has to be a timeliness and so maybe you could take us through how you achieve those objectives and maybe some other objectives that business the man so the one thing I didn't mention Dave is that obviously they didn't embrace it in the beginning it wasn't a it wasn't there oh yeah that make sense they do that type of conversation um what what he had was a few very strategic people with the right mindset that I could partner with that understood the case for data management and while we had that as as an in we developed a framework for a fully matured data operations capability in the organization and what that would look like in a target date scenario and then what you do is you wait for a good crisis so we had a little bit of a challenge in that our local regulator found us a little bit wanting in terms of our date of college and from that perspective it then brought the case for data quality management so now there's a burning platform you have an appetite for people to partner with you and say okay we need this to comply to help us out and when they start seeing their opt-in action do they then buy into into the concept so sometimes you need to just wait for a good Christ and leverage it and only do that which the organization will appreciate at that time you don't have to go Big Bang data quality management was the use case at the time five years ago so we focused all our energy on that and after that it gave us leeway and license really bring to maturity all the other capabilities at the business might not well understand as well so when that crisis hit of thinking about people process in technology you probably had to turn some knobs in each of those areas can you talk about that so from a technology perspective that that's when we partnered with with IBM to implement information analyzer for us in terms of making sure that then we could profile the data effectively what was important for us is to to make strides in terms of showing the organization progress but also being able to give them access to self-service tools that will give them insight into their data from a technology perspective that was kind of I think the the genesis of of us implementing and the IBM suite in earnest from a data management perspective people wise we really then also began a data stewardship journey in which we implemented business unit stewards of data I don't like using the word steward because in my organization it's taken lightly almost like a part-time occupation so we converted them we call them data managers and and the analogy I would give is every department with a P&L any department worth its salt has a FDA or financial director and if money is important to you you have somebody helping you take accountability and execute on your responsibilities in managing that that money so if data is equally important as an asset you will have a leader a manager helping you execute on your data ownership accountability and that was the people journey so firstly I had kind of soldiers planted in each department which were data managers that would then continue building the culture maturing the data practices as as applicable to each business unit use cases so what was important is that every manager in every business unit to the Data Manager focus their energy on making that business unit happy by ensuring that they data was of the right compliance level and the right quality the right best practices from a process and management perspective and was governed and then in terms of process really it's about spreading through the entire ecosystem data management as a practice and can be quite lonely um in the sense that unless the whole business of an organization is managing data they worried about doing what they do to make money and most people in most business units will be the only unicorn relative to everybody else who does what they do and so for us it was important to have a community of practice a process where all the data managers across business as well as the technology parts and the specialists who were data management professionals coming together and making sure that we we work together on on specific you say so I wonder if I can ask you so the the industry sort of likes to market this notion of of DevOps applied to data and data op have you applied that type of mindset approach agile of continuous improvement is I'm trying to understand how much is marketing and how much actually applicable in the real world can you share well you know when I was reflecting on this before this interview I realized that our very first use case of data officers probably when we implemented information analyzer in our business unit simply because it was the first time that IT and business as well as data professionals came together to spec the use case and then we would literally in an agile fashion with a multidisciplinary team come together to make sure that we got the outcomes that we required I mean for you to to firstly get a data quality management paradigm where we moved from 6% quality at some point from our client data now we're sitting at 99 percent and that 1% literally is just the timing issue to get from from 6 to 99 you have to make sure that the entire value chain is engaged so our business partners will the fundamental determinant of the business rules apply in terms of what does quality mean what are the criteria of quality and then what we do is translate that into what we put in the catalog and ensure that the profiling rules that we run are against those business rules that were defined at first so you'd have upfront determination of the outcome with business and then the team would go into an agile cycle of maybe two-week sprints where we develop certain things have stand-ups come together and then the output would be - boarded in a prototype in a fashion where business then gets to go double check that out so that was the first iterate and I would say we've become much more mature at it and we've got many more use cases now and there's actually one that it's quite exciting that we we recently achieved over the end of of 2019 into the beginning of this year so what we did was they I'm worried about the sunlight I mean through the window you look creative to me like sunset in South Africa we've been on the we've been on CubeSat sometimes it's so bright we have to put on sunglasses but so the most recent one which was in in mates 2019 coming in too early this year we we had long kind of achieved the the compliance and regulatory burning platform issues and now we are in a place of I think opportunity and luxury where we can now find use cases that are pertinent to business execution and business productivity um the one that comes to mind is we're a hundred and fifty eight years old as an organization right so so this Bank was born before technology it was also born in the days of light no no no integration because every branch was a standalone entity you'd have these big ledges that transactions were documented in and I think once every six months or so these Ledger's would be taken by horse-drawn carriage to a central place to get go reconcile between branches and paper but the point is if that is your legacy the initial kind of ERP implementations would have been focused on process efficiency based on old ways of accounting for transactions and allocating information so it was not optimized for the 21st century our architecture had has had huge legacy burden on it and so going into a place where you can be agile with data is something that we constantly working toward so we get to a place where we have hundreds of branches across the country and all of them obviously telling to client servicing clients as usual and and not being able for any person needing sales teams or executional teams they were not able in a short space of time to see the impact of the tactic from a database fee from a reporting history and we were in a place where in some cases based on how our Ledger's roll up and the reconciliation between various systems and accounts work it would take you six weeks to verify whether your technique were effective or not because to actually see the revenue hitting our our general ledger and our balance sheet might take that long that is an ineffective way to operate in a such a competitive environment so what you had our frontline sales agents literally manually documenting the sales that they had made but not being able to verify whether that or not is bringing revenue until six weeks later so what we did then is we sat down and defined all the requirements were reporting perspective and the objective was moved from six weeks latency to 24 hours um and even 24 hours is not perfect our ideal would be that bite rows of day you're able to see what you've done for that day but that's the next the next epoch that will go through however um we literally had the frontline teams defining what they'd want to see in a dashboard the business teams defining what the business rules behind the quality and the definitions would be and then we had an entire I'm analytics team and the data management team working around sourcing the data optimising and curating it and making sure that the latency had done that's I think only our latest use case for data art um and now we're in a place where people can look at a dashboard it's a cubed self-service they can learn at any time I see the sales they've made which is very important right now at the time of covert nineteen from a form of productivity and executional competitiveness those are two great use cases of women lying so the first one you know going from data quality 6% the 99% I mean 6% is all you do is spend time arguing about the data bills profanity and then 99% you're there and you said it's just basically a timing issue use latency in the timing and then the second one is is instead of paving the cow path with an outdated you know ledger Barret data process week you've now compressed that down to 24 hours you want to get the end of day so you've built in the agility into your data pipeline I'm going to ask you then so when gdpr hit were you able to very quickly leverage this capability and and apply and then maybe other of compliance edik as well well actually you know what we just now was post TDP our us um and and we got GDP all right about three years ago but literally all we got right was reporting for risk and compliance purposes they use cases that we have now are really around business opportunity lists so the risk so we prioritize compliance report a long time it but we're able to do real-time reporting from a single transaction perspective I'm suspicious transactions etc I'm two hours in Bank and our governor so from that perspective that was what was prioritize in the beginning which was the initial crisis so what you found is an entire engine geared towards making sure that data quality was correct for reporting and regulatory purposes but really that is not the be-all and end-all of it and if that's all we did I believe we really would not have succeeded or could have stayed dead we succeeded because Dana monetization is actually the penis' t the leveraging of data for business opportunity is is actually then what tells you whether you've got the right culture or not you're just doing it to comply then it means the hearts and minds of the rest of the business still aren't in the data game I love this story because it's me it's nirvana for so many years we've been pouring money to mitigate risk and you have no choice do it you know the general council signs off on it the the CFO but grudgingly signs off on it but it's got to be done but for years decades we've been waiting to use these these risk initiatives to actually drive business value you know it kind of happened with enterprise data warehouse but it was too slow it was complicated and it certainly didn't happen with with email archiving that was just sort of a tech balk it sounds like you know we're at that point today and I want to ask you I mean like you know you we talking earlier about you know the crisis gonna perpetuated this this cultural shift and you took advantage of that so we're out who we the the mother nature dealt up a crisis like we've never seen before how do you see your data infrastructure your data pipeline your data ops what kind of opportunities do you see in front of you today as a result of ovid 19 well I mean because of of the quality of kind data that we had now we were able to very quickly respond to to pivot nineteen in in our context where the government put us on lockdown relatively early in in the curve or in the cycle of infection and what it meant is it brought a little bit of a shock to the economy because small businesses all of a sudden didn't have a source of revenue or potentially three to six weeks and based on the data quality work that we did before it was actually relatively easy to be agile enough to do the things that we did so within the first weekend of of lockdown in South Africa we were the first bank to proactively and automatically offer small businesses and student and students with loans on our books a instant three month payment holiday assuming they were in good standing and we did that upfront though it was actually an opt-out process rather than you had to fall in and arrange for that to happen and I don't believe we would have been able to do that if our data quality was not with um we have since made many more initiatives to try and keep the economy going to try and keep our clients in in a state of of liquidity and so you know data quality at that point and that Dharma is critical to knowing who you're talking to who needs what and in which solutions would best be fitted towards various segments I think the second component is um you know working from home now brings an entirely different normal right so so if we had not been able to provide productivity dashboard and and and sales and dashboards to to management and all all the users that require it we would not be able to then validate or say what our productivity levels are now that people are working from home I mean we still have essential services workers that physically go into work but a lot of our relationship bankers are operating from home and that face the baseline and the foundation that we said productivity packing for various methods being able to be reported on in a short space of time has been really beneficial the next opportunity for us is we've been really good at doing this for the normal operational and front line and type of workers but knowledge workers have also know not necessarily been big productivity reporters historically they kind of get an output then the output might be six weeks down the line um but in a place where teams now are not locate co-located and work needs to flow in an edge of passion we need to start using the same foundation and and and data pipeline that we've laid down as a foundation for the reporting of knowledge work and agile team type of metric so in terms of developing new functionality and solutions there's a flow in a multidisciplinary team and how do those solutions get architected in a way where data assists in the flow of information so solutions can be optimally developed well it sounds like you're able to map a metric but business lines care about you know into these dashboards you usually the sort of data mapping approach if you will which makes it much more relevant for the business as you said before they own the data that's got to be a huge business benefit just in terms of again we talked about cultural we talked about speed but but the business impact of being able to do that it has to be pretty substantial it really really is um and and the use cases really are endless because every department finds their own opportunity to utilize in terms of their also I think the accountability factor has has significantly increased because as the owner of a specific domain of data you know that you're not only accountable to yourself and your own operation but people downstream to you as a product and in an outcome depend on you to ensure that the quality of the data you produces is of a high nature so so curation of data is a very important thing and business is really starting to understand that so you know the cards Department knows that they are the owners of card data right and you know the vehicle asset Department knows that they are the owners of vehicle they are linked to a client profile and all of that creates an ecosystem around the plan I mean when you come to a bank you you don't want to be known as a number and you don't want to be known just for one product you want to be known across everything that you do with that with that organization but most banks are not structured that way they still are product houses and product systems on which your data reside and if those don't act in concert then we come across extremely schizophrenic as if we don't know our clients and so that's very very important stupid like I can go on for an hour talking about this topic but unfortunately we're we're out of time thank you so much for sharing your deep knowledge and your story it's really an inspiring one and congratulations on all your success and I guess I'll leave it with you know what's next you gave us you know a glimpse of some of the things you wanted to do pressing some of the the elapsed times and the time cycle but but where do you see this going in the next you know kind of mid term and longer term currently I mean obviously AI is is a big is a big opportunity for all organizations and and you don't get automation of anything right if the foundations are not in place so you believe that this is a great foundation for anything AI to be applied in terms of the use cases that we can find the second one is really providing an API economy where certain data product can be shared with third parties I think that probably where we want to take things as well we are really utilizing external third-party data sources I'm in our data quality management suite to ensure validity of client identity and and and residents and things of that nature but going forward because been picked and banks and other organizations are probably going to partner to to be more competitive going forward we need to be able to provide data product that can then be leveraged by external parties and vice-versa to be like thanks again great having you thank you very much Dave appreciate the opportunity thank you for watching everybody that we go we are digging in the data ops we've got practitioners we've got influencers we've got experts we're going in the crowd chat it's the crowd chat net flash data ops but keep it right there way back but more coverage this is Dave Volante for the cube [Music] you

Published Date : May 28 2020

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
JohannesburgLOCATION

0.99+

1989DATE

0.99+

six weeksQUANTITY

0.99+

Dave VolantePERSON

0.99+

IBMORGANIZATION

0.99+

DavePERSON

0.99+

threeQUANTITY

0.99+

24 hoursQUANTITY

0.99+

two-weekQUANTITY

0.99+

6%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

two hoursQUANTITY

0.99+

South AfricaLOCATION

0.99+

less than 4,000 placesQUANTITY

0.99+

99 percentQUANTITY

0.99+

Standard BankORGANIZATION

0.99+

99%QUANTITY

0.99+

21st centuryDATE

0.99+

6QUANTITY

0.99+

second componentQUANTITY

0.99+

hundreds of branchesQUANTITY

0.99+

2019DATE

0.99+

first stepQUANTITY

0.99+

five yearsQUANTITY

0.99+

first bankQUANTITY

0.99+

1%QUANTITY

0.98+

five years agoDATE

0.98+

first timeQUANTITY

0.98+

BostonLOCATION

0.98+

99QUANTITY

0.98+

each departmentQUANTITY

0.98+

firstQUANTITY

0.98+

late 90sDATE

0.97+

six weeks laterDATE

0.97+

todayDATE

0.97+

three monthQUANTITY

0.97+

ten years agoDATE

0.96+

an hourQUANTITY

0.96+

a hundred and fifty eight years oldQUANTITY

0.96+

firstlyQUANTITY

0.95+

second oneQUANTITY

0.95+

first weekendQUANTITY

0.94+

one productQUANTITY

0.94+

nineteenQUANTITY

0.94+

first pictureQUANTITY

0.93+

each business unitQUANTITY

0.91+

eachQUANTITY

0.91+

KumalPERSON

0.89+

single transactionQUANTITY

0.89+

Big BangEVENT

0.88+

first oneQUANTITY

0.88+

once every six monthsQUANTITY

0.87+

2020DATE

0.86+

LedgerORGANIZATION

0.85+

first use caseQUANTITY

0.84+

every branchQUANTITY

0.83+

about three years agoDATE

0.82+

ChristPERSON

0.81+

oneQUANTITY

0.8+

Itumeleng MonalePERSON

0.79+

DevOpsTITLE

0.78+

two great use casesQUANTITY

0.78+

yearsQUANTITY

0.77+

Standard Bank of SouthORGANIZATION

0.76+

DharmaORGANIZATION

0.76+

early this yearDATE

0.74+

l councilORGANIZATION

0.71+

FDAORGANIZATION

0.7+

endDATE

0.69+

this yearDATE

0.68+

Moore's LawTITLE

0.67+

IBM DataOpsORGANIZATION

0.65+

DanaPERSON

0.63+

every businessQUANTITY

0.62+

Santhosh Mahendiran, Standard Chartered Bank | BigData NYC 2017


 

>> Announcer: Live, from Midtown Manhattan, it's theCUBE, covering Big Data New York City 2017. Brought to you by SiliconANGLE Media and its ecosystem sponsors. (upbeat techno music) >> Okay welcome back, we're live here in New York City. It's theCUBE's presentation of Big Data NYC, our fifth year doing this event in conjunction with Strata Data, formerly Strata Hadoop, formerly Strata Conference, formerly Hadoop World, we've been there from the beginning. Eight years covering Hadoop's ecosystem now Big Data. This is theCUBE, I'm John Furrier. Our next guest is Santhosh Mahendiran, who is the global head of technology analytics at Standard Chartered Bank. A practitioner in the field, here getting the data, checking out the scene, giving a presentation on your journey with Data at a bank, which is big financial obviously an adopter. Welcome to theCUBE. >> Thank you very much. >> So we always want to know what the practitioners are doing because at the end of the day there's a lot of vendors selling stuff here, so you got, everyone's got their story. End of the day you got to implement. >> That's right. >> And one of the themes is the data democratization which sounds warm and fuzzy, collaborating with data, this is all good stuff and you feel good and you move into the future, but at the end of the day it's got to have business value. >> That's right. >> And as you look at that, how do you look at the business value? Cause you want to be in the bleeding edge, you want to provide value and get that edge operationally. >> That's right. >> Where's the value in data democratization? How did you guys roll this out? Share your story. >> Okay, so let me start with the journey first before I come to the value part of it, right? So, data democratization is an outcome, but the journey has been something we started three years back. So what did we do, right? So we had some guiding principles to start our journey. The first was to say that we believed in the three S's, which is speed, scale, and it should be really, really flexible and super fast. So one of the challenges that we had was our historical data warehouses was entirely becoming redundant. And why was it? Because it was RDBMS centric, and it was extremely disparate. So we weren't able to scale up to meet the demands of managing huge chunks of data. So, the first step that we did was to re-pivot it to say that okay, let's embrace Hadoop. And what you mean by embracing is just not putting in the data lake, but we said that all our data will land into the data lake. And this journey started in 2015, so we have close to 80% of the Bank's data in the lake and it is end of day data right now and this data flows in on daily basis, and we have consumers who feed off that data. Now coming to your question about-- >> So the data lake's working? >> The data lake is working, up and running. >> People like it, you just got a good spot, batch 'em all you throw everything in the lake. >> So it is not real time, it is end of day. There is some data that is real-time, but the data lake is not entirely real-time, that I have to tell you. But one part is that the data lake is working. Second part to your question is how do I actually monetize it? Are you getting some value out of it? But I think that's where tools like Paxata has actually enabled us to accelerate this journey. So we call it data democratization. So the best part it's not about having the data. We want the business users to actually use the data. Typically, data has always been either delayed or denied in most of the cases to end-users and we have end-users waiting for the data but they don't get access to the data. It was done because primarily the size of the data was too huge and it wasn't flexible enough to be shared with. So how did tools like Paxata and the data lake help us? So what we did with data democratization is basically to say that "hey we'll get end-users to access the data first in a fast manner, in a self-service manner, and something that gives operational assurance to the data, so you don't hold the data and then say that you're going to get a subset of data to play with. We'll give you the entire set of data and we'll give you the right tools which you can play with. Most importantly, from an IT perspective, we'll be able to govern it. So that's the key about democratization. It's not about just giving them a tool, giving them all data and then say "go figure it out." It's about ensuring that "okay, you've got the tools, you've got the data, but we'll also govern it," so that you obviously have control over what they're doing. >> So now you govern it, they don't have to get involved in the governance, they just have access? >> No they don't need to. Yeah, they have access. So governance works both ways. We establish the boundaries. Look at it as a referee, and then say that "okay, there are guidelines that you don't," and within the datasets that key people have access to, you can further set rules. Now, coming back to specific use cases, I can talk about two specific cases which actually helped us to move the needle. The first is on stress testing, so being a financial institution, we typically have to report various numbers to our regulators, etc. The turnaround time was extremely huge. These kind of stress testing typically involve taking huge amount-- >> What were some of the turnaround times? >> Normally it was two to three weeks, some cases a month-- >> Wow. >> So we were able to narrow it down to days, but what we essentially did was as with any stress testing or reporting, it involved taking huge amounts of data, crunching them and then running some models and then showing the output, basically a number of transformations involved. Earlier, you first couldn't access the entire dataset, so that we solved-- >> So check, that was a good step one-- >> That was step one. >> But was there automation involved in that, the Paxata piece? >> Yeah, I wouldn't say it was fully automated end-to-end, but there was definitely automation given the fact that now you got Paxata to work off the data rather than someone extracting the data and then going off and figuring what needs to be done. The ability to work off the entire dataset was a big plus. So stress testing, bringing down the cycle time. The second one use case I can talk about is again anti-money laundering, and in our financial crime compliance space. We had processes that took time to report, given the clunkiness in the various handoffs that we needed to do. But again, empowering the users, giving the tool to them and then saying "hey, this"-- >> How about know your user, because we have to anti-money launder, you need to have to know your user base, that's all set their too? >> Yeah. So the good part is know the user, know your customer, KYCs all that part is set, but the key part is making sure the end-users are able to access the data much more earlier in the life cycle and are able to play with it. In the case of anti-money laundering, again first question of three weeks to four weeks was shortened down to question of days by giving tools like Paxata again in a structured manner and with which we're able to govern. >> You control this, so you knew what you were doing, but you let their tools do the job? >> Correct, so look at it this way. Typically, the data journey has always been IT-led. It has never been business-led. If you look at the generations of what happens is, you source the data which is IT-led, then you model the data which is IT-led, then you prepare then massage the data which is again IT-led and then you have tools on top of it which is again IT-led so the end-users get it only after the fourth stage. Now look at the generations within. All these life cycles apart from the fact that you source the data which is typically an IT issue, the rest need to be done by the actual business users and that's what we did. That's the progression of the generations in which we now we're in the third generation as I call it where our role is just to source the data and then say, "yeah we'll govern it in the matter and then preparation-- >> It's really an operating system and we were talking with Aaron with Elation's co-founder, we used the analogy of a car, how this show was like a car show engine show, what's in the engine and the technology and then it evolved every year, now it's like we're talking about the cars, now we're talking about driver experience-- >> That's right. >> At the end of the day, you just want to drive. You don't really care what's under the hood, you do but you don't, but there's those people who do care what's under the hood, so you can have best of both worlds. You've got the engines, you set up the infrastructure, but ultimately, you in the business side, you just want to drive, that's what's you're getting at? >> That's right. The time-to-market and speed to empower the users to play around with the data rather than IT trying to churn the data and confine access to data, that's a thing of the past. So we want more users to have faster access to data but at the same time govern it in a seamless manner. The word governance is still important because it's not about just give the data. >> And seamless is key. >> Seamless is key. >> Cause if you have democratization of data, you're implying that it is community-oriented, means that it's available, with access privileges all transparently or abstracted away from the users. >> Absolutely. >> So here's the question I want to ask you. There's been talk, I've been saying it for years going back to 2012 that an abstraction layer, a data layer will evolve and that'll be the real key. And then here in this show, I heard things like intelligent information fabric that is business, consumer-friendly. Okay, it's a mouthful, but intelligent information fabric in essence talks about an abstraction layer-- >> That's right. >> That doesn't really compromise anything but gives some enablement, creates some enabling value-- >> That's right. >> For software, how do you see that? >> As the word suggests, the earlier model was trying to build something for the end-users, but not which was end-user friendly, meaning to say, let me just give you a simple example. You had a data model that existed. Historically the way that we have approached using data is to say "hey, I've got a model and then let's fit that data into this model," without actually saying that "does this model actually serve the purpose?" You abstracted the model to a higher level. The whole point about intelligent data is about saying that, I'll give you a very simple analogy. Take zip code. Zipcode in US is very different from zipcode in India, it's very different from zipcode in Singapore. So if I had the ability for my data to come in, to say that "I know it's a zipcode, but this zipcode belongs to US, this zipcode belongs to Singapore, and this zipcode belongs to India," and more importantly, if I can further rev it up a notch, if I say that "this belongs to India, and this zipcode is valid." Look at where I'm going with intelligent sense. So that's what's up. If you look at the earlier model, you have to say that "yeah, this is a placeholder for zipcode." Now that makes sense, but what are you doing with it? >> Being a relational database model, it's just a field in a schema, you're taking it and abstracting it and creating value out of it. >> Precisely. So what I'm actually doing is accelerating the adoption, I'm making it more simpler for users to understand what the data is. So I don't need to as a user figure out "I got a zipcode, now is it a Singapore, India or what zipcode." >> So all this automation, Paxata's got a good system, we'll come back to the Paxata question in a second, I do want to drill down on that. But the big thing that I've been seeing at the show, and again Dave Alonte, my partner, co-CEO of Silicon Angle, we always talk about this all the time. He's more less bullish on Hadoop than I am. Although I love Hadoop, I think it's great but it's not the end-all, be-all. It's a great use case. We were critical early on and the thing we were critical on it was it was too much time being spent on the engine and how things are built, not on the business value. So there's like a lull period in the business where it was just too costly-- >> That's right. >> Total cost of ownership was a huge, huge problem. >> That's right. >> So now today, how did you deal with that and are you measuring the TCO or total cost of ownership cause at the end of the day, time to value, which is can you be up and running in 90 days with value and can you continue to do that, and then what's the overall cost to get there. Thoughts? >> So look I think TCO always underpins any technology investment. If someone said I'm doing a technology investment without thinking about TCO, I don't think he's a good technology leader, so TCO is obviously a driving factor. But TCO has multiple components. One is the TCO of the solution. The other aspect is TCO of what my value I'm going to get out of this system. So talking from an implementation perspective, what I look at as TCO is my whole ecosystem which is my hardware, software, so you spoke about Hadoop, you spoke about RDBMS, is Hadoop cheaper, etc? I don't want to get into that debate of cheaper or not but what I know is the ecosystem is becoming much, much more cheaper than before. And when I talk about ecosystem, I'm talking about RDBMS tools, I'm talking about Hadoop, I'm talking about BI tools, I'm talking about governance, I'm talking about this whole framework becoming cheaper. And it is also underpinned by the fact that hardware is also becoming cheaper. So the reality is all components in the whole ecosystem are becoming cheaper and given the fact that software is also becoming more open-sourced and people are open to using open-source software, I think the whole question of TCO becomes a much more pertinent question. Now coming to your point, do you measure it regularly? I think the honest answer is I don't think we are doing a good job of measuring it that well, but we do have that as one of the criteria for us to actually measure the success of our project. The way that we do is our implementation cost, at the time of writing out our PETs, we call it PETs, which is the Project Execution Document, we talk about cost. We say that "what's the implementation cost?" What are the business cases that are going to be an outcome of this? I'll give you an example of our anti-money laundering. I told you we reduced our cycle time from few weeks to a few days, and that in turn means the number of people involved in this whole process, you're reducing the overheads and the operational folks involved in it. That itself tells you how much we're able to save. So definitely, TCO is there and to say that-- >> And you are mindful of, it's what you look at, it's key. TCO is on your radar 100% you evaluate that into your deals? >> Yes, we do. >> So Paxata, what's so great about Paxata? Obviously you've had success with them. You're a customer, what's the deal. Was it the tech, was it the automation, the team? What was the key thing that got you engaged with them or specifically why Paxata? >> Look, I think the key to partnership there cannot be one ingredient that makes a partnership successful, I think there are multiple ingredients that make a partnership successful. We were one of the earliest adopters of Paxata. Given that we're a bank and we have multiple different systems and we have lot of manual processing involved, we saw Paxata as a good fit to govern these processes and ensure at the same time, users don't lose their experience. The good thing about Paxata that we like was obviously the simplicity and the look and feel of the tool. That's number one. Simplicity was a big point. The second one is about scale. The scale, the fact that it can take in millions of roles, it's not about just working off a sample of data. It can work on the entire dataset. That's very key for us. The third is to leverage our ecosystem, so it's not about saying "okay you give me this data, let me go figure out what to do and then," so Paxata works off the data lake. The fact that it can leverage the lake that we built, the fact that it's a simple and self-preparation tool which doesn't require a lot of time to bootstrap, so end-use people like you-- >> So it makes it usable. >> It's extremely user-friendly and usable in a very short period of time. >> And that helped with the journey? >> That really helped with the journey. >> Santosh, thanks so much for sharing. Santosh Mahendiran, who is the Global Tech Lead at the Analytics of the Bank at Standard Chartered Bank. Again, financial services, always a great early adopter, and you get success under your belt, congratulations. Data democratization is huge and again, it's an ecosystem, you got all that anti-money laundering to figure out, you got to get those reports out, lot of heavylifting? >> That's right, >> So thanks so much for sharing your story. >> Thank you very much. >> We'll give you more coverage after this short break, I'm John Furrier, stay tuned. More live coverage in New York City, its theCube.

Published Date : Sep 29 2017

SUMMARY :

Brought to you by SiliconANGLE Media here getting the data, checking out the scene, End of the day you got to implement. but at the end of the day it's got to have business value. how do you look at the business value? Where's the value in data democratization? So one of the challenges that we had was People like it, you just got a good spot, in most of the cases to end-users and we have end-users guidelines that you don't," and within the datasets that Earlier, you first couldn't access the entire dataset, So stress testing, bringing down the cycle time. So the good part is know the user, know your customer, That's the progression of the generations in which we At the end of the day, you just want to drive. but at the same time govern it in a seamless manner. Cause if you have democratization of data, So here's the question I want to ask you. So if I had the ability for my data to come in, and creating value out of it. So I don't need to as a user figure out "I got a zipcode, But the big thing that I've been seeing at the show, at the end of the day, time to value, which is can you be So the reality is all components in the whole ecosystem And you are mindful of, it's what you look at, it's key. Was it the tech, was it the automation, the team? The fact that it can leverage the lake that we built, It's extremely user-friendly and usable in a very at the Analytics of the Bank at Standard Chartered Bank. We'll give you more coverage after this short break,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave AlontePERSON

0.99+

Standard Chartered BankORGANIZATION

0.99+

three weeksQUANTITY

0.99+

John FurrierPERSON

0.99+

New York CityLOCATION

0.99+

2012DATE

0.99+

2015DATE

0.99+

Santosh MahendiranPERSON

0.99+

twoQUANTITY

0.99+

AaronPERSON

0.99+

USLOCATION

0.99+

Santhosh MahendiranPERSON

0.99+

SingaporeLOCATION

0.99+

SantoshPERSON

0.99+

four weeksQUANTITY

0.99+

TCOORGANIZATION

0.99+

100%QUANTITY

0.99+

90 daysQUANTITY

0.99+

IndiaLOCATION

0.99+

SiliconANGLE MediaORGANIZATION

0.99+

fifth yearQUANTITY

0.99+

todayDATE

0.99+

Midtown ManhattanLOCATION

0.99+

PaxataORGANIZATION

0.99+

one ingredientQUANTITY

0.99+

thirdQUANTITY

0.99+

theCUBEORGANIZATION

0.99+

one partQUANTITY

0.99+

millionsQUANTITY

0.99+

firstQUANTITY

0.99+

Eight yearsQUANTITY

0.99+

Silicon AngleORGANIZATION

0.99+

Second partQUANTITY

0.98+

third generationQUANTITY

0.98+

fourth stageQUANTITY

0.98+

two specific casesQUANTITY

0.98+

both waysQUANTITY

0.98+

oneQUANTITY

0.98+

BigDataORGANIZATION

0.98+

NYCLOCATION

0.98+

both worldsQUANTITY

0.98+

first stepQUANTITY

0.97+

three years backDATE

0.97+

second oneQUANTITY

0.97+

OneQUANTITY

0.97+

2017DATE

0.96+

HadoopTITLE

0.96+

Strata DataORGANIZATION

0.96+

Strata HadoopORGANIZATION

0.94+

step oneQUANTITY

0.94+

first questionQUANTITY

0.93+

a monthQUANTITY

0.92+

ElationORGANIZATION

0.9+

DataEVENT

0.89+

2017EVENT

0.89+

80%QUANTITY

0.88+

PaxataTITLE

0.88+

Big DataEVENT

0.84+

theCubeORGANIZATION

0.83+

Aliye 1 2 w dave crowdchat v2


 

>>everybody, this is Dave Vellante. May 27th were hosting a crowd chat going on crowdchat dot net slash data ops. Data ops is all about automating the data pipeline infusing AI and operationalize ing ai and the Data Pipeline and your organizations, which has been a real challenge for companies over the last several years in most of the decade. With me is aljaz cannoli. What's changed? That companies can now succeed at automating and operationalize in the data pipeline. >>You're so right, David. As's faras. I remember myself in this industry data challenges that the bottlenecks are the bottlenecks. So why now? I think we can answer that one from three angles. People process technology. What changing people? What changes process will change with technology. Let me start with the technology part on the technology front. Right now. The compute power is they were rare and the cloud multi cloud artificial intelligence, Social mobile all connected and giving the power to the organizations to deal with these problems, especially, I want to highlight the artificial intelligence part, and I will highlight it with how IBM is leveraging artificial intelligence to solve some of the dormant data problems. One of the major major doorman problem is on boarding data. If you're unable to onboard your data fast, however beautiful factory the all the factor lines shining, waiting for data if you cannot. Onboard data fast, all dress is waiting. But what IBM did automated made metadata generation capabilities which is on boarding data leveraging artificial intelligence models so that it is not only on boarding the data but on boarding the data in a way that everyone can understand it. When data scientist looks at the data, look at the data. They don't stare at the data but they understand what that data means because it >>is >>interpreted into business taxonomy into business language in the fast fashion that is one the technology, the second part people and process parts so important in the process part the methodology. Now we have the methodologies, the first methodology that I would just say as a change. Sometimes we we call that as a legal I don't know whether you heard about it in an agile So these legal methodologies now asking us to how alterations fail >>fast, Try fast, fail fast, Try fast >>and these agile methodologies are now being applied to data pipelines in weeks, off iterations, we can look at the most important business challenge with the KP eyes that you're trying to achieve and then map those KP eyes to data sources needed to answer those KP eyes and then streamline everything in between passed. So that renders a change like this the market that we are in. Then all those data flows are streamlined and optimize. And during the Cube interview during the Cube program that we put together, you will see some of the organizations will mention that is agile practice they put in place in every geography is now even getting them closer and closer, because now we all depend on and >>live on digital. So I'm very excited because ah, interviewing Standard Bank Associated Bank. Harley Davidson, IBM chief data officer into public. Sorry to talk about how IBM is sort of drunk, its own champagne eating. It's own dog food. Whatever you prefer. This is not the the mumbo jumbo marketing. This is practitioners who are gonna talk about how they succeeded, how they funded these initiatives, how they did the business case, some of the challenges that they face, how they dealt with classification and metadata and some of the outcomes that they have. So join us on the crowd. Chat crowdchat dot net slash data ops on May 27th. Go there at your calendar. We'll see you in the crowdchat.

Published Date : May 6 2020

SUMMARY :

at automating and operationalize in the data pipeline. They don't stare at the data but they understand what that data that is one the technology, the second part people and process during the Cube program that we put together, you will see some of the organizations some of the challenges that they face, how they dealt with classification and metadata and

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Dave VellantePERSON

0.99+

May 27thDATE

0.99+

IBMORGANIZATION

0.99+

aljaz cannoliPERSON

0.98+

second partQUANTITY

0.98+

OneQUANTITY

0.97+

first methodologyQUANTITY

0.96+

three anglesQUANTITY

0.96+

AliyePERSON

0.94+

Standard Bank Associated BankORGANIZATION

0.92+

agileTITLE

0.92+

Harley DavidsonORGANIZATION

0.91+

oneQUANTITY

0.9+

crowdchatORGANIZATION

0.86+

yearsDATE

0.76+

lastDATE

0.64+

CubeTITLE

0.58+

CubeORGANIZATION

0.44+

Aliye 1 1 w dave crowdchat v2


 

>> Hi everybody, this is Dave Velante with the CUBE. And when we talk to practitioners about data and AI they have troubles infusing AI into their data pipeline and automating that data pipeline. So we're bringing together the community, brought to you by IBM to really understand how successful organizations are operationalizing the data pipeline and with me to talk about that is Aliye Ozcan. Aliye, hello, introduce yourself. Tell us about who you are. >> Hi Dave, how are you doing? Yes, my name is Aliye Ozcan I'm the Data Operations Data ops Global Marketing Leader at IBM. >> So I'm very excited about this project. Go to crowdchat.net/dataops, add it to your calendar and check it out. So we have practitioners, Aliye from Harley Davidson, Standard Bank, Associated Bank. What are we going to learn from them? >> What we are going to learn from them is the data experiences. What are the data challenges that they are going through? What are the data bottlenecks that they had? And especially in these challenging times right now. The industry is going through this challenging time. We are all going through this. How the foundation that they invested. Is now helping them to pivot quickly to market demands, the new market demands fast. That is fascinating to see, and I'm very excited having individual conversations with those experts and bringing those stories to the audience here. >> Awesome, and we also have Inderpal Bhandari from the CDO office at IBM, so go to crowdchat.net/dataops, add it to your calendar, we'll see you in the crowd chat.

Published Date : May 6 2020

SUMMARY :

are operationalizing the data pipeline I'm the Data Operations Data ops What are we going to learn from them? What are the data challenges add it to your calendar, we'll

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

Dave VelantePERSON

0.99+

Standard BankORGANIZATION

0.99+

IBMORGANIZATION

0.99+

Associated BankORGANIZATION

0.99+

Inderpal BhandariPERSON

0.99+

Harley DavidsonORGANIZATION

0.99+

AliyePERSON

0.99+

crowdchat.net/dataopsOTHER

0.99+

Aliye OzcanPERSON

0.99+

Aliye 1PERSON

0.86+

CUBEORGANIZATION

0.85+

crowdchatTITLE

0.67+

Data opsORGANIZATION

0.61+

CDOORGANIZATION

0.53+

DO NOT PUBLISH FOR REVIEW DATA OPS Itumeleng Monale


 

from the cube studios in Palo Alto in Boston connecting with thought leaders all around the world this is a cute conversation everybody welcome back to the cube this is Dave Volante and you're watching a special presentation data ops enacted made possible by IBM you know what's what's happening is the innovation engine in the IT economy is really shifted used to be Moore's Law today it's applying machine intelligence and AI to data really scaling that and operationalizing that new knowledge the challenges that is it's not so easy to operationalize AI and infuse it into the data pipeline but what we're doing in this program is bringing in practitioners who have actually had a great deal of success in doing just that and I'm really excited to have it Kumal a the tumor lang Manali is here she's the executive head of data management or personal and business banking at Standard Bank of South Africa the tumor length thanks so much for coming in the cube thank you for having me Dave you're very welcome and first of all how you holding up with this this bovid situation how are things in Johannesburg um things in Johannesburg are fine and we've been on lockdown now I think it's day 33 if I'm not mistaken lost count and but we're really grateful for the swift action of government we only I mean we have less than 4,000 places in the country and infection rate is is really slow so we've really I think been able to flatten the curve and we're grateful for being able to be protected in this way so we're all working from home or learning the new normal and we're all in this together that's great to hear why don't you tell us a little bit about your your role you're a data person we're really going to get in with here with us you know how you spend your time okay well I hit up a date operations function in a data management function which really is the foundational part of the data value chain that then allows other parts of the organization to monetize data and leverage it as as the use cases apply we monetize it ourselves as well but really we're an enterprise wide organization that ensures that data quality is managed data is governed that we have the effective practices applied to the entire lineage of the data ownership and curation is in place and everything else from a regulatory as well as opportunity perspective then is able to be leveraged upon so historically you know data has been viewed as sort of this expense it's it's big it's growing it needs to be managed deleted after a certain amount of time and then you know ten years ago the Big Data move data became an asset you had a lot of shadow ID people going off and doing things that maybe didn't comply to the corporate ethics probably drove here here you're a part of the organization crazy but talk about that how what has changed but they in the last you know five years or so just in terms of how people approach data oh I mean you know the story I tell my colleague who are all bankers obviously is the fact that um the banker in 1989 had to mainly just know debits credit and be able to look someone in the eye and know whether or not they'd be a credit risk or not you know if we lend you money and you pay it back um the the banker of the late 90s had to then contend with the emergence of technologies that made their lives easier and allowed for automation and processes to run much more smoothly um in the early two-thousands I would say that digitization was a big focus and in fact my previous role was head of digital banking and at the time we thought digital was the panacea it is the be-all and end-all is the thing that's gonna make organizations edit lo and behold we realized that once you've gotten all your digital platforms ready they are just the plate or the pipe and nothing is flowing through it and there's no food on the plate if data is not the main so really um it's always been an acid I think organizations just never consciously knew that data was there okay so so it sounds like once you've made that sort of initial digital transformation you really had to work it and what we're hearing from a lot of practitioners like toughest challenges related to that involve different parts of the organization different skill sets of challenges and sort of getting everybody to work together on the same page it's better but maybe you could take us back to sort of when you started on this initiative around data ops what was that like what were some of the challenges that you faced and how'd you get through them first and foremost Dave organizations used to believe that data was I t's problem and that's probably why you you then saw the emergence of things like shadow IP but when you really acknowledge that data is and si just like money is an asset then you you have to then take accountability for it just the same way as you would any other asset in the organization and you will not add the a its management to a separate function that's not code to the business and oftentimes IT are seen as a support for an enabling but not quite the main show in most organizations right so what we we then did is first emphasize that data is a business capability a business function it presides in business next to product management next to marketing makes to everything else that the business needs for data management also has to be for to every role in every function to different degrees and varying bearing events and when you take accountability as an owner of a business unit you also take accountability for the data in the systems that support the business unit for us that was the first picture um and convincing my colleagues that data was their problem and not something that we had to worry about and they just kind of leave us to - it was was also a journey but that was kind of the first step in - in terms of getting the data operations journey going um you had to first acknowledge please carry on no you just had to first acknowledge that it's something you must take accountability of as a banker not just need to a different part of the organization that's a real cultural mindset you know in the game of rock-paper-scissors you know culture kinda beats everything doesn't it it's almost like a yep a trump card and so so the businesses embrace that but but what did you do to support that is there has to be trust in the data that it has to be a timeliness and so maybe you could pick us through how you achieve those objectives and maybe some other objectives that business the man so the one thing I didn't mention Davis that obviously they didn't embrace it in the beginning it wasn't a it wasn't there oh yeah that make sense they do that type of conversation um what what he had was a few very strategic people with the right mindset that I could partner with that understood the case for data management and while we had that as as an in we developed a framework for a fully matured data operations capability in the organization and what that would look like in a target date scenario and then what you do is you wait for a good crisis so we had a little bit of a challenge in that our local regulator found us a little bit wanting in terms of our data quality and from that perspective it then brought the case for data quality management to the whole so now there's a burning platform you have an appetite for people to partner with you and say okay we need this to comply to help us out and when they start seeing their opt-in action do they stick then buy into into the concepts so sometimes you need to just wait for a good price and leverage it and only do that which the organization will appreciate at that time you don't have to go Big Bang data quality management was the use case at the time five years ago so we focused all our energy on that and after that it gave us leeway and license really bring to maturity or the other capabilities of the business might not well understand as well so when that crisis hit of thinking about people process in technology you probably had to turn some knobs in each of those areas can you talk about that so from a technology perspective that that when we partnered with with IBM to implement information analyzer for us in terms of making sure that then we could profile the data effectively what was important for us is to to make strides in terms of showing the organization progress but also being able to give them access to self-service tools that will give them insight into their data from a technology perspective that was kind of I think that the genesis of of us implementing and the IBM suite in earnest from a data management perspective people wise we really then um also began a data stewardship journey in which we implemented business unit stewards of data I don't like using the word steward because in my organization it's taken lightly it's almost like a part-time occupation so we converted them we call them data managers and and the analogy I would give is every department with a pl any department worth its salt has a FD or financial director and if money is important to you you have somebody helping you take accountability and execute on your responsibilities and managing that that money so if data is equally important as an asset you will have a leader a manager helping you execute on your data ownership accountability and that was the people journey so firstly I had kind of soldiers planted in each department which were data managers that would then continue building the culture maturing the data practices as as applicable to each business unit use cases so what was important is that every manager in every business unit to the Data Manager focus their energy on making that business unit happy by ensuring that their data was of the right compliance level and the right quality the right best practices from a process and management perspective and was governed through and then in terms of process really it's about spreading through the entire ecosystem data management as a practice and can be quite lonely in the sense that unless the core business of an organization is managing data they worried about doing what they do to make money and most people in most business units will be the only unicorn relative to everybody else who does what they do and so for us it was important to have a community of practice a process where all the data managers across business as well as the technology parts and the specialists who were data management professionals coming together and making sure that we we work together on on specific use so I wonder if I can ask you so the the industry sort of likes to market this notion of of DevOps applied to data and data op have you applied that type of mindset approach agile of continuous improvement is I'm trying to understand how much is marketing and how much actually applicable in the real world can you share well you know when I was reflecting on this before this interview I realized that our very first use case of data officers probably when we implemented information analyzer in our business unit simply because it was the first time that IT and business as well as data professionals came together to spec the use case and then we would literally in an agile fashion with a multidisciplinary team come together to make sure that we got the outcomes that we required I mean for you to to firstly get a data quality management paradigm where we moved from 6% quality at some point from our client data now we're sitting at 99 percent and that 1% literally is just the timing issue to get from from 6 to 99 you have to make sure that the entire value chain is engaged so our business partners were the fundamental determinant of the business rules apply in terms of what does quality mean what are the criteria of quality and then what we do is translate that into what we put in the catalog and ensure that the profiling rules that we run are against those business rules that were defined at first so you'd have upfront determination of the outcome with business and then the team would go into an agile cycle of maybe two-week sprints where we develop certain things have stand-ups come together and then the output would be - boarded in a prototype in a fashion where business then gets to go double check that out so that was the first iterate and I would say we've become much more mature at it and we've got many more use cases now and there's actually one that it's quite exciting that we we recently achieved over the end of 2019 into the beginning of this year so what we did was they've am worried about the sunlight coming through the window you look crazy to me like the sunset in South Africa we've been on the we've been on CubeSat sometimes it's so bright we have to put on sunglasses but so the most recent one which was in in late 2019 coming in too early this year we we had long kind of achieved the the compliance and the regulatory burning platform issues and now we are in a place of I think opportunity and luxury where we can now find use cases that are pertinent to business execution and business productivity the one that comes to mind is where a hundred and fifty eight years old as an organization right so so this Bank was born before technology it was also born in the days of light no no no integration because every branch was a standalone entity you'd have these big ledges that transactions were were documented in and I think once every six months or so these Ledger's would be taken by horse-drawn carriage to a central place to give go reconcile between branches and paper but the point is if that is your legacy the initial kind of ERP implementations would have been focused on process efficiency based on old ways of accounting for transactions and allocating information so it was not optimized for the 21st century our architecture had has had huge legacy burden on it and so going into a place where you can be agile with data is something that we're constantly working toward so we get to a place where we have hundreds of branches across the country and all of them obviously telling to client servicing clients as usual and and not being able for any person needing sales teams or executional teams they were not able in a short space of time to see the impact of the tactic from a data perspective um we were in a place where in some cases based on how our Ledger's roll up in the reconciliation between various systems and accounts work it would take you six weeks to verify whether your technique were effective or not because to actually see the revenue hitting our our general ledger and our balance sheet might take that long that is an ineffective way to operate in a such a competitive environment so what you had our frontline sales agents literally manually documenting the sales that they had made but not being able to verify whether that or not is bringing revenue until six weeks later so what we did then is we sat down and defined all the requirements from a reporting perspective and the objective was moved from six weeks latency to 24 hours um and even 24 hours is not perfect our ideal would be that bite rows of day you're able to see what you've done for that day but that's the next the next epoch that will go through however um we literally had the frontline teams defining what they'd want to see in a dashboard the business teams defining what the business rules behind the quality and the definitions would be and then we had an entire I'm analytics team and the data management team working around sourcing the data optimising and curating it and making sure that the latency had done that's I think only our latest use case for data art um and now we're in a place where people can look at a dashboard it's a cubed self-service they can Logan at any time I see the sales they've made which is very important right now and the time of overt nineteen from a from a productivity and executional competitiveness listing those are two great use cases of cooling so the first one you know going from data quality 6% the 99% I mean 6% is all you do is spend time arguing about the data stills probity and then 99% you're there and you said it's just basically a timing issue use latency in the timing and then the second one is is instead of paving the cow path with an outdated you know ledger Barratt data process week you've now compressed that down to 24 hours you want to get the end of day so you've built in the agility into your data pipeline I'm gonna ask you then so when GDP are hit were you able to very quickly leverage this capability and and imply and then maybe other of compliance edik as well Oh actually you know what we just now was post gdpr us um and and we got GDP all right about three years ago but literally all we got right was reporting for risk and compliance purposes the use cases that we have now are really around business opportunity lists so the risk so we prioritize compliance report a long time ago were able to do real-time reporting of a single transaction perspective I'm suspicious transactions etc I'm two hours in Bank and our governor so from that perspective that was what was prioritize in the beginning which was the initial crisis so what you found is an entire engine geared towards making sure that data quality was correct for reporting and regulatory purposes but really that is not the be-all and end-all of it and if that's all we did I believe we really would not have succeeded or could have stayed dead we succeeded because data monetization is actually the penisy the leveraging of data for business opportunity is is actually then what tells you whether you've got the right culture or not you're just doing it to comply then it means the hearts and minds of the rest of the business still aren't in the data game I love this story because it's me it's nirvana for so many years we've been pouring money to mitigate risk and you have no choice do it you know the general council signs off on it the the CFO but grudgingly signs off on it but it's got to be done but for years decades we've been waiting to use these these risk initiatives to actually drive business value you know kind of happened with enterprise data warehouse but it was too slow it was complicated it certainly didn't happen with with email archiving that was just sort of a tech balk it sounds like you know we're at that point today and I want to ask you to me like you know you we talking earlier about you know the crisis gonna perpetuated this this cultural shift and you took advantage of that so we're on the mother nature dealt up a crisis like we've never seen before how do you see your data infrastructure your data pipeline your data ops what kind of opportunities do you see in front of you today as a result of mobit nineteen well I mean because of of the quality of mind data that we had now we were able to very quickly respond to to pivot nineteen in in our context where the government and put us on lockdown relatively early in in the curve in disciple of infection and what it meant is it brought a little bit of a shock to the economy because small businesses all of a sudden didn't have a source of revenue for potentially three to six weeks and based on the data quality work that we did before it was actually relatively easy to be agile enough to do the things that we did so within the first weekend of of lockdown in South Africa we were the first bank to proactively and automatically offer small businesses and student um students with loans on our books a instant preman payment holiday assuming they were in good standing and we did that upfront though it was actually an up out process rather than you had to fall in and arrange for that to happen and I don't believe we would have been able to do that if our data quality was not with um we have since made many more initiatives to try and keep the economy going to try and keep our clients in in a state of of liquidity and so you know data quality at that point and that Dharma is critical to knowing who you're talking to who needs what and in which solutions would best be fitted towards various segments I think the second component is um you know working from home now brings an entirely different normal right so so if we have not been able to provide productivity dashboard and and sales and dashboards to to management and all all the users that require it we would not be able to then validate or say what our productivity levels are and other people are working from home I mean we still have essential services workers that physically go into work but a lot of our relationship bankers are operating from home and that face the baseline and the foundation that we said productivity packing for various metric being able to be reported on in a short space of time has been really beneficial the next opportunity for us is we've been really good at doing this for the normal operational and front line and type of workers but knowledge workers have also know not necessarily been big productivity reporters historically they kind of get an output then the output might be six weeks down the line um but in a place where teams now are not locate co-located and work needs to flow in an edge of passion we need to start using the same foundation and and and data pipeline that we've laid down as a foundation for the reporting of knowledge work and agile team type of metric so in terms of developing new functionality and solutions there's a flow in a multidisciplinary team and how do those solutions get architected in a way where data assists in the flow of information so solutions can be optimally developed well it sounds like you're able to map a metric the business lines care about you know into these dashboards you using the sort of data mapping approach if you will which makes it much more relevant for the business as you said before they own the data that's got to be a huge business benefit just in terms of again we talked about cultural we talked about speed but but the business impact of being able to do that it has to be pretty substantial it really really is um and and the use cases really are endless because every department finds their own opportunity to utilize in terms of their also I think the accountability factor has has significantly increased because as the owner of a specific domain of data you know that you're not only accountable to yourself and your own operation but people downstream to you as a product and and an outcome depend on you to ensure that the quality of the data you produces is of a high nature so so curation of data is a very important thing and business is really starting to understand that so you know the cards Department knows that they are the owners of card data right and you know the vehicle asset Department knows that they are the owners of vehicle they are linked to a client profile and all of that creates an ecosystem around the plan I mean when you come to a bank you you don't want to be known as a number and you don't want to be known just for one product you want to be known across everything that you do with that with that organization but most banks are not structured that way they still are product houses and product systems on which your data reside and if those don't act in concert then we come across extremely schizophrenic as if we don't know our clients and so that's very very important to me like I could go on for an hour talking about this topic but unfortunately we're out of time thank you so much for sharing your deep knowledge and your story it's really an inspiring one and congratulations on all your success and I guess I'll leave it with you know what's next you gave us you know a glimpse of some of the things you wanted to do pressing some of the the elapsed times and the time cycle but but where do you see this going in the next you know kind of mid term and longer term currently I mean obviously AI is is a big is a big opportunity for all organizations and and you don't get automation of anything right if the foundations are not in place so you believe that this is a great foundation for anything AI to to be applied in terms of the use cases that we can find the second one is really um providing an API economy where certain data product can be shared with third parties I think that probably where we want to take things as well we are ready utilizing external third-party data sources I'm in our data quality management suite to ensure validity of client identity and and and residents and things of that nature but going forward because been picked and banks and other organizations are probably going to partner to to be more competitive going forward we need to be able to provide data product that can then be leveraged by external parties and vice-versa the trooper like thanks again great having you thank you very much Dave appreciate the opportunity and thank you for watching everybody that we go we are digging in the data offs we've got practitioners we've got influencers we've got experts we're going in the crowd chat it's the crowd chat dot net flash data ops but keep it right there way back but more coverage this is Dave Volante for the cube [Music]

Published Date : Apr 28 2020

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
six weeksQUANTITY

0.99+

IBMORGANIZATION

0.99+

JohannesburgLOCATION

0.99+

1989DATE

0.99+

Dave VolantePERSON

0.99+

24 hoursQUANTITY

0.99+

DavePERSON

0.99+

threeQUANTITY

0.99+

two hoursQUANTITY

0.99+

Standard BankORGANIZATION

0.99+

6%QUANTITY

0.99+

Palo AltoLOCATION

0.99+

two-weekQUANTITY

0.99+

South AfricaLOCATION

0.99+

99 percentQUANTITY

0.99+

late 2019DATE

0.99+

South AfricaLOCATION

0.99+

6QUANTITY

0.99+

less than 4,000 placesQUANTITY

0.99+

99%QUANTITY

0.99+

second componentQUANTITY

0.99+

1%QUANTITY

0.99+

six weeksQUANTITY

0.99+

21st centuryDATE

0.99+

BostonLOCATION

0.98+

first timeQUANTITY

0.98+

99QUANTITY

0.98+

five yearsQUANTITY

0.98+

first bankQUANTITY

0.98+

first stepQUANTITY

0.98+

five years agoDATE

0.98+

late 90sDATE

0.98+

each departmentQUANTITY

0.98+

ten years agoDATE

0.98+

an hourQUANTITY

0.97+

six weeks laterDATE

0.97+

KumalPERSON

0.97+

firstQUANTITY

0.97+

LedgerORGANIZATION

0.97+

todayDATE

0.97+

DavisPERSON

0.95+

first pictureQUANTITY

0.95+

second oneQUANTITY

0.95+

firstlyQUANTITY

0.94+

first weekendQUANTITY

0.94+

first oneQUANTITY

0.94+

Big BangEVENT

0.94+

a hundred and fifty eight years oldQUANTITY

0.94+

hundreds of branchesQUANTITY

0.93+

once every six monthsQUANTITY

0.93+

one productQUANTITY

0.92+

single transactionQUANTITY

0.91+

two great use casesQUANTITY

0.9+

end of 2019DATE

0.89+

eachQUANTITY

0.89+

LoganPERSON

0.88+

early this yearDATE

0.87+

each business unitQUANTITY

0.85+

ManaliPERSON

0.84+

DevOpsTITLE

0.84+

Itumeleng MonalePERSON

0.83+

a lot of practitionersQUANTITY

0.81+

about three years agoDATE

0.8+

yearsQUANTITY

0.77+

first use caseQUANTITY

0.77+

every branchQUANTITY

0.76+

oneQUANTITY

0.73+

every departmentQUANTITY

0.72+

beginning of this yearDATE

0.69+

nineteenQUANTITY

0.67+

every businessQUANTITY

0.67+

biteQUANTITY

0.64+

every managerQUANTITY

0.59+

MooreTITLE

0.59+

thousandsQUANTITY

0.56+

long timeDATE

0.53+

Matt Maccaux, Dell EMC | Big Data NYC 2017


 

>> Announcer: Live from Midtown Manhattan. It's the CUBE. Covering Big Data New York City 2017. Brought to you by Silicon Angle Media and its ecosystem sponsor. (electronic music) >> Hey, welcome back everyone, live here in New York. This is the CUBE here in Manhattan for Big Data NYC's three days of coverage. We're one day three, things are starting to settle in, starting to see the patterns out there. I'll say it's Big Data week here, in conjunction with Hadoop World, formerly known as Strata Conference, Strata-Hadoop, Strata-Data, soon to be Strata-AI, soon to be Strata-IOT. Big Data, Mike Maccaux who's the Global Big Data Practice Lead at Dell EMC. We've been in this world now for multiple years and, well, what a riot it's been. >> Yeah, it has. It's been really interesting as the organizations have gone from their legacy systems, they have been modernizing. And we've sort of seen Big Data 1.0 a couple years ago. Big Data 2.0 and now we're moving on sort of the what's next? >> Yeah. >> And it's interesting because the Big Data space has really lagged the application space. You talk about microservices-based applications, and deploying in the cloud and stateless things. The data technologies and the data space has not quite caught up. The technology's there, but the thinking around it, and the deployment of those, it seems to be a slower, more methodical process. And so what we're seeing in a lot of enterprises is that the ones that got in early, have built out capabilities, are now looking for that, how do we get to the next level? How do we provide self-service? How do we enable our data scientists to be more productive within the enterprise, right? If you're a startup, it's easy, right? You're somewhere in the public cloud, you're using cloud based API, it's all fine. But if you're an enterprise, with the inertia of those legacy systems and governance and controls, it's a different problem to solve for. >> Let's just face it. We'll just call a spade a spade. Total cost of ownership was out of control. Hadoop was great, but it was built for something that tried to be something else as it evolved. And that's good also, because we need to decentralize and democratize the incumbent big data warehouse stuff. But let's face it, Hadoop is not the game anymore, it's everything else. >> Right, yep. >> Around it so, we've seen that, that's a couple years old. It's about business value right now. That seems to be the big thing. The separation between the players that can deliver value for the customers. >> Matt: Yep. >> And show a little bit of headroom for future AI things, they've seen that. And have the cloud on premise play. >> Yep. >> Right now, to me, that's the call here. What do you, do you agree? >> I absolutely see it. It's funny, you talk to organizations and they say, "We're going cloud, we're doing cloud." Well what does that mean? Can you even put your data in the cloud? Are you allowed to? How are you going to manage that? How are you going to govern that? How are you going to secure that? So many organizations, once they've asked those questions, they've realized, maybe we should start with the model of cloud on premise. And figure out what works and what doesn't. How do users actually want to self serve? What do we templatize for them? And what do we give them the freedom to do themselves? >> Yeah. >> And they sort of get their sea legs with that, and then we look at sort of a hybrid cloud model. How do we be able to span on premise, off premise, whatever your public cloud is, in a seamless way? Because we don't want to end up with the same thing that we had with mainframes decades ago, where it was, IBM had the best, it was the fastest, it was the most efficient, it was the new paradigm. And then 10 years later, organizations realized they were locked in, there was different technology. The same thing's true if you go cloud native. You're sort of locked in. So how do you be cloud agnostic? >> How do you get locked in a cloud native? You mean with Amazon? >> Or any of them, right? >> Okay. >> So they all have their own APIs that are really good for doing certain things. So Google's TensorFlow happens to be very good. >> Yeah. Amazon EMR. >> But you build applications that are using those native APIS, you're sort of locked. And maybe you want to switch to something else. How do you do that? So the idea is to-- >> That's why Kubernetes is so important, right now. That's a very key workload and orchestration container-based system. >> That's right, so we believe that containerization of workloads that you can define in one place, and deploy anywhere is the path forward, right? Deploy 'em on prem, deploy 'em in a private cloud, public cloud, it doesn't matter the infrastructure. Infrastructure's irrelevant. Just like Hadoop is sort of not that important anymore. >> So let me get your reaction on this. >> Yeah. So Dell EMC, so you guys have actually been a supplier. They've been the leading supplier, and now with Dell EMC across the portfolio of everything. From Dell computers, servers and what not, to storage, EMC's run the table on that for many generations. Yeah, there's people nippin' at your heels like Pure, okay that's fine. >> Sure. It's still storage is storage. You got to store the data somewhere, so storage will always be around. Here's what I heard from a CXO. This is the pattern I hear, but I'll just summarize it in one conversation. And then you can give a reaction to it. John, my life is hell. I have application development investment plan, it's just boot up all these new developers. New dev ops guys. We're going to do open source, I got to build that out. I got that, trying to get dev ops going on. >> Yep. >> That's a huge initiative. I got the security team. I'm unbundling from my IT department, into a new, difference in a reporting to the board. And then I got all this data governance crap underneath here, and then I got IOT over the top, and I still don't know where my security holes are. >> Yep. And you want to sell me what? (Matt laughs) So that's the fear. >> That's right. >> Their plates are full. How do you guys help that scenario? You walk in, actually security's pretty much, important obviously you can see that. But how do you walk into that conversation? >> Yeah, it's sort of stop the madness, right? >> (laughs) That's right. >> And all of that matters-- >> No, but this is all critical. Every room in the house is on fire. >> It is. >> And I got to get my house in order, so your comment to me better not be hype. TensorFlow, don't give me this TensorFlow stuff. >> That's right. >> I want real deal. >> Right, I need, my guys are-- >> I love TensorFlow but, doesn't put the fire out. >> They just want spark, right? I need to speed up my-- >> John: All right, so how do you help me? >> So, what we'd do is, we want to complement and augment their existing capabilities with better ways of scaling their architecture. So let's help them containerize their big data workload so that they can deploy them anywhere. Let's help them define centralized security policies that can be defined once and enforced everywhere, so that now we have a way to automate the deployment of environments. And users can bring their own tools. They can bring their data from outside, but because we have intelligent centralized policies, we can enforce that. And so with our elastic data platform, we are doing that with partners in the industry, Blue Talent and Blue Data, they provide that capability on top of whatever the customer's infrastructure is. >> How important is it to you guys that Dell EMC are partnering. I know Michael Dell talks about it all the time, so I know it's important. But I want to hear your reaction. Down in the trenches, you're in the front lines, providing the value, pulling things together. Partnerships seem to be really important. Explain how you look at that, how you guys do your partners. You mentioned Blue Talent and Blue Data. >> That's right, well I'm in the consulting organization. So we are on the front lines. We are dealing with customers day in and day out. And they want us to help them solve their problems, not put more of our kit in their data centers, on their desktops. And so partnering is really key, and our job is to find where the problems are with our customers, and find the best tool for the best job. The right thing for the right workload. And you know what? If the customer says, "We're moving to Amazon," then Dell EMC might not sell any more compute infrastructure to that customer. They might, we might not, right? But it's our job to help them get there, and by partnering with organizations, we can help that seamless. And that strengthens the relationship, and they're going to purchase-- >> So you're saying that you will put the customer over Dell EMC? >> Well, the customer is number one to Dell EMC. Net promoter score is one of the most important metrics that we have-- >> Just want to make sure get on the record, and that's important, 'cause Amazon, and you know, we saw it in Net App. I've got to say, give Net App credit. They heard from customers early on that Amazon was important. They started building into Amazon support. So people saying, "Are you crazy?" VMware, everyone's saying, "Hey you capitulated "by going to Amazon." Turns out that that was a damn good move. >> That's right. >> For Kelsinger. >> Yep. >> Look at VM World. They're going to own the cloud service provider market as an arms dealer. >> Yep. >> I mean, you would have thought that a year ago, no way. And then when they did the deal, they said, >> We have really smart leadership in the organization. Obviously Michael is a brilliant man. And it sort of trickles on down. It's customer first, solve the customer's problems, build the relationship with them, and there will be other things that come, right? There will be other needs, other workloads. We do happen to have a private cloud solution with Virtustream. Some of these customers need that intermediary step, before they go full public, with a hosted private solution using a Virtustream. >> All right, so what's the, final question, so what's the number one thing you're working on right now with customers? What's the pattern? You got the stack rank, you're requests, your deliverables, where you spend your time. What's the top things you're working on? >> The top thing right now is scaling architectures. So getting organizations past, they've already got their first 20 use cases. They've already got lakes, they got pedabytes in there. How do we enable self service so that we can actually bring that business value back, as you mentioned. Bring that business value back by making those data scientists productive. That's number one. Number two is aligning that to overall strategy. So organizations want to monetize their data, but they don't really know what that means. And so, within a consulting practice, we help our customers define, and put a road map in place, to align that strategy to their goals, the policies, the security, the GDP, or the regulations. You have to marry the business and the technology together. You can't do either one in isolation. Or ultimately, you're not going to be efficient. >> All right, and just your take on Big Data NYC this year. What's going on in Manhattan this year? What's the big trend from your standpoint? That you could take away from this show besides it becoming a sprawl of you know, everyone just promoting their wares. I mean it's a big, hyped show that O'Reilly does, >> It is. >> But in general, what's the takeaway from the signal? >> It was good hearing from customers this year. Customer segments, I hope to see more of that in the future. Not all just vendors showing their wares. Hearing customers actually talk about the pain and the success that they've had. So the Barclay session where they went up and they talked about their entire journey. It was a packed room, standing room only. They described their journey. And I saw other banks walk up to them and say, "We're feeling the same thing." And this is a highly competitive financial services space. >> Yeah, we had Packsotta's customer on Standard Bank. They came off about their journey, and how they're wrangling automating. Automating's the big thing. Machine learning, automation, no doubt. If people aren't looking at that, they're dead in my mind. I mean, that's what I'm seeing. >> That's right. And you have to get your house in order before you can start doing the fancy gardening. >> John: Yeah. >> And organizations aspire to do the gardening, right? >> I couldn't agree more. You got to be able to drive the car, you got to know how to drive the car if you want to actually play in this game. But it's a good example, the house. Got to get the house in order. Rooms are on fire (laughs) right? Put the fires out, retrench. That's why private cloud's kicking ass right now. I'm telling you right now. Wikibon nailed it in their true private cloud survey. No other firm nailed this. They nailed it, and it went viral. And that is, private cloud is working and growing faster than some areas because the fact of the matter is, there's some bursting through the clouds, and great use cases in the cloud. But, >> Yep. >> People have to get the ops right on premise. >> Matt: That's right, yep. >> I'm not saying on premise is going to be the future. >> Not forever. >> I'm just saying that the stack and rack operational model is going cloud model. >> Yes. >> John: That's absolutely happening, that's growing. You agree? >> Absolutely, we completely, we see that pattern over and over and over again. And it's the Goldilocks problem. There's the organizations that say, "We're never going to go cloud." There's the organizations that say, "We're going to go full cloud." For big data workloads, I think there's an intermediary for the next couple years, while we figure out operating pulse. >> This evolution, what's fun about the market right now, and it's clear to me that, people who try to get a spot too early, there's too many diseconomies of scale. >> Yep. >> Let the evolution, Kubernetes looking good off the tee right now. Docker containers and containerization in general's happened. >> Yep. >> Happening, dev ops is going mainstream. >> Yep. >> So that's going to develop. While that's developing, you get your house in order, and certainly go to the cloud for bursting, and other green field opportunities. >> Sure. >> No doubt. >> But wait until everything's teed up. >> That's right, the right workload in the right place. >> I mean Amazon's got thousands of enterprises using the cloud. >> Yeah, absolutely. >> It's not like people aren't using the cloud. >> No, they're, yeah. >> It's not 100% yet. (laughs) >> And what's the workload, right? What data can you put there? Do you know what data you're putting there? How do you secure that? And how do you do that in a repeatable way. Yeah, and you think cloud's driving the big data market right now. That's what I was saying earlier. I was saying, I think that the cloud is the unsubtext of this show. >> It's enabling. I don't know if it's driving, but it's the enabling factor. It allows for that scale and speed. >> It accelerates. >> Yeah. >> It accelerates... >> That's a better word, accelerates. >> Accelerates that horizontally scalable. Mike, thanks for coming on the CUBE. Really appreciate it. More live action we're going to have some partners on with you guys. Next, stay with us. Live in Manhattan, this is the CUBE. (electronic music)

Published Date : Sep 29 2017

SUMMARY :

Brought to you by Silicon Angle Media This is the CUBE here in Manhattan sort of the what's next? And it's interesting because the decentralize and democratize the The separation between the players And have the cloud on premise play. Right now, to me, that's the call here. the model of cloud on premise. IBM had the best, it was the fastest, So Google's TensorFlow happens to be very good. So the idea is to-- and orchestration container-based system. and deploy anywhere is the path forward, right? So let me get your So Dell EMC, so you guys have And then you can give a reaction to it. I got the security team. So that's the fear. How do you guys help that scenario? Every room in the house is on fire. And I got to get my house in order, doesn't put the fire out. the deployment of environments. How important is it to you guys And that strengthens the relationship, Well, the customer is number one to Dell EMC. and you know, we saw it in Net App. They're going to own the cloud service provider market I mean, you would have thought that a year ago, no way. build the relationship with them, You got the stack rank, you're the policies, the security, the GDP, or the regulations. What's the big trend from your standpoint? and the success that they've had. Automating's the big thing. And you have to get your house in order But it's a good example, the house. the stack and rack operational model John: That's absolutely happening, that's growing. And it's the Goldilocks problem. and it's clear to me that, Kubernetes looking good off the tee right now. and certainly go to the cloud for bursting, That's right, the right workload in the I mean Amazon's got It's not 100% yet. And how do you do that in a repeatable way. but it's the enabling factor. Mike, thanks for coming on the CUBE.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

MichaelPERSON

0.99+

AmazonORGANIZATION

0.99+

Mike MaccauxPERSON

0.99+

Matt MaccauxPERSON

0.99+

IBMORGANIZATION

0.99+

MattPERSON

0.99+

ManhattanLOCATION

0.99+

Silicon Angle MediaORGANIZATION

0.99+

DellORGANIZATION

0.99+

EMCORGANIZATION

0.99+

New YorkLOCATION

0.99+

100%QUANTITY

0.99+

Blue DataORGANIZATION

0.99+

MikePERSON

0.99+

Blue TalentORGANIZATION

0.99+

Dell EMCORGANIZATION

0.99+

Standard BankORGANIZATION

0.99+

Big DataORGANIZATION

0.99+

this yearDATE

0.99+

oneQUANTITY

0.99+

VM WorldORGANIZATION

0.99+

Michael DellPERSON

0.99+

thousandsQUANTITY

0.99+

BarclayORGANIZATION

0.99+

HadoopTITLE

0.98+

three daysQUANTITY

0.98+

decades agoDATE

0.98+

NYCLOCATION

0.98+

one dayQUANTITY

0.98+

one conversationQUANTITY

0.98+

GoldilocksPERSON

0.98+

O'ReillyORGANIZATION

0.98+

a year agoDATE

0.98+

WikibonORGANIZATION

0.98+

Midtown ManhattanLOCATION

0.98+

10 years laterDATE

0.97+

TensorFlowORGANIZATION

0.97+

first 20 use casesQUANTITY

0.97+

GoogleORGANIZATION

0.97+

KelsingerPERSON

0.97+

New York CityLOCATION

0.96+

firstQUANTITY

0.95+

VMwareORGANIZATION

0.93+

Strata ConferenceEVENT

0.93+

Big DataEVENT

0.92+

Strata-HadoopEVENT

0.9+

Strata-DataEVENT

0.9+

Number twoQUANTITY

0.9+

next couple yearsDATE

0.86+

couple years agoDATE

0.84+

2017DATE

0.84+

Global Big DataORGANIZATION

0.83+

PacksottaORGANIZATION

0.83+

Hadoop WorldORGANIZATION

0.83+

Big Data 2.0TITLE

0.81+

threeQUANTITY

0.79+

couple yearsQUANTITY

0.76+

Big Data 1.0TITLE

0.73+

Net AppTITLE

0.72+

2017EVENT

0.71+

one placeQUANTITY

0.69+

number oneQUANTITY

0.67+

KubernetesORGANIZATION

0.67+

enterprisesQUANTITY

0.66+