Joshua Haslett, Google | Palo Alto Networks Ignite22
>> Narrator: TheCUBE presents Ignite '22, brought to you by Palo Alto Networks. >> Greetings from the MGM Grand Hotel in beautiful Las Vegas. It's theCUBE Live Day two of our coverage of Palo Alto Networks, ignite 22. Lisa Martin, Dave Vellante. Dave, what can I say? This has been a great couple of days. The amount of content we have created and shared with our viewers on theCUBE is second to none. >> Well, the cloud has completely changed the way that people think about security. >> Yeah. You know at first it was like, oh, the cloud, how can that be secure? And they realized, wow actually cloud is pretty secure if we do it right. And so shared responsibility model and partnerships are critical. >> Partnerships are critical, especially as more and more organizations are multicloud by default. Right? These days we're going to be bring Google into the conversation. Josh Haslet joins us. Strategic Partnership Manager at Google. Welcome. Great to have you Josh. >> Hi Lisa, thanks for having me here. >> So you are a secret squirrel from Palo Alto Networks. Talk to me a little bit about your background and about your role at Google in terms of partnership management. >> Sure, I feel like we need to add that to my title. [Lisa] You should, secret squirrel. >> Great. Yeah, so as a matter of fact, I've been at Google for two and a half years. Prior to that, I was at Palo Alto Networks. I was managing the business development relationship with Google, and I was kind of at the inception of when the cash came in and, and decided that we needed to think about how to do security in a new way from a platform standpoint, right? And so it was exciting because when I started with the partnership, we were focusing on still securing you know, workloads in the cloud with next generation firewall. And then as we went through acquisitions the Palo Alto added it expanded the capabilities of what we could do from cloud security. And so it was very exciting, you know, to, to make sure that we could onboard with Google Cloud, take a look at how not only Palo Alto was enhancing their solutions as they built those and delivered those from Google Cloud. But then how did we help customers adopt cloud in a more easy fashion by making things, you know more tightly integrated? And so that's really been a lot of what I've been involved in, which has been exciting to see the growth of both organizations as we see customers shifting to cloud transformation. And then how do they deploy these new methodologies and tools from a security perspective to embrace this new way of working and this new way of, you know creating applications and doing digital transformation. >> Important, since work is no longer a place, it's an activity. Organizations have have to be able to cater to the distributed workforce. Of course, the, the, the workforce has to be able to access everything that they need to, but it has to be done in a secure way regardless of what kind of company you are. >> Yeah, you're right, Lisa. It's interesting. I mean, the pandemic has really changed and accelerated that transformation. I think, you know really remote working has started previous to that. And I think Nikesh called that out in the keynote too right? He, he really said that this has been ongoing for a while, but I think, you know organizations had to figure out how to scale and that was something that they weren't as prepared for. And a lot of the technology that was deployed for VPN connectivity or supporting remote work that was fixed hardware. And so cloud deployment and cloud architecture specifically with Prisma access really enabled this transformation to happen in a much faster, you know, manner. And where we've come together is how do we make sure that customers, no matter what device, what user what application you're accessing. As we take a look at ZTNA, Zero Trust Network Access 2.0, how can we come together to partner to make sure the customers have that wide range of coverage and capability? >> How, how do you how would you describe Josh Google's partner strategy generally and specifically, you know, in the world of cyber and what makes it unique and different? >> Yeah, so that's a great question. I think, you know, from Google Cloud perspective we heard TK mention this in the keynote with Nikesh. You know, we focus on on building a secure platform first and foremost, right? We want to be a trusted cloud for customers to deploy on. And so, you know, we find that as customers do one of two things, they're looking at, you know, reducing cost as they move to cloud and consolidate workloads or as they embrace innovation and look at, you know leveraging things like BigQuery for analytics and you know machine learning for the way that they want to innovate and stay ahead of the competition. They have to think about how do they secure in a new way. And so, not only do we work on how do we secure our own platform, we work with trusted partners to make sure that customers have you mentioned it earlier, Dave the shared security model, right? How do they take a look at their applications and their workloads and this new way of working as they go to CI/CD pipelines, they start thinking about DevSecOps. How do they integrate tooling that is frictionless and seamless for their, for their teams to deploy but allows them to quickly embrace that cloud transformation journey. And so, yes, partners are critical to that. The other thing is, you know we find that, you mentioned earlier, Lisa that customers are multicloud, right? That's kind of the the new normal as we look at enterprises today. And so Google Cloud's going to do a great job at securing our platform, but we need partners that can help customers deploy policy that embraces not only the things that they put in Google Cloud but as they're in their transformation journey. How that embraces the estates that are in data centers the things that are still on-prem. And really this is about making sure that the applications no matter where they are, the databases no matter where they are, and the users no matter where they are are all secure in that new framework of deploying and embracing innovation on public cloud. >> One of the things that almost everybody from Palo Alto Networks talks about is their partnering strategy their acquisition strategy integrations. And I was doing some research. There's over 50 joint integrations that Google Cloud and Palo Alto Networks. Have you talked about Zero Trust Network Access 2.0 that was announced yesterday. >> Correct. >> Give us a flavor of what that is and what does it deliver that 1.0 did not? >> Well, great. And what I'd like to do is touch a little bit on those 50 integrations because it's been, you know, a a building rolling thunder, shall we say as far as how have we taken a look at customers embracing the cloud. The first thing was we took a look at at how do we make sure that Palo Alto solutions are easier for customers to deploy and to orchestrate in Google Cloud making their journey to embracing cloud seamless and easy. The second thing was how could we make that deployment and the infrastructure even more easy to adopt by doing first party integrations? So earlier this year we announced cloud IDS intrusion detection system where we actually have first party directly in our console of customers being able to simply select, they want to turn on inspection of the traffic that's running on Google Cloud and it leverages the threat detection capability from Palo Alto Networks. So we've gone from third party integration alone to first party integration. And that really takes us to, you know, the direction of what we're seeing customers need to embrace now which is, this is your Zero Trusts strategy and Zero Trust 2.0 helps customers do a number of things. The first is, you know, we don't want to just verify a user and their access into the environment once. It needs to be continuous inspection, right? Cause their state could change. I think, you know, the, the teams we're talking about some really good ways of addressing, you know for instance, TSA checkpoints, right? And how does that experience look? We need to make sure that we're constantly evaluating that user's access into the environment and then we need to make sure that the content that's being accessed or, you know, loaded into the environment is inspected. So we need continuous content inspection. And that's where our partnership really comes together very well, is not only can we take care of any app any device, any user, and especially as we take a look at you know, embracing contractor like use cases for instance where we have managed devices and unmanaged devices we bring together beyond Corp and Prisma access to take a look at how can we make sure any device, any user any application is secure throughout. And then we've got content inspection of how that ZTNA 2.0 experience looks like. >> Josh, that threat data that you just talked about. >> Yeah. >> Who has access to that? Is it available to any partner, any customer, how... it seems like there's gold in them, NAR hills, so. >> There is. But, this could be gold going both ways. So how, how do you adjudicate and, how do you make sure that first of all that that data's accessible for, for good and not in how do you protect it against, you know, wrong use? >> Well, this is one of the great things about partnering with Palo Alto because technically the the threat intelligence is coming from their ingestion of malware, known threats, and unknown threats right into their technology. Wildfire, for instance, is a tremendous example of this where unit 42 does, you know, analysis on unknown threats based upon what Nikesh said on stage. They've taken their I think he said 27 days to identification and remediation down to less than a minute, right? So they've been able to take the intelligence of what they ingest from all of their existing customers the unknown vulnerabilities that are identified quickly assessing what those look like, and then pushing out information to the rest of their customers so that they can remediate and protect against those threats. So we get this shared intelligence from the way that Palo Alto leverages that capability and we've brought that natively into Google Cloud with cloud intrusion detection. >> So, okay, so I'm, I'm I dunno why I have high frequency trading in my mind cause it used to be, you know, like the norm was, oh it's going to take a year to identify an intrusion. And, and, and now it's down to, you know take was down to 27 days. Now it's down to a minute. Now it's not. That's best practice. And I'm, again, I'm thinking high frequency trading how do I beat the speed of light? And that's kind of where we're headed, right? >> Right. >> And so that's why he said one minute's not enough. We have to keep going. >> That's right. >> So guys got your best people working on that? >> Well, as a matter of fact, so Palo Alto Networks, you know when we take a look at what Nikesh said from stage, he talked about using machine learning and AI to get ahead of what we what they look at as far as predictability not only about behaviors in the environment so things that are not necessarily known threats but things that aren't behaving properly in the environment. And you can start to detect based on that. The second piece of it then is a lot of that technology is built on Google Cloud. So we're leveraging, their leveraging the capabilities that come together with you know, aggregation of, of logs the file stitching across the entire environment from the endpoint through to cloud operations the things that they detect for network content inspection putting all those files together to understand, you know where has the threat vector entered how has it gone lateral inside the environment? And then how do you make sure that you remediate all of those points of intrusion. And so yeah it's been exciting to see how our product teams have worked together to continue to advance the capabilities for speed for customers. >> And secure speed is critical. We had the opportunity this morning to speak with Lee Claridge, the chief product officer, and you know one of the things that I had heard about Lee is that despite all of the challenges in cybersecurity and the amorphous expansion of the threat network and the sophistication of the adversaries he's really optimistic about what it's going to enable organizations to do. I see you smiling. Do you share that optimism? >> I, I do. I think, you know, when you bring, when you bring leaders together to tackle big problems, I think, you know we've got the right teams working on the right things and we understand the problems that the customers are facing. And so, you know, from a a Google cloud perspective we understand that partnering with Palo Alto Networks helps to make sure that that optimism continues. You know, we work on continuous innovation when it comes to Google Cloud security framework, but then partnering with Palo Alto brings additional capabilities to the table. >> Vision for the, for the partnership. Where do you want to see it go? What's... we're two to five years down the road, what's it look like? Maybe two to three years. Let's go. >> Well, it was interesting. I, I think neer was the one that mentioned on stage about, you know how AI is going to start replacing us in our main jobs, right? I I think there's a lot of truth to that. I think as we look forward, we see that our teams are going to continue to help with automation remediation and we're going to have the humans working on things that are more interesting and important. And so that's an exciting place to go because today the reality is that we are understaffed in cybersecurity across the industry and we just can't hire enough people to make sure that we can detect, remediate and secure, you know every user endpoint and environment out there. So it's exciting to see that we've got a capability to move in a direction to where we can make sure that we get ahead of the threat actors. >> Yeah. So he said within five years your SOC will be AI based and and basically he elaborated saying there's a lot of stuff that you're doing today that you're not going to be doing tomorrow. >> That's true. >> And that's going to continue to be a moving target I would think Google is probably ahead in that game and ahead of most, right? I mean, you guys were there early. I mean, I remember when Hadoop was all the rage like just at the beginning you guys like, yeah, you know Google's like, no, no, no, we're not doing Hadoop anymore. That's like old news. So you tended to be, I don't know, at least five maybe seven years ahead of the industry. So I imagine you using a lot of those AI techniques in your own business today. >> Absolutely. I mean, I think you see it in our consumer products, and you certainly see it in the the capabilities we make available to enterprise as far as how they can innovate on our cloud. And we want to make sure that we continue to provide those capabilities, you know not only for the tools that we build but the tools that customers use. >> What's the, as we kind of get towards the end of our conversation here, we we talk about zero trust as, as a journey, as an approach. It's not a product, it's not a tool. What is the, who's involved in the zero trust journey from the customers perspective? Is this solely with the CSO, CSO, CIOs or is this at the CEO level going, we have to be a data company but we have to be a secure data company 24/7. >> It's interesting as you've seen malware, phishing, ransomware attacks. >> Yeah. >> This is not only just a CSO CIO conversation it's a board level conversation. And so, you know the way to address this new way of working where we have very distributed environments where you can't create a perimeter anymore. You need to strategize with zero trust. And so continuously, when we're talking to customers we're hearing that as a main initiative, you know from the CIO's office and from the board level. >> Got it, last question. The upgrade path for existing customers from 1., ZTNA 1.0 to 2.0. How simple is that? >> It's easy. You know, when we take- >> Is there an easy button? >> So here's the great thing [Dave] If you're feeling lucky. [Lisa] Yeah. (group laughs) >> Well, Palo Alto, right? Billing prisma access has really taken what was traditional security that was an on-prem or a data center deployed strategy to cloud-based. And so we've worked with customers like Princeton University who had to quickly transition from in-person learning to distance learning find a way to ramp their staff their faculty and their students. And we were able to, you know Palo Alto deploy it on Google Cloud's, you know network that solution in very quick order and had those, you know, everybody back up and running. So deployment and upgrade path is, is simple when you look at cloud deployed architectures to address zero trusts network. >> That's awesome. Some of those, some of those use cases that came out of the pandemic were mind blowing but also really set the table for other organizations to go, yes, this can be done. And it doesn't have to take forever because frankly where security is concerned, we don't have time. >> That's right. And it's so much faster than traditional architectures where you had to procure hardware. >> Yeah. >> Deploy it, configure it, and then, you know push agents out to all the endpoints and and get your users provisioned. In this case, we're talking about cloud delivered, right? So I've seen, you know, with Palo Alto deploying for customers that run on Google Cloud they've deployed tens of thousands of users in a very short order. You know, we're talking It was, it's not months anymore. It's not weeks anymore. It's days >> Has to be days. Josh, it's been such a pleasure having you on the program. Thank you for stopping by and talking with Dave and me about Google Cloud, Palo Alto Networks in in addition to secret squirrel. I feel like when you were describing your background that you're like the love child of Palo Alto Networks and Google Cloud, you might put that on your cartoon. >> That is a huge compliment. I really appreciate that, Lisa, thank you so much. >> Thanks so much, Josh. [Josh] It's been a pleasure being here with you. [Dave] Thank you >> Oh, likewise. For Josh Haslett and Dave, I'm Lisa Martin. You're watching theCUBE, the leader in live coverage for emerging and enterprise tech. (upbeat outro music)
SUMMARY :
brought to you by Palo Alto Networks. The amount of content we have created completely changed the way how can that be secure? Great to have you Josh. So you are a secret squirrel to add that to my title. and decided that we needed to what kind of company you are. And a lot of the technology And so, you know, we find One of the things that almost everybody and what does it deliver that 1.0 did not? of addressing, you know that you just talked about. Is it available to any against, you know, wrong use? and remediation down to And, and, and now it's down to, you know We have to keep going. that you remediate all of that despite all of the And so, you know, from a Where do you want to see it go? And so that's an exciting place to go of stuff that you're doing today And that's going to not only for the tools that we build at the CEO level going, we It's interesting And so, you know from 1., ZTNA 1.0 to 2.0. You know, when we take- So here's the great thing And we were able to, you know And it doesn't have to take you had to procure hardware. So I've seen, you know, I feel like when you were Lisa, thank you so much. [Dave] Thank you For Josh Haslett and
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Josh | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Joshua Haslett | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Josh Haslet | PERSON | 0.99+ |
Josh Haslett | PERSON | 0.99+ |
27 days | QUANTITY | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
Lee Claridge | PERSON | 0.99+ |
Princeton University | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
50 integrations | QUANTITY | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
five years | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
one minute | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
less than a minute | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
yesterday | DATE | 0.99+ |
two and a half years | QUANTITY | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Hadoop | TITLE | 0.99+ |
both ways | QUANTITY | 0.99+ |
seven years | QUANTITY | 0.99+ |
second thing | QUANTITY | 0.98+ |
Prisma | ORGANIZATION | 0.98+ |
second piece | QUANTITY | 0.98+ |
Zero Trusts | ORGANIZATION | 0.98+ |
TheCUBE | ORGANIZATION | 0.98+ |
Lee | PERSON | 0.98+ |
earlier this year | DATE | 0.98+ |
both organizations | QUANTITY | 0.98+ |
second | QUANTITY | 0.97+ |
One | QUANTITY | 0.97+ |
Day two | QUANTITY | 0.97+ |
first thing | QUANTITY | 0.97+ |
Google Cloud | TITLE | 0.96+ |
first party | QUANTITY | 0.96+ |
ZTNA 2.0 | TITLE | 0.96+ |
a year | QUANTITY | 0.96+ |
Nikesh | PERSON | 0.95+ |
over 50 joint integrations | QUANTITY | 0.94+ |
tens of thousands of users | QUANTITY | 0.94+ |
zero trust | QUANTITY | 0.92+ |
two things | QUANTITY | 0.92+ |
Empowerment Through Inclusion | Beyond.2020 Digital
>>Yeah, yeah. >>Welcome back. I'm so excited to introduce our next session empowerment through inclusion, reimagining society and technology. This is a topic that's personally very near and dear to my heart. Did you know that there's only 2% of Latinas in technology as a Latina? I know that there's so much more we could do collectively to improve these gaps and diversity. I thought spot diversity is considered a critical element across all levels of the organization. The data shows countless times. A diverse and inclusive workforce ultimately drives innovation better performance and keeps your employees happier. That's why we're passionate about contributing to this conversation and also partnering with organizations that share our mission of improving diversity across our communities. Last beyond, we hosted the session during a breakfast and we packed the whole room. This year, we're bringing the conversation to the forefront to emphasize the importance of diversity and data and share the positive ramifications that it has for your organization. Joining us for this session are thought spots Chief Data Strategy Officer Cindy Housing and Ruhollah Benjamin, associate professor of African American Studies at Princeton University. Thank you, Paola. So many >>of you have journeyed with me for years now on our efforts to improve diversity and inclusion in the data and analytic space. And >>I would say >>over time we cautiously started commiserating, eventually sharing best practices to make ourselves and our companies better. And I do consider it a milestone. Last year, as Paola mentioned that half the room was filled with our male allies. But I remember one of our Panelists, Natalie Longhurst from Vodafone, suggesting that we move it from a side hallway conversation, early morning breakfast to the main stage. And I >>think it was >>Bill Zang from a I G in Japan. Who said Yes, please. Everyone else agreed, but more than a main stage topic, I want to ask you to think about inclusion beyond your role beyond your company toe. How Data and analytics can be used to impact inclusion and equity for the society as a whole. Are we using data to reveal patterns or to perpetuate problems leading Tobias at scale? You are the experts, the change agents, the leaders that can prevent this. I am thrilled to introduce you to the leading authority on this topic, Rou Ha Benjamin, associate professor of African studies at Princeton University and author of Multiple Books. The Latest Race After Technology. Rou ha Welcome. >>Thank you. Thank you so much for having me. I'm thrilled to be in conversation with you today, and I thought I would just kick things off with some opening reflections on this really important session theme. And then we could jump into discussion. So I'd like us to as a starting point, um, wrestle with these buzzwords, empowerment and inclusion so that we can have them be more than kind of big platitudes and really have them reflected in our workplace cultures and the things that we design in the technologies that we put out into the world. And so to do that, I think we have to move beyond techno determinism, and I'll explain what that means in just a minute. Techno determinism comes in two forms. The first, on your left is the idea that technology automation, um, all of these emerging trends are going to harm us, are going to necessarily harm humanity. They're going to take all the jobs they're going to remove human agency. This is what we might call the techno dystopian version of the story and this is what Hollywood loves to sell us in the form of movies like The Matrix or Terminator. The other version on your right is the techno utopian story that technologies automation. The robots as a shorthand, are going to save humanity. They're gonna make everything more efficient, more equitable. And in this case, on the surface, he seemed like opposing narratives right there, telling us different stories. At least they have different endpoints. But when you pull back the screen and look a little bit more closely, you see that they share an underlying logic that technology is in the driver's seat and that human beings that social society can just respond to what's happening. But we don't really have a say in what technologies air designed and so to move beyond techno determinism the notion that technology is in the driver's seat. We have to put the human agents and agencies back into the story, the protagonists, and think carefully about what the human desires worldviews, values, assumptions are that animate the production of technology. And so we have to put the humans behind the screen back into view. And so that's a very first step and when we do that, we see, as was already mentioned, that it's a very homogeneous group right now in terms of who gets the power and the resource is to produce the digital and physical infrastructure that everyone else has to live with. And so, as a first step, we need to think about how to create more participation of those who are working behind the scenes to design technology now to dig a little more a deeper into this, I want to offer a kind of low tech example before we get to the more hi tech ones. So what you see in front of you here is a simple park bench public bench. It's located in Berkeley, California, which is where I went to graduate school and on this particular visit I was living in Boston, and so I was back in California. It was February. It was freezing where I was coming from, and so I wanted to take a few minutes in between meetings to just lay out in the sun and soak in some vitamin D, and I quickly realized, actually, I couldn't lay down on this bench because of the way it had been designed with these arm rests at intermittent intervals. And so here I thought. Okay, the the armrest have, ah functional reason why they're there. I mean, you could literally rest your elbows there or, um, you know, it can create a little bit of privacy of someone sitting there that you don't know. When I was nine months pregnant, it could help me get up and down or for the elderly, the same thing. So it has a lot of functional reasons, but I also thought about the fact that it prevents people who are homeless from sleeping on the bench. And this is the Bay area that we were talking about where, in fact, the tech boom has gone hand in hand with a housing crisis. Those things have grown in tandem. So innovation has grown within equity because we haven't thought carefully about how to address the social context in which technology grows and blossoms. And so I thought, Okay, this crisis is growing in this area, and so perhaps this is a deliberate attempt to make sure that people don't sleep on the benches by the way that they're designed and where the where they're implemented and So this is what we might call structural inequity. By the way something is designed. It has certain effects that exclude or harm different people. And so it may not necessarily be the intense, but that's the effect. And I did a little digging, and I found, in fact, it's a global phenomenon, this thing that architects called hostile architecture. Er, I found single occupancy benches in Helsinki, so only one booty at a time no laying down there. I found caged benches in France. And in this particular town. What's interesting here is that the mayor put these benches out in this little shopping plaza, and within 24 hours the people in the town rallied together and had them removed. So we see here that just because we have, uh, discriminatory design in our public space doesn't mean we have to live with it. We can actually work together to ensure that our public space reflects our better values. But I think my favorite example of all is the meter bench. In this case, this bench is designed with spikes in them, and to get the spikes to retreat into the bench, you have to feed the meter you have to put some coins in, and I think it buys you about 15 or 20 minutes. Then the spikes come back up. And so you'll be happy to know that in this case, this was designed by a German artists to get people to think critically about issues of design, not just the design of physical space but the design of all kinds of things, public policies. And so we can think about how our public life in general is metered, that it serves those that can pay the price and others are excluded or harm, whether we're talking about education or health care. And the meter bench also presents something interesting. For those of us who care about technology, it creates a technical fix for a social problem. In fact, it started out his art. But some municipalities in different parts of the world have actually adopted this in their public spaces in their parks in order to deter so called lawyers from using that space. And so, by a technical fix, we mean something that creates a short term effect, right. It gets people who may want to sleep on it out of sight. They're unable to use it, but it doesn't address the underlying problems that create that need to sleep outside in the first place. And so, in addition to techno determinism, we have to think critically about technical fixes that don't address the underlying issues that technology is meant to solve. And so this is part of a broader issue of discriminatory design, and we can apply the bench metaphor to all kinds of things that we work with or that we create. And the question we really have to continuously ask ourselves is, What values are we building in to the physical and digital infrastructures around us? What are the spikes that we may unwittingly put into place? Or perhaps we didn't create the spikes. Perhaps we started a new job or a new position, and someone hands us something. This is the way things have always been done. So we inherit the spike bench. What is our responsibility when we noticed that it's creating these kinds of harms or exclusions or technical fixes that are bypassing the underlying problem? What is our responsibility? All of this came to a head in the context of financial technologies. I don't know how many of you remember these high profile cases of tech insiders and CEOs who applied for Apple, the Apple card and, in one case, a husband and wife applied and the husband, the husband received a much higher limit almost 20 times the limit as his wife, even though they shared bank accounts, they lived in Common Law State. And so the question. There was not only the fact that the husband was receiving a much better interest rate and the limit, but also that there was no mechanism for the individuals involved to dispute what was happening. They didn't even know what the factors were that they were being judged that was creating this form of discrimination. So in terms of financial technologies, it's not simply the outcome that's the issue. Or that could be discriminatory, but the process that black boxes, all of the decision making that makes it so that consumers and the general public have no way to question it. No way to understand how they're being judged adversely, and so it's the process not only the product that we have to care a lot about. And so the case of the apple cart is part of a much broader phenomenon of, um, racist and sexist robots. This is how the headlines framed it a few years ago, and I was so interested in this framing because there was a first wave of stories that seemed to be shocked at the prospect that technology is not neutral. Then there was a second wave of stories that seemed less surprised. Well, of course, technology inherits its creator's biases. And now I think we've entered a phase of attempts to override and address the default settings of so called racist and sexist robots, for better or worse. And here robots is just a kind of shorthand, that the way people are talking about automation and emerging technologies more broadly. And so as I was encountering these headlines, I was thinking about how these air, not problems simply brought on by machine learning or AI. They're not all brand new, and so I wanted to contribute to the conversation, a kind of larger context and a longer history for us to think carefully about the social dimensions of technology. And so I developed a concept called the New Jim Code, which plays on the phrase Jim Crow, which is the way that the regime of white supremacy and inequality in this country was defined in a previous era, and I wanted us to think about how that legacy continues to haunt the present, how we might be coding bias into emerging technologies and the danger being that we imagine those technologies to be objective. And so this gives us a language to be able to name this phenomenon so that we can address it and change it under this larger umbrella of the new Jim Code are four distinct ways that this phenomenon takes shape from the more obvious engineered inequity. Those were the kinds of inequalities tech mediated inequalities that we can generally see coming. They're kind of obvious. But then we go down the line and we see it becomes harder to detect. It's happening in our own backyards. It's happening around us, and we don't really have a view into the black box, and so it becomes more insidious. And so in the remaining couple minutes, I'm just just going to give you a taste of the last three of these, and then a move towards conclusion that we can start chatting. So when it comes to default discrimination. This is the way that social inequalities become embedded in emerging technologies because designers of these technologies aren't thinking carefully about history and sociology. Ah, great example of this came Thio headlines last fall when it was found that widely used healthcare algorithm affecting millions of patients, um, was discriminating against black patients. And so what's especially important to note here is that this algorithm healthcare algorithm does not explicitly take note of race. That is to say, it is race neutral by using cost to predict healthcare needs. This digital triaging system unwittingly reproduces health disparities because, on average, black people have incurred fewer costs for a variety of reasons, including structural inequality. So in my review of this study by Obermeyer and colleagues, I want to draw attention to how indifference to social reality can be even more harmful than malicious intent. It doesn't have to be the intent of the designers to create this effect, and so we have to look carefully at how indifference is operating and how race neutrality can be a deadly force. When we move on to the next iteration of the new Jim code coded exposure, there's attention because on the one hand, you see this image where the darker skin individual is not being detected by the facial recognition system, right on the camera or on the computer. And so coated exposure names this tension between wanting to be seen and included and recognized, whether it's in facial recognition or in recommendation systems or in tailored advertising. But the opposite of that, the tension is with when you're over included. When you're surveiled when you're to centered. And so we should note that it's not simply in being left out, that's the problem. But it's in being included in harmful ways. And so I want us to think carefully about the rhetoric of inclusion and understand that inclusion is not simply an end point. It's a process, and it is possible to include people in harmful processes. And so we want to ensure that the process is not harmful for it to really be effective. The last iteration of the new Jim Code. That means the the most insidious, let's say, is technologies that are touted as helping US address bias, so they're not simply including people, but they're actively working to address bias. And so in this case, There are a lot of different companies that are using AI to hire, create hiring software and hiring algorithms, including this one higher view. And the idea is that there there's a lot that AI can keep track of that human beings might miss. And so so the software can make data driven talent decisions. After all, the problem of employment discrimination is widespread and well documented. So the logic goes, Wouldn't this be even more reason to outsource decisions to AI? Well, let's think about this carefully. And this is the look of the idea of techno benevolence trying to do good without fully reckoning with what? How technology can reproduce inequalities. So some colleagues of mine at Princeton, um, tested a natural learning processing algorithm and was looking to see whether it exhibited the same, um, tendencies that psychologists have documented among humans. E. And what they found was that in fact, the algorithm associating black names with negative words and white names with pleasant sounding words. And so this particular audit builds on a classic study done around 2003, before all of the emerging technologies were on the scene where two University of Chicago economists sent out thousands of resumes to employers in Boston and Chicago, and all they did was change the names on those resumes. All of the other work history education were the same, and then they waited to see who would get called back. And the applicants, the fictional applicants with white sounding names received 50% more callbacks than the black applicants. So if you're presented with that study, you might be tempted to say, Well, let's let technology handle it since humans are so biased. But my colleagues here in computer science found that this natural language processing algorithm actually reproduced those same associations with black and white names. So, too, with gender coded words and names Amazon learned a couple years ago when its own hiring algorithm was found discriminating against women. Nevertheless, it should be clear by now why technical fixes that claim to bypass human biases are so desirable. If Onley there was a way to slay centuries of racist and sexist demons with a social justice box beyond desirable, more like magical, magical for employers, perhaps looking to streamline the grueling work of recruitment but a curse from any jobseekers, as this headline puts it, your next interview could be with a racist spot, bringing us back to that problem space we started with just a few minutes ago. So it's worth noting that job seekers are already developing ways to subvert the system by trading answers to employers test and creating fake applications as informal audits of their own. In terms of a more collective response, there's a federation of European Trade unions call you and I Global that's developed a charter of digital rights for work, others that touches on automated and a I based decisions to be included in bargaining agreements. And so this is one of many efforts to change their ecosystem to change the context in which technology is being deployed to ensure more protections and more rights for everyday people in the US There's the algorithmic accountability bill that's been presented, and it's one effort to create some more protections around this ubiquity of automated decisions, and I think we should all be calling from more public accountability when it comes to the widespread use of automated decisions. Another development that keeps me somewhat hopeful is that tech workers themselves are increasingly speaking out against the most egregious forms of corporate collusion with state sanctioned racism. And to get a taste of that, I encourage you to check out the hashtag Tech won't build it. Among other statements that they have made and walking out and petitioning their companies. Who one group said, as the people who build the technologies that Microsoft profits from, we refuse to be complicit in terms of education, which is my own ground zero. Um, it's a place where we can we can grow a more historically and socially literate approach to tech design. And this is just one, um, resource that you all can download, Um, by developed by some wonderful colleagues at the Data and Society Research Institute in New York and the goal of this interventionist threefold to develop an intellectual understanding of how structural racism operates and algorithms, social media platforms and technologies, not yet developed and emotional intelligence concerning how to resolve racially stressful situations within organizations, and a commitment to take action to reduce harms to communities of color. And so as a final way to think about why these things are so important, I want to offer a couple last provocations. The first is for us to think a new about what actually is deep learning when it comes to computation. I want to suggest that computational depth when it comes to a I systems without historical or social depth, is actually superficial learning. And so we need to have a much more interdisciplinary, integrated approach to knowledge production and to observing and understanding patterns that don't simply rely on one discipline in order to map reality. The last provocation is this. If, as I suggested at the start, inequity is woven into the very fabric of our society, it's built into the design of our. Our policies are physical infrastructures and now even our digital infrastructures. That means that each twist, coil and code is a chance for us toe. We've new patterns, practices and politics. The vastness of the problems that we're up against will be their undoing. Once we accept that we're pattern makers. So what does that look like? It looks like refusing color blindness as an anecdote to tech media discrimination rather than refusing to see difference. Let's take stock of how the training data and the models that we're creating have these built in decisions from the past that have often been discriminatory. It means actually thinking about the underside of inclusion, which can be targeting. And how do we create a more participatory rather than predatory form of inclusion? And ultimately, it also means owning our own power in these systems so that we can change the patterns of the past. If we're if we inherit a spiked bench, that doesn't mean that we need to continue using it. We can work together to design more just and equitable technologies. So with that, I look forward to our conversation. >>Thank you, Ruth. Ha. That was I expected it to be amazing, as I have been devouring your book in the last few weeks. So I knew that would be impactful. I know we will never think about park benches again. How it's art. And you laid down the gauntlet. Oh, my goodness. That tech won't build it. Well, I would say if the thoughts about team has any saying that we absolutely will build it and will continue toe educate ourselves. So you made a few points that it doesn't matter if it was intentional or not. So unintentional has as big an impact. Um, how do we address that does it just start with awareness building or how do we address that? >>Yeah, so it's important. I mean, it's important. I have good intentions. And so, by saying that intentions are not the end, all be all. It doesn't mean that we're throwing intentions out. But it is saying that there's so many things that happened in the world, happened unwittingly without someone sitting down to to make it good or bad. And so this goes on both ends. The analogy that I often use is if I'm parked outside and I see someone, you know breaking into my car, I don't run out there and say Now, do you feel Do you feel in your heart that you're a thief? Do you intend to be a thief? I don't go and grill their identity or their intention. Thio harm me, but I look at the effect of their actions, and so in terms of art, the teams that we work on, I think one of the things that we can do again is to have a range of perspectives around the table that can think ahead like chess, about how things might play out, but also once we've sort of created something and it's, you know, it's entered into, you know, the world. We need to have, ah, regular audits and check ins to see when it's going off track just because we intended to do good and set it out when it goes sideways, we need mechanisms, formal mechanisms that actually are built into the process that can get it back on track or even remove it entirely if we find And we see that with different products, right that get re called. And so we need that to be formalized rather than putting the burden on the people that are using these things toe have to raise the awareness or have to come to us like with the apple card, Right? To say this thing is not fair. Why don't we have that built into the process to begin with? >>Yeah, so a couple things. So my dad used to say the road to hell is paved with good intentions, so that's >>yes on. In fact, in the book, I say the road to hell is paved with technical fixes. So they're me and your dad are on the same page, >>and I I love your point about bringing different perspectives. And I often say this is why diversity is not just about business benefits. It's your best recipe for for identifying the early biases in the data sets in the way we build things. And yet it's such a thorny problem to address bringing new people in from tech. So in the absence of that, what do we do? Is it the outside review boards? Or do you think regulation is the best bet as you mentioned a >>few? Yeah, yeah, we need really need a combination of things. I mean, we need So on the one hand, we need something like a do no harm, um, ethos. So with that we see in medicine so that it becomes part of the fabric and the culture of organizations that that those values, the social values, have equal or more weight than the other kinds of economic imperatives. Right. So we have toe have a reckoning in house, but we can't leave it to people who are designing and have a vested interest in getting things to market to regulate themselves. We also need independent accountability. So we need a combination of this and going back just to your point about just thinking about like, the diversity on teams. One really cautionary example comes to mind from last fall, when Google's New Pixel four phone was about to come out and it had a kind of facial recognition component to it that you could open the phone and they had been following this research that shows that facial recognition systems don't work as well on darker skin individuals, right? And so they wanted Thio get a head start. They wanted to prevent that, right? So they had good intentions. They didn't want their phone toe block out darker skin, you know, users from from using it. And so what they did was they were trying to diversify their training data so that the system would work better and they hired contract workers, and they told these contract workers to engage black people, tell them to use the phone play with, you know, some kind of app, take a selfie so that their faces would populate that the training set, But they didn't. They did not tell the people what their faces were gonna be used for, so they withheld some information. They didn't tell them. It was being used for the spatial recognition system, and the contract workers went to the media and said Something's not right. Why are we being told? Withhold information? And in fact, they told them, going back to the park bench example. To give people who are homeless $5 gift cards to play with the phone and get their images in this. And so this all came to light and Google withdrew this research and this process because it was so in line with a long history of using marginalized, most vulnerable people and populations to make technologies better when those technologies are likely going toe, harm them in terms of surveillance and other things. And so I think I bring this up here to go back to our question of how the composition of teams might help address this. I think often about who is in that room making that decision about sending, creating this process of the contract workers and who the selfies and so on. Perhaps it was a racially homogeneous group where people didn't want really sensitive to how this could be experienced or seen, but maybe it was a diverse, racially diverse group and perhaps the history of harm when it comes to science and technology. Maybe they didn't have that disciplinary knowledge. And so it could also be a function of what people knew in the room, how they could do that chest in their head and think how this is gonna play out. It's not gonna play out very well. And the last thing is that maybe there was disciplinary diversity. Maybe there was racial ethnic diversity, but maybe the workplace culture made it to those people. Didn't feel like they could speak up right so you could have all the diversity in the world. But if you don't create a context in which people who have those insights feel like they can speak up and be respected and heard, then you're basically sitting on a reservoir of resource is and you're not tapping into it to ensure T to do right by your company. And so it's one of those cautionary tales I think that we can all learn from to try to create an environment where we can elicit those insights from our team and our and our coworkers, >>your point about the culture. This is really inclusion very different from just diversity and thought. Eso I like to end on a hopeful note. A prescriptive note. You have some of the most influential data and analytics leaders and experts attending virtually here. So if you imagine the way we use data and housing is a great example, mortgage lending has not been equitable for African Americans in particular. But if you imagine the right way to use data, what is the future hold when we've gotten better at this? More aware >>of this? Thank you for that question on DSO. You know, there's a few things that come to mind for me one. And I think mortgage environment is really the perfect sort of context in which to think through the the both. The problem where the solutions may lie. One of the most powerful ways I see data being used by different organizations and groups is to shine a light on the past and ongoing inequities. And so oftentimes, when people see the bias, let's say when it came to like the the hiring algorithm or the language out, they see the names associated with negative or positive words that tends toe have, ah, bigger impact because they think well, Wow, The technology is reflecting these biases. It really must be true. Never mind that people might have been raising the issues in other ways before. But I think one of the most powerful ways we can use data and technology is as a mirror onto existing forms of inequality That then can motivate us to try to address those things. The caution is that we cannot just address those once we come to grips with the problem, the solution is not simply going to be a technical solution. And so we have to understand both the promise of data and the limits of data. So when it comes to, let's say, a software program, let's say Ah, hiring algorithm that now is trained toe look for diversity as opposed to homogeneity and say I get hired through one of those algorithms in a new workplace. I can get through the door and be hired. But if nothing else about that workplace has changed and on a day to day basis I'm still experiencing microaggressions. I'm still experiencing all kinds of issues. Then that technology just gave me access to ah harmful environment, you see, and so this is the idea that we can't simply expect the technology to solve all of our problems. We have to do the hard work. And so I would encourage everyone listening to both except the promise of these tools, but really crucially, um, Thio, understand that the rial kinds of changes that we need to make are gonna be messy. They're not gonna be quick fixes. If you think about how long it took our society to create the kinds of inequities that that we now it lived with, we should expect to do our part, do the work and pass the baton. We're not going to magically like Fairy does create a wonderful algorithm that's gonna help us bypass these issues. It can expose them. But then it's up to us to actually do the hard work of changing our social relations are changing the culture of not just our workplaces but our schools. Our healthcare systems are neighborhoods so that they reflect our better values. >>Yeah. Ha. So beautifully said I think all of us are willing to do the hard work. And I like your point about using it is a mirror and thought spot. We like to say a fact driven world is a better world. It can give us that transparency. So on behalf of everyone, thank you so much for your passion for your hard work and for talking to us. >>Thank you, Cindy. Thank you so much for inviting me. Hey, I live back to you. >>Thank you, Cindy and rou ha. For this fascinating exploration of our society and technology, we're just about ready to move on to our final session of the day. So make sure to tune in for this customer case study session with executives from Sienna and Accenture on driving digital transformation with certain AI.
SUMMARY :
I know that there's so much more we could do collectively to improve these gaps and diversity. and inclusion in the data and analytic space. Natalie Longhurst from Vodafone, suggesting that we move it from the change agents, the leaders that can prevent this. And so in the remaining couple minutes, I'm just just going to give you a taste of the last three of these, And you laid down the gauntlet. And so we need that to be formalized rather than putting the burden on So my dad used to say the road to hell is paved with good In fact, in the book, I say the road to hell for identifying the early biases in the data sets in the way we build things. And so this all came to light and the way we use data and housing is a great example, And so we have to understand both the promise And I like your point about using it is a mirror and thought spot. I live back to you. So make sure to
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Cindy | PERSON | 0.99+ |
Ruth | PERSON | 0.99+ |
France | LOCATION | 0.99+ |
Natalie Longhurst | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Boston | LOCATION | 0.99+ |
Paola | PERSON | 0.99+ |
Japan | LOCATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
$5 | QUANTITY | 0.99+ |
Ruhollah Benjamin | PERSON | 0.99+ |
Chicago | LOCATION | 0.99+ |
Rou Ha Benjamin | PERSON | 0.99+ |
Bill Zang | PERSON | 0.99+ |
Helsinki | LOCATION | 0.99+ |
Vodafone | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Sienna | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
Data and Society Research Institute | ORGANIZATION | 0.99+ |
Cindy Housing | PERSON | 0.99+ |
Last year | DATE | 0.99+ |
nine months | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Obermeyer | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
European Trade unions | ORGANIZATION | 0.99+ |
Berkeley, California | LOCATION | 0.99+ |
Multiple Books | TITLE | 0.99+ |
two | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Tobias | PERSON | 0.99+ |
February | DATE | 0.99+ |
University of Chicago | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
one case | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Jim Crow | PERSON | 0.99+ |
This year | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
20 minutes | QUANTITY | 0.99+ |
I Global | ORGANIZATION | 0.99+ |
two forms | QUANTITY | 0.98+ |
first step | QUANTITY | 0.98+ |
2% | QUANTITY | 0.98+ |
Terminator | TITLE | 0.98+ |
Thio | PERSON | 0.98+ |
last fall | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
The Matrix | TITLE | 0.98+ |
24 hours | QUANTITY | 0.98+ |
The Latest Race After Technology | TITLE | 0.98+ |
Jim | PERSON | 0.98+ |
Princeton University | ORGANIZATION | 0.98+ |
Rou ha | PERSON | 0.97+ |
one | QUANTITY | 0.97+ |
both ends | QUANTITY | 0.97+ |
Accenture | ORGANIZATION | 0.96+ |
one booty | QUANTITY | 0.96+ |
almost 20 times | QUANTITY | 0.96+ |
Hollywood | ORGANIZATION | 0.95+ |
centuries | QUANTITY | 0.95+ |
rou | PERSON | 0.95+ |
one group | QUANTITY | 0.94+ |
Onley | PERSON | 0.93+ |
about 15 | QUANTITY | 0.93+ |
one discipline | QUANTITY | 0.93+ |
millions of patients | QUANTITY | 0.92+ |
four distinct ways | QUANTITY | 0.92+ |
Pixel four | COMMERCIAL_ITEM | 0.9+ |
few minutes ago | DATE | 0.9+ |
50% more | QUANTITY | 0.88+ |
few years ago | DATE | 0.88+ |
couple years ago | DATE | 0.88+ |
African | OTHER | 0.85+ |
one effort | QUANTITY | 0.85+ |
single occupancy benches | QUANTITY | 0.84+ |
African American | OTHER | 0.82+ |
Become the Analyst of the Future | Beyond.2020 Digital
>>Yeah, yeah. >>Hello and welcome back. I hope you're ready for our next session. Become the analyst of the future. We'll hear the customer's perspective about their increasingly strategic role and the potential career growth that comes with it. Joining us today are Nate Weaver, director of product marketing at Thought Spot. Yasmin Natasa, senior director of national sales strategy and insights over at Comcast and Steve Would Ledge VP of customer and partner initiatives. Oughta Terex. We're so happy to have you all here today. I'll hand things over to meet to kick things off. >>Yeah, thanks, Paula. I'd like to start with a personal story that might resonate with our audience, says an analyst. Early in my career, I was the intermediary between the business and what we called I t right. Basically database administrators. I was responsible for understanding business logic gathering requirements, Ringling data building dashboards for executives and, in my case, 100 plus sales reps. Every request that came through the business intelligence team. We owned everything, right? Indexing databases for speed, S s. I s packages for data transfer maintaining Department of Data Lakes all out cubes, etcetera. We were busy. Now we were constantly building or updating something. The worst part is an analyst, If you ask the business, every request took too long. It was slow. Well, from an analyst perspective, it was slow because it's a complex process with many moving parts. So as an analyst fresh out of grad school often felt overeducated, sometimes underappreciated, like a report writer, we were constantly overwhelmed by never ending ad hoc request, even though we had hundreds of reports and robust dashboards that would answer 90% of the questions. If the end user had an analytical foundation like I did right, if they knew where to look and how to navigate dimensions and hierarchies, etcetera. So anyway, point is, we had to build everything through this complex and slow, um, process. So for the first decade of my career, I had this gut feeling there had to be a better way, and today we're going to talk about how thought SWAT and all tricks are empowering the analysts of the future by reimagining the entire data pipeline. This paradigm shift allows businesses and data teams thio, connect, transform, model and, most importantly, automate what used to be this terribly complex data analysis process. With that, I'd like to hand it over to Steve to describe the all tricks analytic process automation platform and how they help analysts create more robust data sets that enable non technical end users toe ask and answer their own questions, but also more sophisticated business questions. Using Search and AI Analytics in Thoughts Fire Steve over to you. >>Thanks for that really relevant example. Nate and Hi, everyone. I'm Steve. Will it have been in the market for about 20 years, and then Data Analytics and I can completely I can completely appreciate what they was talking about. And what I think is unique about all tricks is how we not only bring people to the data for a self service environment, but I think what's often missed in analytics is the automation and figure out. What is the business process that needs to be repeated and connecting the dots between the date of the process and the people To speed up those insights, uh, to not only give people to self service, access to information, to do data prep and blending, but more advanced analytics, and then driving that into the business in terms of outcomes. And I'll show you what that looks like when you talk about the analytic process automation platform on the next slide. What we've done is we've created this end to end workflow where data is on the left, outcomes around the right and within the ultras environment, we unify data prep and blend analytics, data science and process automation. In this continuous process, so is analysis or an end user. I can go ahead and grab whatever data is made available to me by i t. You have got 80 plus different inputs and a p i s that we connect to. You have this drag and drop environment where you conjoined the data together, apply filters, do some descriptive analytics, even do things like grab text documents and do sentiments analysis through that with text, mining and natural language processing. As people get more used to the platform and want to do more advanced analytics and process automation, we also have things like assisted machine learning and predictive analytics out of the box directly within it as well and typically within organizations. These would be different departments and different tools doing this and we try to bring all this together in one system. So there's 260 different automation building blocks again and drag a drop environment. And then those outcomes could be published into a place where thoughts about visualizes that makes it accessible to the business users to do additional search based B I and analytics directly from their browser. And it's not just the insights that you would get from thought spot, but a lot of automation is also driving unattended, unattended or automated actions within operational systems. If you take an example of one of our customers that's in the telecommunications world, they drive customer insights around likeliness to turn or next best offers, and they deliver that within a salesforce applications. So when you walk into a retail store for your cell phone provider, they will know more about you in terms of what services you might be interested in. And if you're not happy at the time and things like that. So it's about how do we connect all those components within the business process? And what this looks like is on this screen and I won't go through in detail, but it's ah, dragon drop environment, where everything from the input data, whether it's cloud on Prem or even a local file that you might have for a spreadsheet. Uh, I t wants to have this environment where it's governed, and there's sort of components that you're allowed to have access to so that you could do that data crept and blending and not just data within your organization, but also then being able to blend in third party demographic data or firm a graphic information from different third party data providers that we have joined that data together and then do more advanced analytics on it. So you could have a predictive score or something like that being applied and blending that with other information about your customer and then sharing those insights through thought spots and more and more users throughout the organization. And bring that to life. In addition to you, as we know, is gonna talk about her experience of Comcast. Given the world that we're in right now, uh, hospital care and the ability to have enough staff and and take care of all of our people is a really important thing. So one of our customers, a large healthcare network in the South was using all tricks to give not only analyst with the organization, but even nurses were being trained on how to use all tricks and do things like improve observation. Wait time eso that when you come in, the nurse was actually using all tricks to look at the different time stamps out of ethic and create a process for the understands. What are all the causes for weight in three observation room and identify outliers of people that are trying to come in for a certain type of care that may wait much longer than on average. And they're actually able to reduce their wait time by 22%. And the outliers were reduced by about 50% because they did a better job of staffing. And overall staffing is a big issue if you can imagine trying to have a predictive idea of how many staff you need in the different medical facilities around the network, they were bringing in data around the attrition of healthcare workers, the volume of patient load, the scheduled holidays that people have and being able to predict 4 to 6 months out. What are the staff that they need to prepare toe have on on site and ready so they could take care of the patients as they're coming in. In this case, they used in our module within all tricks to do that, planning to give HR and finance a view of what's required, and they could do a drop, a drop down by department and understand between physicians, nurses and different facilities. What is the predicted need in terms of staffing within that organization? So you go to the next slide done, you know, aside from technology, the number one thing for the analysts of the future is being able to focus on higher value business initiatives. So it's not just giving those analysts the ability to do this self service dragon drop data prep and blend and analytics, but also what are the the common problems that we've solved as a community? We have 150,000 people in the alter its community. We've been in business for over 23 years, so you could go toe this gallery and not only get things like the thought spot tools that we have to connect so you can do direct query through T Q l and pushed it into thought spot in Falcon memory and other things. But look at things like the example here is the healthcare District, where we have some of our third party partners that have built out templates and solutions around predictive staffing and tracking the complicating conditions around Cove. It as an example on different KPs that you might have in healthcare, environment and retail, you know, over 150 different solution templates, tens of thousands of different posts across different industries, custom return and other problems that we can solve, and bringing that to the community that help up level, that collective knowledge, that we have this business analyst to solve business problems and not just move data, and then finally, you know, as part of that community, part of my role in all tricks is not only working with partners like thought spot, but I also share our C suite advisory board, which we just happen to have this morning, as a matter of fact, and the number one thing we heard and discussed at that customer advisory board is a round up Skilling, particularly in this virtual world where you can't do in classroom learning how do we game if I and give additional skills to our staff so that they can digitize and automate more and more analytic processes in their organization? I won't go through all this, but we do have learning paths for both beginners. A swell as advanced people that want to get more into the data science world. And we've also given back to our community. There's an initiative called Adapt where we've essentially donated 125 hours of free training free access to our products. Within the first two weeks, we've had over 9000 people participate in that get certified across 100 different companies and then get jobs in this new world where they've got additional skills now around analytics. So I encourage you to check that out, learn what all tricks could do for you in up Skilling your journey becoming that analysts of the future And thanks for having me today thoughts fun looking forward to the rest of conversation with the Azmin. >>Yeah, thanks. I'm gonna jump in real quick here because you just mentioned something that again as an analyst, is incredibly important. That's, you know, empowering Mia's an analyst to answer those more sophisticated business questions. There's a few things that you touched on that would be my personal top three. Right? Is an analyst. You talked about data cleansing because everyone has data quality problems enhancing the data sets. I came from a supply chain analytics background. So things like using Dun and Bradstreet in your examples at risk profiles to my supplier data and, of course, predictive analytics, like creating a forecast to estimate future demand. These are things that I think is an analyst. I could truly provide additional value. I'd like to show you a quick example, if I may, of the type of ad hoc request that I would often get from the business. And it's fairly complex, but with a combination of all tricks and thought spots very easy to answer. Crest. The request would look something like this. I'd like to see my spend this year versus last year to date. Uh, maybe look at that monthly for Onley, my area of responsibility. But I only want to focus on my top five suppliers from this year, right? And that's like an end statement. I saw that in one of your slides and so in thoughts about that's answering or asking a simple question, you're getting the answer in maybe 30 seconds. And that's because behind the scenes, the last part is answering those complexities for you. And if I were to have to write this out in sequel is an analyst, it could take me upwards, maybe oven our because I've got to get into the right environment in the database and think about the filters and the time stamps, and there's a lot going on. So again, thoughts about removes that curiosity tax, which when becoming the analysts of the future again, if I don't have to focus on the small details that allows me to focus on higher value business initiatives, right. And I want to empower the business users to ask and answer their own questions. That does come with up Skilling, the business users as well, by improving data fluency through education and to expand on this idea. I wanna invite Yasmin from Comcast to kind of tell her personal story. A zit relates to analysts of the future inside Comcast. >>Well, thank you for having me. It's such a pleasure. And Steve, thank you so much for starting and setting the groundwork for this amazing conversation. You hit the nail on the head. I mean, data is a Trojan horse off analytics, and our ability to generate that inside is eyes busy is anchored on how well we can understand the data on get the data clean It and tools, like all tricks, are definitely at the forefront off ability to accelerate the I'll speak to incite, which is what hot spot brings to the table. Eso My story with Thought spot started about a year and a half ago as I'm part of the Sales Analytics team that Comcast all group is officially named, uh, compensation strategy and insight. We are part of the Consumer Service, uh, Consumer Service expected Consumer Service group in the cell of Residential Sales Organization, and we were created to provide insight to the Comcast sells channel leaders Thio make sure that they have database insight to drive sales performance, increased revenue. We When we started the function, we were really doing a lot of data wrangling, right? It wasn't just a self performance. It waas understanding who are customers were pulling a data on productivity. Uh, so we were going into HR systems are really going doing the E T l process, but manually sometimes. And we took a pause at one point because we realized that we're spending a good 70% of our time just doing that and maybe 5% of our time storytelling. Now our strength was the storytelling. And so you see how that balance wasn't really there. And eso Jim, my leader pause. It pulls the challenge of Is there a better way of doing this on DSO? We scan the industry, and that's how we came across that spot. And the first time I saw the tool, I fell in love. There's not a way for me to describe it. I fell in love because I love the I love the the innovation that it brought in terms of removing the middleman off, having to create all these layers between the data and me. I want to touch the data. I want to feel it, and I want to ask questions directly to it, and that's what that's what does for us. So when we launched when we launch thoughts about for our team, we immediately saw the difference in our ability to provide our stakeholders with better answers faster. And the combination of the two makes us actually quite dangerous right on. But it has been It has been a great great journey altogether are inter plantation was done on the cloud because at the time, uh, the the we had access to AWS account and I love to be at the edge of technology, So I figured it would be a good excuse for me to learn more about cloud technology on its been things. Video has been a great journey. Um, my, my background, uh, into analytics comes from science. And so, for me, uh, you know, we are really just stretching the surface off. What is possible in terms off the how well remind data to answer business questions on Do you know, tools like thought spot in combination with technologies. Like all trades, eyes really are really the way to go about it. And the up skilling, um the up skilling off the analysts that comes with it is really, really, really exciting because people who love data want to be able to, um want to be efficient about how they spend time with data. Andi and that's what? That's what I spend a lot of my Korea I'd Comcast and before Comcast doing so It gives me a lot of ah, a lot of pleasure to, um to bring that to my organization and to walk with colleagues outside off. We didn't Comcast to do so The way we the way we use stops, that's what we did not seem is varies. One of the things that I'm really excited about is integrating it with all the tools that we have in our analytics portfolio, and and I think about it as the over the top strategy. Right. Uh, group, like many other groups, wouldn't Comcast and with our organizations also used to be I tools. And it is not, um, you choose on a mutually exclusive strategies, right? Eso In our world, we build decision making, uh, decision making tools from the analysis that we generate. When we have the read out with the cells channel leaders, we we talk about the insight, and invariably there's some components off those insight that they want to see on a regular basis. That becomes a reporting activity. We're not in a reporting team. We partner with reporting team for them to think that input and and and put it on and create a regular cadence for it. Uh, the over the top strategy for me is, um, are working with the reporting team to then embed the link to talk spot within the report so that the questions that can be answered by the reports left dashboard are answered within the dashboard. But we make sure that we replicate the data source that feeds that report into thought spot so that the additional questions can then be insert in that spot. It and it works really well because it creates a great collaboration with our partners on the on the reporting side of the house on it also helps of our end the end users do the cell service in along the analytic spectrum, right? You go to the report when you can, when all you need is dropped down the filters and when the questions become more sophisticated, you still have a platform in the place to go to ask the questions directly and do things that are a bit funk here, like, you know, use for like you because you don't know what you're looking for. But you know that there's there's something there to find. >>Yeah, so yeah, I mean, a quick question. Our think would be on this year's analytics meet Cloud open for everyone and your experience. What does that mean to you? Including in the context of the thought spot community inside Comcast? >>Oh yes, it's the Comcast community. The passport commedia Comcast is very vibrant. My peers are actually our colleagues, who I have in my analytics village prior to us getting on board with hot spot and has been a great experience for us. So have thoughts, but as an additional kind of topic Thio to connect on. So my team was the second at Comcast to implement that spot. The first waas, the product team led by Skylar, and he did his instance on Prem. Um, he the way that he brings his data is, is through a sequel server. When I came what, as I mentioned earlier, I went on the cloud because, as I mentioned earlier, I like to be on the edge of technology and at the time thought spot was moving towards towards the cloud. So I wanted to be part of that wave. There's Ah, mobile team has a new instance that is on the cloud thing. The of the compliance team uses all tricks, right? And the S O that that community to me is really how the intellectual capital that we're building, uh, using thought spot is really, really growing on by what happens to me. And the power of being on the cloud is that if we are all using the same tool, right and we are all kind of bringing our data together, um, we are collaborating in ways that make the answer to the business questions that the C suite is asking much better, much richer. They don't always come to us at the same time, right? Each function has his own analytics group, Andi. Sometimes if we are not careful, we're working silo. But the community allows us to know about what each other are working on. And the fact that we're using the same tool creates a common language that translates into opportunities for collaboration, which will translate into, as I mentioned earlier, richer better on what comprehensive answers to the business. So analyst Nick the cloud means better, better business and better business answers and and better experiences for customers at the end of the day, so I'm all for it. >>That's great. Yeah. Comcast is obviously a very large enterprise. Lots of data sources, lots of data movement. It's cool to hear that you have a bit of a hybrid architecture, er thought spot both on premise. Stand in the cloud and you did bring up one other thing that I think is an important question for Steve. Most people may just think of all tricks as an E T l tool, but I know customers like Comcast use it for way more than just that. Can you expand upon the differences between what people think of a detail tool and what all tricks is today? >>Yeah, I think of E. T L tools as sort of production class source to target mapping with transformations and data pipelines that air typically built by I t. To service, you know, major areas within the business, and that's super valuable. One doesn't go away, and in all tricks can provide some of that. But really, it's about the end user empowerment. So going back to some of guys means examples where you know there may be some new information that you receive from a third party or even a spreadsheet that you develop something on. You wanna start to play around that information so you can think of all the tricks as a data lab or data science workbench, in fact, that you know, we're in the Gartner Magic Quadrant for data science and machine learning platforms. Because a lot of that innovation is gonna happen at the individual level we're trying to solve. And over time, you might want to take that learning and then have I t production eyes it within another system. But you know, there's this trade off between the agility that end users need and sort of the governance that I t needs to bring. So we work best in a environment where you have that in user autonomy. You could do E tail workloads, data prep and Glenn bringing your own information on then work with i t. To get that into the right server based environment to scale out in the thought spot and other applications that you develop new insights for the business. So I see it is ah, two sides of the same coin. In many ways, a home. And >>with that we're gonna hand it back over to a Paula. >>Thank you, Nate, Yasmin and Steve for the insights into the journey of the analyst of the future. Next up in a couple minutes, is our third session of today with Ruhollah Benjamin, professor of African American Studies at Princeton University, and our chief data strategy officer, Cindy House, in do a couple of jumping jacks or grab a glass of water and don't miss out on the next important discussion about diversity and data.
SUMMARY :
and the potential career growth that comes with it. So for the first decade of my career, And it's not just the insights that you would get from thought spot, the analysts of the future again, if I don't have to focus on the small details that allows me to focus saw the difference in our ability to provide our stakeholders with better answers Including in the context of the thought spot community inside And the S O that that community to me is Stand in the cloud and you did bring up the thought spot and other applications that you develop new insights for the business. and our chief data strategy officer, Cindy House, in do a couple
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Steve | PERSON | 0.99+ |
Comcast | ORGANIZATION | 0.99+ |
Paula | PERSON | 0.99+ |
Ruhollah Benjamin | PERSON | 0.99+ |
90% | QUANTITY | 0.99+ |
Nate Weaver | PERSON | 0.99+ |
Yasmin | PERSON | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
5% | QUANTITY | 0.99+ |
4 | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Nate | PERSON | 0.99+ |
125 hours | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
third session | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Glenn | PERSON | 0.99+ |
Yasmin Natasa | PERSON | 0.99+ |
80 plus | QUANTITY | 0.99+ |
150,000 people | QUANTITY | 0.99+ |
22% | QUANTITY | 0.99+ |
Cindy House | PERSON | 0.99+ |
Nick | PERSON | 0.99+ |
Each function | QUANTITY | 0.99+ |
100 plus sales reps. | QUANTITY | 0.99+ |
over 23 years | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Comca | ORGANIZATION | 0.99+ |
6 months | QUANTITY | 0.99+ |
two sides | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
one system | QUANTITY | 0.99+ |
100 different companies | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Jim | PERSON | 0.99+ |
about 20 years | QUANTITY | 0.98+ |
this year | DATE | 0.98+ |
Thought Spot | ORGANIZATION | 0.98+ |
about 50% | QUANTITY | 0.98+ |
Mia | PERSON | 0.98+ |
first two weeks | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
one point | QUANTITY | 0.97+ |
Department of Data Lakes | ORGANIZATION | 0.97+ |
hundreds of reports | QUANTITY | 0.97+ |
over 9000 people | QUANTITY | 0.97+ |
first decade | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
Steve Would Ledge | PERSON | 0.95+ |
Gartner | ORGANIZATION | 0.95+ |
first time | QUANTITY | 0.94+ |
five suppliers | QUANTITY | 0.94+ |
Dun | ORGANIZATION | 0.92+ |
tens of thousands | QUANTITY | 0.92+ |
Princeton University | ORGANIZATION | 0.92+ |
Oughta Terex | PERSON | 0.91+ |
over 150 different solution | QUANTITY | 0.91+ |
Azmin | PERSON | 0.9+ |
a year and a half ago | DATE | 0.9+ |
260 different automation building blocks | QUANTITY | 0.87+ |
couple minutes | QUANTITY | 0.86+ |
Onley | ORGANIZATION | 0.85+ |
top three | QUANTITY | 0.83+ |
Andi | PERSON | 0.83+ |
about | DATE | 0.79+ |
Thio | PERSON | 0.74+ |
Bradstreet | ORGANIZATION | 0.74+ |