Image Title

Search Results for NPI:

Dhabaleswar “DK” Panda, Ohio State State University | SuperComputing 22


 

>>Welcome back to The Cube's coverage of Supercomputing Conference 2022, otherwise known as SC 22 here in Dallas, Texas. This is day three of our coverage, the final day of coverage here on the exhibition floor. I'm Dave Nicholson, and I'm here with my co-host, tech journalist extraordinaire, Paul Gillum. How's it going, >>Paul? Hi, Dave. It's going good. >>And we have a wonderful guest with us this morning, Dr. Panda from the Ohio State University. Welcome Dr. Panda to the Cube. >>Thanks a lot. Thanks a lot to >>Paul. I know you're, you're chopping at >>The bit, you have incredible credentials, over 500 papers published. The, the impact that you've had on HPC is truly remarkable. But I wanted to talk to you specifically about a product project you've been working on for over 20 years now called mva, high Performance Computing platform that's used by more than 32 organ, 3,200 organizations across 90 countries. You've shepherded this from, its, its infancy. What is the vision for what MVA will be and and how is it a proof of concept that others can learn from? >>Yeah, Paul, that's a great question to start with. I mean, I, I started with this conference in 2001. That was the first time I came. It's very coincidental. If you remember the Finman Networking Technology, it was introduced in October of 2000. Okay. So in my group, we were working on NPI for Marinette Quadrics. Those are the old technology, if you can recollect when Finman was there, we were the very first one in the world to really jump in. Nobody knew how to use Infin van in an HPC system. So that's how the Happy Project was born. And in fact, in super computing 2002 on this exhibition floor in Baltimore, we had the first demonstration, the open source happy, actually is running on an eight node infinite van clusters, eight no zeros. And that was a big challenge. But now over the years, I means we have continuously worked with all infinite van vendors, MPI Forum. >>We are a member of the MPI Forum and also all other network interconnect. So we have steadily evolved this project over the last 21 years. I'm very proud of my team members working nonstop, continuously bringing not only performance, but scalability. If you see now INFIN event are being deployed in 8,000, 10,000 node clusters, and many of these clusters actually use our software, stack them rapid. So, so we have done a lot of, like our focuses, like we first do research because we are in academia. We come up with good designs, we publish, and in six to nine months, we actually bring it to the open source version and people can just download and then use it. And that's how currently it's been used by more than 3000 orange in 90 countries. And, but the interesting thing is happening, your second part of the question. Now, as you know, the field is moving into not just hvc, but ai, big data, and we have those support. This is where like we look at the vision for the next 20 years, we want to design this MPI library so that not only HPC but also all other workloads can take advantage of it. >>Oh, we have seen libraries that become a critical develop platform supporting ai, TensorFlow, and, and the pie torch and, and the emergence of, of, of some sort of default languages that are, that are driving the community. How, how important are these frameworks to the, the development of the progress making progress in the HPC world? >>Yeah, no, those are great. I mean, spite our stencil flow, I mean, those are the, the now the bread and butter of deep learning machine learning. Am I right? But the challenge is that people use these frameworks, but continuously models are becoming larger. You need very first turnaround time. So how do you train faster? How do you do influencing faster? So this is where HPC comes in and what exactly what we have done is actually we have linked floor fighters to our happy page because now you see the MPI library is running on a million core system. Now your fighters and tenor four clan also be scaled to to, to those number of, large number of course and gps. So we have actually done that kind of a tight coupling and that helps the research to really take advantage of hpc. >>So if, if a high school student is thinking in terms of interesting computer science, looking for a place, looking for a university, Ohio State University, bruns, world renowned, widely known, but talk about what that looks like from a day on a day to day basis in terms of the opportunity for undergrad and graduate students to participate in, in the kind of work that you do. What is, what does that look like? And is, and is that, and is that a good pitch to for, for people to consider the university? >>Yes. I mean, we continuously, from a university perspective, by the way, the Ohio State University is one of the largest single campus in, in us, one of the top three, top four. We have 65,000 students. Wow. It's one of the very largest campus. And especially within computer science where I am located, high performance computing is a very big focus. And we are one of the, again, the top schools all over the world for high performance computing. And we also have very strength in ai. So we always encourage, like the new students who like to really work on top of the art solutions, get exposed to the concepts, principles, and also practice. Okay. So, so we encourage those people that wish you can really bring you those kind of experience. And many of my past students, staff, they're all in top companies now, have become all big managers. >>How, how long, how long did you say you've been >>At 31 >>Years? 31 years. 31 years. So, so you, you've had people who weren't alive when you were already doing this stuff? That's correct. They then were born. Yes. They then grew up, yes. Went to university graduate school, and now they're on, >>Now they're in many top companies, national labs, all over the universities, all over the world. So they have been trained very well. Well, >>You've, you've touched a lot of lives, sir. >>Yes, thank you. Thank >>You. We've seen really a, a burgeoning of AI specific hardware emerge over the last five years or so. And, and architectures going beyond just CPUs and GPUs, but to Asics and f PGAs and, and accelerators, does this excite you? I mean, are there innovations that you're seeing in this area that you think have, have great promise? >>Yeah, there is a lot of promise. I think every time you see now supercomputing technology, you see there is sometime a big barrier comes barrier jump. Rather I'll say, new technology comes some disruptive technology, then you move to the next level. So that's what we are seeing now. A lot of these AI chips and AI systems are coming up, which takes you to the next level. But the bigger challenge is whether it is cost effective or not, can that be sustained longer? And this is where commodity technology comes in, which commodity technology tries to take you far longer. So we might see like all these likes, Gaudi, a lot of new chips are coming up, can they really bring down the cost? If that cost can be reduced, you will see a much more bigger push for AI solutions, which are cost effective. >>What, what about on the interconnect side of things, obvi, you, you, your, your start sort of coincided with the initial standards for Infin band, you know, Intel was very, very, was really big in that, in that architecture originally. Do you see interconnects like RDMA over converged ethernet playing a part in that sort of democratization or commoditization of things? Yes. Yes. What, what are your thoughts >>There for internet? No, this is a great thing. So, so we saw the infinite man coming. Of course, infinite Man is, commod is available. But then over the years people have been trying to see how those RDMA mechanisms can be used for ethernet. And then Rocky has been born. So Rocky has been also being deployed. But besides these, I mean now you talk about Slingshot, the gray slingshot, it is also an ethernet based systems. And a lot of those RMA principles are actually being used under the hood. Okay. So any modern networks you see, whether it is a Infin and Rocky Links art network, rock board network, you name any of these networks, they are using all the very latest principles. And of course everybody wants to make it commodity. And this is what you see on the, on the slow floor. Everybody's trying to compete against each other to give you the best performance with the lowest cost, and we'll see whoever wins over the years. >>Sort of a macroeconomic question, Japan, the US and China have been leapfrogging each other for a number of years in terms of the fastest supercomputer performance. How important do you think it is for the US to maintain leadership in this area? >>Big, big thing, significantly, right? We are saying that I think for the last five to seven years, I think we lost that lead. But now with the frontier being the number one, starting from the June ranking, I think we are getting that leadership back. And I think it is very critical not only for fundamental research, but for national security trying to really move the US to the leading edge. So I hope us will continue to lead the trend for the next few years until another new system comes out. >>And one of the gating factors, there is a shortage of people with data science skills. Obviously you're doing what you can at the university level. What do you think can change at the secondary school level to prepare students better to, for data science careers? >>Yeah, I mean that is also very important. I mean, we, we always call like a pipeline, you know, that means when PhD levels we are expecting like this even we want to students to get exposed to, to, to many of these concerts from the high school level. And, and things are actually changing. I mean, these days I see a lot of high school students, they, they know Python, how to program in Python, how to program in sea object oriented things. Even they're being exposed to AI at that level. So I think that is a very healthy sign. And in fact we, even from Ohio State side, we are always engaged with all this K to 12 in many different programs and then gradually trying to take them to the next level. And I think we need to accelerate also that in a very significant manner because we need those kind of a workforce. It is not just like a building a system number one, but how do we really utilize it? How do we utilize that science? How do we propagate that to the community? Then we need all these trained personal. So in fact in my group, we are also involved in a lot of cyber training activities for HPC professionals. So in fact, today there is a bar at 1 1 15 I, yeah, I think 1215 to one 15. We'll be talking more about that. >>About education. >>Yeah. Cyber training, how do we do for professionals? So we had a funding together with my co-pi, Dr. Karen Tom Cook from Ohio Super Center. We have a grant from NASA Science Foundation to really educate HPT professionals about cyber infrastructure and ai. Even though they work on some of these things, they don't have the complete knowledge. They don't get the time to, to learn. And the field is moving so fast. So this is how it has been. We got the initial funding, and in fact, the first time we advertised in 24 hours, we got 120 application, 24 hours. We couldn't even take all of them. So, so we are trying to offer that in multiple phases. So, so there is a big need for those kind of training sessions to take place. I also offer a lot of tutorials at all. Different conference. We had a high performance networking tutorial. Here we have a high performance deep learning tutorial, high performance, big data tutorial. So I've been offering tutorials at, even at this conference since 2001. Good. So, >>So in the last 31 years, the Ohio State University, as my friends remind me, it is properly >>Called, >>You've seen the world get a lot smaller. Yes. Because 31 years ago, Ohio, in this, you know, of roughly in the, in the middle of North America and the United States was not as connected as it was to everywhere else in the globe. So that's, that's pro that's, I i it kind of boggles the mind when you think of that progression over 31 years, but globally, and we talk about the world getting smaller, we're sort of in the thick of, of the celebratory seasons where, where many, many groups of people exchange gifts for varieties of reasons. If I were to offer you a holiday gift, that is the result of what AI can deliver the world. Yes. What would that be? What would, what would, what would the first thing be? This is, this is, this is like, it's, it's like the genie, but you only get one wish. >>I know, I know. >>So what would the first one be? >>Yeah, it's very hard to answer one way, but let me bring a little bit different context and I can answer this. I, I talked about the happy project and all, but recently last year actually we got awarded an S f I institute award. It's a 20 million award. I am the overall pi, but there are 14 universities involved. >>And who is that in that institute? >>What does that Oh, the I ici. C e. Okay. I cycle. You can just do I cycle.ai. Okay. And that lies with what exactly what you are trying to do, how to bring lot of AI for masses, democratizing ai. That's what is the overall goal of this, this institute, think of like a, we have three verticals we are working think of like one is digital agriculture. So I'll be, that will be my like the first ways. How do you take HPC and AI to agriculture the world as though we just crossed 8 billion people. Yeah, that's right. We need continuous food and food security. How do we grow food with the lowest cost and with the highest yield? >>Water >>Consumption. Water consumption. Can we minimize or minimize the water consumption or the fertilization? Don't do blindly. Technologies are out there. Like, let's say there is a weak field, A traditional farmer see that, yeah, there is some disease, they will just go and spray pesticides. It is not good for the environment. Now I can fly it drone, get images of the field in the real time, check it against the models, and then it'll tell that, okay, this part of the field has disease. One, this part of the field has disease. Two, I indicate to the, to the tractor or the sprayer saying, okay, spray only pesticide one, you have pesticide two here. That has a big impact. So this is what we are developing in that NSF A I institute I cycle ai. We also have, we have chosen two additional verticals. One is animal ecology, because that is very much related to wildlife conservation, climate change, how do you understand how the animals move? Can we learn from them? And then see how human beings need to act in future. And the third one is the food insecurity and logistics. Smart food distribution. So these are our three broad goals in that institute. How do we develop cyber infrastructure from below? Combining HP c AI security? We have, we have a large team, like as I said, there are 40 PIs there, 60 students. We are a hundred members team. We are working together. So, so that will be my wish. How do we really democratize ai? >>Fantastic. I think that's a great place to wrap the conversation here On day three at Supercomputing conference 2022 on the cube, it was an honor, Dr. Panda working tirelessly at the Ohio State University with his team for 31 years toiling in the field of computer science and the end result, improving the lives of everyone on Earth. That's not a stretch. If you're in high school thinking about a career in computer science, keep that in mind. It isn't just about the bits and the bobs and the speeds and the feeds. It's about serving humanity. Maybe, maybe a little, little, little too profound a statement, I would argue not even close. I'm Dave Nicholson with the Queue, with my cohost Paul Gillin. Thank you again, Dr. Panda. Stay tuned for more coverage from the Cube at Super Compute 2022 coming up shortly. >>Thanks a lot.

Published Date : Nov 17 2022

SUMMARY :

Welcome back to The Cube's coverage of Supercomputing Conference 2022, And we have a wonderful guest with us this morning, Dr. Thanks a lot to But I wanted to talk to you specifically about a product project you've So in my group, we were working on NPI for So we have steadily evolved this project over the last 21 years. that are driving the community. So we have actually done that kind of a tight coupling and that helps the research And is, and is that, and is that a good pitch to for, So, so we encourage those people that wish you can really bring you those kind of experience. you were already doing this stuff? all over the world. Thank this area that you think have, have great promise? I think every time you see now supercomputing technology, with the initial standards for Infin band, you know, Intel was very, very, was really big in that, And this is what you see on the, Sort of a macroeconomic question, Japan, the US and China have been leapfrogging each other for a number the number one, starting from the June ranking, I think we are getting that leadership back. And one of the gating factors, there is a shortage of people with data science skills. And I think we need to accelerate also that in a very significant and in fact, the first time we advertised in 24 hours, we got 120 application, that's pro that's, I i it kind of boggles the mind when you think of that progression over 31 years, I am the overall pi, And that lies with what exactly what you are trying to do, to the tractor or the sprayer saying, okay, spray only pesticide one, you have pesticide two here. I think that's a great place to wrap the conversation here On

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Paul GillumPERSON

0.99+

DavePERSON

0.99+

Paul GillinPERSON

0.99+

October of 2000DATE

0.99+

PaulPERSON

0.99+

NASA Science FoundationORGANIZATION

0.99+

2001DATE

0.99+

BaltimoreLOCATION

0.99+

8,000QUANTITY

0.99+

14 universitiesQUANTITY

0.99+

31 yearsQUANTITY

0.99+

20 millionQUANTITY

0.99+

24 hoursQUANTITY

0.99+

last yearDATE

0.99+

Karen Tom CookPERSON

0.99+

60 studentsQUANTITY

0.99+

Ohio State UniversityORGANIZATION

0.99+

90 countriesQUANTITY

0.99+

sixQUANTITY

0.99+

EarthLOCATION

0.99+

PandaPERSON

0.99+

todayDATE

0.99+

65,000 studentsQUANTITY

0.99+

3,200 organizationsQUANTITY

0.99+

North AmericaLOCATION

0.99+

PythonTITLE

0.99+

United StatesLOCATION

0.99+

Dallas, TexasLOCATION

0.99+

over 500 papersQUANTITY

0.99+

JuneDATE

0.99+

OneQUANTITY

0.99+

more than 32 organQUANTITY

0.99+

120 applicationQUANTITY

0.99+

OhioLOCATION

0.99+

more than 3000 orangeQUANTITY

0.99+

first waysQUANTITY

0.99+

oneQUANTITY

0.99+

nine monthsQUANTITY

0.99+

40 PIsQUANTITY

0.99+

AsicsORGANIZATION

0.99+

MPI ForumORGANIZATION

0.98+

ChinaORGANIZATION

0.98+

TwoQUANTITY

0.98+

Ohio State State UniversityORGANIZATION

0.98+

8 billion peopleQUANTITY

0.98+

IntelORGANIZATION

0.98+

HPORGANIZATION

0.97+

Dr.PERSON

0.97+

over 20 yearsQUANTITY

0.97+

USORGANIZATION

0.97+

FinmanORGANIZATION

0.97+

RockyPERSON

0.97+

JapanORGANIZATION

0.97+

first timeQUANTITY

0.97+

first demonstrationQUANTITY

0.96+

31 years agoDATE

0.96+

Ohio Super CenterORGANIZATION

0.96+

three broad goalsQUANTITY

0.96+

one wishQUANTITY

0.96+

second partQUANTITY

0.96+

31QUANTITY

0.96+

CubeORGANIZATION

0.95+

eightQUANTITY

0.95+

over 31 yearsQUANTITY

0.95+

10,000 node clustersQUANTITY

0.95+

day threeQUANTITY

0.95+

firstQUANTITY

0.95+

INFINEVENT

0.94+

seven yearsQUANTITY

0.94+

Dhabaleswar “DK” PandaPERSON

0.94+

threeQUANTITY

0.93+

S f I instituteTITLE

0.93+

first thingQUANTITY

0.93+

Peter Del Vecchio, Broadcom and Armando Acosta, Dell Technologies | SuperComputing 22


 

(upbeat music) (logo swooshing) >> Good morning and welcome back to Dallas, ladies and gentlemen, we are here with theCUBE Live from Supercomputing 2022. David, my cohost, how are you doing? Exciting, day two, feeling good? >> Very exciting. Ready to start off the day. >> Very excited. We have two fascinating guests joining us to kick us off. Please welcome Pete and Armando. Gentlemen, thank you for being here with us. >> Thank you for having us. >> Thank you for having us. >> I'm excited that you're starting off the day because we've been hearing a lot of rumors about Ethernet as the fabric for HPC, but we really haven't done a deep dive yet during the show. You all seem all in on Ethernet. Tell us about that. Armando, why don't you start? >> Yeah, I mean, when you look at Ethernet, customers are asking for flexibility and choice. So when you look at HPC, InfiniBand's always been around, right? But when you look at where Ethernet's coming in, it's really our commercial in their enterprise customers. And not everybody wants to be in the top 500, what they want to do is improve their job time and improve their latency over the network. And when you look at Ethernet, you kind of look at the sweet spot between 8, 12, 16, 32 nodes, that's a perfect fit for Ethernet in that space and those types of jobs. >> I love that. Pete, you want to elaborate? >> Yeah, sure. I mean, I think one of the biggest things you find with Ethernet for HPC is that, if you look at where the different technologies have gone over time, you've had old technologies like, ATM, Sonic, Fifty, and pretty much everything is now kind of converged toward Ethernet. I mean, there's still some technologies such as InfiniBand, Omni-Path, that are out there. But basically, they're single source at this point. So what you see is that there is a huge ecosystem behind Ethernet. And you see that also the fact that Ethernet is used in the rest of the enterprise, is used in the cloud data centers, that is very easy to integrate HPC based systems into those systems. So as you move HPC out of academia into enterprise, into cloud service providers, it's much easier to integrate it with the same technology you're already using in those data centers, in those networks. >> So what's the state of the art for Ethernet right now? What's the leading edge? what's shipping now and what's in the near future? You're with Broadcom, you guys designed this stuff. >> Pete: Yeah. >> Savannah: Right. >> Yeah, so leading edge right now, got a couple things-- >> Savannah: We love good stage prop here on the theCUBE. >> Yeah, so this is Tomahawk 4. So this is what is in production, it's shipping in large data centers worldwide. We started sampling this in 2019, started going into data centers in 2020. And this is 25.6 terabytes per second. >> David: Okay. >> Which matches any other technology out there. Like if you look at say, InfinBand, highest they have right now that's just starting to get into production is 25.6 T. So state of the art right now is what we introduced, We announced this in August, This is Tomahawk 5, so this is 51.2 terabytes per second. So double the bandwidth, out of any other technology that's out there. And the important thing about networking technology is when you double the bandwidth, you don't just double the efficiency, actually, winds up being a factor of six efficiency. >> Savannah: Wow. >> 'Cause if you want, I can go into that, but... >> Why not? >> Well, what I want to know, please tell me that in your labs, you have a poster on the wall that says T five, with some like Terminator kind of character. (all laughs) 'Cause that would be cool. If it's not true, just don't say anything. I'll just... >> Pete: This can actually shift into a terminator. >> Well, so this is from a switching perspective. >> Yeah. >> When we talk about the end nodes, when we talk about creating a fabric, what's the latest in terms of, well, the nicks that are going in there, what speed are we talking about today? >> So as far as 30 speeds, it tends to be 50 gigabits per second. >> David: Okay. >> Moving to a hundred gig PAM-4. >> David: Okay. >> And we do see a lot of nicks in the 200 gig Ethernet port speed. So that would be four lanes, 50 gig. But we do see that advancing to 400 gig fairly soon, 800 gig in the future. But say state of the art right now, we're seeing for the end node tends to be 200 gig E based on 50 gig PAM-4. >> Wow. >> Yeah, that's crazy. >> Yeah, that is great. My mind is act actively blown. I want to circle back to something that you brought up a second ago, which I think is really astute. When you talked about HPC moving from academia into enterprise, you're both seeing this happen, where do you think we are on the adoption curve and sort of in that cycle? Armando, do you want to go? >> Yeah, well, if you look at the market research, they're actually telling you it's 50/50 now. So Ethernet is at the level of 50%, InfinBand's at 50%, right? >> Savannah: Interesting. >> Yeah, and so what's interesting to us, customers are coming to us and say, hey, we want to see flexibility and choice and, hey, let's look at Ethernet and let's look at InfiniBand. But what is interesting about this is that we're working with Broadcom, we have their chips in our lab, we their have switches in our lab. And really what we're trying to do is make it easy to simple and configure the network for essentially MPI. And so the goal here with our validated designs is really to simplify this. So if you have a customer that, hey, I've been InfiniBand but now I want to go Ethernet, there's going to be some learning curves there. And so what we want to do is really simplify that so that we can make it easy to install, get the cluster up and running and they can actually get some value out the cluster. >> Yeah, Pete, talk about that partnership. what does that look like? I mean, are you working with Dell before the T six comes out? Or you just say what would be cool is we'll put this in the T six? >> No, we've had a very long partnership both on the hardware and the software side. Dell's been an early adopter of our silicon. We've worked very closely on SI and Sonic on the operating system, and they provide very valuable feedback for us on our roadmap. So before we put out a new chip, and we have actually three different product lines within the switching group, within Broadcom, we've then gotten very valuable feedback on the hardware and on the APIs, on the operating system that goes on top of those chips. So that way when it comes to market, Dell can take it and deliver the exact features that they have in the current generation to their customers to have that continuity. And also they give us feedback on the next gen features they'd like to see again, in both the hardware and the software. >> So I'm fascinated by... I always like to know like what, yeah, exactly. Look, you start talking about the largest supercomputers, most powerful supercomputers that exist today, and you start looking at the specs and there might be two million CPUs, 2 million CPU cores. Exoflap of performance. What are the outward limits of T five in switches, building out a fabric, what does that look like? What are the increments in terms of how many... And I know it's a depends answer, but how many nodes can you support in a scale out cluster before you need another switch? Or what does that increment of scale look like today? >> Yeah, so this is 51.2 terabytes per second. Where we see the most common implementation based on this would be with 400 gig Ethernet ports. >> David: Okay. >> So that would be 128, 400 gig E ports connected to one chip. Now, if you went to 200 gig, which is kind of the state of the art for the nicks, you can have double that. So in a single hop, you can have 256 end nodes connected through one switch. >> Okay, so this T five, that thing right there, (all laughing) inside a sheet metal box, obviously you've got a bunch of ports coming out of that. So what's the form factor look like for where that T five sits? Is there just one in a chassis or you have.. What does that look like? >> It tends to be pizza boxes these days. What you've seen overall is that the industry's moved away from chassis for these high end systems more towardS pizza boxes. And you can have composable systems where, in the past you would have line cards, either the fabric cards that the line cards are plug into or interfaced to. These days what tends to happen is you'd have a pizza box and if you wanted to build up like a virtual chassis, what you would do is use one of those pizza boxes as the fabric card, one of them as the line card. >> David: Okay. >> So what we see, the most common form factor for this is they tend to be two, I'd say for North America, most common would be a 2RU, with 64 OSFP ports. And often each of those OSFP, which is an 800 gig E or 800 gig port, we've broken out into two 400 gig ports. >> So yeah, in 2RU, and this is all air cooled, in 2RU, you've got 51.2 T. We do see some cases where customers would like to have different optics and they'll actually deploy 4RU, just so that way they have the phase-space density. So they can plug in 128, say QSFP 112. But yeah, it really depends on which optics, if you want to have DAK connectivity combined with optics. But those are the two most common form factors. >> And Armando, Ethernet isn't necessarily Ethernet in the sense that many protocols can be run over it. >> Right. >> I think I have a projector at home that's actually using Ethernet physical connections. But, so what are we talking about here in terms of the actual protocol that's running over this? Is this exactly the same as what you think of as data center Ethernet, or is this RDMA over converged Ethernet? What Are we talking about? >> Yeah, so RDMA, right? So when you look at running, essentially HPC workloads, you have the NPI protocol, so message passing interface, right? And so what you need to do is you may need to make sure that that NPI message passing interface runs efficiently on Ethernet. And so this is why we want to test and validate all these different things to make sure that that protocol runs really, really fast on Ethernet. If you look at NPIs officially, built to, hey, it was designed to run on InfiniBand but now what you see with Broadcom, with the great work they're doing, now we can make that work on Ethernet and get same performance, so that's huge for customers. >> Both of you get to see a lot of different types of customers. I kind of feel like you're a little bit of a looking into the crystal ball type because you essentially get to see the future knowing what people are trying to achieve moving forward. Talk to us about the future of Ethernet in HPC in terms of AI and ML, where do you think we're going to be next year or 10 years from now? >> You want to go first or you want me to go first? >> I can start, yeah. >> Savannah: Pete feels ready. >> So I mean, what I see, I mean, Ethernet, what we've seen is that as far as on, starting off of the switch side, is that we've consistently doubled the bandwidth every 18 to 24 months. >> That's impressive. >> Pete: Yeah. >> Nicely done, casual, humble brag there. That was great, I love that. I'm here for you. >> I mean, I think that's one of the benefits of Ethernet, is the ecosystem, is the trajectory the roadmap we've had, I mean, you don't see that in any of the networking technology. >> David: More who? (all laughing) >> So I see that, that trajectory is going to continue as far as the switches doubling in bandwidth, I think that they're evolving protocols, especially again, as you're moving away from academia into the enterprise, into cloud data centers, you need to have a combination of protocols. So you'll probably focus still on RDMA, for the supercomputing, the AI/ML workloads. But we do see that as you have a mix of the applications running on these end nodes, maybe they're interfacing to the CPUs for some processing, you might use a different mix of protocols. So I'd say it's going to be doubling a bandwidth over time, evolution of the protocols. I mean, I expect that Rocky is probably going to evolve over time depending on the AI/ML and the HPC workloads. I think also there's a big change coming as far as the physical connectivity within the data center. Like one thing we've been focusing on is co-packed optics. So right now, this chip is, all the balls in the back here, there's electrical connections. >> How many are there, by the way? 9,000 plus on the back of that-- >> 9,352. >> I love how specific it is. It's brilliant. >> Yeah, so right now, all the SERDES, all the signals are coming out electrically based, but we've actually shown, we actually we have a version of Tomahawk 4 at 25.6 T that has co-packed optics. So instead of having electrical output, you actually have optics directly out of the package. And if you look at, we'll have a version of Tomahawk 5. >> Nice. >> Where it's actually even a smaller form factor than this, where instead of having the electrical output from the bottom, you actually have fibers that plug directly into the sides. >> Wow. Cool. >> So I see there's the bandwidth, there's radix's increasing, protocols, different physical connectivity. So I think there's a lot of things throughout, and the protocol stack's also evolving. So a lot of excitement, a lot of new technology coming to bear. >> Okay, You just threw a carrot down the rabbit hole. I'm only going to chase this one, okay? >> Peter: All right. >> So I think of individual discreet physical connections to the back of those balls. >> Yeah. >> So if there's 9,000, fill in the blank, that's how many connections there are. How do you do that many optical connections? What's the mapping there? What does that look like? >> So what we've announced for Tomahawk 5 is it would have FR4 optics coming out. So you'd actually have 512 fiber pairs coming out. So basically on all four sides, you'd have these fiber ribbons that come in and connect. There's actually fibers coming out of the sides there. We wind up having, actually, I think in this case, we would actually have 512 channels and it would wind up being on 128 actual fiber pairs because-- >> It's miraculous, essentially. >> Savannah: I know. >> Yeah. So a lot of people are going to be looking at this and thinking in terms of InfiniBand versus Ethernet, I think you've highlighted some of the benefits of specifically running Ethernet moving forward as HPC which sort of just trails slightly behind super computing as we define it, becomes more pervasive AI/ML. What are some of the other things that maybe people might not immediately think about when they think about the advantages of running Ethernet in that environment? Is it about connecting the HPC part of their business into the rest of it? What are the advantages? >> Yeah, I mean, that's a big thing. I think, and one of the biggest things that Ethernet has again, is that the data centers, the networks within enterprises, within clouds right now are run on Ethernet. So now, if you want to add services for your customers, the easiest thing for you to do is the drop in clusters that are connected with the same networking technology. So I think one of the biggest things there is that if you look at what's happening with some of the other proprietary technologies, I mean, in some cases they'll have two different types of networking technologies before they interface to Ethernet. So now you've got to train your technicians, you train your assist admins on two different network technologies. You need to have all the debug technology, all the interconnect for that. So here, the easiest thing is you can use Ethernet, it's going to give you the same performance and actually, in some cases, we've seen better performance than we've seen with Omni-Path, better than in InfiniBand. >> That's awesome. Armando, we didn't get to you, so I want to make sure we get your future hot take. Where do you see the future of Ethernet here in HPC? >> Well, Pete hit on a big thing is bandwidth, right? So when you look at, train a model, okay? So when you go and train a model in AI, you need to have a lot of data in order to train that model, right? So what you do is essentially, you build a model, you choose whatever neural network you want to utilize. But if you don't have a good data set that's trained over that model, you can't essentially train the model. So if you have bandwidth, you want big pipes because you have to move that data set from the storage to the CPU. And essentially, if you're going to do it maybe on CPU only, but if you do it on accelerators, well, guess what? You need a big pipe in order to get all that data through. And here's the deal, the bigger the pipe you have, the more data, the faster you can train that model. So the faster you can train that model, guess what? The faster you get to some new insight, maybe it's a new competitive advantage, maybe it's some new way you design a product, but that's a benefit of speed, you want faster, faster, faster. >> It's all about making it faster and easier-- for the users. >> Armando: It is. >> I love that. Last question for you, Pete, just because you've said Tomahawk seven times, and I'm thinking we're in Texas, stakes, there's a lot going on with that. >> Making me hungry. >> I know, exactly. I'm sitting out here thinking, man, I did not have big enough breakfast. How did you come up with the name Tomahawk? >> So Tomahawk, I think it just came from a list. So we have a tried end product line. >> Savannah: Ah, yes. >> Which is a missile product line. And Tomahawk is being kind of like the bigger and batter missile, so. >> Savannah: Love this. Yeah, I mean-- >> So do you like your engineers? You get to name it. >> Had to ask. >> It's collaborative. >> Okay. >> We want to make sure everyone's in sync with it. >> So just it's not the Aquaman tried. >> Right. >> It's the steak Tomahawk. I think we're good now. >> Now that we've cleared that-- >> Now we've cleared that up. >> Armando, Pete, it was really nice to have both you. Thank you for teaching us about the future of Ethernet and HCP. David Nicholson, always a pleasure to share the stage with you. And thank you all for tuning in to theCUBE live from Dallas. We're here talking all things HPC and supercomputing all day long. We hope you'll continue to tune in. My name's Savannah Peterson, thanks for joining us. (soft music)

Published Date : Nov 16 2022

SUMMARY :

David, my cohost, how are you doing? Ready to start off the day. Gentlemen, thank you about Ethernet as the fabric for HPC, So when you look at HPC, Pete, you want to elaborate? So what you see is that You're with Broadcom, you stage prop here on the theCUBE. So this is what is in production, So state of the art right 'Cause if you want, I have a poster on the wall Pete: This can actually Well, so this is from it tends to be 50 gigabits per second. 800 gig in the future. that you brought up a second ago, So Ethernet is at the level of 50%, So if you have a customer that, I mean, are you working with Dell and on the APIs, on the operating system that exist today, and you Yeah, so this is 51.2 of the art for the nicks, chassis or you have.. in the past you would have line cards, for this is they tend to be two, if you want to have DAK in the sense that many as what you think of So when you look at running, Both of you get to see a lot starting off of the switch side, I'm here for you. in any of the networking technology. But we do see that as you have a mix I love how specific it is. And if you look at, from the bottom, you actually have fibers and the protocol stack's also evolving. carrot down the rabbit hole. So I think of individual How do you do that many coming out of the sides there. What are some of the other things the easiest thing for you to do is Where do you see the future So the faster you can train for the users. I love that. How did you come up So we have a tried end product line. kind of like the bigger Yeah, I mean-- So do you like your engineers? everyone's in sync with it. It's the steak Tomahawk. And thank you all for tuning

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

2019DATE

0.99+

David NicholsonPERSON

0.99+

2020DATE

0.99+

PetePERSON

0.99+

TexasLOCATION

0.99+

AugustDATE

0.99+

PeterPERSON

0.99+

SavannahPERSON

0.99+

30 speedsQUANTITY

0.99+

200 gigQUANTITY

0.99+

Savannah PetersonPERSON

0.99+

50 gigQUANTITY

0.99+

ArmandoPERSON

0.99+

128QUANTITY

0.99+

DellORGANIZATION

0.99+

9,000QUANTITY

0.99+

400 gigQUANTITY

0.99+

BroadcomORGANIZATION

0.99+

50%QUANTITY

0.99+

twoQUANTITY

0.99+

128, 400 gigQUANTITY

0.99+

800 gigQUANTITY

0.99+

DallasLOCATION

0.99+

512 channelsQUANTITY

0.99+

9,352QUANTITY

0.99+

24 monthsQUANTITY

0.99+

one chipQUANTITY

0.99+

Tomahawk 4COMMERCIAL_ITEM

0.99+

bothQUANTITY

0.99+

North AmericaLOCATION

0.99+

next yearDATE

0.99+

oneQUANTITY

0.98+

512 fiberQUANTITY

0.98+

seven timesQUANTITY

0.98+

Tomahawk 5COMMERCIAL_ITEM

0.98+

four lanesQUANTITY

0.98+

9,000 plusQUANTITY

0.98+

Dell TechnologiesORGANIZATION

0.98+

todayDATE

0.97+

AquamanPERSON

0.97+

BothQUANTITY

0.97+

InfiniBandORGANIZATION

0.97+

QSFP 112OTHER

0.96+

hundred gigQUANTITY

0.96+

Peter Del VecchioPERSON

0.96+

25.6 terabytes per secondQUANTITY

0.96+

two fascinating guestsQUANTITY

0.96+

single sourceQUANTITY

0.96+

64 OSFPQUANTITY

0.95+

RockyORGANIZATION

0.95+

two million CPUsQUANTITY

0.95+

25.6 T.QUANTITY

0.95+

Marcel Hild, Red Hat & Kenneth Hoste, Ghent University | Kubecon + Cloudnativecon Europe 2022


 

(upbeat music) >> Announcer: theCUBE presents KubeCon and CloudNativeCon Europe 2022, brought to you by Red Hat, the Cloud Native Computing Foundation, and its ecosystem partners. >> Welcome to Valencia, Spain, in KubeCon CloudNativeCon Europe 2022. I'm your host Keith Townsend, along with Paul Gillon. And we're going to talk to some amazing folks. But first Paul, do you remember your college days? >> Vaguely. (Keith laughing) A lot of them are lost. >> I think a lot of mine are lost as well. Well, not really, I got my degree as an adult, so they're not that far past. I can remember 'cause I have the student debt to prove it. (both laughing) Along with us today is Kenneth Hoste, systems administrator at Ghent University, and Marcel Hild, senior manager software engineering at Red Hat. You're working in office of the CTO? >> That's absolutely correct, yes >> So first off, I'm going to start off with you Kenneth. Tell us a little bit about the research that the university does. Like what's the end result? >> Oh, wow, that's a good question. So the research we do at university and again, is very broad. We have bioinformaticians, physicists, people looking at financial data, all kinds of stuff. And the end result can be very varied as well. Very often it's research papers, or spinoffs from the university. Yeah, depending on the domain I would say, it depends a lot on. >> So that sounds like the perfect environment for cloud native. Like the infrastructure that's completely flexible, that researchers can come and have a standard way of interacting, each team just use it's resources as they would, the Navana for cloud native. >> Yeah. >> But somehow, I'm going to guess HPC isn't quite there yet. >> Yeah, not really, no. So, HPC is a bit, let's say slow into adopting new technologies. And we're definitely seeing some impact from cloud, especially things like containers and Kubernetes, or we're starting to hear these things in HPC community as well. But I haven't seen a lot of HPC clusters who are really fully cloud native. Not yet at least. Maybe this is coming. And if I'm walking around here at KubeCon, I can definitely, I'm being convinced that it's coming. So whether we like it or not we're probably going to have to start worrying about stuff like this. But we're still, let's say, the most prominent technologies of things like NPI, which has been there for 20, 30 years. The Fortran programming language is still the main language, if you're looking at compute time being spent on supercomputers, over 1/2 of the time spent is in Fortran code essentially. >> Keith: Wow. >> So either the application itself where the simulations are being done is implemented in Fortran, or the libraries that we are talking to from Python for example, for doing heavy duty computations, that backend library is implemented in Fortran. So if you take all of that into account, easily over 1/2 of the time is spent in Fortran code. >> So is this because the libraries don't migrate easily to, distributed to that environment? >> Well, it's multiple things. So first of all, Fortran is very well suited for implementing these type of things. >> Paul: Right. >> We haven't really seen a better alternative maybe. And also it'll be a huge effort to re-implement that same functionality in a newer language. So, the use case has to be very convincing, there has to be a very good reason why you would move away from Fortran. And, at least the HPC community hasn't seen that reason yet. >> So in theory, and right now we're talking about the theory and then what it takes to get to the future. In theory, I can take that Fortran code put it in a compiler that runs in a container? >> Yeah, of course, yeah. >> Why isn't it that simple? >> I guess because traditionally HPC is very slow at adopting new stuff. So, I'm not saying there isn't a reason that we should start looking at these things. Flexibility is a very important one. For a lot of researchers, their compute needs are very picky. So they're doing research, they have an idea, they want you to run lots of simulations, get the results, but then they're silent for a long time writing the paper, or thinking about how to, what they can learn from the results. So there's lots of peaks, and that's a very good fit for a cloud environment. I guess at the scale of university you have enough diversity end users that all those peaks never fall at the same time. So if you have your big own infrastructure you can still fill it up quite easily and keep your users happy. But this busty thing, I guess we're seeing that more and more or so. >> So Marcel, talk to us about, Red Hat needing to service these types of end users. That it can be on both ends I'd imagine that you have some people still in writing in Fortran, you have some people that's asking you for objects based storage. Where's Fortran, I'm sorry, not Fortran, but where is Red Hat in providing the underlay and the capabilities for the HPC and AI community? >> Yeah. So, I think if you look at the user base that we're looking at, it's on this spectrum from development to production. So putting AI workloads into production, it's an interesting challenge but it's easier to solve, and it has been solved to some extent, than the development cycle. So what we're looking at in Kenneth's domain it's more like the end user, the data scientist, developing code, and doing these experiments. Putting them into production is that's where containers live and thrive. You can containerize your model, you containerize your workload, you deploy it into your OpenShift Kubernetes cluster, done, you monitor it, done. So the software developments and the SRE, the ops part, done, but how do I get the data scientist into this cloud native age where he's not developing on his laptop or on a machine, where he SSH into and then does some stuff there. And then some system admin comes and needs to tweak it because it's running out of memory or whatnot. But how do we take him and make him, well, and provide him an environment that is good enough to work in, in the browser, and then with IDE, where the workload of doing the computation and the experimentation is repeatable, so that the environment is always the same, it's reliable, so it's always up and running. It doesn't consume resources, although it's up and running. Where it's, where the supply chain and the configuration of... And the, well, the modules that are brought into the system are also reliable. So all these problems that we solved in the traditional software development world, now have to transition into the data science and HPC world, where the problems are similar, but yeah, it's different sets. It's more or less, also a huge educational problem and transitioning the tools over into that is something... >> Well, is this mostly a technical issue or is this a cultural issue? I mean, are HPC workloads that different from more conventional OLTP workloads that they would not adapt well to a distributed containerized environment? >> I think it's both. So, on one hand it's the cultural issue because you have two different communities, everybody is reinventing the wheel, everybody is some sort of siloed. So they think, okay, what we've done for 30 years now we, there's no need to change it. And they, so it's, that's what thrives and here at KubeCon where you have different communities coming together, okay, this is how you solved the problem, maybe this applies also to our problem. But it's also the, well, the tooling, which is bound to a machine, which is bound to an HPC computer, which is architecturally different than a distributed environment where you would treat your containers as kettle, and as something that you can replace, right? And the HPC community usually builds up huge machines, and these are like the gray machines. So it's also technical bit of moving it to this age. >> So the massively parallel nature of HPC workloads you're saying Kubernetes has not yet been adapted to that? >> Well, I think that parallelism works great. It's just a matter of moving that out from an HPC computer into the scale out factor of a Kubernetes cloud that elastically scales out. Whereas the traditional HPC computer, I think, and Kenneth can correct me here is, more like, I have this massive computer with 1 million cores or whatnot, and now use it. And I can use my time slice, and book my time slice there. Whereas this a Kubernetes example the concept is more like, I have 1000 cores and I declare something into it and scale it up and down based on the needs. >> So, Kenneth, this is where you talked about the culture part of the changes that need to be happening. And quite frankly, the computer is a tool, it's a tool to get to the answer. And if that tool is working, if I have a 1000 cores on a single HPC thing, and you're telling me, well, I can't get to a system with 2000 cores. And if you containerized your process and move it over then maybe I'll get to the answer 50% faster maybe I'm not that... Someone has to make that decision. How important is it to get people involved in these types of communities from a researcher? 'Cause research is very tight-knit community to have these conversations and help that see move happen. >> I think it's very important to that community should, let's say, the cloud community, HPC research community, they should be talking a lot more, there should be way more cross pollination than there is today. I'm actually, I'm happy that I've seen HPC mentioned at booths and talks quite often here at KubeCon, I wasn't really expecting that. And I'm not sure, it's my first KubeCon, so I don't know, but I think that's kind of new, it's pretty recent. If you're going to the HPC community conferences there containers have been there for a couple of years now, something like Kubernetes is still a bit new. But just this morning there was a keynote by a guy from CERN, who was explaining, they're basically slowly moving towards Kubernetes even for their HPC clusters as well. And he's seeing that as the future because all the flexibility it gives you and you can basically hide all that from the end user, from the researcher. They don't really have to know that they're running on top of Kubernetes. They shouldn't care. Like you said, to them it's just a tool, and they care about if the tool works, they can get their answers and that's what they want to do. How that's actually being done in the background they don't really care. >> So talk to me about the AI side of the equation, because when I talk to people doing AI, they're on the other end of the spectrum. What are some of the benefits they're seeing from containerization? >> I think it's the reproducibility of experiments. So, and data scientists are, they're data scientists and they do research. So they care about their experiment. And maybe they also care about putting the model into production. But, I think from a geeky perspective they are more interested in finding the next model, finding the next solution. So they do an experiment, and they're done with it, and then maybe it's going to production. So how do I repeat that experiment in a year from now, so that I can build on top of it? And a container I think is the best solution to wrap something with its dependency, like freeze it, maybe even with the data, store it away, and then come to it back later and redo the experiment or share the experiment with some of my fellow researchers, so that they don't have to go through the process of setting up an equivalent environment on their machines, be it their laptop, via their cloud environment. So you go to the internet, download something doesn't work, container works. >> Well, you said something that really intrigues me you know in concept, I can have a, let's say a one terabyte data set, have a experiment associated with that. Take a snapshot of that somehow, I don't know how, take a snapshot of that and then share it with the rest of the community and then continue my work. >> Marcel: Yeah. >> And then we can stop back and compare notes. Where are we at in a maturity scale? Like, what are some of the pitfalls or challenges customers should be looking out for? >> I think you actually said it right there, how do I snapshot a terabyte of data? It's, that's... >> It's a terabyte of data. (both conversing) >> It's a bit of a challenge. And if you snapshot it, you have two terabytes of data or you just snapshot the, like and get you to do a, okay, this is currently where we're at. So that's why the technology is evolving. How do we do source control management for data? How do we license data? How do we make sure that the data is unbiased, et cetera? So that's going more into the AI side of things. But at dealing with data in a declarative way in a containerized way, I think that's where currently a lot of innovation is happening. >> What do you mean by dealing with data in a declarative way? >> If I'm saying I run this experiment based on this data set and I'm running this other experiment based on this other data set, and I as the researcher don't care where the data is stored, I care that the data is accessible. And so I might declare, this is the process that I put on my data, like a data processing pipeline. These are the steps that it's going through. And eventually it will have gone through this process and I can work with my data. Pretty much like applying the concept of pipelines through data. Like you have these data pipelines and then now you have cube flow pipelines as one solution to apply the pipeline concept, to well, managing your data. >> Given the stateless nature of containers, is that an impediment to HPC adoption because of the very large data sets that are typically involved? >> I think it is if you have terabytes of data. Just, you have to get it to the place where the computation will happen, right? And just uploading that into the cloud is already a challenge. If you have the data sitting there on a supercomputer and maybe it was sitting there for two years, you probably don't care. And typically a lot of universities the researchers don't necessarily pay for the compute time they use. Like, this is also... At least in Ghent that's the case, it's centrally funded, which means, the researchers don't have to worry about the cost, they just get access to the supercomputer. If they need two terabytes of data, they get that space and they can park it on the system for years, no problem. If they need 200 terabytes of data, that's absolutely fine. >> But the university cares about the cost? >> The university cares about the cost, but they want to enable the researchers to do the research that they want to do. >> Right. >> And we always tell researchers don't feel constrained about things like compute power, storage space. If you're doing smaller research, because you're feeling constrained, you have to tell us, and we will just expand our storage system and buy a new cluster. >> Paul: Wonderful. >> So you, to enable your research. >> It's a nice environment to be in. I think this might be a Jevons paradox problem, you give researchers this capability you might, you're going to see some amazing things. Well, now the people are snapshoting, one, two, three, four, five, different versions of a one terabytes of data. It's a good problem to have, and I hope to have you back on theCUBE, talking about how Red Hat and Ghent have solved those problems. Thank you so much for joining theCUBE. From Valencia, Spain, I'm Keith Townsend along with Paul Gillon. And you're watching theCUBE, the leader in high tech coverage. (upbeat music)

Published Date : May 19 2022

SUMMARY :

brought to you by Red Hat, do you remember your college days? A lot of them are lost. the student debt to prove it. that the university does. So the research we do at university Like the infrastructure I'm going to guess HPC is still the main language, So either the application itself So first of all, So, the use case has talking about the theory I guess at the scale of university and the capabilities for and the experimentation is repeatable, And the HPC community usually down based on the needs. And quite frankly, the computer is a tool, And he's seeing that as the future What are some of the and redo the experiment the rest of the community And then we can stop I think you actually It's a terabyte of data. the AI side of things. I care that the data is accessible. for the compute time they use. to do the research that they want to do. and we will just expand our storage system and I hope to have you back on theCUBE,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Paul GillonPERSON

0.99+

Keith TownsendPERSON

0.99+

KennethPERSON

0.99+

Kenneth HostePERSON

0.99+

Marcel HildPERSON

0.99+

PaulPERSON

0.99+

Red HatORGANIZATION

0.99+

two yearsQUANTITY

0.99+

KeithPERSON

0.99+

MarcelPERSON

0.99+

1 million coresQUANTITY

0.99+

Cloud Native Computing FoundationORGANIZATION

0.99+

50%QUANTITY

0.99+

20QUANTITY

0.99+

FortranTITLE

0.99+

1000 coresQUANTITY

0.99+

30 yearsQUANTITY

0.99+

two terabytesQUANTITY

0.99+

CERNORGANIZATION

0.99+

2000 coresQUANTITY

0.99+

GhentLOCATION

0.99+

Valencia, SpainLOCATION

0.99+

firstQUANTITY

0.99+

GhentORGANIZATION

0.99+

one terabytesQUANTITY

0.99+

each teamQUANTITY

0.99+

one solutionQUANTITY

0.99+

KubeConEVENT

0.99+

todayDATE

0.99+

one terabyteQUANTITY

0.99+

PythonTITLE

0.99+

Ghent UniversityORGANIZATION

0.99+

KubernetesTITLE

0.98+

bothQUANTITY

0.98+

oneQUANTITY

0.98+

HPCORGANIZATION

0.98+

two different communitiesQUANTITY

0.96+

terabytes of dataQUANTITY

0.96+

both endsQUANTITY

0.96+

over 1/2QUANTITY

0.93+

twoQUANTITY

0.93+

CloudnativeconORGANIZATION

0.93+

CloudNativeCon Europe 2022EVENT

0.92+

this morningDATE

0.92+

a yearQUANTITY

0.91+

fiveQUANTITY

0.9+

theCUBEORGANIZATION

0.89+

FortranORGANIZATION

0.88+

KubeConORGANIZATION

0.87+

two terabytes of dataQUANTITY

0.86+

KubeCon CloudNativeCon Europe 2022EVENT

0.86+

EuropeLOCATION

0.85+

yearsQUANTITY

0.81+

a terabyte of dataQUANTITY

0.8+

NavanaORGANIZATION

0.8+

200 terabytes ofQUANTITY

0.79+

Kubecon +ORGANIZATION

0.77+

BizOps Manifesto Unveiled V2


 

>>From around the globe. It's the cube with digital coverage, a BizOps manifesto unveiled brought to you by biz ops coalition. >>Hey, welcome back everybody. Jeff Frick here with the cube. Welcome back to our ongoing coverage of the biz ops manifesto. Unveil. Something has been in the works for a little while. Today's the formal unveiling, and we're excited to have three of the core founding members of the manifesto authors of the manifesto. If you will, uh, joining us again, we've had them all on individually. Now we're going to have a great power panel. First up. We're gonna have Mitt Kirsten returning he's the founder and CEO of Tasktop mic. Good to see you again. Where are you dialing in from? >>Great to see you again, Jeff I'm dialing from Vancouver, >>We're Canada, Vancouver, Canada. One of my favorite cities in the whole wide world. Also we've got Tom Davenport come in from across the country. He's a distinguished professor and author from Babson college, Tom. Great to see you. And I think you said you're at a fun, exotic place on the East coast >>Realm of Memphis shoes. That's on Cape Cod. >>Great to see you again and also joining surge Lucio. He is the VP and general manager enterprise software division at Broadcom surge. Great to see you again, where are you coming in from? >>Uh, from Boston right next to Cape Cod. >>Terrific. So welcome back, everybody again. Congratulations on this day. I know it's been a lot of work to get here for this unveil, but let's just jump into it. The biz ops manifesto, what was the initial reason to do this? And how did you decide to do it in a kind of a coalition, a way bringing together a group of people versus just making it an internal company, uh, initiative that, you know, you can do better stuff within your own company, surge, why don't we start with you? >>Yeah, so, so I think we were at a really critical juncture, right? Many, um, large enterprises are basically struggling with their digital transformation. Um, in fact, um, many recognized that, uh, the, the business side, it collaboration has been, uh, one of the major impediments, uh, to drive that kind of transformation. That, and if we look at the industry today, many people are, whether we're talking about vendors or, um, you know, system integrators, consulting firms are talking about the same kind of concepts, but using very different language. And so we believe that bringing all these different players together, um, as part of the coalition and formalizing, uh, basically the core principles and values in a BizOps manifesto, we can really start to F could have a much bigger movement where we can all talk about kind of the same concepts and we can really start to provide, could have a much better support for large organizations to, to transform. Uh, so whether it is technology or services or, um, or training, I think that that's really the value of bringing all of these players together, right. >>And mic to you. Why did you get involved in this, in this effort? >>So I've been closely involved the agile movement since it started two decades with that manifesto. And I think we got a lot of improvement at the team level, and I think that was just no. Did we really need to improve at the business level? Every company is trying to become a software innovator, trying to make sure that they can pivot quickly and the changing market economy and what everyone's dealing with in terms of needing to deliver value to customers sooner. However, agile practices have really focused on these metrics, these measures and understanding processes that help teams be productive. Those things now need to be elevated to the business as a whole. And that just hasn't happened. Uh, organizations are actually failing because they're measuring activities and how they're becoming more agile, how teams are functioning, not how much quickly they're delivering value to the customer. So we need to now move past that. And that's exactly what the manifesto provides. Right, >>Right, right. And Tom, to you, you've been covering tech for a very long time. You've been looking at really hard challenges and a lot of work around analytics and data and data evolution. So there's a definitely a data angle here. I wonder if you could kind of share your perspective of what you got excited to, uh, to sign onto this manifesto. >>Sure. Well, I have, you know, for the past 15 or 20 years, I've been focusing on data and analytics and AI, but before that I was a process management guy and a knowledge management guy. And in general, I think, you know, we've just kind of optimize that to narrow a level, whether you're talking about agile or dev ops or ML ops, any of these kinds of ops oriented movements, we're making individual project, um, performance and productivity better, but we're not changing the business, uh, effectively enough. And that's the thing that appealed to me about the biz ops idea, that we're finally creating a closer connection between what we do with technology and how it changes the business and provides value to it. >>Great. Uh, surge back to you, right? I mean, people have been talking about digital transformation for a long time and it's been, you know, kind of trucking along and then covert hit and it was instant Lightswitch. Everyone's working from home. You've got a lot more reliance on your digital tools, digital communication, uh, both within your customer base and your partner base, but also then your employees when you're, if you could share how that really pushed this all along. Right? Because now suddenly the acceleration of digital transformation is higher. Even more importantly, you got much more critical decisions to make into what you do next. So kind of your portfolio management of projects has been elevated significantly when maybe revenues are down, uh, and you really have to, uh, to prioritize and get it right. >>Yeah. Maybe I'll just start by quoting Satina Nello basically recently said that they're speeding the two years of digital preservation just last two months in any many ways. That's true. Um, but yet when we look at large enterprises, they're still struggling with a kind of a changes in culture. They really need to drive to be able to disrupt themselves. And not surprisingly, you know, when we look at certain parts of the industry, you know, we see some things which are very disturbing, right? So about 40% of the personal loans today are being, uh, origin data it's by fintechs, uh, of a like of Sophie or, uh, or a lending club, right? Not to a traditional brick and mortar for BEC. And so the, well, there is kind of a much more of an appetite and it's a, it's more of a survival type of driver these days. >>Uh, the reality is that's in order for these large enterprises to truly transform and engage on this digital transformation, they need to start to really align the business nightie, you know, in many ways and make cover. Does agile really emerge from the core desire to truly improve software predictability between which we've really missed is all the way we start to aligning the software predictability to business predictability, and to be able to have continual sleep continuous improvement and measurement of business outcomes. So by aligning that of these, uh, discuss inward metrics, that's, it is typically being using to business outcomes. We think we can start to really ELP, uh, different stakeholders within the organization to collaborate. So I think there is more than ever. There's an imperative to acts now. Um, and, and resolves, I think is kind of the right approach to drive that kind of transformation. Right. >>I want to follow up on the culture comment, uh, with you, Tom, because you've talked before about kind of process flow and process flow throughout a whore and an organization. And, you know, we talk about people process and tech all the time. And I think the tech is the easy part compared to actually changing the people the way they think. And then the actual processes that they put in place. It's a much more difficult issue than just the tech issue to get this digital transformation in your organization. >>Yeah. You know, I've always found that the soft stuff about, you know, the culture of a behavior, the values is the hard stuff to change and more and more, we, we realized that to be successful with any kind of digital transformation you have to change people's behaviors and attitudes. Um, we haven't made as much progress in that area as we might have. I mean, I've done some surveys suggesting that most organizations still don't have data driven cultures. And in many cases there is a lower percentage of companies that say they have that then, um, did a few years ago. So we're kind of moving in the wrong direction, which means I think that we have to start explicitly addressing that, um, cultural, behavioral dimension and not just assuming that it will happen if we, if we build system, if we build it, they won't necessarily come. Right. >>Right. So I want to go to you Nick. Cause you know, we're talking about workflows and flow, um, and, and you've written about flow both in terms of, um, you know, moving things along a process and trying to find bottlenecks, identify bottlenecks, which is now even more important again, when these decisions are much more critical. Cause you have a lot less, uh, wiggle room in tough times, but you also talked about flow from the culture side and the people side. So I wonder if you can just share your thoughts on, you know, using flow as a way to think about things, to get the answers better. >>Yeah, absolutely. And I'll refer back to what Tom has said. If you're optimized, you need to optimize your system. You need to optimize how you innovate and how you deliver value to the business and the customer. Now, what we've noticed in the data, since that we've learned from customers, value streams, enterprise organizations, value streams, is that when it's taking six months at the end to deliver that value with the flow is that slow. You've got a bunch of unhappy developers, unhappy customers when you're innovating half so high performing organizations, we can measure third and 10 float time and dates. All of a sudden that feedback loop, the satisfaction your developer's measurably goes up. So not only do you have people context, switching glass, you're delivering so much more value to customers at a lower cost because you've optimized for flow rather than optimizing for these other approximate tricks that we use, which is how efficient is my agile team. How quickly can we deploy software? Those are important, but they do not provide the value of agility of fast learning of adaptability to the business. And that's exactly what the biz ops manifesto pushes your organization to do. You need to put in place this new operating model that's based on flow on the delivery of business value and on bringing value to market much more quickly than you were before. Right. >>I love that. And I'm going back to you, Tom, on that to follow up. Cause I think, I don't think people think enough about how they prioritize what they're optimizing for. Cause you know, if you're optimizing for a versus B, you know, you can have a very different product that you kick out and let you know. My favorite example is with Clayton Christianson and innovator's dilemma talking about the three inch hard drive. If you optimize it for power, you know, is one thing, if you optimize it for vibration is another thing and sure enough, you know, they missed it on the poem because it was the, it was the game console, which, which drove that whole business. So when you, when you're talking to customers and we think we hear it with cloud all the time, people optimizing for cost efficiency, instead of thinking about it as an innovation tool, how do you help them kind of rethink and really, you know, force them to, to look at the, at the prioritization and make sure they're prioritizing on the right thing is make just said, what are you optimizing for? >>Oh yeah. Um, you have one of the most important aspects of any decision or, um, attempt to resolve a problem in an organization is the framing process. And, um, you know, it's, it's a difficult aspect of the decision to frame it correctly in the first place. Um, there, it's not a technology issue. In many cases, it's largely a human issue, but if you frame that decision or that problem incorrectly to narrowly say, or you frame it as an either or situation where you could actually have some of both, um, it, it's very difficult for the, um, process to work out correctly. So in many cases that I think we need to think more at the beginning about how we bring this issue or this decision in the best way possible before we charge off and build a system to support it. You know, um, it's worth that extra time to think, think carefully about how the decision has been structured, right >>Surgery. I want to go back to you and talk about the human factors because as we just discussed, you can put it in great technology, but if the culture doesn't adopt it and people don't feel good about it, you know, it's not going to be successful and that's going to reflect poorly on the technology, even if it had nothing to do with it. And you know, when you look at the, the, the core values, uh, of the Bezos manifesto, you know, a big one is trust and collaboration, you know, learn, respond and pivot. I wonder if you can share your thoughts on, on trying to get that cultural shift, uh, so that you can have success with the people or excuse me, with the technology in the process and helping customers, you know, take this more trustworthy and kind of proactive, uh, position. >>So I think, I think at the ground level, it truly starts with the realization that we're all different. We come from different backgrounds. Um, oftentimes we tend to blame the data. It's not uncommon my experiments that we spend the first 30 minutes of any kind of one hour conversation to debate the validity of the data. Um, and so, um, one of the first kind of, uh, probably manifestations that we've had or revelations as we start to engage with our customers is spike, just exposing, uh, high-fidelity data sets to different stakeholders from their different lens. We start to enable these different stakeholders to not debate the data. That's really collaborate to find a solution. So in many ways, when, when, when we think about kind of the types of changes we're trying to, to truly affect around data driven decision making, it's all about bringing the data in context, in the context that is relevant and understandable for, for different stakeholders, whether we're talking about an operator or develop for a business analyst. >>So that's, that's the first thing. The second layer I think, is really to provide context to what people are doing in their specific cycle. And so I think one of the best examples I have is if you start to be able to align business KPI, whether you are counting, you know, sales per hour, or the engagements of your users on your mobile applications, whatever it is, you can start to connect that PKI to the business KPI, to the KPIs that developers might be looking at, whether it is the number of defects or a velocity or whatever, you know, metrics that they are used to to actually track you start to, to be able to actually contextualize in what we are the effecting, basically a metric that is really relevant in which we see is that DC is a much more systematic way to approach the transformation than say, you know, some organizations kind of creating, uh, some of these new products or services or initiatives, um, to, to drive engagements, right? >>So if you look at zoom, for instance, zoom giving away a it service to, uh, to education, he's all about, I mean, there's obviously a marketing aspect in therapists. It's fundamentally about trying to drive also the engagement of their own teams. And because now they're doing something for good and the organizations are trying to do that, but you only can do this kind of things in a limited way. And so you really want to start to rethink how you connect to, everybody's kind of a business objective fruit data, and now you start to get people to stare at the same data from their own lens and collaborate on all the data. Right, >>Right. That's a good, uh, Tom, I want to go back to you. You've been studying it for a long time, writing lots of books and getting into it. Um, why now, you know, what w why now are we finally aligning business objectives with, with it objectives? You know, why didn't this happen before? And, you know, what are the factors that are making now the time for this, this, this move with the, uh, with the biz ops? >>Well, and much of the past, it was sort of a back office related activity. And, you know, it was important for, um, uh, producing your paychecks and, uh, um, capturing the customer orders, but the business wasn't built around it now, every organization needs to be a software business, a data business, a digital business, the auntie has been raised considerably. And if you aren't making that connection between your business objectives and the technology that supports it, you run a pretty big risk of, you know, going out of business or losing out to competitors. Totally. So, um, and, uh, even if you're in a, an industry that hasn't historically been terribly, um, technology oriented customer expectations flow from, uh, you know, the digital native, um, companies that they work with to basically every industry. So you're compared against the best in the world. So we don't really have the luxury anymore of screwing up our it projects or building things that don't really work for the business. Um, it's mission critical that we do that well. Um, almost every time, I just want to follow up by that, Tom, >>In terms of the, you've talked extensively about kind of these evolutions of data and analytics from artismal stage to the big data stage, the data economy stage, the AI driven stage and what I find diff interesting that all those stages, you always put a start date. You never put an end date. Um, so you know, is the, is the big data I'm just going to use that generically a moment in time finally here, where we're, you know, off mahogany row with the data scientists, but actually can start to see the promise of delivering the right insight to the right person at the right time to make that decision. >>Well, I think it is true that in general, these previous stages never seemed to go away. The, um, the artisinal stuff is still being done, but we would like for less than less of it to be artisinal, we can't really afford for everything to be artisinal anymore. It's too labor and time consuming to do things that way. So we shift more and more of it to be done through automation and B to be done with a higher level of productivity. And, um, you know, at some point maybe we reached the stage where we don't do anything artisanally anymore. I'm not sure we're there yet, but, you know, we are, we are making progress. Right, >>Right. And Mick, back to you in terms of looking at agile, cause you're, you're such a, a student of agile when, when you look at the opportunity with ops, um, and taking the lessons from agile, you know, what's been the inhibitor to stop this in the past. And what are you so excited about? You know, taking this approach will enable. >>Yeah. I think both Sergeant Tom hit on this is that in agile what's happened is that we've been measuring tiny subsets of the value stream, right? We need to elevate the data's there. Developers are working on these tools that delivering features that the foundations for, for great culture are there. I spent two decades as a developer. And when I was really happy is when I was able to deliver value to customers, the quicker I was able to do that the fewer impediments are in my way, that quicker was deployed and running in the cloud, the happier I was, and that's exactly what's happening. If we can just get the right data, uh, elevated to the business, not just to the agile teams, but really these values of ours are to make sure that you've got these data driven decisions with meaningful data that's oriented around delivering value to customers. Not only these legacies that Tom touched on, which has cost center metrics from an ITK, from where, for it being a cost center and something that provided email and then back office systems. So we need to rapidly shift to those new, meaningful metrics that are customized business centric and make sure that every development the organization is focused on those as well as the business itself, that we're measuring value and that we're helping that value flow without interruptions. >>I love that mic. Cause if you don't measure it, you can't improve on it and you gotta, but you gotta be measuring the right thing. So gentlemen, uh, thank you again for, for your time. Congratulations on the, uh, on the unveil of the biz ops manifesto and together this coalition >>Of, of, uh, industry experts to get behind this. And, you know, there's probably never been a more important time than now to make sure that your prioritization is in the right spot and you're not wasting resources where you're not going to get the ROI. So, uh, congratulations again. And thank you for sharing your thoughts with us here on the cube. Alright, so we had surge, Tom and Mick I'm. Jeff, you're watching the cube, it's a biz ops manifesto and unveil. Thanks for watching. We'll see you next time >>From around the globe. It's the cube with digital coverage of BizOps manifesto, unveiled brought to you by biz ops coalition and welcome back Friday, Jeff Frick here with the cube we're in our Palo Alto studios. And we'd like to welcome you back to our continuing coverage of biz ops manifesto, unveil exciting day to really, uh, kind of bring this out into public. There's been a little bit of conversation, but today's really the official unveiling and we're excited to have our next guest to share a little bit more information on it. He's Patrick tickle. He's a chief product officer for planned view. Patrick. Great to see you. Yeah, it's great to be here. Thanks for the invite. So why the biz ops manifesto, why the biz optical edition now when you guys have been at it, it's relatively mature marketplace businesses. Good. What was missing? Why, why this, uh, why this coalition? >>Yeah, so, you know, again, why is, why is biz ops important and why is this something I'm, you know, I'm so excited about, but I think companies as well, right. Well, you know, in some ways or another, this is a topic that I've been talking to, you know, the market and our customers about for a long time. And it's, you know, I really applaud, you know, this whole movement, right. And, um, in resonates with me, because I think one of the fundamental flaws, frankly, of the way we've talked about technology and business literally for decades, uh, has been this idea of, uh, alignment. Those who know me, I occasionally get off on this little rant about the word alignment, right. But to me, the word alignment is, is actually indicative of the, of the, of the flaw in a lot of our organizations and biz ops is really, I think now trying to catalyze and expose that flaw. >>Right. Because, you know, I always say that, you know, you know, alignment implies silos, right. Instantaneously, as soon as you say there's alignment, there's, there's obviously somebody who's got a direction and other people that have to line up and that, that kind of siloed, uh, nature of organizations. And then frankly, the passive nature of it. Right. I think so many technology organizations are like, look, the business has the strategy you guys need to align. Right. And, and, you know, as a product leader, right. That's where I've been my whole career. Right. I can tell you that I never sit around. I almost never use the word alignment. Right. I mean, whether I never sit down and say, you know, the product management team has to get aligned with Deb, right. Or the dev team has to get aligned with the delivery and ops teams. I mean, what I say is, you know, are we on strategy, right? >>Like we've, we have a strategy as a, as a full end to end value stream. Right. And that there's no silos. And I mean, look, every on any given day we got to get better. Right. But the context, the context we operate is not about alignment. Right. It's about being on strategy. And I think I've talked to customers a lot about that, but when I first read the manifesto, I was like, Oh yeah, this is exactly. This is breaking down. Maybe trying to eliminate the word alignment, you know, from a lot of our organizations, because we literally start thinking about one strategy and how we go from strategy to delivery and have it be our strategy, not someone else's that we're all aligning to it. And it's a great way to catalyze that conversation. That I've, it's been in my mind for years, to be honest. Right. >>So, so much to unpack there. One of the things obviously, uh, stealing a lot from, from dev ops and the dev ops manifesto from 20 years ago. And as I look through some of the principles and I looked through some of the values, which are, you know, really nicely laid out here, you know, satisfy customers, do continuous delivery, uh, measure, output against real results. Um, the ones that, that jumps out though is really about, you know, change, change, right? Requirements should change frequently. They do change frequently, but I'm curious to get your take from a, from a software development point, it's easy to kind of understand, right. We're making this widget and our competitors, beta widget plus X, and now we need to change our plans and make sure that the plus X gets added to the plan. Maybe it wasn't in the plan, but you talked a lot about product strategy. So in this kind of continuous delivery world, how does that meld with, I'm actually trying to set a strategy, which implies the direction for a little bit further out on the horizon and to stay on that while at the same time, you're kind of doing this real time continual adjustments. Cause you're not working off a giant PRD or MRD anymore. >>Yeah, yeah, totally. Yeah. You know, one of the terms, you know, that we use internally a lot and even with my customers, our customers is we talked about this idea of rewiring, right. And I think, you know, it's kind of a, now an analogy for transformation. And I think a lot of us have to rewire the way we think about things. Right. And I think at Planview where we have a lot of customers who live in that, you know, who operationalize that traditional PPM world. Right. And are shifting to agile and transforming that rewire is super important. And, and to your point, right, it's, you've just, you've got to embrace this idea of, you know, just iterative getting better every day and iterating, iterating, iterating as to building annual plans or, you know, I get customers occasionally who asked me for two or three year roadmap. >>Right. And I literally looked at them and I go, there's no, there's no scenario where I can build a two or three year roadmap. Right. You, you, you think you want that, but that's not, that's not the way we run. Right. And I will tell you the biggest thing that for us, you know, that I think is matched the planning, uh, you know, patents is a word I like to use a lot. So the thing that we've like, uh, that we've done from a planning perspective, I think is matched impedance to continuous delivery is instituting the whole program, implement, you know, the program, increment planning, capabilities and methodologies, um, in the scaled agile world. Right. And over the last 18 months to two years, we really have now, you know, instrumented our company across three value streams. You know, we do quarterly PI program increment 10 week planning, you know, and that becomes, that becomes the Terra firma of how we plant. >>Right. And it's, what are we doing for the next 10 weeks? And we iterate within those 10 weeks, but we also know that 10 weeks from now, we're going to, we're going to adjust iterate again. Right. And that shifting of that planning model, you know, to being as cross-functional is that as that big room planning kind of model is, um, and also, uh, you know, on that shorter increment, when you get those two things in place, all sudden the impedance really starts to match up, uh, with continuous delivery and it changes, it changes the way you plan and it changes the way you work. Right? >>Yeah. Their thing. Right. So obviously a lot of these things are kind of process driven, both within the values, as well as the principles, but there's a whole lot, really about culture. And I just want to highlight a couple of the values, right? We already talked about business outcomes, um, trust and collaboration, uh, data driven decisions, and then learn, respond and pivot. Right. A lot of those are cultural as much as they are process. So again, is it the, is it the need to really kind of just put them down on paper and you know, I can't help, but think of, you know, the hammering up the, uh, the thing in the Lutheran church with their, with their manifesto, is it just good to get it down on paper? Because when you read these things, you're like, well, of course we should trust people. And of course we need an environment of collaboration and of course we want data driven decisions, but as we all know saying it and living, it are two very, very different things. >>Yeah. Good question. I mean, I think there's a lot of ways you bring that to life you're right. And just hanging up, you know, I think we've all been through the hanging up posters around your office, which these days, right. Unless you're going to hang a poster and everybody's home office. Right. You can't even, you can't even fake it that you think that might work. Right. So, um, you know, you really, I think we've attacked that in a variety of ways. Right. And you definitely have to, you know, you've got to make the shift to a team centric culture, right. Empowered teams, you know, that's a big deal. Right. You know, a lot of, a lot of the people that, you know, we lived in a world of quote unquote, where we were lived in a deep resource management world for a long, long time. >>And right. A lot of our customers still do that, but you know, kind of moving to that team centric world is, uh, is really important and core the trust. Um, I think training is super important, right. We've, you know, we've internally, right. We've trained hundreds employees over the last a year and a half on the fundamentals really of safe. Right. Not necessarily, you know, we've had, we've had teams delivering in scrum and the continuous delivery for, you know, for years, but the scaling aspect of it, uh, is where we've done a lot of training and investment. Um, and then, you know, I think, uh, leadership has to be bought in. Right. You know? And so when we pie plan, you know, myself and Cameron and the other members of our leadership, you know, we're NPI planning, you know, for, for four days. Right. I mean, it's, it's, you've got to walk the walk, you know, from top to bottom and you've got to train on the context. Right. And then you, and then, and, and then once you get through a few cycles where you've done a pivot, right. Or you brought a new team in, and it just works, it becomes kind of this virtuous circle where he'll go, man, this really works so much better than what we used to do. Right. >>Right. The other really key principle to this whole thing is, is aligning, you know, the business leaders and the business prioritization, um, so that you can get to good outcomes with the development and the delivery. Right. And we, we know again, and kind of classic dev ops to get the dev and the production people together. So they can, you know, quickly ship code that works. Um, but adding the business person on there really puts, puts a little extra responsibility that they, they understand the value of a particular feature or particular priority. Uh, they, they can make the, the, the trade offs and that they kind of understand the effort involved too. So, you know, bringing them into this continuous again, kind of this continuous development process, um, to make sure that things are better aligned and really better prioritize. Cause ultimately, you know, we don't live in an infinite resources situation and people got to make trade offs. They got to make decisions as to what goes and what doesn't go in for everything that goes. Right. I always say you pick one thing. Okay. That's 99 other things that couldn't go. So it's really important to have, you know, this, you said alignment of the business priorities as well as, you know, the execution within, within the development. >>Yeah. I think that, you know, uh, you know, I think it was probably close to two years ago. Forester started talking about the age of the customer, right. That, that was like their big theme at the time. Right. And I think to me what that, the age of the customer actually translates to and Mick, Mick and I are both big fans of this whole idea of the project and product shift, mixed book, you know, it was a great piece on a, you're talking about, you know, as part of the manifesto is one of the authors as well, but this shift from project to product, right? Like the age of the customer, in my opinion, the, the embodiment of that is the shift to a product mentality. Right. And, and the product mentality in my opinion, is what brings the business and technology teams together, right? >>Once you, once you're focused on a customer experience is delivered through a product or a service. That's when I that's, when I started to go with the alignment problem goes away, right. Because if you look at software companies, right, I mean, we run product management models yeah. With software development teams, customer success teams, right. That, you know, the software component of these products that people are building is obviously becoming bigger and bigger, you know, in an, in many ways, right. More and more organizations are trying to model themselves over as operationally like software companies. Right. Um, they obviously have lots of other components in their business than just software, but I think that whole model of customer experience equaling product, and then the software component of product, the product is the essence of what changes that alignment equation and brings business and teams together because all of a sudden, everyone knows what the customer's experiencing. Right. And, and that, that, that makes a lot of things very clear, very quickly. >>Right. I'm just curious how far along this was as a process before, before COBIT hit, right. Because serendipitous, whatever. Right. But the sudden, you know, light switch moment, everybody had to go work from home and in March 15th compared to now we're in October and this is going to be going on for a while. And it is a new normal and whatever that whatever's going to look like a year from now, or two years from now is TBD, you know, had you guys already started on this journey cause again, to sit down and actually declare this coalition and declare this manifesto is a lot different than just trying to do better within your own organization. >>Yeah. So we had started, uh, you know, w we definitely had started independently, you know, some, some, you know, I think people in the community know that, uh, we, we came together with a company called lean kit a handful of years ago, and I give John Terry actually one of the founders LeanKit immense credit for, you know, kind of spearheading our cultural change and not, and not because of, we were just gonna be, you know, bringing agile solutions to our customers, but because, you know, he believed that it was going to be a fundamentally better way for us to work. Right. And we kind of, you know, we started with John and built, you know, out of concentric circles of momentum and, and we've gotten to the place where now it's just part of who we are, but, but I do think that, you know, COVID has, you know, um, I think pre COVID a lot of companies, you know, would, would adopt, you know, the would adopt digital slash agile transformation. >>Um, traditional industries may have done it as a reaction to disruption. Right. You know, and in many cases, the disruption to these traditional industries was, I would say a product oriented company, right. That probably had a larger software component, and that disruption caused a competitive issue, uh, or a customer issue that caused companies and tried to respond by transforming. I think COVID, you know, all of a sudden flatten that out, right. We literally all got disrupted. Right. And so all of a sudden, every one of us is dealing with some degree of market uncertainty, customer uncertainty, uh, and also, you know, none of us were insulated from the need to be able to pivot faster, deliver incrementally, you know, and operate in a different, completely more agile way, uh, you know, post COVID. Right. Yeah. That's great. >>So again, a very, very, very timely, you know, a little bit of serendipity, a little bit of planning. And, you know, as, as with all important things, there's always a little bit of lock in, uh, and a lot of hard work involved. So a really interesting thank you for, for your leadership, Patrick. And, you know, it really makes a statement. I think when you have a bunch of leaderships across an industry coming together and putting their name on a piece of paper, uh, that's aligned around us some principles and some values, which again, if you read them who wouldn't want to get behind these, but if it takes, you know, something a little bit more formal, uh, to kind of move the ball down the field, and then I totally get it and a really great work. Thanks for, uh, thanks for doing it. >>Oh, absolutely. No. Like I said, the first time I read it, I was like, yep. Like you said, this is all, it's all makes complete sense, but just documenting it and saying it and talking about it moves the needle. I'll tell you as a company, you gotta, we're pushing really hard on, uh, you know, on our own internal strategy on diversity and inclusion. Right. And, and like, once we wrote the words down about what, you know, what we aspire to be from a diversity and inclusion perspective, it's the same thing. Everybody reads the words that goes, why wouldn't we do this? Right. But until you write it down and kind of have again, a manifesto or a Terra firma of what you're trying to accomplish, you know, then you can rally behind it. Right. As opposed to it being something that's, everybody's got their own version of the flavor. Right. And I think it's a very analogous, you know, kind of, uh, initiative. Right. And, uh, and it's happening, both of those things right. Are happening across the industry these days. Right. >>And measure it too. Right. And measure it, measure, measure, measure, get a baseline. Even if you don't like to measure, even if you don't like what the, even if you can argue against the math, behind the measurement, measure it. And at least you can measure it again and you can, and you've got some type of a comp and that is really the only way to, to move it forward. We're Patrick really enjoyed the conversation. Thanks for, uh, for taking a few minutes out of your day. >>It's great to be here. It's an awesome movement and we're glad to be a part of it. >>All right. Thanks. And if you want to check out the biz ops, Manifesta go to biz ops, manifesto.org, read it. You might want to sign it. It's there for you. And thanks for tuning in on this segment will continuing coverage of the biz op manifesto unveil you're on the cube. I'm Jeff, thanks for watching >>From around the globe. It's the cube with digital coverage of biz ops manifesto unveiled brought to you by biz ops coalition. >>Hey, welcome back, everybody Jeffrey here with the cube. We're coming to you from our Palo Alto studios. And welcome back to this event is the biz ops manifesto unveiling. So the biz ops manifesto and the biz ops coalition had been around for a little while, but today's the big day. That's kind of the big public unveiling, or we're excited to have some of the foundational people that, you know, have put their, put their name on the dotted, if you will, to support this initiative and talk about why that initiative is so important. And so the next guest we're excited to have is dr. Mick Kirsten. He is the founder and CEO of Tasktop mic. Great to see you coming in from Vancouver, Canada, I think, right? Yes. Great to be here, Jeff. Thank you. Absolutely. I hope your air is a little better out there. I know you had some of the worst air of all of us, a couple, a couple of weeks back. So hopefully things are, uh, are getting a little better and we get those fires under control. Yeah. >>Things have cleared up now. So yeah, it's good. It's good to be close to the U S and it's going to have the Arabic cleaner as well. >>Absolutely. So let's, let's jump into it. So you you've been an innovation guy forever starting way back in the day and Xerox park. I was so excited to do an event at Xerox park for the first time last year. I mean, that, that to me represents along with bell labs and, and some other, you know, kind of foundational innovation and technology centers, that's gotta be one of the greatest ones. So I just wonder if you could share some perspective of getting your start there at Xerox park, you know, some of the lessons you learned and what you've been able to kind of carry forward from those days. >>Yeah. I was fortunate to join Xerox park in the computer science lab there at a fairly early point in my career, and to be working on open source programming languages. So back then in the computer science lab, where some of the inventions around programming around software development games, such as object programming, and a lot of what we had around really modern programming levels constructs, those were the teams I had the fortunate of working with, and really our goal was. And of course, there's, as, as you noticed, there's just this DNA of innovation and excitement and innovation in the water. And really it was the model that was all about changing the way that we work was looking at for how we can make it 10 times easier to white coat. But this is back in 99. And we were looking at new ways of expressing, especially business concerns, especially ways of enabling people who are wanting to innovate for their business to express those concerns in code and make that 10 times easier than what that would take. >>So we create a new open source programming language, and we saw some benefits, but not quite quite what we expected. I then went and actually joined Charles Stephanie, that former to fucking from Microsoft who was responsible for, he actually got Microsoft word as a sparking into Microsoft and into the hands of bill Gates and that company that was behind the whole office suite and his vision. And then when I was trying to execute with, working for him was to make PowerPoint like a programming language to make everything completely visual. And I realized none of this was really working, that there was something else, fundamentally wrong programming languages, or new ways of building software. Like let's try and do with Charles around intentional programming. That was not enough. >>That was not enough. So, you know, the agile movement got started about 20 years ago, and we've seen the rise of dev ops and really this kind of embracing of, of, of sprints and, you know, getting away from MRDs and PRDs and these massive definitions of what we're going to build and long build cycles to this iterative process. And this has been going on for a little while. So what was still wrong? What was still missing? Why the biz ops coalition, why the biz ops manifesto? >>Yeah, so I basically think we nailed some of the things that the program language levels of teams can have effective languages deployed to soften to the cloud easily now, right? And at the kind of process and collaboration and planning level agile two decades, decades ago was formed. We were adopting and all the, all the teams I was involved with and it's really become a self problem. So agile tools, agile teams, agile ways of planning, uh, are now very mature. And the whole challenge is when organizations try to scale that. And so what I realized is that the way that agile was scaling across teams and really scaling from the technology part of the organization to the business was just completely flawed. The agile teams had one set of doing things, one set of metrics, one set of tools. And the way that the business was working was planning was investing in technology was just completely disconnected and using a whole different set of measures. Pretty >>Interesting. Cause I think it's pretty clear from the software development teams in terms of what they're trying to deliver. Cause they've got a feature set, right. And they've got bugs and it's easy to, it's easy to see what they deliver, but it sounds like what you're really honing in on is this disconnect on the business side, in terms of, you know, is it the right investment? You know, are we getting the right business ROI on this investment? Was that the right feature? Should we be building another feature or should we building a completely different product set? So it sounds like it's really a core piece of this is to get the right measurement tools, the right measurement data sets so that you can make the right decisions in terms of what you're investing, you know, limited resources. You can't, nobody has unlimited resources. And ultimately you have to decide what to do, which means you're also deciding what not to do. And it sounds like that's a really big piece of this, of this whole effort. >>Yeah. Jeff, that's exactly it, which is the way that the agile team measures their own way of working is very different from the way that you measure business outcomes. The business outcomes are in terms of how happy your customers are, but are you innovating fast enough to keep up with the pace of a rapidly changing economy, roughly changing market. And those are, those are all around the customer. And so what I learned on this long journey of supporting many organizations transformations and having them try to apply those principles of agile and dev ops, that those are not enough, those measures technical practices, uh, those measured sort of technical excellence of bringing code to the market. They don't actually measure business outcomes. And so I realized that it really was much more around having these entwined flow metrics that are customer centric and business centric and market centric where we need it to go. Right. >>So I want to shift gears a little bit and talk about your book because you're also a bestselling author from project to product and, and, and you, you brought up this concept in your book called the flow framework. And it's really interesting to me cause I know, you know, flow on one hand is kind of a workflow and a process flow and, and you know, that's how things get done and, and, and embrace the flow. On the other hand, you know, everyone now in, in a little higher level existential way is trying to get into the flow right into the workflow and, you know, not be interrupted and get into a state where you're kind of at your highest productivity, you know, kind of your highest comfort, which flow are you talking about in your book? Or is it a little bit of both? >>That's a great question. It's not one I get asked very often cause to me it's absolutely both. So that the thing that we want to get, that we've learned how to master individual flow, that there's this beautiful book by me, how you teaches me how he does a beautiful Ted talk by him as well about how we can take control of our own flow. So my question with the book with question replies, how can we bring that to entire teams and really entire organizations? How can we have everyone contributing to a customer outcome? And this is really what if you go to the biz ops manifesto, it says, I focus on outcomes on using data to drive whether we're delivering those outcomes rather than a focus on proxy metrics, such as, how quickly did we implement this feature? No, it's really how much value did the customer go to the future? >>And how quickly did you learn and how quickly did you use that data to drive to that next outcome? Really that with companies like Netflix and Amazon have mastered, how do we get that to every large organization, every it organization and make everyone be a software innovator. So it's to bring that, that concept of flow to these end to end value streams. And the fascinating thing is we've actually seen the data. We've been able to study a lot of value streams. We see when flow increases, when organizations deliver value to a customer faster, developers actually become more happy. So things like that and point out promoter scores, rise, and we've got empirical data for this. So that the beautiful thing to me is that we've actually been able to combine these two things and see the results and the data that you increase flow to the customer. Your developers are more, >>I love it. I love it, right, because we're all more, we're all happier when we're in the flow and we're all more productive when we're in the flow. So I, that is a great melding of, of two concepts, but let's jump into the, into the manifesto itself a little bit. And you know, I love that you took this approach really of having kind of four key values and then he gets 12 key principles. And I just want to read a couple of these values because when you read them, it sounds pretty brain dead. Right? Of course. Right. Of course you should focus on business outcomes. Of course you should have trust and collaboration. Of course you should have database decision making processes and not just intuition or, you know, whoever's the loudest person in the room, uh, and to learn and respond and pivot. But what's the value of actually just putting them on a piece of paper, because again, this is not this, these are all good, positive things, right? When somebody reads these to you or tells you these are sticks it on the wall, of course. But unfortunately of course isn't always enough. >>No. And I think what's happened is some of these core principles originally from the agile manifesto in two decades ago, uh, the whole dev ops movement of the last decade of flow feedback and continue learning has been key. But a lot of organizations, especially the ones undergoing digital transformations have actually gone a very different way, right? The way that they measure value, uh, in technology and innovation is through costs for many organizations. The way that they actually are looking at that they're moving to cloud is actually as a reduction in cost. Whereas the right way of looking at moving to cloud is how much more quickly can we get to the value to the customer? How quickly can we learn from that? And how quickly can we drive the next business outcome? So really the key thing is, is to move away from those old ways of doing things of funding projects and cost centers, to actually funding and investing in outcomes and measuring outcomes through these flow metrics, which in the end are your fast feedback and how quickly you're innovating for your customer. >>So these things do seem very obvious when you look at them. But the key thing is what you need to stop doing to focus on these. You need to actually have accurate realtime data of how much value you fund to the customer every week, every month, every quarter. And if you don't have that, your decisions are not driven on data. If you don't know what your bottleneck is. And this is something that in decades of manufacturing, a car manufacturers, other manufacturers, master, they always know where the bottom back in their production processes. You ask a random CIO when a global 500 company where their bottleneck is, and you won't get a clear answer because there's not that level of understanding. So have to actually follow these principles. You need to know exactly where you fall. And I guess because that's, what's making your developers miserable and frustrated, then having them context, which I'm trash. So the approach here is important and we have to stop doing these other things, >>Right? There's so much there to unpack. I love it. You know, especially the cloud conversation because so many people look at it wrong as, as, as a cost saving a device, as opposed to an innovation driver and they get stuck, they get stuck in the literal. And I, you know, I think at the same thing, always about Moore's law, right? You know, there's a lot of interesting real tech around Moore's law and the increasing power of microprocessors, but the real power, I think in Moore's laws is the attitudinal change in terms of working in a world where you know that you've got all this power and what you build and design. I think it's funny to your, your comment on the flow and the bottleneck, right? Cause, cause we know manufacturing, as soon as you fix one bottleneck, you move to your next one, right? You always move to your next point of failure. So if you're not fixing those things, you know, you're not, you're not increasing that speed down the line, unless you can identify where that bottleneck is or no matter how many improvements you make to the rest of the process, it's still going to get hung up on that one spot. >>That's exactly it. And you also make it sound so simple, but again, if you don't have the data driven visibility of where the bottom line is, and these bottlenecks are adjusted to say, it's just whack-a-mole right. So we need to understand is the bottleneck because our security reviews are taking too long and stopping us from getting value for the customer. If it's that automate that process. And then you move on to the next bottleneck, which might actually be that deploying yourself into the cloud was taking too long. But if you don't take that approach of going flow first, rather than again, that sort of cost reduction. First, you have to think of that approach of customer centricity and you only focused on optimizing costs. Your costs will increase and your flow will slow down. And this is just one of these fascinating things. Whereas if you focus on getting back to the customer and reducing your cycles on getting value, your flow time from six months to two weeks or two, one week or two event, as we see with, with tech giants, you actually can both lower your costs and get much more value that for us to get that learning loop going. >>So I think I've seen all of these cloud deployments and one of the things that's happened that delivered almost no value because there was such big bottlenecks upfront in the process and actually the hosting and the AP testing was not even possible with all of those inefficiencies. So that's why going float for us rather than costs where we started our project versus silky. >>I love that. And, and, and, and it, it begs repeating to that right within the subscription economy, you know, you're on the hook to deliver value every single month because they're paying you every single month. So if you're not on top of how you're delivering value, you're going to get sideways because it's not like, you know, they pay a big down payment and a small maintenance fee every month, but once you're in a subscription relationship, you know, you have to constantly be delivering value and upgrading that value because you're constantly taking money from the customer. So it's such a different kind of relationship than kind of the classic, you know, big bang with a maintenance agreement on the back end really important. Yeah. >>And I think in terms of industry shifts that that's it that's, what's catalyzed. This interesting shift is in this SAS and subscription economy. If you're not delivering more and more value to your customers, someone else's and they're winning the business, not you. So one way we know is to delight our customers with great user experiences. Well, that really is based on how many features you delivered or how much, how big, how many quality improvements or scalar performance improvements you delivered. So the problem is, and this is what the business manifesto, as well as the full frame of touch on is if you can't measure how much value you delivered to a customer, what are you measuring? You just backed again, measuring costs and that's not a measure of value. So we have to shift quickly away from measuring cost to measuring value, to survive in the subscription economy. >>We could go for days and days and days. I want to shift gears a little bit into data and, and, and a data driven, um, decision making a data driven organization cause right day has been talked about for a long time, the huge big data meme with, with Hadoop over, over several years and, and data warehouses and data lakes and data oceans and data swamps, and can go on and on and on. It's not that easy to do, right? And at the same time, the proliferation of data is growing exponentially. We're just around the corner from, from IOT and 5g. So now the accumulation of data at machine scale, again, this is going to overwhelm and one of the really interesting principles, uh, that I wanted to call out and get your take right, is today's organizations generate more data than humans can process. So informed decisions must be augmented by machine learning and artificial intelligence. I wonder if you can, again, you've got some great historical perspective, um, reflect on how hard it is to get the right data, to get the data in the right context, and then to deliver it to the decision makers and then trust the decision makers to actually make the data and move that down. You know, it's kind of this democratization process into more and more people and more and more frontline jobs making more and more of these little decisions every day. >>Yeah. I definitely think the front parts of what you said are where the promises of big data have completely fallen on their face into the swamps as, as you mentioned, because if you don't have the data in the right format, you've cannot connect collected at the right way. You want that way, the right way you can't use human or machine learning effectively. And there've been the number of data warehouses in a typical enterprise organization. And the sheer investment is tremendous, but the amount of intelligence being extracted from those is, is, is a very big problem. So the key thing that I've noticed is that if you can model your value streams, so yes, you understand how you're innovating, how you're measuring the delivery of value and how long that takes. What is your time to value these metrics like full time? You can actually use both the intelligence that you've got around the table and push that down as well, as far as getting to the organization, but you can actually start using that those models to understand and find patterns and detect bottlenecks that might be surprising, right? >>Well, you can detect interesting bottlenecks when you shift to work from home. We detected all sorts of interesting bottlenecks in our own organization that were not intuitive to me that had to do with, you know, more senior people being overloaded and creating bottlenecks where they didn't exist. Whereas we thought we were actually an organization that was very good at working from home because of our open source roots. So that data is highly complex. Software value streams are extremely complicated. And the only way to really get the proper analyst and data is to model it properly and then to leverage these machine learning and AI techniques that we have. But that front part of what you said is where organizations are just extremely immature in what I've seen, where they've got data from all their tools, but not modeled in the right way. Right, right. >>Right. Well, all right. So before I let you go, you know, let's say you get a business leader, he buys in, he reads the manifesto, he signs on the dotted line and he says, Mick, how do I get started? I want to be more aligned with, with the development teams. You know, I'm in a very competitive space. We need to be putting out new software features and engaging with our customers. I want to be more data-driven how do I get started? Well, you know, what's the biggest inhibitor for most people to get started and get some early wins, which we know is always the key to success in any kind of a new initiative. >>Right? So I think you can reach out to us through the website, uh, there's the manifesto, but the key thing is just to get you set up it's to get started and to get the key wins. So take a probably value stream that's mission critical. It could be your new mobile and web experiences or, or part of your cloud modernization platform or your analytics pipeline, but take that and actually apply these principles to it and measure the end to end flow of value. Make sure you have a value metric that everyone is on the same page on the people, on the development teams, the people in leadership all the way up to the CEO. And one of the, what I encourage you to start is actually that content flow time, right? That is the number one metric. That is how you measure it, whether you're getting the benefit of your cloud modernization, that is the one metric that Adrian Cockcroft. When the people I respect tremendously put into his cloud for CEOs, the metric, the one, the one way to measure innovation. So basically take these principles, deploy them on one product value stream, measure, sentiment, flow time, and then you'll actually be well on your path to transforming and to applying the concepts of agile and dev ops all the way to, to the business, to the way >>You're offering model. >>Well, Mick really great tips, really fun to catch up. I look forward to a time when we can actually sit across the table and, and get into this. Cause I just, I just love the perspective and, you know, you're very fortunate to have that foundational, that foundational base coming from Xerox park and they get, you know, it's, it's a very magical place with a magical history. So to, to incorporate that into, continue to spread that well, uh, you know, good for you through the book and through your company. So thanks for sharing your insight with us today. >>Thanks so much for having me, Jeff. >>All right. And go to the biz ops manifesto.org, read it, check it out. If you want to sign it, sign it. They'd love to have you do it. Stay with us for continuing coverage of the unveiling of the business manifesto on the cube. I'm Jeff. Rick. Thanks for watching. See you next time >>From around the globe. It's the cube with digital coverage of biz ops manifesto unveiled brought to you by biz ops coalition. >>Hey, welcome back everybody. Jeff Frick here with the cube come due from our Palo Alto studios today for a big, big reveal. We're excited to be here. It's the biz ops manifesto unveiling a thing's been in the works for awhile and we're excited to have our next guest. One of the, really the powers behind this whole effort. And he's joining us from Boston it's surge, Lucio, the vice president, and general manager enterprise software division at Broadcom surge. Great to see you. >>Hi, good to see you, Jeff. Glad to be here. >>So you've been in this business for a very long time. You've seen a lot of changes in technology. What is the biz ops manifesto? What is this coalition all about? Why do we need this today and in 2020? >>Yeah. So, so I've been in this business for close to 25 years, right? So about 20 years ago, the agile manifesto was created. And the goal of the agile manifesto was really to address the uncertainty around software development and the inability to predict the efforts to build software. And, uh, if you, if you roll that kind of 20 years later, and if you look at the current state of the industry, uh, the product, the project management Institute, estimates that we're wasting about a million dollars, every 20 seconds in digital transformation initiatives that do not deliver on business results. In fact, we were recently served a third of the, uh, a number of executives in partnership with Harvard business review and 77% of those executives think that one of the key challenges that they have is really at the collaboration between business and it, and that that's been kind of a case for, uh, almost 20 years now. >>Um, so the, the, the key challenge we're faced with is really that we need a new approach and many of the players in the industry, including ourselves, I've been using different terms, right? Some are being, are talking about value stream management. Some are talking about software delivery management. If you look at the site, reliability engineering movement, in many ways, it embodies a lot of these kind of concepts and principles. So we believed that it became really imperative for us to crystallize around, could have one concept. And so in many ways, the, uh, the BizOps concept and the business manifesto are bringing together a number of ideas, which have been emerging in the last five years or so, and, and defining the key values and principles to finally help these organizations truly transform and become digital businesses. And so the hope is that by joining our forces and defining public key principles and values, we can help the industry, uh, not just, uh, by, you know, providing them with support, but also, uh, tools and consulting that is required for them to truly achieve the kind of transformation that everybody's seeking. >>Right, right. So COVID now we're six months into it, approximately seven months into it. Um, a lot of pain, a lot of bad stuff still happening. We've got a ways to go, but one of the things that on the positive side, right, and you've seen all the memes and social media is, is a driver of digital transformation and a driver of change. Cause we had this light switch moment in the middle of March and there was no more planning. There was no more conversation. You've suddenly got remote workforces, everybody's working from home and you got to go, right. So the reliance on these tools increases dramatically, but I'm curious, you know, kind of short of, of the beginnings of this effort in short of kind of COVID, which, you know, came along unexpectedly. I mean, what were those inhibitors because we've been making software for a very long time, right? The software development community has, has adopted kind of rapid change and, and iterative, uh, delivery and, and sprints, what was holding back the connection with the business side to make sure that those investments were properly aligned with outcomes. >>Well, so, so you have to understand that it is, is kind of a its own silos. And traditionally it has been treated as a cost center within large organizations and not as a value center. And so as a result could have a traditional dynamic between it and the business is basically one of a kind of supplier up to kind of a business. Um, and you know, if you, if you go back to, uh, I think you'll unmask a few years ago, um, basically at this concept of the machines to build the machines and you went as far as saying that, uh, the machines or the production line is actually the product. So, um, meaning that the core of the innovation is really about, uh, building, could it be engine to deliver on the value? And so in many ways, you know, we have missed on this shift from, um, kind of it becoming this kind of value center within the enterprises. >>And, and he talks about culture. Now, culture is a, is a sum total of beavers. And the reality is that if you look at it, especially in the last decade, uh, we've agile with dev ops with, um, I bring infrastructures, uh, it's, it's way more volatile today than it was 10 years ago. And so the, when you start to look at the velocity of the data, the volume of data, the variety of data to analyze this system, um, it's, it's very challenging for it to actually even understand and optimize its own processes, let alone, um, to actually include business as sort of an integral part of kind of a delivery chain. And so it's both kind of a combination of, of culture, um, which is required as well as tools, right? To be able to start to bring together all these data together, and then given the volume variety of philosophy of the data, uh, we have to apply some core technologies, which have only really, truly emerged in the last five to 10 years around machine learning and analytics. And so it's really kind of a combination of those freaks, which are coming together today to really help organizations kind of get to the next level. Right, >>Right. So let's talk about the manifesto. Let's talk about, uh, the coalition, uh, the BizOps coalition. I just liked that you put down these really simple, you know, kind of straightforward core values. You guys have four core values that you're highlighting, you know, business outcomes, over individual projects and outputs, trust, and collaboration, oversight, load teams, and organizations, data driven decisions, what you just talked about, uh, you know, over opinions and judgment and learned, respond and pivot. I mean, surgery sounds like pretty basic stuff, right? I mean, aren't, isn't everyone working to these values already. And I think he touched on it on culture, right? Trust and collaboration, data driven decisions. I mean, these are fundamental ways that people must run their business today, or the person that's across the street, that's doing it. It's going to knock them out right off their blog. >>Yeah. So that's very true. But, uh, so I'll, I'll mention in our survey, we did, uh, I think about six months ago and it was in partnership with, uh, with, uh, an industry analyst and we serve at a, again, a number of it executives to understand how many we're tracking business outcomes I'm going to do with the software executives. It executives we're tracking business outcomes. And the, there were less than 15% of these executives were actually tracking the outcomes of a software delivery. And you see that every day. Right? So in my own teams, for instance, we've been adopting a lot of these core principles in the last year or so, and we've uncovered that 16% of our resources were basically aligned around initiatives, which are not strategic for us. Um, I take, you know, another example, for instance, one of our customers in the, uh, in the airline industry and Harvard, for instance, that a number of, uh, um, that they had software issues that led to people searching for flights and not returning any kind of availability. >>And yet, um, you know, the, it teams, whether it's operations, software environments were completely oblivious to that because they were completely blindsided to it. And so the connectivity between kind of the inwards metrics that RT is using, whether it's database time, cycle time, or whatever metric we use in it are typically completely divorced from the business metrics. And so at its core, it's really about starting to align the business metrics with what the, the software delivery chain, right? This, uh, the system, which is really a core differentiator for these organizations. It's about connecting those two things and, and starting to, um, infuse some of the agile culture and principles. Um, that's emerged from the software side into the business side. Um, of course the lean movement and other movements have started to change some of these dynamic on the, on the business side. And so I think this, this is the moment where we are starting to see kind of the imperative to transform. Now, you know, Covina obviously has been a key driver for that. The, um, the technology is right to start to be able to weave data together and really kind of, uh, also the cultural shifts, uh, Prue agile through dev ops through, uh, the SRE movement, uh frulein um, business transformation, all these things are coming together and that are really creating kind of the conditions for the BizOps manifesto to exist. >>So, uh, Clayton Christianson, great, uh, Harvard professor innovator's dilemma might still my all time favorite business books, you know, talks about how difficult it is for incumbents to react to, to disruptive change, right? Because they're always working on incremental change because that's what their customers are asking for. And there's a good ROI when you talk about, you know, companies not measuring the right thing. I mean, clearly it has some portion of their budget that has to go to keeping the lights on, right. That that's always the case, but hopefully that's an, an ever decreasing percentage of their total activity. So, you know, what should people be measuring? I mean, what are kind of the new metrics, um, in, in biz ops that drive people to be looking at the right things, measuring the right things and subsequently making the right decisions, investment decisions on whether they should do, you know, move project a along or project B. >>So there, there are only two things, right? So, so I think what you're talking about is portfolio management, investment management, right. And, um, which, which is a key challenge, right? Um, in my own experience, right? Uh, driving strategy or a large scale kind of software organization for years, um, it's very difficult to even get kind of a base data as to who is doing what, uh, um, I mean, some of our largest customers we're engaged with right now are simply trying to get a very simple answer, which is how many people do I have and that specific initiative at any point in time, and just tracking that information is extremely difficult. So, and again, back to a product project management Institute, um, there, they have estimated that on average, it organizations have anywhere between 10 to 20% of their resources focused on initiatives, which are not strategically aligned. >>So, so that's one dimensional portfolio management. I think the key aspect though, that we are, we're really keen on is really around kind of the alignment of a business metrics to the it metrics. Um, so I'll use kind of two simple examples, right? And my background is around quality and I've always believed that the fitness for purpose is really kind of a key, um, uh, philosophy if you will. And so if you start to think about quality as fitness for purpose, you start to look at it from a customer point of view, right. And fitness for purpose for a core banking application or mobile application are different, right? So the definition of a business value that you're trying to achieve is different. Um, and so the, and yeah, if you look at our, it, operations are operating there, we're using kind of a same type of, uh, kind of inward metrics, uh, like a database off time or a cycle time, or what is my point of velocity, right? >>And so the challenge really is this inward facing metrics that it is using, which are divorced from ultimately the outcome. And so, you know, if I'm, if I'm trying to build a poor banking application, my core metric is likely going to be uptight, right? If I'm trying to build a mobile application or maybe your social, a mobile app, it's probably going to be engagement. And so what you want is for everybody across it, to look at these metric and what are the metrics within the software delivery chain, which ultimately contribute to that business metric. And some cases cycle time may be completely irrelevant, right? Again, my core banking app, maybe I don't care about cycle time. And so it's really about aligning those metrics and be able to start to, um, Charles you mentioned, uh, around the, the, um, uh, around the disruption that we see is, or the investors is the dilemma now is really around the fact that many it organizations are essentially applying the same approaches of, for innovation, like for basically scrap work, then they would apply to kind of over more traditional projects. And so, you know, there's been a lot of talk about two-speed it, and yes, it exists, but in reality are really organizations, um, truly differentiating, um, all of the operate, their, their projects and products based on the outcomes that they're trying to achieve. And this is really where BizOps is trying to affect. >>I love that, you know, again, it doesn't seem like brain surgery, but focus on the outcomes, right. And it's horses for courses, as you said, this project, you know, what you're measuring and how you define success, isn't necessarily the same as, as on this other project. So let's talk about some of the principles we talked about the values, but, you know, I think it's interesting that, that, that the BizOps coalition, you know, just basically took the time to write these things down and they don't seem all that super insightful, but I guess you just got to get them down and have them on paper and have them in front of your face. But I want to talk about, you know, one of the key ones, which you just talked about, which is changing requirements, right. And working in a dynamic situation, which is really what's driven, you know, this, the software to change in software development, because, you know, if you're in a game app and your competitor comes out with a new blue sword, you got to come out with a new blue sword. >>So whether you had that on your Kanban wall or not. So it's, it's really this embracing of the speed of change and, and, and, and making that, you know, the rule, not the exception. I think that's a phenomenal one. And the other one you talked about is data, right? And that today's organizations generate more data than humans can process. So informed decisions must be generated by machine learning and AI, and, you know, in the, the big data thing with Hadoop, you know, started years ago, but we are seeing more and more that people are finally figuring it out, that it's not just big data, and it's not even generic machine learning or artificial intelligence, but it's applying those particular data sets and that particular types of algorithms to a specific problem, to your point, to try to actually reach an objective, whether that's, you know, increasing the, your average ticket or, you know, increasing your checkout rate with, with, with shopping carts that don't get left behind in these types of things. So it's a really different way to think about the world in the good old days, probably when you got started, when we had big, giant, you know, MRDs and PRDs and sat down and coded for two years and came out with a product release and hopefully not too many patches subsequently to that. >>It's interesting. Right. Um, again, back to one of these surveys that we did with, uh, with about 600, the ITA executives, and, uh, and, and we, we purposely designed those questions to be pretty open. Um, and, and one of them was really wrong requirements and, uh, and it was really a wrong, uh, kind of what do you, what is the best approach? What is your preferred approach towards requirements? And if I were to remember correctly, over 80% of the it executives set that the best approach they'll prefer to approach these core requirements to be completely defined before software development starts, let me pause there we're 20 years after the agile manifesto, right? And for 80% of these idea executives to basically claim that the best approach is for requirements to be fully baked before salt, before software development starts, basically shows that we still have a very major issue. >>And again, our hypothesis in working with many organizations is that the key challenge is really the boundary between business and it, which is still very much contract based. If you look at the business side, they basically are expecting for it deliver on time on budget, right. But what is the incentive for it to actually delivering on the business outcomes, right? How often is it measured on the business outcomes and not on an SLA or on a budget type criteria? And so that's really the fundamental shift that we need to, we really need to drive up as an industry. Um, and you know, we, we talk about kind of this, this imperative for organizations to operate that's one, and back to the, the, um, you know, various Doris dilemna the key difference between these larger organization is, is really kind of, uh, if you look at the amount of capital investment that they can put into pretty much anything, why are they losing compared to, um, you know, startups? What, why is it that, uh, more than 40% of, uh, personal loans today or issued not by your traditional brick and mortar banks, but by, um, startups? Well, the reason, yes, it's the traditional culture of doing incremental changes and not disrupting ourselves, which Christiansen covered the length, but it's also the inability to really fundamentally change kind of a dynamic picture. We can business it and, and, and partner right. To, to deliver on a specific business outcome. >>All right. I love that. That's a great, that's a great summary. And in fact, getting ready for this interview, I saw you mentioning another thing where, you know, the, the problem with the agile development is that you're actually now getting more silos. Cause you have all these autonomous people working, you know, kind of independently. So it's even a harder challenge for, for the business leaders to, to, as you said, to know, what's actually going on, but, but certainly I w I want to close, um, and talk about the coalition. Um, so clearly these are all great concepts. These are concepts you want to apply to your business every day. Why the coalition, why, you know, take these concepts out to a broader audience, including either your, your competition and the broader industry to say, Hey, we, as a group need to put a stamp of approval on these concepts, these values, these principles. >>So first I think we, we want, um, everybody to realize that we are all talking about the same things, the same concepts. I think we were all from our own different vantage point, realizing that things after change, and again, back to, you know, whether it's value stream management or site reliability engineering, or biz ops, we're all kind of using slightly different languages. Um, and so I think one of the important aspects of BizOps is for us, all of us, whether we're talking about, you know, consulting agile transformation experts, uh, whether we're talking about vendors, right, provides kind of tools and technologies or these large enterprises to transform for all of us to basically have kind of a reference that lets us speak around kind of, um, in a much more consistent way. The second aspect is for, to me is for, um, DS concepts to start to be embraced, not just by us or trying, or, you know, vendors, um, system integrators, consulting firms, educators, thought leaders, but also for some of our old customers to start to become evangelists of their own in the industry. >>So we, our, our objective with the coalition needs to be pretty, pretty broad. Um, and our hope is by, by starting to basically educate, um, our, our joint customers or partners, that we can start to really foster these behaviors and start to really change some of dynamics. So we're very pleased at if you look at, uh, some of the companies which have joined the, the, the, the manifesto. Um, so we have vendors such as desktop or advance, or, um, uh, PagerDuty for instance, or even planned view, uh, one of my direct competitors, um, but also thought leaders like Tom Davenport or, uh, or cap Gemini or, um, um, smaller firms like, uh, business agility, institutes, or agility elf. Um, and so our goal really is to start to bring together, uh, fall years, people would have been LP, large organizations, do digital transformation vendors. We're providing the technologies that many of these organizations use to deliver on this digital preservation and for all of us to start to provide the kind of, uh, education support and tools that the industry needs. Yeah, >>That's great surge. And, uh, you know, congratulations to you and the team. I know this has been going on for a while, putting all this together, getting people to sign onto the manifesto, putting the coalition together, and finally today getting to unveil it to the world in, in a little bit more of a public, uh, opportunity. So again, you know, really good values, really simple principles, something that, that, uh, shouldn't have to be written down, but it's nice cause it is, and now you can print it out and stick it on your wall. So thank you for, uh, for sharing this story and again, congrats to you and the team. >>Thank you. Thanks, Jeff. Appreciate it. >>Oh, my pleasure. Alrighty, surge. If you want to learn more about the BizOps manifest to go to biz ops manifesto.org, read it and you can sign it and you can stay here for more coverage. I'm the cube of the biz ops manifesto unveiled. Thanks for watching. See you next >>From around the globe. It's the cube with digital coverage of this ops manifesto unveiled brought to you by bill. >>Hey, welcome back, everybody Jeffrey here with the cube. Welcome back to our ongoing coverage of the biz ops manifesto unveiling. It's been in the works for awhile, but today's the day that it actually kind of come out to the, to the public. And we're excited to have a real industry luminary here to talk about what's going on, why this is important and share his perspective. And we're happy to have from Cape Cod, I believe is Tom Davenport. He is a distinguished author and professor at Babson college. We could go on, he's got a lot of great titles and, and really illuminary in the area of big data and analytics Thomas. Great to see you. >>Thanks Jeff. Happy to be here with you. >>Great. So let's just jump into it, you know, and getting ready for this. I came across your LinkedIn posts. I think you did earlier this summer in June and right off the bat, the first sentence just grabbed my attention. I'm always interested in new attempts to address longterm issues, uh, in how technology works within businesses, biz ops. What did you see in biz ops, uh, that, that kind of addresses one of these really big longterm problems? >>Well, yeah, but the longterm problem is that we've had a poor connection between business people and it people between business objectives and the, it solutions that address them. This has been going on, I think since the beginning of information technology and sadly it hasn't gone away. And so biz ops is a new attempt to deal with that issue with, you know, a new framework, eventually a broad set of solutions that increase the likelihood that we'll actually solve a business problem with an it capability. >>Right. You know, it's interesting to compare it with like dev ops, which I think a lot of people are probably familiar with, which was, you know, built around, uh, agile software development and a theory that we want to embrace change that that changes. Okay. Uh, and we want to be able to iterate quickly and incorporate that. And that's been happening in the software world for, for 20 plus years. What's taken so long to get that to the business side, because as the pace of change has changed on the software side, you know, that's a strategic issue in terms of execution on the business side that they need now to change priorities. And, you know, there's no PRDs and MRDs and big, giant strategic plans that sit on the shelf for five years. That's just not the way business works anymore. It took a long time to get here. >>Yeah, it did. And you know, there have been previous attempts to make a better connection between business and it, there was the so called alignment framework that a couple of friends of mine from Boston university developed, I think more than 20 years ago, but you know, now we have better technology for creating that linkage. And the, you know, the idea of kind of ops oriented frameworks is pretty pervasive now. So I think it's time for another serious attempt at it. Right. >>And do you think doing it this way, right. With the, with the biz ops coalition, you know, getting a collection of, of, of kind of likeminded individuals and companies together, and actually even having a manifesto, which we're making this declarative statement of, of principles and values, you think that's what it takes to kind of drive this kind of beyond the experiment and actually, you know, get it done and really start to see some results in, in, uh, in production in the field. >>I think certainly, um, no one vendor organization can pull this off single handedly. It does require a number of organizations collaborating and working together. So I think our coalition is a good idea and a manifesto is just a good way to kind of lay out what you see as the key principles of the idea. And that makes it much easier for everybody to understand and act on. >>I think it's just, it's really interesting having, you know, having them written down on paper and having it just be so clearly articulated both in terms of the, of the values as well as, as the, uh, the principles and the values, you know, business outcomes matter trust and collaboration, data driven decisions, which is the number three or four, and then learn, respond and pivot. It doesn't seem like those should have to be spelled out so clearly, but, but obviously it helps to have them there. You can stick them on the wall and kind of remember what your priorities are, but you're the data guy. You're the analytics guy, uh, and a big piece of this is data and analytics and moving to data-driven decisions. And principle number seven says, you know, today's organizations generate more data than humans can process and informed decisions can be augmented by machine learning and artificial intelligence right up your alley. You know, you've talked a number of times on kind of the mini stages of analytics. Um, and how has that's evolved over, over time, you know, as you think of analytics and machine learning, driving decisions beyond supporting decisions, but actually starting to make decisions in machine time. What's that, what's that thing for you? What does that make you, you know, start to think, wow, this is, this is going to be pretty significant. >>Yeah. Well, you know, this has been a longterm interest of mine. Um, the last generation of AI, I was very interested in expert systems. And then, um, I think, uh, more than 10 years ago, I wrote an article about automated decision-making using what was available then, which was rule-based approaches. Um, but you know, this addresses an issue that we've always had with analytics and AI. Um, you know, we, we tended to refer to those things as providing decision support. The problem is that if the decision maker didn't want their support, didn't want to use them in order to make a decision, they didn't provide any value. And so the nice thing about automating decisions, um, with now contemporary AI tools is that we can ensure that data and analytics get brought into the decision without any possible disconnection. Now, I think humans still have something to add here, and we often will need to examine how that decision is being made and maybe even have the ability to override it. But in general, I think at least for, you know, repetitive tactical decisions, um, involving a lot of data, we want most of those, I think to be at least recommended if not totally made by an algorithm or an AI based system, and that I believe would add to the quality and the precision and the accuracy of decisions and in most organizations, >>No, I think, I think you just answered my next question before I, before Hey, asked it, you know, we had dr. Robert Gates on a former secretary of defense on a few years back, and we were talking about machines and machines making decisions. And he said at that time, you know, the only weapon systems, uh, that actually had an automated trigger on it were on the North Korea and South Korea border. Um, everything else, as you said, had to go through a sub person before the final decision was made. And my question is, you know, what are kind of the attributes of the decision that enable us to more easily automated? And then how do you see that kind of morphing over time, both as the data to support that as well as our comfort level, um, enables us to turn more and more actual decisions over to the machine? >>Well, yeah, it's suggested we need, um, data and, um, the data that we have to kind of train our models has to be high quality and current. And we, we need to know the outcomes of that data. You know, um, most machine learning models, at least in business are supervised. And that means we need to have labeled outcomes in the, in the training data. But I, you know, um, the pandemic that we're living through is a good illustration of the fact that, that the data also have to be reflective of current reality. And, you know, one of the things that we're finding out quite frequently these days is that, um, the data that we have do not reflect, you know, what it's like to do business in a pandemic. Um, I wrote a little piece about this recently with Jeff cam at wake forest university, we called it data science quarantined, and we interviewed with somebody who said, you know, it's amazing what eight weeks of zeros will do to your demand forecast. We just don't really know what happens in a pandemic. Um, our models maybe have to be put on the shelf for a little while and until we can develop some new ones or we can get some other guidelines into making decisions. So I think that's one of the key things with automated decision making. We have to make sure that the data from the past and that's all we have of course, is a good guide to, you know, what's happening in the present and the future as far as we understand it. Yeah. >>I used to joke when we started this calendar year 2020, it was finally the year that we know everything with the benefit of hindsight, but it turned out 20, 20 a year. We found out we actually know nothing and everything thought we knew, but I wanna, I wanna follow up on that because you know, it did suddenly change everything, right? We got this light switch moment. Everybody's working from home now we're many, many months into it, and it's going to continue for a while. I saw your interview with Bernard Marr and you had a really interesting comment that now we have to deal with this change. We don't have a lot of data and you talked about hold fold or double down. And, and I can't think of a more, you know, kind of appropriate metaphor for driving the value of the BizOps when now your whole portfolio strategy, um, these to really be questioned and, and, you know, you have to be really, uh, well, uh, executing on what you are, holding, what you're folding and what you're doubling down with this completely new environment. >>Well, yeah, and I hope I did this in the interview. I would like to say that I came up with that term, but it actually came from a friend of mine. Who's a senior executive at Genpact. And, um, I, um, used it mostly to talk about AI and AI applications, but I think you could, you could use it much more broadly to talk about your entire sort of portfolio of digital projects. You need to think about, well, um, given some constraints on resources and a difficult economy for a while, which of our projects do we want to keep going on pretty much the way we were and which ones are not that necessary anymore? You see a lot of that in AI, because we had so many pilots, somebody told me, you know, we've got more pilots around here than O'Hare airport and AI. Um, and then, but the ones that involve double down they're even more important to you. They are, you know, a lot of organizations have found this out in the pandemic, on digital projects. It's more and more important for customers to be able to interact with you, um, digitally. And so you certainly wouldn't want to, um, cancel those projects or put them on hold. So you double down on them and get them done faster and better. >>Right, right. Uh, another, another thing that came up in my research that you quoted, um, was, was from Jeff Bezos, talking about the great bulk of what we do is quietly, but meaningfully improving core operations. You know, I think that is so core to this concept of not AI and machine learning and kind of the general sense, which, which gets way too much buzz, but really applied right. Applied to a specific problem. And that's where you start to see the value. And, you know, the, the BizOps, uh, manifesto is, is, is calling it out in this particular process. But I'd love to get your perspective as you know, you speak generally about this topic all the time, but how people should really be thinking about where are the applications where I can apply this technology to get direct business value. >>Yeah, well, you know, even talking about automated decisions, um, uh, the kind of once in a lifetime decisions, uh, the ones that, um, ag Lafley, the former CEO of Procter and gamble used to call the big swing decisions. You only get a few of those. He said in your tenure as CEO, those are probably not going to be the ones that you're automating in part because, um, you don't have much data about them. You're only making them a few times and in part, because, um, they really require that big picture thinking and the ability to kind of anticipate the future, that the best human decision makers, um, have. Um, but, um, in general, I think where they are, the projects that are working well are, you know, when I call the low hanging fruit ones, the, some people even report to it referred to it as boring AI. >>So, you know, sucking data out of a contract in order to compare it to a bill of lading for what arrived at your supply chain companies can save or make a lot of money with that kind of comparison. It's not the most exciting thing, but AI, as you suggested is really good at those narrow kinds of tasks. It's not so good at the, at the really big moonshots, like curing cancer or, you know, figuring out well what's the best stock or bond under all circumstances or even autonomous vehicles. Um, we, we made some great progress in that area, but everybody seems to agree that they're not going to be perfect for quite a while. And we really don't want to be driving around on them very much unless they're, you know, good and all kinds of weather and with all kinds of pedestrian traffic and you know, that sort of thing, right? That's funny you bring up contract management. >>I had a buddy years ago, they had a startup around contract management and was like, and this was way before we had the compute power today and cloud proliferation. I said, you know, how, how can you possibly build software around contract management? It's language, it's legal, ease. It's very specific. And he's like, Jeff, we just need to know where's the contract. And when does it expire? And who's the signatory. And he built a business on those, you know, very simple little facts that weren't being covered because their contracts contractor in people's drawers and files and homes, and Lord only knows. So it's really interesting, as you said, these kind of low hanging fruit opportunities where you can extract a lot of business value without trying to, you know, boil the ocean. >>Yeah. I mean, if you're Amazon, um, uh, Jeff Bezos thinks it's important to have some kind of billion dollar projects. And he even says it's important to have a billion dollar failure or two every year. But I think most organizations probably are better off being a little less aggressive and, you know, sticking to, um, what AI has been doing for a long time, which is, you know, making smarter decisions based on, based on data. >>Right? So Tom, I want to shift gears one more time before, before we let you go on on kind of a new topic for you, not really new, but you know, not, not a, the vast majority of, of your publications and that's the new way to work, you know, as, as the pandemic hit in mid March, right. And we had this light switch moment, everybody had to work from home and it was, you know, kind of crisis and get everybody set up. Well, you know, now we're five months, six months, seven months. A number of companies have said that people are not going to be going back to work for a while. And so we're going to continue on this for a while. And then even when it's not what it is now, it's not going to be what it was before. So, you know, I wonder, and I know you, you, uh, you teased, you're working on a new book, you know, some of your thoughts on, you know, kind of this new way to work and, and the human factors in this new, this new kind of reality that we're kind of evolving into, I guess. >>Yeah. I missed was an interest of mine. I think, um, back in the nineties, I wrote an article called, um, a coauthored, an article called two cheers for the virtual office. And, you know, it was just starting to emerge. Then some people were very excited about it. Some people were skeptical and, uh, we said two cheers rather than three cheers because clearly there's some shortcomings. And, you know, I keep seeing these pop up. It's great that we can work from our homes. It's great that we can accomplish most of what we need to do with a digital interface, but, um, you know, things like innovation and creativity and certainly, um, uh, a good, um, happy social life kind of requires some face to face contact every now and then. And so I, you know, I think we'll go back to an environment where there is some of that. >>Um, we'll have, um, times when people convene in one place so they can get to know each other face to face and learn from each other that way. And most of the time, I think it's a huge waste of people's time to commute into the office every day and to jump on airplanes, to, to, um, give every little, um, uh, sales call or give every little presentation. Uh, we just have to really narrow down what are the circumstances where face to face contact really matters. And when can we get by with, with digital, you know, I think one of the things in my current work I'm finding is that even when you have AI based decision making, you really need a good platform in which that all takes place. So in addition to these virtual platforms, we need to develop platforms that kind of structure the workflow for us and tell us what we should be doing next, then make automated decisions when necessary. And I think that ultimately is a big part of biz ops as well. It's not just the intelligence of an AI system, but it's the flow of work that kind of keeps things moving smoothly throughout your organization. >>Yeah. I think such, such a huge opportunity as you just said, cause I forget the stats on how often we're interrupted with notifications between email texts, Slack, a sauna, Salesforce, the list goes on and on. So, you know, to put an AI layer between the person and all these systems that are begging for attention, and you've written a book on the attention economy, which is a whole nother topic, we'll say for another day, you know, it really begs, it really begs for some assistance because you know, you just can't get him picked, you know, every two minutes and really get quality work done. It's just not, it's just not realistic. And you know what? I don't think that's a feature that we're looking for. I agree. Totally. Alright, Tom. Well, thank you so much for your time. Really enjoyed the conversation. I gotta dig into the library. It's very long. So I might start at the attention economy. I haven't read that one in to me. I think that's the fascinating thing in which we're living. So thank you for your time and, uh, great to see you. >>My pleasure, Jeff. Great to be here. >>All right. Take care. Alright. He's Tom I'm Jeff. You are watching the continuing coverage of the biz ops manifesto and Vale. Thanks for watching the cube. We'll see you next time.

Published Date : Oct 15 2020

SUMMARY :

a BizOps manifesto unveiled brought to you by biz ops coalition. Good to see you again. And I think you said you're at a fun, exotic place on the East coast Realm of Memphis shoes. Great to see you again, where are you coming in from? you know, you can do better stuff within your own company, surge, why don't we start with you? whether we're talking about vendors or, um, you know, system integrators, consulting firms are talking Why did you get involved in this, in this effort? And I think we got a lot of improvement at the team level, and I think that was just no. I wonder if you could kind of share your And in general, I think, you know, we've just kind of optimize that to narrow for a long time and it's been, you know, kind of trucking along and then covert hit and you know, when we look at certain parts of the industry, you know, we see some things which are very disturbing, you know, in many ways and make cover. And, you know, we talk about people process we, we realized that to be successful with any kind of digital transformation you So I wonder if you can just share your thoughts on, you know, using flow as a way to think You need to optimize how you innovate and how you deliver value to the business and the customer. and really, you know, force them to, to look at the, at the prioritization and make And, um, you know, it's, it's a difficult aspect but if the culture doesn't adopt it and people don't feel good about it, you know, it's not going to be successful and that's in the context that is relevant and understandable for, for different stakeholders, whether we're talking about you know, metrics that they are used to to actually track you start to, And so you really want to start And, you know, what are the factors that are making and the technology that supports it, you run a pretty big Um, so you know, is the, is the big data I'm just going to use that generically um, you know, at some point maybe we reached the stage where we don't do um, and taking the lessons from agile, you know, what's been the inhibitor to stop and make sure that every development the organization is focused on those as well as the business itself, that we're measuring value So gentlemen, uh, thank you again for, for your time. And thank you for sharing your thoughts with us here on the cube. And we'd like to welcome you back to our And it's, you know, I really applaud, you know, this whole movement, I mean, whether I never sit down and say, you know, the product management team has to get aligned with Deb, Maybe trying to eliminate the word alignment, you know, from a lot of our organizations, Um, the ones that, that jumps out though is really about, you know, change, you know, it's kind of a, now an analogy for transformation. instituting the whole program, implement, you know, the program, increment planning, capabilities and kind of model is, um, and also, uh, you know, on that shorter increment, to really kind of just put them down on paper and you know, I can't help, but think of, So, um, you know, you really, I think we've attacked that in a variety And so when we pie plan, you know, myself and Cameron and the other members of our leadership, So they can, you know, quickly ship code that works. mixed book, you know, it was a great piece on a, you're talking about, you know, as part of the manifesto is that people are building is obviously becoming bigger and bigger, you know, in an, in many ways, right. But the sudden, you know, light switch moment, everybody had to go work from home and in March 15th And we kind of, you know, we started with John and built, you know, out of concentric circles of momentum and, to be able to pivot faster, deliver incrementally, you know, and operate in a different, to get behind these, but if it takes, you know, something a little bit more formal, uh, And I think it's a very analogous, you know, And at least you can measure it again and you can, and you've got some type of a comp and that is really the only way to, It's great to be here. And if you want to check out the biz ops, Manifesta go to biz ops, of biz ops manifesto unveiled brought to you by biz ops coalition. or we're excited to have some of the foundational people that, you know, have put their, put their name on the dotted, It's good to be close to the U S and it's going to have the Arabic cleaner as well. there at Xerox park, you know, some of the lessons you learned and what you've been able to kind of carry forward And of course, there's, as, as you noticed, there's just this DNA of innovation and excitement And I realized none of this was really working, that there was something else, So, you know, the agile movement got started about 20 years ago, And the way that the business was working was planning was investing the right measurement data sets so that you can make the right decisions in terms of what you're investing, different from the way that you measure business outcomes. And it's really interesting to me cause I know, you know, flow on one hand is kind of a workflow And this is really what if you go to the biz ops manifesto, it says, I focus on outcomes And how quickly did you learn and how quickly did you use that data to drive to that next outcome? And you know, I love that you took this approach really of having kind of four So really the key thing is, is to move away from those old ways of doing things But the key thing is what you need to stop doing to focus on these. And I, you know, I think at the same thing, always about Moore's law, And you also make it sound so simple, but again, if you don't have the data driven visibility the AP testing was not even possible with all of those inefficiencies. you know, you have to constantly be delivering value and upgrading that value because you're constantly taking money Well, that really is based on how many features you delivered or how much, how big, how many quality improvements or scalar I wonder if you can, again, you've got some great historical perspective, So the key thing that I've noticed is that if you can model you know, more senior people being overloaded and creating bottlenecks where they didn't exist. Well, you know, what's the biggest inhibitor for most people but the key thing is just to get you set up it's to get started and to get the key wins. continue to spread that well, uh, you know, good for you through the book and through your company. They'd love to have you do it. of biz ops manifesto unveiled brought to you by biz ops coalition. It's the biz ops manifesto unveiling a thing's Hi, good to see you, Jeff. What is the biz ops manifesto? years later, and if you look at the current state of the industry, uh, the product, not just, uh, by, you know, providing them with support, but also, of COVID, which, you know, came along unexpectedly. and you know, if you, if you go back to, uh, I think you'll unmask a few years And the reality is that if you look at it, especially in the last decade, I just liked that you put down these really simple, you know, kind of straightforward core values. you know, another example, for instance, one of our customers in the, uh, in the airline industry And yet, um, you know, the, it teams, whether it's operations, software environments were And there's a good ROI when you talk about, you know, companies not measuring and again, back to a product project management Institute, um, there, And so if you start to think about quality as fitness for purpose, And so, you know, if I'm, But I want to talk about, you know, one of the key ones, which you just talked about, of the speed of change and, and, and, and making that, you know, Um, again, back to one of these surveys that we did with, Um, and you know, we, we talk about kind of this, Why the coalition, why, you know, take these concepts out to a broader audience, all of us, whether we're talking about, you know, consulting agile transformation experts, So we're very pleased at if you look at, uh, And, uh, you know, congratulations to you and the team. manifesto.org, read it and you can sign it and you can stay here for more coverage. of this ops manifesto unveiled brought to you by bill. It's been in the works for awhile, but today's the day that it actually kind of come out to the, So let's just jump into it, you know, and getting ready for this. deal with that issue with, you know, a new framework, eventually a broad set get that to the business side, because as the pace of change has changed on the software side, you know, And the, you know, the idea of kind of ops With the, with the biz ops coalition, you know, getting a collection of, and a manifesto is just a good way to kind of lay out what you see as the key principles Um, and how has that's evolved over, over time, you know, I think at least for, you know, repetitive tactical decisions, And my question is, you know, what are kind of the attributes of and we interviewed with somebody who said, you know, it's amazing what eight weeks we knew, but I wanna, I wanna follow up on that because you know, and AI applications, but I think you could, you could use it much more broadly to talk about your you know, you speak generally about this topic all the time, but how people should really be thinking about where Yeah, well, you know, even talking about automated decisions, So, you know, sucking data out of a contract in order to compare And he built a business on those, you know, very simple little facts what AI has been doing for a long time, which is, you know, making smarter decisions everybody had to work from home and it was, you know, kind of crisis and get everybody set up. And so I, you know, I think we'll go back to an environment where there is some of you know, I think one of the things in my current work I'm finding is that even when on the attention economy, which is a whole nother topic, we'll say for another day, you know, We'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JeffPERSON

0.99+

PatrickPERSON

0.99+

Adrian CockcroftPERSON

0.99+

CharlesPERSON

0.99+

ThomasPERSON

0.99+

TomPERSON

0.99+

MickPERSON

0.99+

JeffreyPERSON

0.99+

LucioPERSON

0.99+

Jeff BezosPERSON

0.99+

Cape CodLOCATION

0.99+

AmazonORGANIZATION

0.99+

BostonLOCATION

0.99+

Jeff FrickPERSON

0.99+

Tom DavenportPERSON

0.99+

John TerryPERSON

0.99+

twoQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

CanadaLOCATION

0.99+

CameronPERSON

0.99+

2020DATE

0.99+

OctoberDATE

0.99+

March 15thDATE

0.99+

five yearsQUANTITY

0.99+

five monthsQUANTITY

0.99+

one hourQUANTITY

0.99+

one weekQUANTITY

0.99+

two yearsQUANTITY

0.99+

80%QUANTITY

0.99+

two yearsQUANTITY

0.99+

16%QUANTITY

0.99+

six monthsQUANTITY

0.99+

Mitt KirstenPERSON

0.99+

FridayDATE

0.99+

77%QUANTITY

0.99+

VancouverLOCATION

0.99+

Palo AltoLOCATION

0.99+

HarvardORGANIZATION

0.99+

seven monthsQUANTITY

0.99+

ITAORGANIZATION

0.99+

10 timesQUANTITY

0.99+

10 timesQUANTITY

0.99+

10 weekQUANTITY

0.99+

RickPERSON

0.99+

PowerPointTITLE

0.99+

20 plus yearsQUANTITY

0.99+

GenpactORGANIZATION

0.99+

99QUANTITY

0.99+

20QUANTITY

0.99+

ProcterORGANIZATION

0.99+

North KoreaLOCATION

0.99+

NickPERSON

0.99+

thirdQUANTITY

0.99+

BizOps Manifesto Unveiled - Full Stream


 

>>From around the globe. It's the cube with digital coverage, a BizOps manifesto unveiled brought to you by biz ops coalition. >>Hey, welcome back everybody. Jeff Frick here with the cube. Welcome back to our ongoing coverage of the biz ops manifesto. Unveil. Something has been in the works for a little while. Today's the formal unveiling, and we're excited to have three of the core of founding members of the manifesto authors of the manifesto. If you will, uh, joining us again, we've had them all on individually. Now we're going to have a great power panel first up. We're gab Mitt, Kirsten returning he's the founder and CEO of Tasktop mic. Good to see you again. Where are you dialing in from? >>Great to see you again, Jeff I'm dialing from Vancouver, >>We're Canada, Vancouver, Canada. One of my favorite cities in the whole wide world. Also we've got Tom Davenport come in from across the country. He's a distinguished professor and author from Babson college, Tom. Great to see you. And I think you said you're at a fun, exotic place on the East coast >>Realm of Memphis shoe sits on Cape Cod. >>Great to see you again and also joining surge Lucio. He is the VP and general manager enterprise software division at Broadcom surge. Great to see you again, where are you coming in from? >>Uh, from Boston right next to kickoff. >>Terrific. So welcome back, everybody again. Congratulations on this day. I know it's, it's been a lot of work to get here for this unveil, but let's just jump into it. The biz ops manifesto, what was the initial reason to do this? And how did you decide to do it in a kind of a coalition, a way bringing together a group of people versus just making it an internal company, uh, initiative that, you know, you can do better stuff within your own company, surge, why don't we start with you? >>Yeah, so, so I think we were at a really critical juncture, right? Many, um, large enterprises are basically struggling with their digital transformation. Um, in fact, um, many recognize that, uh, the, the business side, it collaboration has been, uh, one of the major impediments, uh, to drive that kind of transformation. And if we look at the industry today, many people are, whether we're talking about vendors or, um, you know, system integrators, consulting firms are talking about the same kind of concepts, but using very different language. And so we believe that bringing all these different players together, um, as part of the coalition and formalizing, uh, basically the core principles and values in a BizOps manifesto, we can really start to F could have a much bigger movement where we can all talk about kind of the same concepts and we can really start to provide, could have a much better support for large organizations to transform. Uh, so whether it is technology or services or, um, we're training, I think that that's really the value of bringing all of these players together, right. >>And Nick to you, why did you get involved in this, in this effort? >>So Ben close and follow the agile movement since it started two decades ago with that manifesto. >>And I think we got a lot of improvement at the team level, and I think as satisfies noted, uh, we really need to improve at the business level. Every company is trying to become a software innovator, uh, trying to make sure that they can adapt quickly and the changing market economy and what everyone's dealing with in terms of needing to deliver the customer sooner. However, agile practices have really focused on these metrics, these measures and understanding processes that help teams be productive. Those things now need to be elevated to the business as a whole. And that just hasn't happened. Uh, organizations are actually failing because they're measuring activities and how they're becoming more agile, how teams are functioning, not how much quickly they're delivering value to the customer. So we need to now move past that. And that's exactly what the that's manifested provides. Right, >>Right, right. And Tom, to you, you've been covering tech for a very long time. You've been looking at really hard challenges and a lot of work around analytics and data and data evolution. So there's a definitely a data angle here. I wonder if you could kind of share your perspective of what you got excited to, uh, to sign onto this manifesto. >>Sure. Well, I have, you know, for the past 15 or 20 years, I've been focusing on data and analytics and AI, but before that I was a process management guy and a knowledge management guy. And in general, I think, you know, we've just kind of optimized that to narrow a level, whether you're talking about agile or dev ops or ML ops, any of these kinds of ops oriented movements, we're making individual project, um, performance and productivity better, but we're not changing the business, uh, effectively enough. And that's the thing that appealed to me about the biz ops idea that we're finally creating a closer connection between what we do with technology and how it changes the business and provides value to it. >>Great. Uh, surge back to you, right? I mean, people have been talking about digital transformation for a long time and it's been, you know, kind of trucking along and then covert hit and it was instant lights, which everyone's working from home. You've got a lot more reliance on your digital tools, digital communication, uh, both within your customer base and your partner base, but also then your employees when you're, if you could share how that really pushed this all along. Right? Because now suddenly the acceleration of digital transformation is higher. Even more importantly, you got much more critical decisions to make into what you do next. So kind of your portfolio management of projects has been elevated significantly when maybe revenues are down, uh, and you really have to, uh, to prioritize and get it right. >>Yeah. Maybe I'll just start by quoting Satina Nello basically recently said that they're speeding the two years of digital preservation just last two months in any many ways. That's true. Um, but, but yet when we look at large enterprises, they're >>Still struggling with the kind of a changes in culture that they really need to drive to be able to disrupt themselves. And not surprisingly, you know, when we look at certain parts of the industry, you know, we see some things which are very disturbing, right? So about 40% of the personal loans today, or being, uh, origin data it's by fintechs, uh, of a like of Sophie or, uh, or a lending club, right? Not to a traditional brick and mortar for BEC. And so the, well, there is kind of a much more of an appetite and it's a, it's more of a survival type of driver these days. Uh, the reality is that's in order for these large enterprises to truly transform and engage with this digital transformation, they need to start to really align the business. And it, you know, in many ways, uh, make covered that agile really emerged from the core desire to truly improve software predictability between which we've really missed is all that we, we start to aligning the software predictability to business predictability and to be able to have continual sleep continuous improvement and measurement of business outcomes. So by aligning kind of these, uh, kind of inward metrics, that's, it is typically being using to business outcomes. We think we can start to really ELP different stakeholders within the organization to collaborate. So I think there is more than ever. There's an imperative to act now. Um, and, and resolves, I think is kind of the right approach to drive that transformation. Right. >>I want to follow up on the culture comment, uh, with Utah, because you've talked before about kind of process flow and process flow throughout a whore and an organization. And, you know, we talk about people process and tech all the time. And I think the tech is the easy part compared to actually changing the people the way they think. And then the actual processes that they put in place. It's a much more difficult issue than just the tech issue to get this digital transformation in your organization. >>Yeah. You know, I've always found that the soft stuff about, you know, the culture of the behavior, the values is the hard stuff to change and more and more, we, we realized that to be successful with any kind of digital transformation you have to change people's behaviors and attitudes. Um, we haven't made as much progress in that area as we might have. I mean, I've done some surveys suggesting that, um, most organizations still don't have data-driven cultures. And in many cases there is a lower percentage of companies that say they have that then, um, did a few years ago. So we're kind of moving in the wrong direction, which means I think that we have to start explicitly addressing that, um, cultural, behavioral dimension and not just assuming that it will happen if we, if we build a system, >>If we build it, they won't necessarily come. Right. >>Right. So I want to go to, to you Nick cause you know, we're talking about workflows and flow, um, and, and you've written about flow both in terms of, um, you know, moving things along a process and trying to find bottlenecks, identify bottlenecks, which is now even more important again, when these decisions are much more critical. Cause you have a lot less, uh, wiggle room in tough times, but you also talked about flow from the culture side and the people side. So I wonder if you can just share your thoughts on, you know, using flow as a way to think about things, to get the answers better. >>Yeah, absolutely. And I'll refer back to what Tom has said. If you're optimized, you need to optimize your system. You need to optimize how you innovate and how you deliver value to the business and the customer. Now, what we've noticed in the data, since that we've learned from customers, value streams, enterprise organizations, value streams, is that when it's taking six months at the end to deliver that value with the flow is that slow. You've got a bunch of unhappy developers, unhappy customers when you're innovating house. So high performing organizations we can measure at antenna flow time and dates. All of a sudden that feedback loop, the satisfaction, your developers measurably, it goes up. So not only do you have people context, switching glass, you're delivering so much more value to customers at a lower cost because you've optimized for flow rather than optimizing for these, these other approximate tricks that we use, which is how efficient is my adult team. How quickly can we deploy software? Those are important, but they do not provide the value of agility of fast learning of adaptability to the business. And that's exactly what the biz ops manifesto pushes your organization to do. You need to put in place this new operating model that's based on flow on the delivery of business value and on bringing value to market much more quickly than you were before. Right. >>I love that. And I'm gonna back to you Tom, on that to follow up. Cause I think, I don't think people think enough about how they prioritize what they're optimizing for, because you know, if you're optimizing for a versus B, you know, you can have a very different product that, that you kick out. And, you know, my favorite example is with Clayton Christianson and innovator's dilemma talking about the three inch hard drive, if you optimize it for power, you know, is one thing, if you optimize it for vibration is another thing and sure enough, you know, they missed it on the poem because it was the, it was the game console, which, which drove that whole business. So when you're talking to customers and we think we hear it with cloud all the time, people optimizing for a cost efficiency, instead of thinking about it as an innovation tool, how do you help them kind of rethink and really, you know, force them to, to look at the, at the prioritization and make sure they're prioritizing on the right thing is make just that, what are you optimizing for? >>Oh yeah. Um, you have one of the most important aspects of any decision or attempt to resolve a problem in an organization is the framing process. And, um, you know, it's, it's a difficult aspect to have the decision to confirm it correctly in the first place. Um, there, it's not a technology issue. In many cases, it's largely a human issue, but if you frame >>That decision or that problem incorrectly to narrowly say, or you frame it as an either or situation where you could actually have some of both, um, it, it's very difficult for the, um, process to work out correctly. So in many cases, I think we need to think more at the beginning about how we bring this issue or this decision in the best way possible before we charge off and build a system to support it. You know, um, it's worth that extra time to think, think carefully about how the decision has been structured. Right, >>Sir, I want to go back to you and talk about the human factors because as we just discussed, you can put it in great technology, but if the culture doesn't adopt it and people don't feel good about it, you know, it's not going to be successful and that's going to reflect poorly on the technology, even if that had nothing to do with it. And you know, when you look at the, the, the, the core values, uh, of the Bezos manifesto, you know, a big one is trust and collaboration, you know, learn, respond, and pivot. Wonder if you can share your thoughts on, on trying to get that cultural shift, uh, so that you can have success with the people, or excuse me, with the technology in the process and helping customers, you know, take this more trustworthy and kind of proactive, uh, position. >>So I think, I think at the ground level, it truly starts with the realization that we're all different. We come from different backgrounds. Uh, oftentimes we tend to blame the data. It's not uncommon my experiments that we spend the first 30 minutes of any kind of one hour conversation to debate the validity of the data. Um, and so, um, one of the first kind of, uh, probably manifestations that we've had or revelations as we start to engage with our customers is spoke just exposing, uh, high-fidelity data sets to different stakeholders from their different lens. We start to enable these different stakeholders to not debate the data. That's really collaborate to find a solution. So in many ways, when, when, when we think about kind of the types of changes we're trying to, to truly affect around data driven decision making, he told about bringing the data in context and the context that is relevant and understandable for, for different stakeholders, whether we're talking about an operator or develop for a business analyst. >>So that's, that's the first thing. The second layer I think, is really to provide context to what people are doing in their specific silo. And so I think one of the best examples I have is if you start to be able to align business KPI, whether you are counting, you know, sales per hour, or the engagements of your users on your mobile applications, whatever it is, you can start to connect that PKI to business KPI, to the KPIs that developers might be looking at, whether it is all the number of defects or velocity or whatever over your metrics that you're used to, to actually track you start to be able to actually contextualize in what we are, the effecting, basically a metric of that that is really relevant. And then what we see is that this is a much more systematic way to approach the transformation than say, you know, some organizations kind of creating some of these new products or services or initiatives, um, to, to drive engagements, right? >>So if you look at zoom, for instance, zoom giving away a it service to, uh, to education, he's all about, I mean, there's obviously a marketing aspect in there, but it's, it's fundamentally about trying to drive also the engagement of their own teams. And because now they're doing something for good and many organizations are trying to do that, but you only can do this kind of things in the limited way. And so you really want to start to rethink how you connect to, everybody's kind of a business objective fruit data, and now you start to get people to stare at the same data from their own lens and collaborate on all the data. Right, >>Right. That's a good, uh, Tom, I want to go back to you. You've been studying it for a long time, writing lots of books and getting into it. Um, why now, you know, what, why, why now are we finally aligning business objectives with, with it objectives? You know, why didn't this happen before? And, you know, what are the factors that are making now the time for this, this, this move with the, uh, with the biz ops? >>Well, and much of a past, it was sort of a back office related activity. And, you know, it was important for, um, uh, producing your paychecks and, uh, capturing the customer orders, but the business wasn't built around it now, every organization needs to be a software business, a data business, a digital business, the auntie has been raised considerably. And if you aren't making that connection between your business objectives and the technology that supports it, you run a pretty big risk of, you know, going out of business or losing out to competitors. Totally. So, um, and even if you're in, uh, an industry that hasn't historically been terribly, um, technology oriented customer expectations flow from, uh, you know, the digital native, um, companies that they work with to basically every industry. So you're compared against the best in the world. So we don't really have the luxury anymore of screwing up our it projects or building things that don't really work for the business. Um, it's mission critical that we do that well. Um, almost every time, I just want to fall by that, Tom, >>In terms of the, you've talked extensively about kind of these evolutions of data and analytics from artismal stage to the big data stage, the data economy stage, the AI driven stage and what I find diff interesting that all those stages, you always put a start date, you never put an end date. Um, so you know, is the, is the big data I'm just going to use that generically a moment in time finally here where we're, you know, off mahogany row with the data scientists, but actually can start to see the promise of delivering the right insight to the right person at the right time to make that decision. >>Well, I think it is true that in general, these previous stages never seemed to go away. The, um, the artisinal stuff is still being done, but we would like for less and less of it to be artisinal, we can't really afford for everything to be artisinal anymore. It's too labor and, and time consuming to do things that way. So we shift more and more of it to be done through automation and B to be done with a higher level of productivity. And, um, you know, at some point maybe we reached the stage where we don't do anything artisanally anymore. I'm not sure we're there yet, but we are, we are making progress. Right. >>Right. And Mick, back to you in terms of looking at agile, cause you're, you're such a student of agile. When, when you look at the opportunity with biz ops and taking the lessons from agile, you know, what's been the inhibitor to stop this in the past. And what are you so excited about? You know, taking this approach will enable. >>Yeah. I think both search and Tom hit on this is that in agile what's happened is that we've been measuring tiny subsets of the value stream, right? We need to elevate the data's there. Developers are working on these tools that delivering features that the foundations for for great culture are there. I spent two decades as a developer. And when I was really happy is when I was able to deliver value to customers, the quicker I was able to do that the fewer impediments are in my way, that quicker was deployed and running in the cloud, the happier I was, and that's exactly what's happening. If we can just get the right data, uh, elevated to the business, not just to the agile teams, but really this, these values of ours are to make sure that you've got these data driven decisions with meaningful data that's oriented around delivering value to customers. Not only these legacies that Tom touched on, which has cost center metrics. So when, from where for it being a cost center and something that provided email and then back office systems. So we need to rapidly shift to those new, meaningful metrics that are customized business centric and make sure that every development the organization is focused on those as well as the business itself, that we're measuring value. And that will help you that value flow without interruptions. >>I love that mic. Cause if you don't measure it, you can't improve on it and you gotta, but you gotta be measuring the right thing. So gentlemen, uh, thank you again for, for your time. Uh, congratulations on the, uh, on the unveil of the biz ops manifesto and bringing together this coalition, uh, of, of, uh, industry experts to get behind this. And, you know, there's probably never been a more important time than now to make sure that your prioritization is in the right spot and you're not wasting resources where you're not going to get the ROI. So, uh, congratulations again. And thank you for sharing your thoughts with us here on the cube. >>Thank you. >>Alright, so we had surge Tom and Mick I'm. Jeff, you're watching the cube. It's a biz ops manifesto unveil. Thanks for watching. We'll see you next time >>From around the globe. It's the cube with digital coverage of biz ops manifesto unveiled brought to you by biz ops coalition. >>Hey, welcome back. Variety. Jeff Frick here with the cube. We're in our Palo Alto studios, and we'd like to welcome you back to our continuing coverage of biz ops manifesto unveil some exciting day to really, uh, kind of bring this out into public. There's been a little bit of conversation, but today's really the official unveiling and we're excited to have our next guest is share a little bit more information on it. He's Patrick tickle. He's a chief product officer for planned view. Patrick. Great to see you. >>Yeah, it's great to be here. Thanks for the invite. So why >>The biz ops manifesto, why the biz ops coalition now when you guys have been at it, it's relatively mature marketplace businesses. Good. What was missing? Why, why this, why this coalition? >>Yeah. So, you know, again, why is, why is biz ops important and why is this something that I'm, you know, I'm so excited about, but I think companies as well, right? Well, no, in some ways or another, this is a topic that I've been talking to the market and our customers about for a long time. And it's, you know, I really applaud this whole movement. Right. And, um, it resonates with me because I think one of the fundamental flaws, frankly, of the way we have talked about technology and business literally for decades, uh, has been this idea of, uh, alignment. Those who know me, I occasionally get off on this little rant about the word alignment, right. But to me, the word alignment is, is actually indicative of the, of the, of the flaw in a lot of our organizations and biz ops is really, I think now trying to catalyze and expose that flaw. >>Right. Because, you know, I always say that, you know, you know, alignment implies silos, right. Instantaneously, as soon as you say there's alignment, there's, there's obviously somebody who's got a direction and other people that have to line up and that kind of siloed, uh, nature of organizations then frankly, the passive nature of it. Right. I think so many technology organizations are like, look, the business has the strategy you guys need to align. Right. And, and, you know, as a product leader, right. That's where I've been my whole career. Right. I can tell you that I never sit around. I almost never use the word alignment. Right. I mean, whether, you know, I never sit down and say, you know, the product management team has to get aligned with dev, right. Or the dev team has to get aligned with the delivery and ops teams. I mean, what I say is, you know, are we on strategy, right? >>Like we've, we have a strategy as a, as a full end to end value stream. Right. And that there's no silos. And I mean, look, every on any given day we got to get better. Right. But the context, the context we operate is not about alignment. Right. It's about being on strategy. And I think I've talked to customers a lot about that, but when I first read the manifesto, I was like, Oh yeah, this is exactly. This is breaking down. Maybe trying to eliminate the word alignment, you know, from a lot of our organizations, because we literally start thinking about one strategy and how we go from strategy to delivery and have it be our strategy, not someone else's that we're all aligning to. And I, and it's a great way to catalyze that conversation that I've, it's been in my mind for years, to be honest. Right. >>So, so much to unpack there. One of the things obviously, uh, stealing a lot from, from dev ops and the dev ops manifesto from 20 years ago. And, and as I look through some of the principles and I looked through some of the values, which are, you know, really nicely laid out here, you know, satisfy customer, do continuous delivery, uh, measure, output against real results. Um, the ones that, that jumps out though is really about, you know, change, change, right? Requirements should change frequently. They do change frequently, but I'm curious to get your take from a, from a software development point, it's easy to kind of understand, right. We're making this widget and our competitors, beta widget plus X, and now we need to change our plans and make sure that the plus X gets added to the plan. Maybe it wasn't in the plan, but you talked a lot about product strategy. So in this kind of continuous delivery world, how does that meld with, I'm actually trying to set a strategy, which implies the direction for a little bit further out on the horizon and to stay on that while at the same time, you're kind of doing this real time continual adjustments because you're not working off a giant PRD or MRD anymore. >>Yeah, yeah, totally. Yeah. You know, one of the terms, you know, that we use internally a lot and even with my customers, our customers is we talk about this idea of rewiring, right. And I think, you know, it's kind of a, now an analogy for transformation. And I think a lot of us have to rewire the way we think about things. Right. And I think at Planview where we have a lot of customers who live in that, you know, who operationalize that traditional PPM world. Right. And are shifting to agile and transforming that rewire is super important. And, and to your point, right, it's, you've just, you've got to embrace this idea of, you know, just iterative getting better every day and iterating, iterating, iterating as opposed to building annual plans or, you know, I get customers occasionally who asked me for two or three year roadmap. >>Right. And I literally looked at them and I go, there's no, there's no scenario where I can build a two or three year roadmap. Right. You, you, you think you want that, but that's not, that's not the way we run. Right. And I will tell you the biggest thing that for us, you know, that I think is matched the planning, uh, you know, patents is a word I like to use a lot. So the thing that we've like, uh, that we've done from a planning perspective, I think is matched impedance to continuous delivery is instituting the whole program, implement, you know, the program, increment planning, capabilities, and methodologies, um, in the scaled agile world. Right. And over the last 18 months to two years, we really have now, you know, instrumented our company across three value streams. You know, we do quarterly PI program increment 10 week planning, you know, and that becomes, that becomes the Terra firma of how we plan. >>Right. And it's, what are we doing for the next 10 weeks? And we iterate within those 10 weeks, but we also know that 10 weeks from now, we're gonna, we're gonna adjust iterate again. Right. And that shifting of that planning model to, you know, to being as cross-functional is that as that big room planning kind of model is, um, and also, uh, you know, on that shorter increment, when you get those two things in place, also the impedance really starts to match up, uh, with continuous delivery and it changes, it changes the way you plan and it changes the way you work. Right? >>Yeah. Their thing. Right. So obviously a lot of these things are kind of process driven, both within the values, as well as the principles, but there's a whole lot, really about culture. And I just want to highlight a couple of the values, right? We already talked about business outcomes, um, trust and collaboration, uh, data driven decisions, and then learn, respond and pivot. Right. A lot of those are cultural as much as they are process. So again, is it the, is it the need to really kind of just put them down on paper and, you know, I can't help, but think of, you know, the hammer and up the, a, the thing in the Lutheran church with it, with their manifesto, is it just good to get it down on paper? Because when you read these things, you're like, well, of course we should trust people. And of course we need an environment of collaboration and of course we want data driven decisions, but as we all know saying it and living, it are two very, very different things. >>Yeah. Good question. I mean, I think there's a lot of ways to bring that to life you're right. And just hanging up, you know, I think we've all been through the hanging up posters around your office, which these days, right. Unless you're going to hang a poster in everybody's home office. Right. You can't even, you can't even fake it that you think that might work. Right. So, um, you know, you really, I think we've attacked that in a variety of ways. Right. And you definitely have to, you know, you've got to make the shift to a team centric culture, right. Empowered teams, you know, that's a big deal. Right. You know, a lot of, a lot of the people that, you know, we lived in a world of quote, unquote work. We lived in a deep resource management world for a long, long time, and right. >>A lot of our customers still do that, but, you know, kind of moving to that team centric world is, uh, is really important and core to the trust. Um, I think training is super important, right. I mean, we've, you know, we've internally, right. We've trained hundreds employees over the last a year and a half on the fundamentals really of safe. Right. Not necessarily, you know, we've had, we've had teams delivering in scrum and the continuous delivery for, you know, for years, but the scaling aspect of it, uh, is where we've done a lot of training investment. Um, and then, you know, I think a leadership has to be bought in. Right. You know? And so when we pie plan, you know, myself and Cameron and the other members of our leadership, you know, we're NPI planning, you know, for, for four days. Right. I mean, it's, it's, you've got to walk the walk, you know, from top to bottom and you've got to train on the context. Right. And then you, and then, and, and then once you get through a few cycles where you've done a pivot, right. Or you brought a new team in, and it just works, it becomes kind of this virtuous circle where he'll go, man, this really works so much better than what we used to do. Right. >>Right. The other really key principle to this whole thing is, is aligning, you know, the business leaders and the business prioritization, um, so that you can get to good outcomes with the development and the delivery. Right. And we know again, and kind of classic dev ops to get the dev and the production people together. So they can, you know, quickly ship code that works. Um, but adding the business person on there really puts, puts a little extra responsibility that they, they understand the value of a particular feature or particular priority. Uh, they, they can make the, the, the trade offs and that they kind of understand the effort involved too. So, you know, bringing them into this continuous again, kind of this continuous development process, um, to make sure that things are better aligned and really better prioritize. Cause ultimately, you know, we don't live in an infinite resources situation and people gotta make trade offs. They gotta make decisions as to what goes and what doesn't go in for everything that goes. Right. I always say you pick one thing. Okay. That's 99 other things that couldn't go. So it's really important to have, you know, this, you said alignment of the business priorities as well as, you know, the execution within, within the development. >>Yeah. I think that, you know, uh, you know, I think it was probably close to two years ago. Forester started talking about the age of the customer, right. That, that was like their big theme at the time. Right. And I think to me what that, the age of the customer actually translates to and Mick, Mick and I are both big fans of this whole idea of the project, the product shift, mixed book, you know, it was a great piece on a, you're talking to Mick, you know, as part of the manifesto is one of the authors as well, but this shift from project to product, right? Like the age of the customer, in my opinion, the, the, the embodiment of that is the shift to a product mentality. Right. And, and the product mentality in my opinion, is what brings the business and technology teams together, right? >>Once you, once you're focused on a customer experience, that's delivered through a product or a service that's when I that's, when I started to go with the alignment problem goes away, right. Because if you look at software companies, right, I mean, we run product management models, you know, with software development teams, customer success teams, right. That, you know, the software component of these products that people are building is obviously becoming bigger and bigger, you know, in an, in many ways, right. More and more organizations are trying to model themselves over as operationally like software companies. Right. Um, they obviously have lots of other components in their business than just software, but I think that whole model of customer experience equaling product, and then the software component of product, the product is the essence of what changes that alignment equation and brings business and teams together because all of a sudden, everyone knows what the customer's experiencing. Right. And, and that, that, that makes a lot of things very clear, very quickly. >>Right. I'm just curious how far along this was as a process before, before covert hit, right. Because serendipitous, whatever. Right. But th the sudden, you know, light switch moment, everybody had to go work from home and in March 15th compared to now, we're in October, and this is going to be going on for a while, and it is a new normal and whatever that whatever's going to look like a year from now, or two years from now is TBD, you know, had you guys already started on this journey cause again, to sit down and actually declare this coalition and declare this manifesto is a lot different than just trying to do better within your own organization. >>Yeah. So we had started, uh, you know, w we definitely had started independently, you know, some, some, you know, I think people in the community know that, uh, we, we came together with a company called lean kit a handful of years ago, and I give John Terry actually one of the founders leaned to immense credit for, you know, kind of spearheading our cultural change and not, and not because of, we were just going to be, you know, bringing agile solutions to our customers, but because, you know, he believed that it was going to be a fundamentally better way for us to work. Right. And we kind of, you know, when we started with John and built, you know, out of concentric circles of momentum and, and we've gotten to the place where now it's just part of who we are, but, but I do think that, you know, COVID has, you know, um, I think pre COVID a lot of companies, you know, would, would adopt, you know, the, you would adopt digital slash agile transformation. >>Um, traditional industries may have done it as a reaction to disruption. Right. You know, and in many cases, the disruption to these traditional industries was, I would say a product oriented company, right. That probably had a larger software component, and that disruption caused a competitive issue or a customer issue that caused companies and tried to respond by transforming. I think COVID, you know, all of a sudden flatten that out, right. We literally all got disrupted. Right. And, and so all of a sudden, every one of us is dealing with some degree of market uncertainty, customer uncertainty, uh, and also know none of us were insulated from the need to be able to pivot faster, deliver incrementally, you know, and operate in a different, completely more agile way, uh, you know, post COVID. Right. Yeah. That's great. >>So again, a very, very, very timely, you know, a little bit of serendipity, a little bit of, of planning. And, you know, as, as with all important things, there's always a little bit of luck and a lot of hard work involved. So a really interesting thank you for, for your leadership, Patrick. And, you know, it really makes a statement. I think when you have a bunch of leaderships across an industry coming together and putting their name on a piece of paper, uh, that's aligned around us some principles and some values, which again, if you read them who wouldn't want to get behind these, but if it takes, you know, something a little bit more formal, uh, to kind of move the ball down the field, and then I totally get it and a really great work. Thanks for, uh, thanks for doing it. >>Oh, absolutely. No. Like I said, the first time I read it, I was like, yeah, like you said, this is all, this all makes complete sense, but just documenting it and saying it and talking about it moves the needle. I'll tell you as a company, you gotta, we're pushing really hard on, uh, you know, on our own internal strategy on diversity inclusion. Right? And, and like, once we wrote the words down about what, you know, what we aspire to be from a diversity and inclusion perspective, it's the same thing. Everybody reads the words and goes, why wouldn't we do this? Right. But until you write it down and kind of have again, a manifesto or a Terrafirma of what you're trying to accomplish, you know, then you can rally behind it. Right. As opposed to it being something that's, everybody's got their own version of the flavor. Right. And I think it's a very analogous, you know, kind of, uh, initiative, right. And, uh, and this happening, both of those things, right. Are happening across the industry these days. Right. >>And measure it too. Right. And measure it, measure, measure, measure, get a baseline. Even if you don't like to measure, even if you don't like what the, even if you can argue against the math, behind the measurement, measure it, and at least you can measure it again and you can, and you've got some type of a comp and that is really the only way to, to move it forward. Well, Patrick really enjoyed the conversation. Thanks for, uh, for taking a few minutes out of your day. >>It's great to be here. It's an awesome movement and we're glad >>That'd be part of it. All right. Thanks. And if you want to check out the biz ops, Manifesta go to biz ops, manifesto.org, read it. You might want to sign it. It's there for you. And thanks for tuning in on this segment will continuing coverage of the biz op manifesto unveil here on the cube. I'm Jeff, thanks for watching >>From around the globe. It's the cube with digital coverage of biz ops manifesto unveiled brought to you by biz ops coalition. >>Hey, welcome back, everybody Jeffrey here with the cube. We're coming to you from our Palo Alto studios. And welcome back to this event is the biz ops manifesto unveiling. So the biz ops manifesto and the biz ops coalition had been around for a little while, but today's the big day. That's kind of the big public unveiling or excited to have some of the foundational people that, you know, have put their, put their name on the dotted, if you will, to support this initiative and talk about why that initiative is so important. And so the next guest we're excited to have is dr. Mick Kirsten. He is the founder and CEO of Tasktop mic. Great to see you coming in from Vancouver, Canada, I think, right? Yes. Thank you. Absolutely. I hope your air is a little better out there. I know you had some of the worst air of all of us, a couple, a couple of weeks back. So hopefully things are, uh, are getting a little better and we get those fires under control. Yeah. >>Things have cleared up now. So yeah, it's good. It's good to be close to the U S and it's going to have the Arabic cleaner as well. >>Absolutely. So let's, let's jump into it. So you you've been an innovation guy forever starting way back in the day and Xerox park. I was so excited to do an event at Xerox park for the first time last year. I mean, that, that to me represents along with bell labs and, and some other, you know, kind of foundational innovation and technology centers, that's gotta be one of the greatest ones. So I just wonder if you could share some perspective of getting your start there at Xerox park, you know, some of the lessons you learned and what you've been able to kind of carry forward from those days. >>Yeah. I was fortunate to join Xerox park in the computer science lab there at a very early point in my career, and to be working on open source programming languages. So back then in the computer science lab, where some of the inventions around programming around software development teams, such as object oriented programming, and a lot of what we had around really modern programming levels constructs, those were the teams I have the fortune of working with, and really our goal was. And of course there's as, as you know, uh, there's just this DNA of innovation and excitement and innovation in the water. And really it was the model back then was all about changing the way that we work, uh, was looking at for how we could make it 10 times easier to write code. But this is back in 99. And we were looking at new ways of expressing, especially business concerns, especially ways of enabling people who are, who want to innovate for their business to express those concerns in code and make that 10 times easier than what that would take. >>So we create a new open source programming language, and we saw some benefits, but not quite quite what we expected. I then went and actually joined Charles Stephanie, that former to fucking Microsoft who was responsible for, he actually got Microsoft word as a spark and into Microsoft and into the hands of bill Gates on that company. I was behind the whole office suite and his vision. And then when I was trying to execute with, working for him was to make PowerPoint like a programming language, make everything completely visual. And I realized none of this was really working in that there was something else, fundamentally wrong programming languages, or new ways of building software. Like let's try and do with Charles around intentional programming. That was not enough. >>That was not enough. So, you know, the agile movement got started about 20 years ago, and we've seen the rise of dev ops and really this kind of embracing of, of, of sprints and, you know, getting away from MRDs and PRDs and these massive definitions of what we're going to build and long build cycles to this iterative process. And this has been going on for a little while. So what was still wrong? What was still missing? Why the BizOps coalition, why the biz ops manifesto? >>Yeah, so I basically think we nailed some of the things that the program language levels of teams can have effective languages deployed soften to the cloud easily now, right? And at the kind of process and collaboration and planning level agile two decades, decades ago was formed. We were adopting and all the, all the teams I was involved with and it's really become a self problem. So agile tools, agile teams, agile ways of planning, uh, are now very mature. And the whole challenge is when organizations try to scale that. And so what I realized is that the way that agile was scaling across teams and really scaling from the technology part of organization to the business was just completely flawed. The agile teams had one set of doing things, one set of metrics, one set of tools. And the way that the business was working was planning was investing in technology was just completely disconnected and using a whole different set of advisors. >>Interesting. Cause I think it's pretty clear from the software development teams in terms of what they're trying to deliver. Cause they've got a feature set, right. And they've got bugs and it's easy to, it's easy to see what they deliver, but it sounds like what you're really honing in on is this disconnect on the business side, in terms of, you know, is it the right investment? You know, are we getting the right business ROI on this investment? Was that the right feature? Should we be building another feature or should we building a completely different product set? So it sounds like it's really a core piece of this is to get the right measurement tools, the right measurement data sets so that you can make the right decisions in terms of what you're investing, you know, limited resources. You can't, no one has unlimited resources and ultimately have to decide what to do, which means you're also deciding what not to do. And it sounds like that's a really big piece of this, of this whole effort. >>Yeah. Jeff, that's exactly it, which is the way that the agile team measures their own way of working is very different from the way that you measure business outcomes. The business outcomes are in terms of how happy your customers are, but are you innovating fast enough to keep up with the pace of a rapidly changing economy, rapidly changing market. And those are, those are all around the customer. And so what I learned on this long journey of supporting many organizations transformations and having them try to apply those principles of agile and dev ops, that those are not enough, those measures technical practices, those measured sort of technical excellence of bringing code to the market. They don't actually measure business outcomes. And so I realized that it really was much more around having these entwined flow metrics that are customer centric and business centric and market centric where we need it to go. Right. >>So I want to shift gears a little bit and talk about your book because you're also a bestselling author, a project, a product, and, and, and you, you brought up this concept in your book called the flow framework. And it's really interesting to me cause I know, you know, flow on one hand is kind of a workflow and a process flow and, and you know, that's how things get done and, and, and embrace the flow. On the other hand, you know, everyone now in, in a little higher level existential way is trying to get into the flow right into the workflow and, you know, not be interrupted and get into a state where you're kind of at your highest productivity, you know, kind of your highest comfort, which flow are you talking about in your book or is it a little bit about, >>Well, that's a great question. It's not what I get asked very often. Just to me, it's absolutely both. So that the thing that we want to get to, we've learned how to master individual flow. That is this beautiful book by me, how he teaches me how he does a beautiful Ted talk by him as well about how we can take control of our own flow. So my question with the book with project replies, how can we bring that to entire teams and really entire organizations? How can we have everyone contributing to a customer outcome? And this is really what if you go to the biz ops manifesto, it says, I focus on outcomes on using data to drive whether we're delivering those outcomes rather than a focus on proxy metrics, such as, how quickly did we implement this feature? No, it's really how much value did the customer go to the feature and how quickly did you learn and how quickly did you use that data to drive to that next outcome? >>Really that with companies like Netflix and Amazon have mastered, how do we get that to every large organization, every it organization and make everyone be a software innovator. So it's to bring that co that concept of flow to these entwined value streams. And the fascinating thing is we've actually seen the data. We've been able to study a lot of value streams. We see when flow increases, when organizations deliver value to a customer faster, developers actually become more happy. So things like the employee net promoter scores rise, and we've got empirical data for this. So the beautiful thing to me is that we've actually been able to combine these two things and see the results in the data that you increase flow to the customer. Your developers are more happy. >>I love it, right, because we're all more, we're all happier when we're in the flow and we're all more productive when we're in the flow. So I, that is a great melding of, of two concepts, but let's jump into the, into the manifesto itself a little bit. And, you know, I love that, you know, took this approach really of having kind of four key values and then he gets 12 key principles. And I just want to read a couple of these values because when you read them, it sounds pretty brain dead. Right? Of course. Right. Of course you should focus on business outcomes. Of course you should have trust and collaboration. Of course you should have database decision making processes and not just intuition or, you know, whoever's the loudest person in the room, uh, and to learn and respond and pivot. But what's the value of actually just putting them on a piece of paper, because again, this is not this, these are all good, positive things, right? When somebody reads these to you or tells you these are sticks it on the wall, of course. But unfortunately of course isn't always enough. >>No. And I think what's happened is some of these core principles originally from the agile manifesto two decades ago, uh, the whole dev ops movement of the last decade of flow feedback and continue learning has been key. But a lot of organizations, especially the ones that are undergoing digital transformations have actually gone a very different way, right? The way that they measure value in technology and innovation is through costs for many organizations. The way that they actually are looking at that they're moving to cloud is actually as a reduction in cost. Whereas the right way of looking at moving to cloud is how much more quickly can we get to the value to the customer? How quickly can we learn from that? And how quickly can we drive the next business outcome? So really the key thing is, is to move away from those old ways of doing things, a funny projects and cost centers, uh, to actually funding and investing in outcomes and measuring outcomes through these flow metrics, which in the end are your fast feedback and how quickly you're innovating for your customer. >>So these things do seem, you know, very obvious when you look at them. But the key thing is what you need to stop doing to focus on these. You need to actually have accurate realtime data of how much value your phone to the customer every week, every month, every quarter. And if you don't have that, your decisions are not driven on data. If you don't know what your boggling like is, and this is something that in decades of manufacturing, a car manufacturers, other manufacturers, master, they always know where the bottom back in their production processes. You ask a random CIO when a global 500 company where their bottleneck is, and you won't get a clear answer because there's not that level of understanding. So let's, you actually follow these principles. You need to know exactly where you fall. And I guess because that's, what's making your developers miserable and frustrated around having them context, which on thrash. So it, the approach here is important and we have to stop doing these other things, >>Right? There's so much there to unpack. I love it. You know, especially the cloud conversation, because so many people look at it wrong as, as, as a cost saving device, as opposed to an innovation driver and they get stuck, they get stuck in the literal and the, and you know, I think at the same thing, always about Moore's law, right? You know, there's a lot of interesting real tech around Moore's law and the increasing power of microprocessors, but the real power, I think in Moore's laws is the attitudinal change in terms of working in a world where you know that you've got all this power and what you build and design. I think it's funny to your, your comment on the flow and the bottleneck, right? Cause, cause we know manufacturing, as soon as you fix one bottleneck, you move to your next one, right? You always move to your next point of failure. So if you're not fixing those things, you know, you're not, you're not increasing that speed down the line, unless you can identify where that bottleneck is or no matter how many improvements you make to the rest of the process, it's still going to get hung up on that one spot. >>That's exactly it. And you also make it sound so simple, but again, if you don't have the data driven visibility of where that bottom line is, and these bottlenecks are adjusted to say defense just whack them. All right. So we need to understand is the bottleneck because our security reviews are taking too long and stopping us from getting value for the customer. If it's that automate that process. And then you move on to the next bottleneck, which might actually be that deploying yourself into the cloud. It's taking too long. But if you don't take that approach of going flow first, rather than again, that sort of cost reduction. First, you have to think of the approach of customer centricity and you only focused on optimizing costs. Your costs will increase and your flow will slow down. And this is just one of these fascinating things. >>Whereas if you focus on getting closer to the customer and reducing your cycles out on getting value, your flow time from six months to two weeks or two, one week or two event, as we see with the tech giants, you actually can both lower your costs and get much more value for us to get that learning loop going. So I think I've, I've seen all these cloud deployments and one of the things happened that delivered almost no value because there was such big bottlenecks upfront in the process and actually the hosting and the AP testing was not even possible with all of those inefficiencies. So that's why going float us rather than costs when we started our project versus silky. >>I love that. And, and, and, and it, it begs repeating to that right within the subscription economy, you know, you're on the hook to deliver value every single month because they're paying you every single month. So if you're not on top of how you're delivering value, you're going to get sideways because it's not like they pay a big down payment and a small maintenance fee every month. But once you're in a subscription relationship, you know, you have to constantly be delivering value and upgrading that value because you're constantly taking money from the customer. So it's such a different kind of relationship than kind of the classic, you know, big bang with a maintenance agreement on the back end really important. Yeah. >>And I think in terms of industry shifts that that's, it that's, what's catalyzed. This industry shift is in this SAS and subscription economy. If you're not delivering more and more value to your customers, someone else's, and they're winning the business, not you. So, one way we know is to delight our customers with great user experience as well. That really is based on how many features you delivered or how much, how much, how many quality improvements or scalar performance improvements we delivered. So the problem is, and this is what the business manifesto, as well as the flow frame of touch on is if you can't measure how much value you deliver to a customer, what are you measuring? You just backed again, measuring costs, and that's not a measure of value. So we have to shift quickly away from measuring costs to measuring value, to survive. And in the subscription economy, >>We could go for days and days and days. I want to shift gears a little bit into data and, and a data driven decision making a data driven organization cause right day has been talked about for a long time, the huge big data meme with, with Hadoop over, over several years and, and data warehouses and data lakes and data oceans and data swamps. And you can go on and on and on. It's not that easy to do, right? And at the same time, the proliferation of data is growing exponentially. We're just around the corner from, from IOT and five G. So now the accumulation of data at machine scale, again, is this gonna overwhelm? And one of the really interesting principles, uh, that I wanted to call out and get your take right, is today's organizations generate more data than humans can process. So informed decisions must be augmented by machine learning and artificial intelligence. I wonder if you can, again, you've got some great historical perspective, um, reflect on how hard it is to get the right data, to get the data in the right context, and then to deliver it to the decision makers and then trust the decision makers to actually make the data and move that down. You know, it's kind of this democratization process into more and more people and more and more frontline jobs making more and more of these little decisions every day. >>Yeah. I definitely think the front parts of what you said are where the promises of big data have completely fallen on their face into the swamps as, as you mentioned, because if you don't have the data in the right format, you've cannot connect, collected that the right way you want it, that way, the right way you can't use human or machine learning on it effectively. And there've been the number of data where, how has this in a typical enterprise organization and the sheer investment is tremendous, but the amount of intelligence being extracted from those is, is, is a very big problem. So the key thing that I've noticed is that if you can model your value streams, so you actually understand how you're innovating, how you're measuring the delivery of value and how long that takes, what is your time to value through these metrics like full time? >>You can actually use both the intelligence that you've got around the table and push that down as well, as far as getting to the organization, but you can actually start using that those models to understand and find patterns and detect bottlenecks that might be surprising, right? Well, you can detect interesting bottlenecks when you shift to work from home. We detected all sorts of interesting bottlenecks in our own organization that were not intuitive to me that have to do with, you know, more senior people being overloaded and creating bottlenecks where they didn't exist. Whereas we thought we were actually an organization that was very good at working from home because of our open source roots. So the data is highly complex. Software value streams are extremely complicated. And the only way to really get the proper analysts and data is to model it properly and then to leverage these machine learning and AI techniques that we have. But that front part of what you said is where organizations are just extremely immature in what I've seen, where they've got data from all their tools, but not modeled in the right way. Right, right. >>Right. Well, all right. So before I let you go, you know, let's say you get a business leader. He, he buys in, he reads the manifesto, he signs on the dotted line and he says, Mick, how do I get started? I want to be more aligned with the, with the development teams. I know I'm in a very competitive space. We need to be putting out new software features and engage with our customers. I want to be more data-driven how do I get started? Well, you know, what's the biggest inhibitor for most people to get started and get some early wins, which we know is always the key to success in any kind of a new initiative. >>Right? So I think you can reach out to us through the website, uh, for the manifesto. But the key thing is just, it's definitely set up it's to get started and to get the key wins. So take a product value stream. That's mission critical if it'd be on your mobile and web experiences or part of your cloud modernization platform where your analytics pipeline, but take that and actually apply these principles to it and measure the end to end flow of value. Make sure you have a value metric that everyone is on the same page on, but the people on the development teams that people in leadership all the way up to the CEO, and one of the, where I encourage you to start is actually that end to end flow time, right? That is the number one metric. That is how you measure it, whether you're getting the benefit of your cloud modernization, that is the one metric that when the people I respect tremendously put into his cloud for CEOs, the metric, the one, the one way to measure innovation. So basically take these principles, deploy them on one product value stream measure, Antonin flow time, uh, and then you'll actually be well on your path to transforming and to applying the concepts of agile and dev ops all the way to, to the, to the way >>You're offering model. >>Well, Mick really great tips, really fun to catch up. I look forward to a time when we can actually sit across the table and, and get into this. Cause I just, I just love the perspective and, you know, you're very fortunate to have that foundational, that foundational base coming from Xerox park and they get, you know, it's, it's a very magical place with a magical history. So to, to incorporate that into, continue to spread that well, uh, you know, good for you through the book and through your company. So thanks for sharing your insight with us today. >>Thanks so much for having me, Jeff. Absolutely. >>All right. And go to the biz ops manifesto.org, read it, check it out. If you want to sign it, sign it. They'd love to have you do it. Stay with us for continuing coverage of the unveiling of the business manifesto on the cube. I'm Jeff. Rick. Thanks for watching. See you next time >>From around the globe. It's the cube with digital coverage, a biz ops manifesto unveiled brought to you by biz ops coalition. >>Hey, welcome back. You're ready. Jeff Frick here with the cube for our ongoing coverage of the big unveil. It's the biz ops manifesto manifesto unveil. And we're going to start that again from the top three And a Festo >>Five, four, three, two. >>Hey, welcome back everybody. Jeff Frick here with the cube come to you from our Palo Alto studios today for a big, big reveal. We're excited to be here. It's the biz ops manifesto unveiling a thing's been in the works for a while and we're excited to have our next guest. One of the, really the powers behind this whole effort. And he's joining us from Boston it's surge, Lucio, the vice president, and general manager enterprise software division at Broadcom surge. Great to see you. >>Hi, good to see you, Jeff. Glad to be here. >>Absolutely. So you've been in this business for a very long time. You've seen a lot of changes in technology. What is the biz ops manifesto? What is this coalition all about? Why do we need this today and in 2020? >>Yeah. So, so I've been in this business for close to 25 years, right? So about 20 years ago, the agile manifesto was created. And the goal of the agile manifesto was really to address the uncertainty around software development and the inability to predict the efforts to build software. And, uh, if you, if you roll that kind of 20 years later, and if you look at the current state of the industry of the product, the project management Institute, estimates that we're wasting about a million dollars, every 20 seconds in digital transformation initiatives that do not deliver on business results. In fact, we were recently served a third of the, a, a number of executives in partnership with Harvard >>Business review and 77% of those executives think that one of the key challenges that they have is really the collaboration between business and it, and that that's been kind of a case for, uh, almost 20 years now. Um, so the, the, the key challenge that we're faced with is really that we need a new approach. And many of the players in the industry, including ourselves have been using different terms, right? Some are being, are talking about value stream management. Some are talking about software delivery management. If you look at the site, reliability engineering movement, in many ways, it embodies a lot of these kind of concepts and principles. So we believed that it became really imperative for us to crystallize around, could have one concept. And so in many ways, the, a, the BizOps concept and the BizOps manifesto are bringing together a number of ideas, which has been emerging in the last five years or so, and, and defining the key values and principles to finally help these organizations truly transform and become digital businesses. And so the hope is that by joining our forces and defining public key principles and values, we can help the industry, uh, not just, uh, by, you know, providing them with support, but also tools and consulting that is required for them to truly achieve the kind of transformation that everybody's taking. >>Right. Right. So COVID now we're six months into it, approximately seven months into it. Um, a lot of pain, a lot of bad stuff still happening. We've got a ways to go, but one of the things that on the positive side, right, and you've seen all the memes and social media is, is a driver of digital transformation and a driver of change. Cause we had this light switch moment in the middle of March, and there was no more planning. There was no more conversation. You've suddenly got remote workforces, everybody's working from home and you got to go, right. So the reliance on these tools increases dramatically, but I'm curious, you know, kind of short of, of the beginnings of this effort in short of kind of COVID, which, you know, came along unexpectedly. I mean, what were those inhibitors because we've been making software for a very long time, right? The software development community has, has adopted kind of rapid change and, and iterative, uh, delivery and, and sprints, what was holding back the connection with the business side to make sure that those investments were properly aligned with outcomes. >>Well, so, so you have to understand that it is, is kind of a its own silos. And traditionally it has been treated as a cost center within large organizations and not as a value center. And so as a result, kind of a, the traditional dynamic between it and the business is basically one of a kind of supplier up to kind of a business. Um, and you know, if you go back to, uh, I think you'll unmask a few years ago, um, basically at this concept of the machines to build the machines and you went as far as saying that, uh, the, the machines or the production line is actually the product. So, uh, meaning that the core of the innovation is really about, uh, building, could it be engine to deliver on the value? And so in many ways, you know, we, we have missed on this shift from, um, kind of it becoming this kind of value center within the enterprises and end. >>He talks about culture. Now, culture is a, is a sum total of behaviors. And the reality is that if you look at it, especially in the last decade, uh, we've agile with dev ops with, um, I bring infrastructures, uh, it's, it's way more volatile today than it was 10 years ago. And so the, when you start to look at the velocity of the data, the volume of data, the variety of data to analyze the system, um, it's, it's very challenging for it to actually even understand and optimize its own processes, let alone, um, to actually include business as sort of an integral part of kind of a delivery chain. And so it's both kind of a combination of, of culture, um, which is required, uh, as well as tools, right? To be able to start to bring together all these data together, and then given the volume of variety of philosophy of the data. Uh, we have to apply some core technologies, which have only really, truly emerged in the last five to 10 years around machine learning and analytics. And so it's really kind of a combination of those freaks, which are coming together today, truly out organizations kind of get to the next level. Right, >>Right. So let's talk about the manifesto. Let's talk about, uh, the coalition, uh, the BizOps coalition. I just liked that you put down these really simple, you know, kind of straightforward core values. You guys have four core values that you're highlighting, you know, business outcomes, over individual projects and outputs, trust, and collaboration, oversight, load teams, and organizations, data driven decisions, what you just talked about, uh, you know, over opinions and judgment and learned, respond and pivot. I mean, surgery sounds like pretty basic stuff, right? I mean, aren't, isn't everyone working to these values already. And I think he touched on it on culture, right? Trust and collaboration, data driven decisions. I mean, these are fundamental ways that people must run their business today, or the person that's across the street, that's doing it. It's going to knock them out right off their block. >>Yeah. So that's very true. But, uh, so I'll, I'll mention an hour survey. We did, uh, I think about six months ago and it was in partnership with, uh, with, uh, an industry analyst and we serve at a, again, a number of it executives to understand only we're tracking business outcomes. I'm going to get the software executives, it executives we're tracking business outcomes. And the, there were less than 15% of these executives were actually tracking the outcomes of the software delivery. And you see that every day. Right? So in my own teams, for instance, we've been adopting a lot of these core principles in the last year or so, and we've uncovered that 16% of our resources were basically aligned around initiatives, which are not strategic for us. Um, I take another example, for instance, one of our customers in the, uh, in the airline industry and Harvard, for instance, that a number of, uh, um, that they had software issues that led to people searching for flights and not returning any kind of availability. >>And yet, um, you know, the it teams, whether it's operation software environments were completely oblivious to that because they were completely blindsided to it. And so the connectivity between kind of the inwards metrics that RT is using, whether it's database time, cycle time, or whatever metric we use in it are typically completely divorced from the business metrics. And so at its core, it's really about starting to align the business metrics with the, the, the software delivery chain, right? This, uh, the system, which is really a core differentiator for these organizations. It's about connecting those two things and starting to, um, infuse some of the agile culture and principles. Um, that's emerged from the software side into the business side. Um, of course the lean movement and other movements have started to change some of these dynamics on the business side. And so I think this, this is the moment where we are starting to see kind of the imperative to transform. Now, you know, Covina obviously has been a key driver for that. The, um, the technology is right to start to be able to weave data together and really kind of, uh, also the cultural shifts, uh, Prue agile through dev ops through, uh, the SRE movement, uh frulein um, business transformation, all these things are coming together and that are really creating kind of the conditions for the BizOps manifestor to exist, >>Uh, Clayton Christianson, great, uh, Harvard professor innovator's dilemma might steal my all time. Favorite business books, you know, talks about how difficult it is for incumbents to react to, to disruptive change, right? Because they're always working on incremental change cause that's what their customers are asking for. And there's a good ROI when you talk about, you know, companies not measuring the right thing. I mean, clearly it has some portion of their budget that has to go to keeping the lights on, right. That that's always the case, but hopefully that's an ever decreasing percentage of their total activity. So, you know, what should people be measuring? I mean, what are kind of the new metrics, um, in, in biz ops that drive people to be looking at the right things, measuring the right things and subsequently making the right decisions, investment decisions on whether they should do, you know, move project a along or project B. >>So there, there are only two things, right? So, so I think what you're talking about is portfolio management, investment management, right. And, um, which, which is a key challenge, right? Um, in my own experience, right? Uh, driving strategy or a large scale kind of software organization for years, um, it's very difficult to even get kind of a base data as to who is doing what, uh, um, I mean, some of our largest customers we're engaged with right now are simply trying to get a very simple answer, which is how many people do I have and that specific initiative at any point in time and just tracking that information is extremely difficult. So, and, and again, back to a product project management Institute, um, they're, they've estimated that on average, it organizations have anywhere between 10 to 20% of their resources focused on initiatives, which are not strategically aligned. >>So that's one dimension on portfolio management. I think the key aspect though, that we are really keen on is really around kind of the alignment of a business metrics to the it metrics. Um, so I'll use kind of two simple examples, right? And my background is around quality. And so I've always believed that fitness for purpose is really kind of a key, um, uh, philosophy if you will. And so if you start to think about quality as fitness for purpose, you start to look at it from a customer point of view, right. And fitness for purpose for core banking application or mobile application are different, right? So the definition of a business value that you're trying to achieve is different. Um, and so the, and yet, if you look at our, it, operations are operating, they were using kind of a same type of, uh, kind of inward metrics, uh, like a database of time or a cycle time, or what is my point of velocity, right? >>And, uh, and so the challenge really is this inward facing metrics that it is using, which are divorced from ultimately the outcome. And so, you know, if I'm, if I'm trying to build a poor banking application, my core metric is likely going to be uptime, right? If I'm trying to build a mobile application or maybe your social mobile app, it's probably going to be engagement. And so what you want is for everybody across it, to look at these metric, and what's hard, the metrics within the software delivery chain, which ultimately contribute to that business metric and some cases cycle time may be completely irrelevant, right? Again, my core banking app, maybe I don't care about cycle time. And so it's really about aligning those metrics and be able to start to differentiate, um, the key challenges you mentioned, uh, around the, the, um, uh, around the disruption that we see is, or the investors is the dilemma now is really around the fact that many it organizations are essentially applying the same approaches of, for innovation, right, for basically scrap work, then they would apply to kind of over more traditional projects. And so, you know, there's been a lot of talk about two-speed it, and yes, it exists, but in reality are really organizations, um, truly differentiating, um, all of the operate, their, their projects and products based on the outcomes that they're trying to achieve. And this is really where BizOps is trying to affect. >>I love that, you know, again, it doesn't seem like brain surgery, but focus on the outcomes, right. And it's horses for courses, as you said, this project, you know, what you're measuring and how you define success, isn't necessarily the same as, as on this other project. So let's talk about some of the principles we've talked about the values, but, you know, I think it's interesting that, that, that the BizOps coalition, you know, just basically took the time to write these things down and they don't seem all that, uh, super insightful, but I guess you just gotta get them down and have them on paper and have them in front of your face. But I want to talk about, you know, one of the key ones, which you just talked about, which is changing requirements, right. And working in a dynamic situation, which is really what's driven, you know, this, the software to change in software development, because, you know, if you're in a game app and your competitor comes out with a new blue sword, you've got to come out with a new blue sword. >>So whether you had that on your Kanban wall or not. So it's, it's really this embracing of the speed of change and, and, and, and making that, you know, the rule, not the exception. I think that's a phenomenal one. And the other one you talked about is data, right? And that today's organizations generate more data than humans can process. So informed decisions must be generated by machine learning and AI, and, you know, in the, the big data thing with Hadoop, you know, started years ago, but we are seeing more and more that people are finally figuring it out, that it's not just big data, and it's not even generic machine learning or artificial intelligence, but it's applying those particular data sets and that particular types of algorithms to a specific problem, to your point, to try to actually reach an objective, whether that's, you know, increasing the, your average ticket or, you know, increasing your checkout rate with, with, with shopping carts that don't get left behind and these types of things. So it's a really different way to think about the world in the good old days, probably when you got started, when we had big, giant, you know, MRDs and PRDs and sat down and coded for two years and came out with a product release and hopefully not too many patches subsequently to that. >>It's interesting. Right. Um, again, back to one of these surveys that we did with, uh, with about 600, the ITA executives, and, uh, and, and we, we purposely designed those questions to be pretty open. Um, and, and one of them was really role requirements and, uh, and it was really a wrong kind of what do you, what is the best approach? What is your preferred approach towards requirements? And if I remember correctly over 80% of the it executives set that the best approach they'll prefer to approach is for requirements to be completely defined before software development starts. Let me pause there where 20 years after the agile manifesto, right? And for 80% of these idea executives to basically claim that the best approach is for requirements to be fully baked before salt, before software development starts, basically shows that we still have a very major issue. >>And again, our hypothesis in working with many organizations is that the key challenge is really the boundary between business and it, which is still very much contract based. If you look at the business side, they basically are expecting for it deliver on time on budget, right. But what is the incentive for it to actually delivering all the business outcomes, right? How often is it measured on the business outcomes and not on an SLA or on a budget type criteria. And so that, that's really the fundamental shift that we need to, we really need to drive up as an industry. Um, and you know, we, we talk about kind of this, this imperative for organizations to operate that's one, and back to the innovator's dilemma. The key difference between these larger organization is, is really kind of a, if you look at the amount of capital investment that they can put into pretty much anything, why are they losing compared to, um, you know, startups? What, why is it that, uh, more than 40% of, uh, personal loans today or issued not by your traditional brick and mortar banks, but by, um, startups? Well, the reason, yes, it's the traditional culture of doing incremental changes and not disrupting ourselves, which Christiansen covered at length, but it's also the inability to really fundamentally change kind of a dynamic picture. We can business it and, and, and partner right. To, to deliver on a specific business outcome. Right. >>I love that. That's a great, that's a great summary. And in fact, getting ready for this interview, I saw you mentioning another thing where, you know, the, the problem with the agile development is that you're actually now getting more silos because you have all these autonomous people working, you know, kind of independently. So it's even a harder challenge for, for the business leaders to, to, to, as you said, to know, what's actually going on, but, but certainly I w I want to close, um, and talk about the coalition. Um, so clearly these are all great concepts. These are concepts you want to apply to your business every day. Why the coalition, why, you know, take these concepts out to a broader audience, including your, your competition and, and the broader industry to say, Hey, we, as a group need to put a stamp of approval on these concepts, values, these principles. >>So, first I think we, we want, um, everybody to realize that we are all talking about the same things, the same concepts. I think we were all from our own different vantage point, realizing that, um, things after change, and again, back to, you know, whether it's value stream management or site reliability engineering, or biz ops, we're all kind of using slightly different languages. Um, and so I think one of the important aspects of BizOps is for us, all of us, whether we're talking about, you know, consulting agile transformation experts, uh, whether we're talking about vendors, right, provides kind of tools and technologies, or these large enterprises to transform for all of us to basically have kind of a reference that lets us speak around kind of, um, in a much more consistent way. The second aspect is for, to me is for, um, these concepts to start to be embraced, not just by us or trying, or, you know, vendors, um, system integrators, consulting firms, educators, thought leaders, but also for some of our old customers to start to become evangelists of their own in the industry. >>So we, our, our objective with the coalition needs to be pretty, pretty broad. Um, and our hope is by, by starting to basically educate, um, our, our joint customers or partners, that we can start to really foster these behaviors and start to really change, uh, some of dynamics. So we're very pleased at if you look at, uh, some of the companies which have joined the, the, the, the manifesto. Um, so we have vendors and suggest desktop or advance, or, um, uh, PagerDuty for instance, or even planned view, uh, one of my direct competitors, um, but also thought leaders like Tom Davenport or, uh, or cap Gemini or, um, um, smaller firms like, uh, business agility, institutes, or agility elf. Um, and so our, our goal really is to start to bring together, uh, thought leaders, people who have been LP, larger organizations do digital transformation vendors, were providing the technologies that many of these organizations use to deliver on these digital preservation and for all of us to start to provide the kind of, uh, education support and tools that the industry needs. Yeah, >>That's great surge. And, uh, you know, congratulations to you and the team. I know this has been going on for a while, putting all this together, getting people to sign onto the manifesto, putting the coalition together, and finally today getting to unveil it to the world in a little bit more of a public, uh, opportunity. So again, you know, really good values, really simple principles, something that, that, uh, shouldn't have to be written down, but it's nice cause it is, and now you can print it out and stick it on your wall. So thank you for, uh, for sharing this story. And again, congrats to you and the team. Thank you. Appreciate it. My pleasure. Alrighty, surge. If you want to learn more about the biz ops, Manifesta go to biz ops manifesto.org, read it, and you can sign it and you can stay here for more coverage. I'm the cube of the biz ops manifesto unveiled. Thanks for watching. See you next time >>From around the globe. It's the cube with digital coverage of this ops manifesto unveiled and brought to you by >>This obstacle volition. Hey, welcome back, everybody Jeffrey here with the cube. Welcome back to our ongoing coverage of the biz ops manifesto unveiling. It's been in the works for awhile, but today's the day that it actually kind of come out to the, to the public. And we're excited to have a real industry luminary here to talk about what's going on, why this is important and share his perspective. And we're happy to have from Cape Cod, I believe is Tom Davenport. He's a distinguished author and professor at Babson college. We could go on, he's got a lot of great titles and, and really illuminary in the area of big data and analytics Thomas. Great to see you. >>Thanks Jeff. Happy to be here with you. >>Great. So let's just jump into it, you know, and getting ready for this. I came across your LinkedIn posts. I think you did earlier this summer in June and right off the bat, the first sentence just grabbed my attention. I'm always interested in new attempts to address longterm issues, uh, in how technology works within businesses, biz ops. What did you see in biz ops, uh, that, that kind of addresses one of these really big longterm problems? >>Well, yeah, but the longterm problem is that we've had a poor connection between business people and it people between business objectives and the, it solutions that address them. This has been going on, I think since the beginning of information technology and sadly it hasn't gone away. And so biz ops is a new attempt to deal with that issue with a, you know, a new framework, eventually a broad set of solutions that increase the likelihood that will actually solve a business problem with an it capability. >>Right. You know, it's interesting to compare it with like dev ops, which I think a lot of people are probably familiar with, which was, you know, built around, uh, agile software development and a theory that we want to embrace change that that changes. Okay. And we want to be able to iterate quickly and incorporate that. And that's been happening in the software world for, for 20 plus years. What's taken so long to get that to the business side, because as the pace of change has changed on the software side, you know, that's a strategic issue in terms of execution, the business side that they need now to change priorities. And, you know, there's no PRDs and MRDs and big, giant strategic plans that sit on the shelf for five years. That's just not the way business works anymore. It took a long time to get here. >>Yeah, it did. And, you know, there had been previous attempts to make a better connection between business and it, there was the so called strategic alignment framework that a couple of friends of mine from Boston university developed, I think more than 20 years ago, but you know, now we have better technology for creating that linkage. And the, you know, the idea of kind of ops oriented frameworks is pretty pervasive now. So I think it's time for another serious attempt at it. >>And do you think doing it this way, right. With the, with the BizOps coalition, you know, getting a collection of, of, of kind of likeminded individuals and companies together, and actually even having a manifesto, which we're making this declarative statement of, of principles and values, you think that's what it takes to kind of drive this kind of beyond the experiment and actually, you know, get it done and really start to see some results in, in, uh, in production in the field. >>I think certainly no one vendor organization can pull this off single handedly. It does require a number of organizations collaborating and working together. So I think our coalition is a good idea and a manifesto is just a good way to kind of lay out what you see as the key principles of the idea. And that makes it much easier for everybody to understand and act on. >>I, I think it's just, it's really interesting having, you know, having them written down on paper and having it just be so clearly articulated both in terms of the, of the values as well as, as the, uh, the principles and the values, you know, business outcomes matter trust and collaboration, data-driven decisions, which is the number three of four, and then learn, respond and pivot. It doesn't seem like those should have to be spelled out so clearly, but, but obviously it helps to have them there. You can stick them on the wall and kind of remember what your priorities are, but you're the data guy. You're the analytics guy, uh, and a big piece of this is data and analytics and moving to data driven decisions. And principle number seven says, you know, today's organizations generate more data than humans can process and informed decisions can be augmented by machine learning and artificial intelligence right up your alley. You know, you've talked a number of times on kind of the mini stages of analytics. Um, and how has that evolved over over time, you know, as you think of analytics and machine learning, driving decisions beyond supporting decisions, but actually starting to make decisions in machine time. What's that, what's that thing for you? What does that make you, you know, start to think, wow, this is this going to be pretty significant. >>Yeah. Well, you know, this has been a longterm interest of mine. Um, the last generation of AI, I was very interested in expert systems. And then, um, I think, uh, more than 10 years ago, I wrote an article about automated decision-making using what was available then, which was rule-based approaches. Um, but you know, this addresses an issue that we've always had with analytics and AI. Um, you know, we, we tended to refer to those things as providing decision support, but the problem is that if the decision maker didn't want their support, didn't want to use them in order to make a decision, they didn't provide any value. And so the nice thing about automating decisions, um, with now contemporary AI tools is that we can ensure that data and analytics get brought into the decision without any possible disconnection. Now, I think humans still have something to add here, and we often will need to examine how that decision is being made and maybe even have the ability to override it. But in general, I think at least for, you know, repetitive tactical decisions, um, involving a lot of data, we want most of those, I think to be at least, um, recommended if not totally made by an algorithm or an AI based system. And that I believe would add to, um, the quality and the precision and the accuracy of decisions and in most organizations, >>No, I think, I think you just answered my next question before I, before I asked it, you know, we had dr. Robert Gates on the former secretary of defense on a few years back, and we were talking about machines and machines making decisions. And he said at that time, you know, the only weapon systems, uh, that actually had an automated trigger on it were on the North Korea and South Korea border. Um, everything else, as you said, had to go through a sub person before the final decision was made. And my question is, you know, what are kind of the attributes of the decision that enable us to more easily automated? And then how do you see that kind of morphing over time, both as the data to support that as well as our comfort level, um, enables us to turn more and more actual decisions over to the machine? >>Well, yeah, as I suggested we need, um, data and the data that we have to kind of train our models has to be high quality and current, and we need to know the outcomes of that data. You know, um, most machine learning models, at least in business are supervised. And that means we need to have labeled outcomes in the, in the training data. But I, you know, um, the pandemic that we're living through is a good illustration of the fact that, that the data also have to be reflective of current reality. And, you know, one of the things that we're finding out quite frequently these days is that, um, the data that we have do not reflect, you know, what it's like to do business in a pandemic. Um, I wrote a little piece about this recently with Jeff cam at wake forest university, we call it data science quarantined, and we interviewed with somebody who said, you know, it's amazing what eight weeks of zeros will do to your demand forecast. We just don't really know what happens in a pandemic. Um, our models maybe have to be put on the shelf for a little while and until we can develop some new ones or we can get some other guidelines into making decisions. So I think that's one of the key things with automated decision making. We have to make sure that the data from the past and that's all we have of course, is a good guide to, you know, what's happening in the present and the future as far as we understand it. >>Yeah. I used to joke when we started this calendar year 2020, it was finally the year that we know everything with the benefit of hindsight, but I turned down 20, 20 a year. We found out we actually know nothing and everything and thought we knew, but I want to, I want to follow up on that because you know, it did suddenly change everything, right? We've got this light switch moment. Everybody's working from home now we're many, many months into it, and it's going to continue for a while. I saw your interview with Bernard Marr and you had a really interesting comment that now we have to deal with this change. We don't have a lot of data and you talked about hold fold or double down. And, and I can't think of a more, you know, kind of appropriate metaphor for driving the value of the biz ops when now your whole portfolio strategy, um, these to really be questioned and, and, you know, you have to be really, uh, well, uh, executing on what you are, holding, what you're folding and what you're doubling down with this completely new environment. >>Well, yeah, and I hope I did this in the interview. I would like to say that I came up with that term, but it actually came from a friend of mine. Who's a senior executive at Genpact. And, um, I, um, used it mostly to talk about AI and AI applications, but I think you could, you could use it much more broadly to talk about your entire sort of portfolio of digital projects. You need to think about, well, um, given some constraints on resources and a difficult economy for a while, which of our projects do we want to keep going on pretty much the way we were and which ones are not that necessary anymore? You see a lot of that in AI, because we had so many pilots, somebody told me, you know, we've got more pilots around here than O'Hare airport and, and AI. Um, and then, but the ones that involve doubled down, they're even more important to you. They are, you know, a lot of organizations have found this out, um, in the pandemic on digital projects, it's more and more important for customers to be able to interact with you, um, digitally. And so you certainly wouldn't want to cancel those projects or put them on hold. So you double down on them and get them done faster and better. Right, >>Right. Uh, another, another thing that came up in my research that, that you quoted, um, was, was from Jeff Bezos, talking about the great bulk of what we do is quietly, but meaningfully improving core operations. You know, I think that is so core to this concept of not AI and machine learning and kind of the general sense, which, which gets way too much buzz, but really applied right. Applied to a specific problem. And that's where you start to see the value. And, you know, the, the BizOps, uh, manifesto is, is, is calling it out in this particular process. But I'd love to get your perspective as you know, you speak generally about this topic all the time, but how people should really be thinking about where are the applications where I can apply this technology to get direct business value. >>Yeah, well, you know, even talking about automated decisions, um, uh, the kind of once in a lifetime decisions, uh, the ones that, um, ag Lafley, the former CEO of Procter and gamble used to call the big swing decisions. You only get a few of those. He said in your tenure as CEO, those are probably not going to be the ones that you're automating in part because, um, you don't have much data about them. You're only making them a few times and in part, because, um, they really require that big picture thinking and the ability to kind of anticipate the future, that the best human decision makers, um, have. Um, but, um, in general, I think where they, I, the projects that are working well are, you know, what I call the low hanging fruit ones, the, some people even report to it referred to it as boring AI. >>So, you know, sucking data out of a contract in order to compare it to a bill of lading for what arrived at your supply chain companies can save or make a lot of money with that kind of comparison. It's not the most exciting thing, but AI, as you suggested is really good at those narrow kinds of tasks. It's not so good at the, at the really big moonshots, like curing cancer or, you know, figuring out well what's the best stock or bond under all or even autonomous vehicles. Um, we, we made some great progress in that area, but everybody seems to agree that they're not going to be perfect for quite a while, and we really don't want to be driving around on, um, and then very much unless they're, you know, good and all kinds of weather and with all kinds of pedestrian traffic and you know, that sort of thing, right? >>That's funny you bring up contract management. I had a buddy years ago, they had a startup around contract management and I've like, and this was way before we had the compute power today and cloud proliferation. I said, you know, how can you possibly build software around contract management? It's language, it's legal, ease. It's very specific. And he's like, Jeff, we just need to know where's the contract. And when does it expire? And who's the signatory. And he built a business on those, you know, very simple little facts that weren't being covered because their contracts are in people's drawers and files and homes. And Lord only knows. So it's really interesting, as you said, these kind of low hanging fruit opportunities where you can extract a lot of business value without trying to, you know, boil the ocean. >>Yeah. I mean, if you're Amazon, um, uh, Jeff Bezos thinks it's important to have some kind of billion dollar project. And he even says it's important to have a billion dollar failure or two every year. But I think most organizations probably are better off being a little less aggressive and, you know, sticking to, um, what AI has been doing for a long time, which is, you know, making smarter decisions based on, based on data. >>Right? So Tom, I want to shift gears one more time before, before we let you go on, on kind of a new topic for you, not really new, but you know, not, not a, the vast majority of, of your publications and that's the new way to work, you know, as, as the pandemic hit in mid March, right. And we had this light switch moment, everybody had to work from home and it was, you know, kind of crisis and get everybody set up. Well, you know, now we're five months, six months, seven months. A number of companies have said that people are not going to be going back to work for a while. And so we're going to continue on this for a while. And then even when it's not what it is now, it's not going to be what it was before. So, you know, I wonder, and I know you, you, uh, you teased, you're working on a new book, you know, some of your thoughts on, you know, kind of this new way to work and, and, and the human factors in this new, this new kind of reality that we're kind of evolving into, I guess. >>Yeah. I missed was an interest of mine. I think, um, back in the nineties, I wrote an article called, um, a coauthored, an article called two cheers for the virtual office. And, you know, it was just starting to emerge. Then some people were very excited about it. Some people were skeptical and, uh, we said two cheers rather than three cheers because clearly there's some shortcomings. And, you know, I keep seeing these pop up. It's great that we can work from our homes. It's great that we can, most of what we need to do with a digital interface, but, um, you know, things like innovation and creativity, and certainly, um, uh, a good, um, happy social life kind of requires some face to face contact every now and then. And so I, you know, I think we'll go back to an environment where there is some of that. >>Um, we'll have, um, times when people convene in one place so they can get to know each other face to face and learn from each other that way. And most of the time, I think it's a huge waste of people's time to commute into the office every day and to jump on airplanes, to, to, um, give every little, um, uh, sales call or give every little presentation. Uh, we just have to really narrow down what are the circumstances where face to face contact really matters. And when can we get by with digital? You know, I think one of the things in my current work I'm finding is that even when you have AI based decision making, you really need a good platform in which that all takes place. So in addition to these virtual platforms, we need to develop platforms that kind of structure the workflow for us and tell us what we should be doing next, then make automated decisions when necessary. And I think that ultimately is a big part of biz ops as well. It's not just the intelligence of an AI system, but it's the flow of work that kind of keeps things moving smoothly throughout your organization. >>I think such, such a huge opportunity as you just said, cause I forget the stats on how often we're interrupted with notifications between email texts, Slack, a sauna, Salesforce, the list goes on and on. So, you know, to put an AI layer between the person and all these systems that are begging for attention, you've written a book on the attention economy, which is a whole nother topic, we'll say for another day, you know, it, it really begs, it really begs for some assistance because you know, you just can't get him picked, you know, every two minutes and really get quality work done. It's just not, it's just not realistic. And you know what? I don't think that's a feature that we're looking for. >>I agree. Totally >>Tom. Well, thank you so much for your time. Really enjoyed the conversation. I got to dig into the library. It's very long. So I might start at the attention economy. I haven't read that one. And to me, I think that's the fascinating thing in which we're living. So thank you for your time and, uh, great to see you. >>My pleasure, Jeff. Great to be here. >>All right. He's Tom I'm Jeff. You are watching the continuing coverage of the biz ops manifesto and Vail. Thanks for watching the cube. We'll see you next time.

Published Date : Oct 13 2020

SUMMARY :

a BizOps manifesto unveiled brought to you by biz ops coalition. Good to see you again. And I think you said you're at a fun, exotic place on the East coast Great to see you again, where are you coming in from? you know, you can do better stuff within your own company, surge, why don't we start with you? whether we're talking about vendors or, um, you know, system integrators, consulting firms are talking And I think we got a lot of improvement at the team level, and I think as satisfies noted, I wonder if you could kind of share your And in general, I think, you know, we've just kind of optimized that to narrow for a long time and it's been, you know, kind of trucking along and then covert hit and Um, but, but yet when we look at large enterprises, And not surprisingly, you know, And, you know, we talk about people process and we, we realized that to be successful with any kind of digital transformation you If we build it, they won't necessarily come. So I wonder if you can just share your thoughts on, you know, using flow as a way to think You need to optimize how you innovate and how you deliver value to the business and the customer. And I'm gonna back to you Tom, on that to follow up. And, um, you know, it's, it's a difficult aspect or you frame it as an either or situation where you could actually have some of both, but if the culture doesn't adopt it and people don't feel good about it, you know, it's not going to be successful and that's We start to enable these different stakeholders to not debate the data. the best examples I have is if you start to be able to align business And so you really want to start And, you know, what are the factors that are making flow from, uh, you know, the digital native, um, Um, so you know, is the, is the big data I'm just going to use that generically you know, at some point maybe we reached the stage where we don't do anything and taking the lessons from agile, you know, what's been the inhibitor to stop this And that will help you that value flow without interruptions. And, you know, there's probably never been a more important time than now to make sure that your prioritization is We'll see you next time of biz ops manifesto unveiled brought to you by biz ops coalition. We're in our Palo Alto studios, and we'd like to welcome you back to Yeah, it's great to be here. The biz ops manifesto, why the biz ops coalition now when you guys And it's, you know, I really applaud this whole movement. I mean, whether, you know, I never sit down and say, you know, the product management team has to get aligned with Maybe trying to eliminate the word alignment, you know, from a lot of our organizations, Um, the ones that, that jumps out though is really about, you know, change, you know, it's kind of a, now an analogy for transformation. instituting the whole program, implement, you know, the program, increment planning, capabilities, kind of model is, um, and also, uh, you know, on that shorter increment, to really kind of just put them down on paper and, you know, I can't help, but think of, So, um, you know, you really, I think we've attacked that in a variety And so when we pie plan, you know, myself and Cameron and the other members of our leadership, So they can, you know, quickly ship code that works. mixed book, you know, it was a great piece on a, you're talking to Mick, you know, as part of the manifesto is right, I mean, we run product management models, you know, with software development teams, But th the sudden, you know, light switch moment, everybody had to go work from home and in March 15th And we kind of, you know, when we started with John and built, you know, out of concentric circles of momentum and, I think COVID, you know, to get behind these, but if it takes, you know, something a little bit more formal, uh, And I think it's a very analogous, you know, even if you don't like what the, even if you can argue against the math, behind the measurement, It's great to be here. And if you want to check out the biz ops, Manifesta go to biz of biz ops manifesto unveiled brought to you by biz ops coalition. or excited to have some of the foundational people that, you know, have put their, put their name on the dotted, It's good to be close to the U S and it's going to have the Arabic cleaner as well. there at Xerox park, you know, some of the lessons you learned and what you've been able to kind of carry forward And of course there's as, as you know, uh, there's just this DNA of innovation and excitement And I realized none of this was really working in that there was something else, So, you know, the agile movement got started about 20 years ago, And the way that the business was working was planning was investing the right measurement data sets so that you can make the right decisions in terms of what you're investing, different from the way that you measure business outcomes. And it's really interesting to me cause I know, you know, flow on one hand is kind of a workflow did the customer go to the feature and how quickly did you learn and how quickly did you use that data to drive to you increase flow to the customer. And, you know, I love that, you know, took this approach really of having kind of four So really the key thing is, is to move away from those old ways of doing things, So these things do seem, you know, very obvious when you look at them. but the real power, I think in Moore's laws is the attitudinal change in terms of working in a world where you And you also make it sound so simple, but again, if you don't have the data driven visibility as we see with the tech giants, you actually can both lower your costs and you know, you have to constantly be delivering value and upgrading that value because you're constantly taking money as well as the flow frame of touch on is if you can't measure how much value you deliver to a customer, And you can go on and on and on. if you can model your value streams, so you actually understand how you're innovating, you know, more senior people being overloaded and creating bottlenecks where they didn't exist. Well, you know, what's the biggest inhibitor for most So I think you can reach out to us through the website, uh, for the manifesto. continue to spread that well, uh, you know, good for you through the book and through your company. Thanks so much for having me, Jeff. They'd love to have you do it. a biz ops manifesto unveiled brought to you by biz ops coalition. It's the biz ops manifesto manifesto unveil. Jeff Frick here with the cube come to you from our Palo Alto studios today for a big, Glad to be here. What is the biz ops manifesto? years later, and if you look at the current state of the industry of the product, you know, providing them with support, but also tools and consulting that is of COVID, which, you know, came along unexpectedly. Um, and you know, if you go back to, uh, I think you'll unmask a And the reality is that if you look at it, especially in the last decade, I just liked that you put down these really simple, you know, kind of straightforward core values. And you see that every day. And yet, um, you know, the it teams, whether it's operation software environments were And there's a good ROI when you talk about, you know, companies not measuring the right thing. kind of a base data as to who is doing what, uh, um, And so if you start to think about quality as fitness for purpose, And so, you know, if I'm, But I want to talk about, you know, one of the key ones, which you just talked about, of the speed of change and, and, and, and making that, you know, And if I remember correctly over 80% of the it executives set that the Um, and you know, we, we talk about kind of this, Why the coalition, why, you know, take these concepts out to a broader audience, all of us, whether we're talking about, you know, consulting agile transformation experts, So we're very pleased at if you look at, And, uh, you know, congratulations to you and the team. of this ops manifesto unveiled and brought to you by It's been in the works for awhile, but today's the day that it actually kind of come out to the, So let's just jump into it, you know, and getting ready for this. deal with that issue with a, you know, a new framework, eventually a broad set get that to the business side, because as the pace of change has changed on the software side, you know, And the, you know, With the, with the BizOps coalition, you know, getting a collection of, and a manifesto is just a good way to kind of lay out what you see as the key principles Um, and how has that evolved over over time, you know, I think at least for, you know, repetitive tactical decisions, And my question is, you know, what are kind of the attributes of of course, is a good guide to, you know, what's happening in the present and the future these to really be questioned and, and, you know, you have to be really, uh, and AI applications, but I think you could, you could use it much more broadly to talk about your you know, you speak generally about this topic all the time, but how people should really be thinking about where you know, what I call the low hanging fruit ones, the, some people even report to it referred of weather and with all kinds of pedestrian traffic and you know, that sort of thing, And he built a business on those, you know, very simple little what AI has been doing for a long time, which is, you know, making smarter decisions And we had this light switch moment, everybody had to work from home and it was, you know, kind of crisis and get everybody And so I, you know, I think we'll go back to an environment where there is some of And most of the time, I think it's a huge waste of people's time to commute on the attention economy, which is a whole nother topic, we'll say for another day, you know, I agree. So thank you for your time We'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JeffPERSON

0.99+

MickPERSON

0.99+

PatrickPERSON

0.99+

AmazonORGANIZATION

0.99+

CharlesPERSON

0.99+

CameronPERSON

0.99+

LucioPERSON

0.99+

MicrosoftORGANIZATION

0.99+

TomPERSON

0.99+

Tom DavenportPERSON

0.99+

ThomasPERSON

0.99+

NetflixORGANIZATION

0.99+

Jeff FrickPERSON

0.99+

ITAORGANIZATION

0.99+

BostonLOCATION

0.99+

five monthsQUANTITY

0.99+

twoQUANTITY

0.99+

Cape CodLOCATION

0.99+

JeffreyPERSON

0.99+

six monthsQUANTITY

0.99+

CanadaLOCATION

0.99+

March 15thDATE

0.99+

99QUANTITY

0.99+

one weekQUANTITY

0.99+

KirstenPERSON

0.99+

seven monthsQUANTITY

0.99+

Jeff BezosPERSON

0.99+

five yearsQUANTITY

0.99+

OctoberDATE

0.99+

RickPERSON

0.99+

2020DATE

0.99+

two yearsQUANTITY

0.99+

two yearsQUANTITY

0.99+

John TerryPERSON

0.99+

VancouverLOCATION

0.99+

GenpactORGANIZATION

0.99+

HarvardORGANIZATION

0.99+

20QUANTITY

0.99+

10 weekQUANTITY

0.99+

one hourQUANTITY

0.99+

16%QUANTITY

0.99+

77%QUANTITY

0.99+

10 timesQUANTITY

0.99+

PowerPointTITLE

0.99+

10 timesQUANTITY

0.99+

NickPERSON

0.99+

second layerQUANTITY

0.99+

80%QUANTITY

0.99+

Clayton ChristiansonPERSON

0.99+

two decadesQUANTITY

0.99+

oneQUANTITY

0.99+

JohnPERSON

0.99+

Palo AltoLOCATION

0.99+

20 plus yearsQUANTITY

0.99+

Michele Buschman, American Pacific Mortgage | Commvault GO 2018


 

>> Narrator: Live from Nashville, Tennessee. It's the Cube. Covering Commvault GO 2018. Brought to you by Comvault. >> Welcome back to the Music City. This is the Cube at Commvault GO. I'm Stu Miniman with my Co-host Keith Townsend. Happy to welcome to the program one of the users of the show, actually, going to get to see her on stage at the keynote tomorrow. Ah, Michele Buschman who's the Vice President of Information Services at American Pacific Mortgage. Thanks so much for jointing us. >> Thanks for having me. >> Alright, ah, give us a little bit about your company and your roles of responsibility there. >> Sure, so, um, as you mentioned, I'm the Vice President of Information Services at American Pacific Mortgage. Um, I pretty much am responsible, you know, in the acting role or CIO, CTO, and CISO. So, I manage all technology for the company reporting to the COO. Um, our company is a top 15 independent mortgage bank. Um, we do about 10 billion dollars in mortgages a year, and have about a 25 hundred employee user base. >> Alright, so you've just got a couple of roles there, and luckily your in an industry, not much regulation to worry about, things aren't changing, things are kind of static. You just kind of put in a couple hours at the office and go, go take a nap, right? >> Ya, right (laughing). >> Um, why don't you tell us, what are some of those dynamics that are driving your up level business that are impacting, uh, the technology side. >> Oh, absolutely, so, um, you know, the mortgage industry is somewhat cyclical, and we are in that range where interest rates are going up, um, margin pressures are high. So, you know it's all about doing more with less and saving money. Um, in traditionally in the mortgage banking world, um, you know, IT resources, you're always a little bit short? Um, and so, that, you know, drives me to look for strategies that allow me to leverage my technical resources more for business value operations, than managing infrastructure, keeping lights on, um, which has really motivated us to move to the Cloud, and adopt platform type solutions similar to Commvault to be able to be more efficient with our few resources that we do have in our technology team. >> Alright, can you speak a little bit about Cloud. What is that driver, what does Cloud mean to your organization? And ah, yeah, what is the strategy as it sits today? >> Absolutely, so, um, we're kind of unique, I guess, to an extent in that, you know, when I walked into the organization four and a half years ago. The bulk of our critical business applications were already Sass hosted applications. Um, that grew out of the need because they had such a small technical team, um, you know, for the investments to manage the infrastructure to host applications is very high. So, um, luckily enough, I already had a head start, ah, in that the bulk of our critical business applications were CSS Sass hosted, so, um, what I've done since then is to look for those solutions that are more commodities. So, you know, why manage email on Prem when, you know, Microsoft can do a way better job than we could with the small staff we have. So, you know, it's slowly been, you know, taking each application, pulling it out, putting it into the Cloud, so that my team can be better leveraged to actually work on security initiatives, and um, business value, and transformation type of solutions. So, it is part of it is a, you know accessibility as well. Um, you know, we're in a changing environment where we want to be able to deliver our, um, employee workforce to be able to work anywhere, anytime, on any device, and in order to do that, we have to have solutions that are sitting out there, and accessible to them, um, and not always just sitting behind the firewall in the data center. >> So, let's talk a little bit about data management, data protection as it pertains to the business. What are some of the drivers, especially if you are in the Sass world that make you look at data protection suites as opposed to consuming native solutions within those services? >> Oh, absolutely. So, I very much have a strategy around platform services. Uh, when I walked into the organization, there's probably 30 different applications that were out in the environment, and none of them talked to each other. Um, when you're trying to manage, you know, bringing data across the organization to compile it and aggregate it to actually have something useful to the business. You have to have connected systems, but when you have a small team, it's very difficult to do that development working, connect all those systems, and manage them. So, what I like to look for is a platform solution, um, that will allow me to grow, um, as my budget allows, to add on the different modules that that platform solution, um, offers to me. So, you know, for example, you know, today's budget, I might have a certain limited amount that I can invest, but if I pick a solution that ultimately might give me 70, maybe 80 percent of the needs, um, then I'm only having to add in maybe a couple of other solutions and that cost to integrate and manage, and so overall it reduces the overall cost and complexity of the environment. >> So, you're in a mismatch of ten billion dollars a year in mortgages issued, yet, small IT staff, Sass solutions. When you think of Commvault 20 years, enterprise less solution, you don't think necessarily simple, easy to use, initially, so, why Commvault? >> Oh, absolutely, so, um, again within the first year I was there we went through a huge market share grab and so we grew 75 percent market share, and when I walked in the door, we needed to do investment in infrastructure. So, um, the original forecasts were totally blown out of the water, so the investment we made in small to midsize business type of solutions, we out grew before our contracts were due. So, when I went into this, um, we took about an 18 months, um, to take out time to find the right solution. Uh, we looked at about 6 different vendors, um, you know, we did a little bit of POC work, uh, we did references, um, and ah, basically at the end of the day I was looking for something that had a really good vision, um, that was platform driven, so I could continue to add additional products as budget allowed. Um, that had the ability to have more of a single pane of glass and very little man power to manage, um, and then, reliability was huge. Um, you know, we had some challenges with our previous solution of feeling comfortable that our backups would work in the event we had an incident. So, you know, when we looked at Commvault, um, you know, it may have been, um, you know, it's an enterprise solution which is what I wanted. I could scale without rip and replace. Um, great reputation, great vision, good, technology, you know, bones. Um, and so, you know, when I would go to the board for that, I said, you know, the investment may be a little bit more than a lower end solution, but it's going to give us the capability to grow with the business. >> You know Michele, it's interesting, if you dialed back and said you were looking at this five years ago, I wonder if the pricing strategy that Commvault had in place would fit what you're looking for. I'm sure you've seen as a customer, um, when I hear, you know, I kind of want to be able to reach that vision, but do it incrementally. Sounds like something you might get more from a startup? Maybe give us a little bit of insight what you've seen, how you look at this relationship, and what are some of those things that you are looking to add on in the future. >> Oh, absolutely, so, you know, absolutely, financials always come into place, right? You've got to be able to afford what you're putting into place. Um, you know, I will say that, um, their pricing model did change, you know, cause we had looked at that previously, and it was a pretty high price point to get in with the licensing under the perpetual licensing models. Um, so, with the change of how Commvault kind of moved with the times, more subscription style, made it a little more affordable for some of the smaller businesses to take advantage of. Um, and so, you know, that's how I kind of looked at it for, plus at the end of the day, if you're looking for a quality product around security, and recovery, and backup, it's worth the money to invest in something you feel comfortable that's going to meet that need. Um, and grow with you without, again, having you know, who wants to go through a migration every three years when your contracts up, right? Um, and then, as far as the other products, I'm looking, you know, at some of the new products that they've officially announced. It was really exciting to hear the CEO and COO talk today about the automation that they are building cause that plays absolutely into what we're trying to do in our organization. As we need stuff, you know, again, acception processing is what I always talk about. I only want to have to touch things when it's not working, and, you know, when there's some sort of exception. Um, and, so, I'm really excited about the way Commvault's headed down that path with the automation. Um, and then, also the data piece. Being able to really categorized the data, know if it's outdated or not. I mean, this is a very well known industry issue that we have, we are data hogs in the mortgage business. Um, and our users are as well. Uh, and so being able to identify the data that I have, I mean, you know, I walked into a situation where there's been no purge of data. You know, being able to really identify what is valuable date to not purge vs. the data we want to purge to reduce that footprint to reduce the risk for any kind of potential breech, or security incident. You know, the more you have out there, the more the chance you are going to get hit. >> So, you wear a bunch of hats that seem kind of in conflict especially, seeing that you report up to the COO. Security being the most interesting one. >> (Michele) Uh huh. >> How does your role as the CISO and your selection of the data protection suite, data management, impact your decision to go with a Commvault. >> Oh absolutely, that's huge as well, right? Um, you know, in our industry, we obviously are responsible for um, being custodians to a lot of personal information to consumers, so we have NPI, PI all over, and it's not even just with my critical business system vendor, you know, caus I rely on them heavily, they're much larger, they have, um, larger security teams, and larger budgets to typically protect our data. But, we also have that data internally into our own data warehouse. So, um, data protection is key. Um, so looking at products that will allow us to simplify that, have visibility into it, you know, that's another area I'm really looking forward to expanding my Commvalt use into as we start to actually, Um, you know, one of the other projects we're going to be working on potentially is moving our data warehouse to Microsoft Azure. So, um, you know, really having that, um, security plan figure out before the data is up in the cloud. >> Michele, I wonder what your experience has been with recovery. Is that something you test? Have you had to actually do a recovery? What is your experience been? >> Yeah, so, you know, knock on wood, I'm not sure if there's wood under here, but, you know, knock on wood. We haven't had a major incident, um, however, what we do, have done, now that we've actually deployed Commvault fully, um, is in, you know, it's too bad it's not a couple weeks from now because we're actually going to do a full DR exercise with our new backups now that are fully deployed with Commvault. >> So, you'll take a vacation the week after (laughing). >> So, we're going to actually test that out. That's one of the things that I task my team with is once my backups and everything was in place that we're going to, you know, do a tabletop exercise, but actually try to do a full recovery of some systems with the new backups to make sure we are all in good shape. Uh, but with that being said, I can already tell you just from a, um, you know, our old system to our new system, you know, with the features sets that we have available in Commvault compared to what we had in our other solution. The time to recover individual files is exponential. You know, our other solution, we had to recover an entire folder, not just individual files. And then, we're really excited also of being able to eventually being able to push out some self service file restoration capabilities that Commvalt allows us to do as well. >> So, as a natural consumer of, as a service, offering a mission critical businesses. How important is Commvalut role map to, as a service, for enterprise class solutions. >> Oh, I think that's great. I actually can't wait to see what they have to offer around that. Again, you know, um, I might be a unique use case, I don't know, because that's really how we manage our business from the IT side because of limited budget, limited resources is leveraging vendors. Um, so, I'm really excited to see how that evolves actually. Um, you know, from a service perspective. >> Okay, Michele, it's your second time coming to this event. For audiences that didn't come, what did you get out of it, what excites you the most coming to an event like this? >> I think there's two key things that I really enjoy going to conferences about. Um, one of course, is always the networking opportunities. I always, meet other people who have the same challenges that I do, and you know, they're looking at the same products, and being able to exchange ideas, um, and how you solve problems, and, you know talking to other people about real life issues, um, is so valuable. Uh, the other piece is always getting myself out of the office and getting more education. So, you know, really seeing what's evolving, what's changing, um, you know, what are the partners doing that work with Commvault, what's Commvault, you know, doing? Really, getting out of the office to have a chance to really get educated around that and what's really unique to about Commvalt GO to, is that a lot of it is customer based. Uh, you have customers up talking about their use cases and how they've implemented the product, so it's real life, ah, education, and not just, you know, um, a vendor up there talking about their product and selling it, right? >> Absolutely, we appreciate you sharing your story, Ah, with our audience here, and uh, congratulations on all the progress, ah, American Pacific Mortgage. And ah, boy, you know, tired of thinking of all the hats you've been wearing for those of us that wear a few hats, ah, we can definitely, ah, you know, appreciate that, alright. For Keith Townsend, I'm Stu Miniman, we'll be back with more programming here at Commvault GO. Thanks for watching The Cube. >> Michele: Thank you.

Published Date : Oct 10 2018

SUMMARY :

Brought to you by Comvault. Welcome back to the Music City. and your roles of responsibility there. Um, I pretty much am responsible, you know, in the acting to worry about, things aren't changing, Um, why don't you tell us, what are some of those dynamics Um, and so, that, you know, drives me to look for strategies Alright, can you speak a little bit about Cloud. to an extent in that, you know, when I walked into What are some of the drivers, especially if you are in So, you know, for example, you know, today's budget, solution, you don't think necessarily simple, easy to use, Um, and so, you know, when I would go to the board you know, I kind of want to be able to reach Um, and so, you know, that's how I kind of looked at it especially, seeing that you report up to the COO. of the data protection suite, data management, impact So, um, you know, really having that, Is that something you test? fully, um, is in, you know, it's too bad it's not just from a, um, you know, our old system to our new system, So, as a natural consumer of, as a service, offering a Um, you know, from a service perspective. For audiences that didn't come, what did you get out of it, that work with Commvault, what's Commvault, you know, doing? ah, we can definitely, ah, you know,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Michele BuschmanPERSON

0.99+

MichelePERSON

0.99+

Keith TownsendPERSON

0.99+

MicrosoftORGANIZATION

0.99+

75 percentQUANTITY

0.99+

70QUANTITY

0.99+

80 percentQUANTITY

0.99+

Stu MinimanPERSON

0.99+

30 different applicationsQUANTITY

0.99+

second timeQUANTITY

0.99+

20 yearsQUANTITY

0.99+

CommvaultORGANIZATION

0.99+

Nashville, TennesseeLOCATION

0.99+

ComvaultORGANIZATION

0.99+

The CubeTITLE

0.99+

tomorrowDATE

0.99+

about 10 billion dollarsQUANTITY

0.99+

todayDATE

0.99+

five years agoDATE

0.99+

CommvaltORGANIZATION

0.98+

each applicationQUANTITY

0.98+

four and a half years agoDATE

0.98+

American Pacific MortgageORGANIZATION

0.97+

CSS SassTITLE

0.96+

oneQUANTITY

0.96+

CloudTITLE

0.96+

25 hundred employeeQUANTITY

0.95+

15 independent mortgage bankQUANTITY

0.94+

Vice President ofPERSON

0.93+

first yearQUANTITY

0.92+

Commvault GOORGANIZATION

0.91+

SassTITLE

0.9+

ten billion dollars a yearQUANTITY

0.9+

two key thingsQUANTITY

0.9+

aboutQUANTITY

0.9+

about 6 different vendorsQUANTITY

0.88+

single paneQUANTITY

0.88+

a yearQUANTITY

0.86+

about an 18 monthsQUANTITY

0.84+

AmericanOTHER

0.8+

Vice President of InformationPERSON

0.8+

three yearsQUANTITY

0.75+

couple hoursQUANTITY

0.65+

NPIORGANIZATION

0.64+

ServicesORGANIZATION

0.6+

Information ServicesORGANIZATION

0.6+

Music CityLOCATION

0.57+

weeksDATE

0.55+

CommvalutORGANIZATION

0.55+

Commvault GO 2018EVENT

0.53+

PremORGANIZATION

0.52+

AzureTITLE

0.48+

2018EVENT

0.42+