Image Title

Search Results for Caesars Forum:

Breaking Analysis: Snowflake Summit 2022...All About Apps & Monetization


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Snowflake Summit 2022 underscored that the ecosystem excitement which was once forming around Hadoop is being reborn, escalated and coalescing around Snowflake's data cloud. What was once seen as a simpler cloud data warehouse and good marketing with the data cloud is evolving rapidly with new workloads of vertical industry focus, data applications, monetization, and more. The question is, will the promise of data be fulfilled this time around, or is it same wine, new bottle? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this "Breaking Analysis," we'll talk about the event, the announcements that Snowflake made that are of greatest interest, the major themes of the show, what was hype and what was real, the competition, and some concerns that remain in many parts of the ecosystem and pockets of customers. First let's look at the overall event. It was held at Caesars Forum. Not my favorite venue, but I'll tell you it was packed. Fire Marshall Full, as we sometimes say. Nearly 10,000 people attended the event. Here's Snowflake's CMO Denise Persson on theCUBE describing how this event has evolved. >> Yeah, two, three years ago, we were about 1800 people at a Hilton in San Francisco. We had about 40 partners attending. This week we're close to 10,000 attendees here. Almost 10,000 people online as well, and over over 200 partners here on the show floor. >> Now, those numbers from 2019 remind me of the early days of Hadoop World, which was put on by Cloudera but then Cloudera handed off the event to O'Reilly as this article that we've inserted, if you bring back that slide would say. The headline it almost got it right. Hadoop World was a failure, but it didn't have to be. Snowflake has filled the void created by O'Reilly when it first killed Hadoop World, and killed the name and then killed Strata. Now, ironically, the momentum and excitement from Hadoop's early days, it probably could have stayed with Cloudera but the beginning of the end was when they gave the conference over to O'Reilly. We can't imagine Frank Slootman handing the keys to the kingdom to a third party. Serious business was done at this event. I'm talking substantive deals. Salespeople from a host sponsor and the ecosystems that support these events, they love physical. They really don't like virtual because physical belly to belly means relationship building, pipeline, and deals. And that was blatantly obvious at this show. And in fairness, all theCUBE events that we've done year but this one was more vibrant because of its attendance and the action in the ecosystem. Ecosystem is a hallmark of a cloud company, and that's what Snowflake is. We asked Frank Slootman on theCUBE, was this ecosystem evolution by design or did Snowflake just kind of stumble into it? Here's what he said. >> Well, when you are a data clouding, you have data, people want to do things with that data. They don't want just run data operations, populate dashboards, run reports. Pretty soon they want to build applications and after they build applications, they want build businesses on it. So it goes on and on and on. So it drives your development to enable more and more functionality on that data cloud. Didn't start out that way, you know, we were very, very much focused on data operations. Then it becomes application development and then it becomes, hey, we're developing whole businesses on this platform. So similar to what happened to Facebook in many ways. >> So it sounds like it was maybe a little bit of both. The Facebook analogy is interesting because Facebook is a walled garden, as is Snowflake, but when you come into that garden, you have assurances that things are going to work in a very specific way because a set of standards and protocols is being enforced by a steward, i.e. Snowflake. This means things run better inside of Snowflake than if you try to do all the integration yourself. Now, maybe over time, an open source version of that will come out but if you wait for that, you're going to be left behind. That said, Snowflake has made moves to make its platform more accommodating to open source tooling in many of its announcements this week. Now, I'm not going to do a deep dive on the announcements. Matt Sulkins from Monte Carlo wrote a decent summary of the keynotes and a number of analysts like Sanjeev Mohan, Tony Bear and others are posting some deeper analysis on these innovations, and so we'll point to those. I'll say a few things though. Unistore extends the type of data that can live in the Snowflake data cloud. It's enabled by a new feature called hybrid tables, a new table type in Snowflake. One of the big knocks against Snowflake was it couldn't handle and transaction data. Several database companies are creating this notion of a hybrid where both analytic and transactional workloads can live in the same data store. Oracle's doing this for example, with MySQL HeatWave and there are many others. We saw Mongo earlier this month add an analytics capability to its transaction system. Mongo also added sequel, which was kind of interesting. Here's what Constellation Research analyst Doug Henschen said about Snowflake's moves into transaction data. Play the clip. >> Well with Unistore, they're reaching out and trying to bring transactional data in. Hey, don't limit this to analytical information and there's other ways to do that like CDC and streaming but they're very closely tying that again to that marketplace, with the idea of bring your data over here and you can monetize it. Don't just leave it in that transactional database. So another reach to a broader play across a big community that they're building. >> And you're also seeing Snowflake expand its workload types in its unique way and through Snowpark and its stream lit acquisition, enabling Python so that native apps can be built in the data cloud and benefit from all that structure and the features that Snowflake is built in. Hence that Facebook analogy, or maybe the App Store, the Apple App Store as I propose as well. Python support also widens the aperture for machine intelligence workloads. We asked Snowflake senior VP of product, Christian Kleinerman which announcements he thought were the most impactful. And despite the who's your favorite child nature of the question, he did answer. Here's what he said. >> I think the native applications is the one that looks like, eh, I don't know about it on the surface but he has the biggest potential to change everything. That's create an entire ecosystem of solutions for within a company or across companies that I don't know that we know what's possible. >> Snowflake also announced support for Apache Iceberg, which is a new open table format standard that's emerging. So you're seeing Snowflake respond to these concerns about its lack of openness, and they're building optionality into their cloud. They also showed some cost op optimization tools both from Snowflake itself and from the ecosystem, notably Capital One which launched a software business on top of Snowflake focused on optimizing cost and eventually the rollout data management capabilities, and all kinds of features that Snowflake announced that the show around governance, cross cloud, what we call super cloud, a new security workload, and they reemphasize their ability to read non-native on-prem data into Snowflake through partnerships with Dell and Pure and a lot more. Let's hear from some of the analysts that came on theCUBE this week at Snowflake Summit to see what they said about the announcements and their takeaways from the event. This is Dave Menninger, Sanjeev Mohan, and Tony Bear, roll the clip. >> Our research shows that the majority of organizations, the majority of people do not have access to analytics. And so a couple of the things they've announced I think address those or help to address those issues very directly. So Snowpark and support for Python and other languages is a way for organizations to embed analytics into different business processes. And so I think that'll be really beneficial to try and get analytics into more people's hands. And I also think that the native applications as part of the marketplace is another way to get applications into people's hands rather than just analytical tools. Because most people in the organization are not analysts. They're doing some line of business function. They're HR managers, they're marketing people, they're sales people, they're finance people, right? They're not sitting there mucking around in the data, they're doing a job and they need analytics in that job. >> Primarily, I think it is to contract this whole notion that once you move data into Snowflake, it's a proprietary format. So I think that's how it started but it's usually beneficial to the customers, to the users because now if you have large amount of data in paket files you can leave it on S3, but then you using the Apache Iceberg table format in Snowflake, you get all the benefits of Snowflake's optimizer. So for example, you get the micro partitioning, you get the metadata. And in a single query, you can join, you can do select from a Snowflake table union and select from an iceberg table and you can do store procedure, user defined function. So I think what they've done is extremely interesting. Iceberg by itself still does not have multi-table transactional capabilities. So if I'm running a workload, I might be touching 10 different tables. So if I use Apache Iceberg in a raw format, they don't have it, but Snowflake does. So the way I see it is Snowflake is adding more and more capabilities right into the database. So for example, they've gone ahead and added security and privacy. So you can now create policies and do even cell level masking, dynamic masking, but most organizations have more than Snowflake. So what we are starting to see all around here is that there's a whole series of data catalog companies, a bunch of companies that are doing dynamic data masking, security and governance, data observability which is not a space Snowflake has gone into. So there's a whole ecosystem of companies that is mushrooming. Although, you know, so they're using the native capabilities of Snowflake but they are at a level higher. So if you have a data lake and a cloud data warehouse and you have other like relational databases, you can run these cross platform capabilities in that layer. So that way, you know, Snowflake's done a great job of enabling that ecosystem. >> I think it's like the last mile, essentially. In other words, it's like, okay, you have folks that are basically that are very comfortable with Tableau but you do have developers who don't want to have to shell out to a separate tool. And so this is where Snowflake is essentially working to address that constituency. To Sanjeev's point, and I think part of it, this kind of plays into it is what makes this different from the Hadoop era is the fact that all these capabilities, you know, a lot of vendors are taking it very seriously to put this native. Now, obviously Snowflake acquired Streamlit. So we can expect that the Streamlit capabilities are going to be native. >> I want to share a little bit about the higher level thinking at Snowflake, here's a chart from Frank Slootman's keynote. It's his version of the modern data stack, if you will. Now, Snowflake of course, was built on the public cloud. If there were no AWS, there would be no Snowflake. Now, they're all about bringing data and live data and expanding the types of data, including structured, we just heard about that, unstructured, geospatial, and the list is going to continue on and on. Eventually I think it's going to bleed into the edge if we can figure out what to do with that edge data. Executing on new workloads is a big deal. They started with data sharing and they recently added security and they've essentially created a PaaS layer. We call it a SuperPaaS layer, if you will, to attract application developers. Snowflake has a developer-focused event coming up in November and they've extended the marketplace with 1300 native apps listings. And at the top, that's the holy grail, monetization. We always talk about building data products and we saw a lot of that at this event, very, very impressive and unique. Now here's the thing. There's a lot of talk in the press, in the Wall Street and the broader community about consumption-based pricing and concerns over Snowflake's visibility and its forecast and how analytics may be discretionary. But if you're a company building apps in Snowflake and monetizing like Capital One intends to do, and you're now selling in the marketplace, that is not discretionary, unless of course your costs are greater than your revenue for that service, in which case is going to fail anyway. But the point is we're entering a new error where data apps and data products are beginning to be built and Snowflake is attempting to make the data cloud the defacto place as to where you're going to build them. In our view they're well ahead in that journey. Okay, let's talk about some of the bigger themes that we heard at the event. Bringing apps to the data instead of moving the data to the apps, this was a constant refrain and one that certainly makes sense from a physics point of view. But having a single source of data that is discoverable, sharable and governed with increasingly robust ecosystem options, it doesn't have to be moved. Sometimes it may have to be moved if you're going across regions, but that's unique and a differentiator for Snowflake in our view. I mean, I'm yet to see a data ecosystem that is as rich and growing as fast as the Snowflake ecosystem. Monetization, we talked about that, industry clouds, financial services, healthcare, retail, and media, all front and center at the event. My understanding is that Frank Slootman was a major force behind this shift, this development and go to market focus on verticals. It's really an attempt, and he talked about this in his keynote to align with the customer mission ultimately align with their objectives which not surprisingly, are increasingly monetizing with data as a differentiating ingredient. We heard a ton about data mesh, there were numerous presentations about the topic. And I'll say this, if you map the seven pillars Snowflake talks about, Benoit Dageville talked about this in his keynote, but if you map those into Zhamak Dehghani's data mesh framework and the four principles, they align better than most of the data mesh washing that I've seen. The seven pillars, all data, all workloads, global architecture, self-managed, programmable, marketplace and governance. Those are the seven pillars that he talked about in his keynote. All data, well, maybe with hybrid tables that becomes more of a reality. Global architecture means the data is globally distributed. It's not necessarily physically in one place. Self-managed is key. Self-service infrastructure is one of Zhamak's four principles. And then inherent governance. Zhamak talks about computational, what I'll call automated governance, built in. And with all the talk about monetization, that aligns with the second principle which is data as product. So while it's not a pure hit and to its credit, by the way, Snowflake doesn't use data mesh in its messaging anymore. But by the way, its customers do, several customers talked about it. Geico, JPMC, and a number of other customers and partners are using the term and using it pretty closely to the concepts put forth by Zhamak Dehghani. But back to the point, they essentially, Snowflake that is, is building a proprietary system that substantially addresses some, if not many of the goals of data mesh. Okay, back to the list, supercloud, that's our term. We saw lots of examples of clouds on top of clouds that are architected to spin multiple clouds, not just run on individual clouds as separate services. And this includes Snowflake's data cloud itself but a number of ecosystem partners that are headed in a very similar direction. Snowflake still talks about data sharing but now it uses the term collaboration in its high level messaging, which is I think smart. Data sharing is kind of a geeky term. And also this is an attempt by Snowflake to differentiate from everyone else that's saying, hey, we do data sharing too. And finally Snowflake doesn't say data marketplace anymore. It's now marketplace, accounting for its application market. Okay, let's take a quick look at the competitive landscape via this ETR X-Y graph. Vertical access remembers net score or spending momentum and the x-axis is penetration, pervasiveness in the data center. That's what ETR calls overlap. Snowflake continues to lead on the vertical axis. They guide it conservatively last quarter, remember, so I wouldn't be surprised if that lofty height, even though it's well down from its earlier levels but I wouldn't be surprised if it ticks down again a bit in the July survey, which will be in the field shortly. Databricks is a key competitor obviously at a strong spending momentum, as you can see. We didn't draw it here but we usually draw that 40% line or red line at 40%, anything above that is considered elevated. So you can see Databricks is quite elevated. But it doesn't have the market presence of Snowflake. It didn't get to IPO during the bubble and it doesn't have nearly as deep and capable go-to market machinery. Now, they're getting better and they're getting some attention in the market, nonetheless. But as a private company, you just naturally, more people are aware of Snowflake. Some analysts, Tony Bear in particular, believe Mongo and Snowflake are on a bit of a collision course long term. I actually can see his point. You know, I mean, they're both platforms, they're both about data. It's long ways off, but you can see them sort of in a similar path. They talk about kind of similar aspirations and visions even though they're quite in different markets today but they're definitely participating in similar tam. The cloud players are probably the biggest or definitely the biggest partners and probably the biggest competitors to Snowflake. And then there's always Oracle. Doesn't have the spending velocity of the others but it's got strong market presence. It owns a cloud and it knows a thing about data and it definitely is a go-to market machine. Okay, we're going to end on some of the things that we heard in the ecosystem. 'Cause look, we've heard before how particular technology, enterprise data warehouse, data hubs, MDM, data lakes, Hadoop, et cetera. We're going to solve all of our data problems and of course they didn't. And in fact, sometimes they create more problems that allow vendors to push more incremental technology to solve the problems that they created. Like tools and platforms to clean up the no schema on right nature of data lakes or data swamps. But here are some of the things that I heard firsthand from some customers and partners. First thing is, they said to me that they're having a hard time keeping up sometimes with the pace of Snowflake. It reminds me of AWS in 2014, 2015 timeframe. You remember that fire hose of announcements which causes increased complexity for customers and partners. I talked to several customers that said, well, yeah this is all well and good but I still need skilled people to understand all these tools that I'm integrated in the ecosystem, the catalogs, the machine learning observability. A number of customers said, I just can't use one governance tool, I need multiple governance tools and a lot of other technologies as well, and they're concerned that that's going to drive up their cost and their complexity. I heard other concerns from the ecosystem that it used to be sort of clear as to where they could add value you know, when Snowflake was just a better data warehouse. But to point number one, they're either concerned that they'll be left behind or they're concerned that they'll be subsumed. Look, I mean, just like we tell AWS customers and partners, you got to move fast, you got to keep innovating. If you don't, you're going to be left. Either if your customer you're going to be left behind your competitor, or if you're a partner, somebody else is going to get there or AWS is going to solve the problem for you. Okay, and there were a number of skeptical practitioners, really thoughtful and experienced data pros that suggested that they've seen this movie before. That's hence the same wine, new bottle. Well, this time around I certainly hope not given all the energy and investment that is going into this ecosystem. And the fact is Snowflake is unquestionably making it easier to put data to work. They built on AWS so you didn't have to worry about provisioning, compute and storage and networking and scaling. Snowflake is optimizing its platform to take advantage of things like Graviton so you don't have to, and they're doing some of their own optimization tools. The ecosystem is building optimization tools so that's all good. And firm belief is the less expensive it is, the more data will get brought into the data cloud. And they're building a data platform on which their ecosystem can build and run data applications, aka data products without having to worry about all the hard work that needs to get done to make data discoverable, shareable, and governed. And unlike the last 10 years, you don't have to be a keeper and integrate all the animals in the Hadoop zoo. Okay, that's it for today, thanks for watching. Thanks to my colleague, Stephanie Chan who helps research "Breaking Analysis" topics. Sometimes Alex Myerson is on production and manages the podcasts. Kristin Martin and Cheryl Knight help get the word out on social and in our newsletters, and Rob Hof is our editor in chief over at Silicon, and Hailey does some wonderful editing, thanks to all. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis Podcasts. I publish each week on wikibon.com and siliconangle.com and you can email me at David.Vellante@siliconangle.com or DM me @DVellante. If you got something interesting, I'll respond. If you don't, I'm sorry I won't. Or comment on my LinkedIn post. Please check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time. (upbeat music)

Published Date : Jun 18 2022

SUMMARY :

bringing you data driven that the ecosystem excitement here on the show floor. and the action in the ecosystem. Didn't start out that way, you know, One of the big knocks against Snowflake the idea of bring your data of the question, he did answer. is the one that looks like, and from the ecosystem, And so a couple of the So that way, you know, from the Hadoop era is the fact the defacto place as to where

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Frank SlootmanPERSON

0.99+

Frank SlootmanPERSON

0.99+

Doug HenschenPERSON

0.99+

Stephanie ChanPERSON

0.99+

Christian KleinermanPERSON

0.99+

AWSORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Rob HofPERSON

0.99+

Benoit DagevillePERSON

0.99+

2014DATE

0.99+

Matt SulkinsPERSON

0.99+

JPMCORGANIZATION

0.99+

2019DATE

0.99+

Cheryl KnightPERSON

0.99+

Palo AltoLOCATION

0.99+

Denise PerssonPERSON

0.99+

Alex MyersonPERSON

0.99+

Tony BearPERSON

0.99+

Dave MenningerPERSON

0.99+

DellORGANIZATION

0.99+

JulyDATE

0.99+

GeicoORGANIZATION

0.99+

NovemberDATE

0.99+

SnowflakeTITLE

0.99+

40%QUANTITY

0.99+

OracleORGANIZATION

0.99+

App StoreTITLE

0.99+

Capital OneORGANIZATION

0.99+

second principleQUANTITY

0.99+

Sanjeev MohanPERSON

0.99+

SnowflakeORGANIZATION

0.99+

1300 native appsQUANTITY

0.99+

Tony BearPERSON

0.99+

David.Vellante@siliconangle.comOTHER

0.99+

Kristin MartinPERSON

0.99+

MongoORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

Snowflake Summit 2022EVENT

0.99+

FirstQUANTITY

0.99+

twoDATE

0.99+

PythonTITLE

0.99+

10 different tablesQUANTITY

0.99+

FacebookORGANIZATION

0.99+

ETRORGANIZATION

0.99+

bothQUANTITY

0.99+

SnowflakeEVENT

0.98+

one placeQUANTITY

0.98+

each weekQUANTITY

0.98+

O'ReillyORGANIZATION

0.98+

This weekDATE

0.98+

Hadoop WorldEVENT

0.98+

this weekDATE

0.98+

PureORGANIZATION

0.98+

about 40 partnersQUANTITY

0.98+

theCUBEORGANIZATION

0.98+

last quarterDATE

0.98+

OneQUANTITY

0.98+

S3TITLE

0.97+

HadoopLOCATION

0.97+

singleQUANTITY

0.97+

Caesars ForumLOCATION

0.97+

IcebergTITLE

0.97+

single sourceQUANTITY

0.97+

SiliconORGANIZATION

0.97+

Nearly 10,000 peopleQUANTITY

0.97+

Apache IcebergORGANIZATION

0.97+

Harry Glaser, Modlbit, Damon Bryan, Hyperfinity & Stefan Williams, Snowflake | Snowflake Summit 2022


 

>>Thanks. Hey, everyone, welcome back to the cubes. Continuing coverage of snowflakes. Summit 22 live from Caesars Forum in Las Vegas. Lisa Martin here. I have three guests here with me. We're gonna be talking about Snowflake Ventures and the snowflakes start up Challenge. That's in its second year. I've got Harry Glaser with me. Co founder and CEO of Model Bit Start Up Challenge finalist Damon Bryan joins us as well. The CTO and co founder of Hyper Affinity. Also a startup Challenge Finalists. And Stephane Williams to my left here, VP of Corporate development and snowflake Ventures. Guys, great to have you all on this little mini panel this morning. >>Thank you. >>Thank you. >>Let's go ahead, Harry, and we'll start with you. Talk to the audience about model. But what do you guys do? And then we'll kind of unpack the snowflake. The Snowflakes challenge >>Model bit is the easiest way for data scientists to deploy machine learning models directly into Snowflake. We make use of the latest snowflake functionality called Snow Park for python that allows those models to run adjacent to the data so that machine learning models can be much more efficient and much more powerful than they were before. >>Awesome. Damon. Give us an overview of hyper affinity. >>Yes, so hyper affinity were Decision Intelligence platform. So we helped. Specifically retailers and brands make intelligent decisions through the use of their own customer, data their product data and put data science in a I into the heart of the decision makers across their business. >>Nice Step seven. Tell us about the startup challenge. We talked a little bit about it yesterday with CMO Denise Pearson, but I know it's in its second year. Give us the idea of the impetus for it, what it's all about and what these companies embody. >>Yeah, so we This is the second year that we've done it. Um, we it was really out of, um Well, it starts with snowflake Ventures when we started to invest in companies, and we quickly realised that there's there's a massive opportunity for companies to be building on top of the Lego blocks, uh, of snowflake. And so, um, open up the competition. Last year it was the inaugural competition overlay analytics one, Um, and since then, you've seen a number of different functionalities and features as part of snowflakes snow part. Being one of them native applications is a really exciting one going forward. Um, the companies can really use to accelerate their ability to kind of deliver best in class applications using best in class technology to deliver real customer outcomes and value. Um, so we've we've seen tremendous traction across the globe, 250 applicants across 50. I think 70 countries was mentioned today, so truly global in nature. And it's really exciting to see how some of the start ups are taking snowflake to to to new and interesting use cases and new personas and new industries. >>So you had 200 over 250 software companies applied for this. How did you did you narrow it down to three? >>We did. Yeah, >>you do that. >>So, behind the scenes, we had a sub judging panel, the ones you didn't see up on stage, which I was luckily part of. We had kind of very distinct evaluation criteria that we were evaluating every company across. Um and we kind of took in tranches, right? We we took the first big garden, and we kind of try to get that down to a top 50 and top 50. Then we really went into the details and we kind of across, um, myself in ventures with some of my venture partners. Um, some of the market teams, some of the product and engineering team, all kind of came together and evaluated all of these different companies to get to the top 10, which was our semifinalists and then the semi finalists, or had a chance to present in front of the group. So we get. We got to meet over Zoom along the way where they did a pitch, a five minute pitch followed by a Q and A in a similar former, I guess, to what we just went through the startup challenge live, um, to get to the top three. And then here we are today, just coming out of the competition with with With folks here on the table. >>Wow, Harry talked to us about How did you just still down what model bit is doing into five minutes over Zoom and then five minutes this morning in person? >>I think it was really fun to have that pressure test where, you know, we've only been doing this for a short time. In fact model. It's only been a company for four or five months now, and to have this process where we pitch and pitch again and pitch again and pitch again really helped us nail the one sentence value proposition, which we hadn't done previously. So in that way, very grateful to step on in the team for giving us that opportunity. >>That helps tremendously. I can imagine being a 4 to 5 months young start up and really trying to figure out I've worked with those young start ups before. Messaging is challenging the narrative. Who are we? What do we do? How are we changing or chasing the market? What are our customers saying we are? That's challenging. So this was a good opportunity for you, Damon. Would you say the same as well for hyper affinity? >>Yeah, definitely conquer. It's really helped us to shape our our value proposition early and how we speak about that. It's quite complicated stuff, data science when you're trying to get across what you do, especially in retail, that we work in. So part of what our platform does is to help them make sense of data science and Ai and implement that into commercial decisions. So you have to be really kind of snappy with how you position things. And it's really helped us to do that. We're a little bit further down the line than than these guys we've been going for three years. So we've had the benefit of working with a lot of retailers to this point to actually identify what their problems are and shape our product and our proposition towards. >>Are you primarily working with the retail industry? >>Yes, Retail and CPG? Our primary use case. We have seen any kind of consumer related industries. >>Got it. Massive changes right in retail and CPG the last couple of years, the rise of consumer expectations. It's not going to go back down, right? We're impatient. We want brands to know who we are. I want you to deliver relevant content to me that if I if I bought a tent, go back on your website, don't show me more tense. Show me things that go with that. We have this expectation. You >>just explain the whole business. But >>it's so challenging because the brothers brands have to respond to that. How do you what is the value for retailers working with hyper affinity and snowflake together. What's that powerhouse? >>Yeah, exactly. So you're exactly right. The retail landscape is changing massively. There's inflation everywhere. The pandemic really impacted what consumers really value out of shopping with retailers. And those decisions are even harder for retailers to make. So that's kind of what our platform does. It helps them to make those decisions quickly, get the power of data science or democratise it into the hands of those decision makers. Um, so our platform helps to do that. And Snowflake really underpins that. You know, the scalability of snowflake means that we can scale the data and the capability that platform in tangent with that and snowflake have been innovating a lot of things like Snow Park and then the new announcements, announcements, uni store and a native APP framework really helping us to make developments to our product as quick as snowflakes are doing it. So it's really beneficial. >>You get kind of that tailwind from snowflakes acceleration. It sounds like >>exactly that. Yeah. So as soon as we hear about new things were like, Can we use it? You know, and Snow Park in particular was music to our ears, and we actually part of private preview for that. So we've been using that while and again some of the new developments will be. I'm on the phone to my guys saying, Can we use this? Get it, get it implemented pretty quickly. So yeah, >>fantastic. Sounds like a great aligned partnership there, Harry. Talk to us a little bit about model bit and how it's enabling customers. Maybe you've got a favourite customer example at model bit plus snowflake, the power that delivers to the end user customer? >>Absolutely. I mean, as I said, it allows you to deploy the M L model directly into snowflake. But sometimes you need to use the exact same machine learning model in multiple endpoints simultaneously. For example, one of our customers uses model bit to train and deploy a lead scoring model. So you know when somebody comes into your website and they fill out the form like they want to talk to a sales person, is this gonna be a really good customer? Do we think or maybe not so great? Maybe they won't pay quite as much, and that lead scoring model actually runs on the website using model bit so that you can deploy display a custom experience to that customer we know right away. If this is an A, B, C or D lead, and therefore do we show them a salesperson contact form? Do we just put them in the marketing funnel? Based on that lead score simultaneously, the business needs to know in the back office the score of the lead so that they can do things like routed to the appropriate salesperson or update their sales forecasts for the end of the quarter. That same model also runs in the in the snowflake warehouse so that those back office systems can be powered directly off of snowflake. The fact that they're able to train and deploy one model into two production environment simultaneously and manage all that is something they can only do with bottled it. >>Lead scoring has been traditionally challenging for businesses in every industry, but it's so incredibly important, especially as consumers get pickier and pickier with. I don't want I don't want to be measured. I want to opt out. What sounds like what model but is enabling is especially alignment between sales and marketing within companies, which is That's also a big challenge at many companies face for >>us. It starts with the data scientist, right? The fact that sales and marketing may not be aligned might be an issue with the source of truth. And do we have a source of truth at this company? And so the idea that we can empower these data scientists who are creating this value in the company by giving them best in class tools and resources That's our dream. That's our mission. >>Talk to me a little bit, Harry. You said you're only 4 to 5 months old. What were the gaps in the market that you and your co founders saw and said, Guys, we've got to solve this. And Snowflake is the right partner to help us do it. >>Absolutely. We This is actually our second start up, and we started previously a data Analytics company that was somewhat successful, and it got caught up in this big wave of migration of cloud tools. So all of data tools moved and are moving from on premise tools to cloud based tools. This is really a migration. That snowflake catalyst Snowflake, of course, is the ultimate in cloud based data platforms, moving customers from on premise data warehouses to modern cloud based data clouds that dragged and pulled the rest of the industry along with it. Data Science is one of the last pieces of the data industry that really hasn't moved to the cloud yet. We were almost surprised when we got done with our last start up. We were thinking about what to do next. The data scientists were still using Jupiter notebooks locally on their laptops, and we thought, This is a big market opportunity and we're We're almost surprised it hasn't been captured yet, and we're going to get in there. >>The other thing. I think it's really interesting on your business that we haven't talked about is just the the flow of data, right? So that the data scientist is usually taking data out of a of a of a day like something like Smoke like a data platform and the security kind of breaks down because then it's one. It's two, it's three, it's five, it's 20. Its, you know, big companies just gets really big. And so I think the really interesting thing with what you guys are doing is enabling the data to stay where it's at, not copping out keeping that security, that that highly governed environment that big companies want but allowing the data science community to really unlock that value from the data, which is really, really >>cool. Wonderful for small startups like Model Bit. Because you talk to a big company, you want them to become a customer. You want them to use your data science technology. They want to see your fed ramp certification. They want to talk to your C. So we're two guys in Silicon Valley with a dream. But if we can tell them the data is staying in snowflake and you have that conversation with Snowflake all the time and you trust them were just built on top. That is an easy and very smooth way to have that conversation with the customer. >>Would you both say that there's credibility like you got street cred, especially being so so early in this stage? Harry, with the partnership with With Snowflake Damon, we'll start with you. >>Yeah, absolutely. We've been using Snowflake from day one. We leave from when we started our company, and it was a little bit of an unknown, I guess maybe 23 years ago, especially in retail. A lot of retailers using all the legacy kind of enterprise software, are really starting to adopt the cloud now with what they're doing and obviously snowflake really innovating in that area. So what we're finding is we use Snowflake to host our platform and our infrastructure. We're finding a lot of retailers doing that as well, which makes it great for when they wanted to use products like ours because of the whole data share thing. It just becomes really easy. And it really simplifies it'll and data transformation and data sharing. >>Stephane, talk about the startup challenge, the innovation that you guys have seen, and only the second year I can. I can just hear it from the two of you. And I know that the winner is back in India, but tremendous amount of of potential, like to me the last 2.5 days, the flywheel that is snowflake is getting faster and faster and more and more powerful. What are some of the things that excite you about working on the start up challenge and some of the vision going forward that it's driving. >>I think the incredible thing about Snowflake is that we really focus as a company on the data infrastructure and and we're hyper focused on enabling and incubating and encouraging partners to kind of stand on top of a best of breed platform, um, unlocked value across the different, either personas within I T organisations or industries like hypothermia is doing. And so it's it's it's really incredible to see kind of domain knowledge and subject matter expertise, able to kind of plug into best of breed underlying data infrastructure and really divide, drive, drive real meaningful outcomes for for for our customers in the community. Um, it's just been incredible to see. I mean, we just saw three today. Um, there was 250 incredible applications that past the initial. Like, do they check all the boxes and then actually, wow, they just take you to these completely different areas. You never thought that the technology would go and solve. And yet here we are talking about, you know, really interesting use cases that have partners are taking us to two >>150. Did that surprise you? And what was it last year. >>I think it was actually close to close to 2 to 40 to 50 as well, and I think it was above to 50 this year. I think that's the number that is in my head from last year, but I think it's actually above that. But the momentum is, Yeah, it's there and and again, we're gonna be back next year with the full competition, too. So >>awesome. Harry, what is what are some of the things that are next for model bed as it progresses through its early stages? >>You know, one thing I've learned and I think probably everyone at this table has internalised this lesson. Product market fit really is everything for a start up. And so for us, it's We're fortunate to have a set of early design partners who will become our customers, who we work with every day to build features, get their feedback, make sure they love the product, and the most exciting thing that happened to me here this week was one of our early design partner. Customers wanted us to completely rethink how we integrate with gets so that they can use their CI CD workflows their continuous integration that they have in their own get platform, which is advanced. They've built it over many years, and so can they back, all of model, but with their get. And it was it was one of those conversations. I know this is getting a little bit in the weeds, but it was one of those conversations that, as a founder, makes your head explode. If we can have a critical mass of those conversations and get to that product market fit, then the flywheel starts. Then the investment money comes. Then you're hiring a big team and you're off to the races. >>Awesome. Sounds like there's a lot of potential and momentum there. Damon. Last question for you is what's next for hyper affinity. Obviously you've got we talked about the street cred. >>Yeah, what's >>next for the business? >>Well, so yeah, we we've got a lot of exciting times coming up, so we're about to really fully launch our products. So we've been trading for three years with consultancy in retail analytics and data science and actually using our product before it was fully ready to launch. So we have the kind of main launch of our product and we actually starting to onboard some clients now as we speak. Um, I think the climate with regards to trying to find data, science, resources, you know, a problem across the globe. So it really helps companies like ours that allow, you know, allow retailers or whoever is to democratise the use of data science. And perhaps, you know, really help them in this current climate where they're struggling to get world class resource to enable them to do that >>right so critical stuff and take us home with your overall summary of snowflake summit. Fourth annual, nearly 10,000 people here. Huge increase from the last time we were all in person. What's your bumper sticker takeaway from Summit 22 the Startup Challenge? >>Uh, that's a big closing statement for me. It's been just the energy. It's been incredible energy, incredible excitement. I feel the the products that have been unveiled just unlock a tonne, more value and a tonne, more interesting things for companies like the model bit I profanity and all the other startups here. And to go and think about so there's there's just this incredible energy, incredible excitement, both internally, our product and engineering teams, the partners that we have spoke. I've spoken here with the event, the portfolio companies that we've invested in. And so there's there's there's just this. Yeah, incredible momentum and excitement around what we're able to do with data in today's world, powered by underlying platform, like snowflakes. >>Right? And we've heard that energy, I think, through l 30 plus guests we've had on the show since Tuesday and certainly from the two of you as well. Congratulations on being finalist. We wish you the best of luck. You have to come back next year and talk about some of the great things. More great >>things hopefully will be exhibited next year. >>Yeah, that's a good thing to look for. Guys really appreciate your time and your insights. Congratulations on another successful start up challenge. >>Thank you so much >>for Harry, Damon and Stefan. I'm Lisa Martin. You're watching the cubes. Continuing coverage of snowflakes. Summit 22 live from Vegas. Stick around. We'll be right back with a volonte and our final guest of the day. Mhm, mhm

Published Date : Jun 16 2022

SUMMARY :

Guys, great to have you all on this little mini panel this morning. But what do you guys do? Model bit is the easiest way for data scientists to deploy machine learning models directly into Snowflake. Give us an overview of hyper affinity. So we helped. Give us the idea of the impetus for it, what it's all about and what these companies And it's really exciting to see how some of the start ups are taking snowflake to So you had 200 over 250 software companies applied We did. So, behind the scenes, we had a sub judging panel, I think it was really fun to have that pressure test where, you know, I can imagine being a 4 to 5 months young start up of snappy with how you position things. Yes, Retail and CPG? I want you to deliver relevant content to me that just explain the whole business. it's so challenging because the brothers brands have to respond to that. You know, the scalability of snowflake means that we can scale the You get kind of that tailwind from snowflakes acceleration. I'm on the phone to my guys saying, Can we use this? bit plus snowflake, the power that delivers to the end user customer? the business needs to know in the back office the score of the lead so that they can do things like routed to the appropriate I want to opt out. And so the idea that And Snowflake is the right partner to help us do it. dragged and pulled the rest of the industry along with it. So that the data scientist is usually taking data out of a of a of a day like something But if we can tell them the data is staying in snowflake and you have that conversation with Snowflake all the time Would you both say that there's credibility like you got street cred, especially being so so are really starting to adopt the cloud now with what they're doing and obviously snowflake really innovating in that area. And I know that the winner is back in India, but tremendous amount of of and really divide, drive, drive real meaningful outcomes for for for our customers in the community. And what was it last year. But the momentum Harry, what is what are some of the things that are next for model bed as and the most exciting thing that happened to me here this week was one of our early design partner. Last question for you is what's next for hyper affinity. So it really helps companies like ours that allow, you know, allow retailers or whoever is to democratise Huge increase from the last time we were all in person. the partners that we have spoke. show since Tuesday and certainly from the two of you as well. Yeah, that's a good thing to look for. We'll be right back with a volonte and our final guest of the day.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Damon BryanPERSON

0.99+

Stephane WilliamsPERSON

0.99+

Lisa MartinPERSON

0.99+

Harry GlaserPERSON

0.99+

HarryPERSON

0.99+

IndiaLOCATION

0.99+

4QUANTITY

0.99+

Silicon ValleyLOCATION

0.99+

five minutesQUANTITY

0.99+

fourQUANTITY

0.99+

ModlbitPERSON

0.99+

VegasLOCATION

0.99+

StephanePERSON

0.99+

next yearDATE

0.99+

three yearsQUANTITY

0.99+

five monthsQUANTITY

0.99+

Last yearDATE

0.99+

Hyper AffinityORGANIZATION

0.99+

last yearDATE

0.99+

twoQUANTITY

0.99+

two guysQUANTITY

0.99+

yesterdayDATE

0.99+

fiveQUANTITY

0.99+

Stefan WilliamsPERSON

0.99+

250 applicantsQUANTITY

0.99+

200QUANTITY

0.99+

20QUANTITY

0.99+

70 countriesQUANTITY

0.99+

Las VegasLOCATION

0.99+

Denise PearsonPERSON

0.99+

StefanPERSON

0.99+

five minuteQUANTITY

0.99+

threeQUANTITY

0.99+

second yearQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

this yearDATE

0.99+

todayDATE

0.99+

TuesdayDATE

0.99+

oneQUANTITY

0.99+

three guestsQUANTITY

0.98+

23 years agoDATE

0.98+

DamonPERSON

0.98+

50QUANTITY

0.98+

5 monthsQUANTITY

0.98+

Model BitORGANIZATION

0.98+

one modelQUANTITY

0.97+

40QUANTITY

0.97+

one sentenceQUANTITY

0.97+

Snow ParkTITLE

0.97+

Snowflake DamonORGANIZATION

0.97+

this weekDATE

0.96+

top threeQUANTITY

0.95+

two productionQUANTITY

0.95+

bothQUANTITY

0.94+

250 incredible applicationsQUANTITY

0.94+

Fourth annualQUANTITY

0.94+

SnowflakeEVENT

0.94+

top 50QUANTITY

0.92+

day oneQUANTITY

0.92+

VenturesORGANIZATION

0.91+

top 10QUANTITY

0.91+

aboveQUANTITY

0.9+

Rinesh Patel, Snowflake & Jack Berkowitz, ADP | Snowflake Summit 2022


 

(upbeat music) >> Welcome back to theCUBE's continuing coverage of Snowflake Summit 22 live from Caesars Forum in Las Vegas. I'm Lisa Martin with Dave Vellante. We've got a couple of guests joining us now. We're going to be talking about financial services. Rinesh Patel joins us, the Global Head of Financial Services for Snowflake, and Jack Berkowitz, Chief Data Officer at ADP. Guys, welcome to the program. >> Thanks, thanks for having us. >> Thanks for having us. >> Talk to us about what's going on in the financial services industry as a whole. Obviously, we've seen so much change in the last couple of years. What does the data experience look like for internal folks and of course, for those end user consumers and clients? >> So, one of the big things happening inside of the financial services industry is overcoming the COVID wait, right? A lot of banks, a lot of institutions like ours had a lot of stuff on-prem. And then the move to the Cloud allows us to have that flexibility to deal with it. And out of that is also all these new capabilities. So the machine learning revolution has really hit the services industry, right? And so it's affecting how our IT teams or our data teams are building applications. Also really affecting what the end consumers get out of them. And so there's all sorts of consumerization of the experience over the past couple of years much faster than we ever expected it to happen. >> Right, we have these expectations as consumers that bleed into our business lives that I can do transactions. It's going to be on the swipe in terms of checking authenticity, fraud detection, et cetera. And of course we don't want things to go back in terms of how brands are serving us. Talk about some of the things that you guys have put in place with Snowflake in the last couple of years, particularly at ADP. >> Yeah, so one of the big things that we've done, is, one of the things that we provide is compensation data. So we issue a thing called the National Employment Report that informs the world as to what's happening in the U.S. economy in terms of workers. And then we have compensation data on top of that. So the thing that we've been able to do with Snowflake is to lower the time that it takes us to process that and get that information out into the fingertips of people. And so people can use it to see what's changed in terms of with the worker changes, how much people are making. And they can get it very, very quickly. And we're able to do that with Snowflake now. Used to take us weeks, now it's in a matter of moments we can get that updated information out to people. >> Interesting. It helps with the talent war and- >> Helps in the talent war, helps people adjust, even where they're going to put supply chain in reaction to where people are migrating. We can have all of that inside of the Snowflake system and available almost instantaneously. >> You guys announced the Financial Data Cloud last year. What was that like? 'Cause I know we had Frank on early, he clearly was driving the verticalization of Snowflake if you will, which is kind of rare for a relatively new software company but what's that been like? Give us the update on where you're at and biggest vertical, right? >> Absolutely, it's been an exciting 12 months. We're a platform, but the journey and the vision is more. We're trying to bring together a fragmented ecosystem across financial services. The aim is really to bring together key customers, key data providers, key solution providers all across the different Clouds that exist to allow them to collaborate with data in a seamless way. To solve industry problems. To solve industry problems like ESG, to solve industry problems like quantitative research. And we're seeing a massive groundswell of customers coming to Snowflake, looking at the Financial Services Data Cloud now to actually solve business problems, business critical problems. That's really driving a lot of change in terms of how they operate, in terms of how they win customers, mitigate risk and so forth. >> Jack, I think, I feel like the only industry that's sometimes more complicated than security, is data. Maybe not, security's still maybe more fragmented- >> Well really the intersection of the two is a nightmare. >> And so as you look out on this ecosystem, how do you as the chief data officer, how do you and your organization, what process do you use to decide, okay, which of the, like a chef, which of these ingredients am I going to put together for my business. >> It's a great question, right? There's been explosion of companies. We kind of look at it in two ways. One is we want to make sure that the software and the data can interoperate because we don't want to be in the business of writing bridge code. So first thing is, is having the ecosystem so that the things are tested and can work together. The other area is, and it's important to us is understanding the risk profile of that company. We process about 20% of the U.S. payroll, another 25% of the taxes. And so there's a risk to us that we have an imperative to protect. So we're looking at those companies are they financed, what's their management team. What's the sales experience like, that's important to us. And so technology and the experience of the company coming together are super important to us. >> What's your purview as a chief data officer, I mean, a lot of CDOs that I know came out of the back office and it was a compliance or data quality. You come out of industry from a technology company. So you're sort of the modern... You're like the modern CDO. >> Thanks. Thanks. >> Dave: What's your role? >> I appreciate that. >> You know what I'm saying though? >> And for a while it was like, oh yeah, compliance. >> So I actually- >> And then all of a sudden, boom, big deal. >> Yeah, I really have two jobs. So I have that job with data governance but a lot of data security. But I also have a product development unit, a massive business in monetization of data or people analytics or these compensation benchmarks or helping people get mortgages. So providing that information, so that people can get their mortgage, or their bank loans, or all this other type of transactional data. *So it's both sides of that equation is my reading inside. >> You're responsible for building data products? >> That's right. >> Directly. >> That's right. I've got a massive team that builds data products. >> Okay. That's somewhat unique in your... >> I think it's where CDOs need to be. So we build data products. We build, and we assist as a hub to allow other business units to build analytics that help them either optimize their cost or increase their sales. And then we help with all that governance and communication, we don't want to divide it up. There's a continuum to it. >> And you're a peer of the CIO and the CISO? >> Yeah, exactly. They're my peers. I actually talk to them almost every day. So I've got the CIO as a peer. >> It's a team. >> I've got the security as a peer and we get things done together. >> Talk about the alignment with business. We've been talking a lot about alignment with the data folks, the business folks, the technical folks to identify the right solutions, to be able to govern data, to monetize it, to create data products. What does that... You mentioned a couple of your cohorts, but on the business side, who are some of those key folks? >> So we're like any other big, big organization. We have lots of different business units. So we work directly with either the operational team or the heads of those business units to divine analytic missions that they'll actually execute. And at the same time, we actually have a business unit that's all around data monetization. And so I work with them every single day. And so these business units will come together. I think the big thing for us is to define value and measure that value as we go. As long as we're measuring that value as we go, then we can continue to see improvements. And so, like I said, sometimes it's bottom line, sometimes it's top line, but we're involved. Data is actually a substrate of the company. It's not a side thing to the company. >> Yeah, you are. >> ADP. >> Yeah but if they say data first but you really are data first. >> Yeah. I mean, our CEO says- >> Data's your product. >> Data's our middle name. And it literally is. >> Well, so what do you do in the Snowflake financial services data Cloud? Are you monetizing? >> Yeah. >> What's the plan? >> Yeah, so we have clients. So part of our data monetization is actually providing aggregate and anonymized information that helps other clients make business decisions. So they'll take it into their analytics. So, supply chain optimization, where should we actually put the warehouses based on the population shifts? And so we're actually using the file distribution capabilities or the information distribution, no longer files, where we use Snowflake to actually be that data cloud for those clients. So the data just pops up for our other clients. >> I think the industry's existed a lot with the physical movement of data. When you physically move data, you also physically move the data management challenges. Where do you store it? How do you map it? How do you concord it? And ultimately data sharing is taking away that friction that exists. So it's easier to be able to make informed decisions with the data at hand across two counterparties. >> Yeah, and there's a benefit to us 'cause it lowers our friction. We can have a conversation and somebody can be... Obviously the contracts have to be signed, but once they get done, somebody's up and running on it within minutes. And where it used to be, as you were saying, the movement of data and loss of control, we never actually lose control of it. We know where it is. >> Or yeah, contracts signed, now you got to go through this long process of making sure everything's cool, or a lot of times it could slow down the sale. >> That's right. >> Let's see how that's going to... Let's do a little advanced work. Now you're working without a contract. Here, you can say, "Hey, we're in the Snowflake data cloud. It's governed, you're a part of the ecosystem." >> Yeah, and the ecosystem we announced, oh gee, I think it's probably almost a year and a half ago, a relationship with ICE, Intercontinental Exchange, where they're actually taking our information and their information and creating a new data product that they in turn sell. So you get this sort of combination. >> Absolutely. The ability to form partnerships and monetize data with your partners vastly increases as a consequence. >> Talk to us about the adoption of the financial services data cloud in the last what, maybe nine months or so, since it was announced? And also in terms of the its value proposition, how does the ADP use case articulate that? >> So, very much so. So in terms of momentum, we're a global organization, as you mentioned, we are verticalized. So we have increasingly more expertise and expertise experience now within financial services that allows us to really engage and accelerate our momentum with the top banks, with the biggest asset managers by AUM, insurance companies, sovereign wealth funds on Snowflake. And obviously those data providers and solution providers that we engage with. So the momentum's really there. We're really moving very, very fast in a great market because we've got great opportunity with the capabilities that we have. I mean, ADP is just one of many use cases that we're working with and collaborations that we're taking to market. So yeah, the opportunity to monetize data and help our partners monetize the data has vastly increased within this space. >> When you think about... Oh go ahead, please. >> Yeah I was just going to say, and from our perspective, as we were getting into this, Snowflake was with us on the journey. And that's been a big deal. >> So when you think about data privacy, governance, et cetera, and public policy, it seems like you have, obviously you got things going on in Europe, and you got California, you have other states, there's increasing in complexity. You guys probably love that. (Dave laughs) More data warehouses, but where are we at with that whole? >> It's a great question. Privacy is... We hold some of the most critical information about people because that's our job to help people get paid. And we respect that as sort of our prime agenda. Part of it deals with the technology. How do you monitor, how do you see, make sure that you comply with all these regulations, but a lot of it has to do with the basic ethics of why you're doing and what you're doing. So we have a data and AI ethics board that meets and reviews our use cases. Make sure not only are we doing things properly to the regulation, but are these the types of products, are these the types of opportunities that we as a company want to stand behind on behalf of the consumers? Our company's been around 75 years. We talk about ourselves as a national asset. We have a trust relationship. We want to ensure that that trust relationship is never violated. >> Are you in a position where you can influence public policy and create more standards or framework. >> We actually are, right. We issue something every month called the National Employment Report. It actually tells you what's happening in the U.S. economy. We also issue it in some overseas countries like France. Because of that, we work a lot with various groups. And we can help shape, either data policy, we're involved in understanding although we don't necessarily want to be out in the front, but we want to learn about what's happening with federal trade commission, EOC, because at the end of the day we serve people, I always joke ADP, it's my grandfather's ADP. Well, it was actually my grandfather's ADP. (Dave laughs) He was a small businessman, and he used a ADP all those years ago. So we want to be part of that conversation because we want to continue to earn that trust every day. >> Well, plus your observation space is pretty wide. >> And you've got context and perspective on that that you can bring. >> We move somewhere between two, two and a half trillion dollars a year through our systems. And so we understand what's happening in the economy. >> What are some of the, oh sorry. >> Can your National Employment Report combined with a little Snowflake magic tell us what the hell's going to happen with this economy? >> It's really interesting you say that. Yeah, we actually can. >> Okay. (panelists laugh) >> I think when you think about the amount of data that we are working with, the types of partners that we're working with, the opportunities are infinite. They really, really are. >> So it's either a magic eight ball or it's a crystal ball, but you have it. >> We think- >> We've just uncovered that here on theCUBE. >> We think we have great partners. We have great data. We have a set of industry problems out there that we're working, collaboration with the community to be able to solve. >> What are some of the upcoming use cases Rinesh, that excite you, that are coming up in financial services- >> Great question. >> That snowflake is just going to knock out of the park. >> So look, I think there's a set of here and now problems that the industry faces, ESG's a good one. If you think about ESG, it means many different things from business ethics, to diversity, to your carbon footprint and every asset manager has to make sure they have now some form of green strategy that reflects the values of their investors. And every bank is looking to put in place sustainable lending to help their corporate customers transition. That's a big data problem. And so we're very much at the center of helping those organizations support those informed investors and help those corporates transition to a more sustainable landscape. >> Let me give you an example on Snowflake, we launched capabilities about diversity benchmarks. The first time in the industry companies can understand for their industry, their size, their location what their diversity profile looks like and their org chart profile looks like to differentiate or at least to understand are they doing the right things inside the business. The ability for banks to understand that and everything else, it's a big deal. And that was built on Snowflake. >> I think it's massive, especially in the context of the question around regulation 'cause we're seeing more and more disclosure agreements come out where regulators are making sure that there's no greenwashing taking place. So when you have really strong sources of data that are standardized, that allow that investment process to ingest that data, it does allow for a better outcome for investors. >> Real data, I mean, that diversity example they don't have to rely on a survey. >> It's not a survey. >> Anecdotes. >> It's coming right out of the transactional systems and it's updated, whenever those paychecks are run, whether it's weekly, whether it's biweekly or monthly, all that information gets updated and it's available. >> So it sounds like ADP is a facilitator of a lot of companies ESG initiatives, at least in part? >> Well, we partner with companies all the time. We have over 900,000 clients and all of them are... We've never spoken to a client who's not concerned about their people. And that's just good business. And so, yeah we're involved in that and we'll see where it goes over time now. >> I think there's tremendous opportunity if you think about the data that the ADP have in terms of diversity, in terms of gender pay gap. Huge, huge opportunity to incorporate that, as I said into the ESG principles and criteria. >> Good, 'cause that definitely is what needs to be addressed. (Lisa laughs) Guys thank you so much for joining Dave and me on the program, talking about Snowflake ADP, what you're doing together, and the massive potential that you're helping unlock with the value of data. We appreciate your insights and your time. >> Thank you for having us. >> Dave: Thanks guys. >> Thank you so much. >> For our guests, and Dave Vellante, I'm Lisa Martin. You're watching theCUBE, live in Las Vegas at Snowflake Summit 22. Dave and I will be right back with our next guest. (upbeat music)

Published Date : Jun 15 2022

SUMMARY :

the Global Head of Financial in the last couple of years. inside of the financial services industry And of course we don't is, one of the things that we It helps with the talent war and- inside of the Snowflake system You guys announced the We're a platform, but the like the only industry Well really the intersection of the two And so as you look so that the things are I mean, a lot of CDOs that I know Thanks. And for a while it was And then all of a sudden, So I have that job with data governance that builds data products. That's somewhat unique in your... And then we help with all that governance So I've got the CIO I've got the security as a peer Talk about the alignment with business. and measure that value as we go. but you really are data first. I mean, our CEO says- And it literally is. So the data just pops up So it's easier to be able Obviously the contracts have to be signed, could slow down the sale. in the Snowflake data cloud. Yeah, and the ecosystem we announced, and monetize data with your partners and help our partners monetize the data When you think about... as we were getting into this, are we at with that whole? behalf of the consumers? where you can influence public policy the day we serve people, Well, plus your observation that you can bring. happening in the economy. It's really interesting you say that. Okay. about the amount of data or it's a crystal ball, but you have it. that here on theCUBE. We think we have great partners. going to knock out of the park. that the industry faces, ESG's a good one. And that was built on Snowflake. of the question around regulation they don't have to rely on a survey. the transactional systems companies all the time. about the data that the ADP and the massive potential Dave and I will be right

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Brian GilmorePERSON

0.99+

David BrownPERSON

0.99+

Tim YoakumPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave VolantePERSON

0.99+

Dave VellantePERSON

0.99+

BrianPERSON

0.99+

DavePERSON

0.99+

Tim YokumPERSON

0.99+

StuPERSON

0.99+

Herain OberoiPERSON

0.99+

JohnPERSON

0.99+

Dave ValantePERSON

0.99+

Kamile TaoukPERSON

0.99+

John FourierPERSON

0.99+

Rinesh PatelPERSON

0.99+

Dave VellantePERSON

0.99+

Santana DasguptaPERSON

0.99+

EuropeLOCATION

0.99+

CanadaLOCATION

0.99+

BMWORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

ICEORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Jack BerkowitzPERSON

0.99+

AustraliaLOCATION

0.99+

NVIDIAORGANIZATION

0.99+

TelcoORGANIZATION

0.99+

VenkatPERSON

0.99+

MichaelPERSON

0.99+

CamillePERSON

0.99+

Andy JassyPERSON

0.99+

IBMORGANIZATION

0.99+

Venkat KrishnamachariPERSON

0.99+

DellORGANIZATION

0.99+

Don TapscottPERSON

0.99+

thousandsQUANTITY

0.99+

Palo AltoLOCATION

0.99+

Intercontinental ExchangeORGANIZATION

0.99+

Children's Cancer InstituteORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

telcoORGANIZATION

0.99+

Sabrina YanPERSON

0.99+

TimPERSON

0.99+

SabrinaPERSON

0.99+

John FurrierPERSON

0.99+

GoogleORGANIZATION

0.99+

MontyCloudORGANIZATION

0.99+

AWSORGANIZATION

0.99+

LeoPERSON

0.99+

COVID-19OTHER

0.99+

Santa AnaLOCATION

0.99+

UKLOCATION

0.99+

TusharPERSON

0.99+

Las VegasLOCATION

0.99+

ValentePERSON

0.99+

JL ValentePERSON

0.99+

1,000QUANTITY

0.99+

Carl Perry, Snowflake | Snowflake Summit 2022


 

(calm music) >> Welcome to theCUBE's live coverage of Snowflake Summit '22 from Las Vegas, Caesars Forum. Lisa Martin here with Dave Vellante, we're going to unpack some really cool stuff next, in the next 10 minutes with you, Carl Perry joins us, the Director of Product Management at Snowflake, he's here to talk about Snowflake's new Unistore workloads, how it's driving the next phase of innovation, welcome to the program. >> Oh, thank you so much for having me, this is awesome. >> There's a ton of momentum here, I saw the the numbers from fiscal 23Q1, product revenue 394 million, 85% growth, a lot of customers here, the customer growth is incredible as well, talk to us about Unistore, what is it? Unpack it and how have the customers been influential in it's development? >> Yeah, so Unistore is a way for customers to take their transactional workloads, for their enterprise applications and now have them run on or be built on top of Snowflake and now, you have your transactional data, along with all of your historical data, so now you have a single unified platform for doing anything you need to do with your data, whether it's transactional, single row look-ups, we can do that, whether it's the analytical data across again, transactional and historical data in a single query, our customers are super excited about this. >> So, what are Hybrid Tables? Is that just an extension of external tables? >> Yeah, that's a great question. So, Hybrid Tables are a new table-type that we've added to Snowflake and Hybrid Tables are really kind of just like another table with a couple of key differences, so number one is that Hybrid Tables provide fast, fine-grain read and write operations, so when you do something like a select star from customers where customer ID=832, that's going to return extremely fast, but on top of that same data, your transactional data, you can actually perform amazing analytical queries that return extremely fast and that's what Hybrid Tables at their core are. >> So, what does this mean for, so you're bringing that world of transaction and analytics together, what does it mean for customers? Walk us through Carl, an example of- >> Yeah, so it's great, so Adobe is a customer that is looking at using and leveraging Hybrid Tables today, and then more broadly Unistore, and frankly, Adobe has been an amazing customer since they started their journey, just really quickly, they're in phase three, the first phase was customers had data in Snowflake that they wanted to take advantage of with the Adobe Campaign Platform and so what they did is they built a connector basically into and being able to access customer data, and then they started to look at, "Well, this thing's working really well, let's try to leverage Snowflake for all our analytical needs." And so that was kind of phase two, and now phase three is like, look let's go and reimagine what we can do with the Adobe Campaign Platform by having both the transactional and analytical data in the same platform, so that they can really enable their customers to do personalization, ad campaign management, understanding the ethicacy of those things at a scale that they haven't been able to do before. >> Prior to this capability, they would what? Have to go outside of the Snowflake Data Cloud? And do something else? And then come back in? >> Exactly, right? So, they'd have a transactional system where all of the transactional state for what the customer was doing inside Adobe Campaign, setting up all their campaigns and everything, and that would be stored inside a database, right? And then they would need to ensure that, that data was moved over to Snowflake for further analytical purposes, right? You know you imagine the complexity that our customers have to manage every single day, a separate transactional system, an ETL pipeline to keep that data flowing and then Snowflake, right? And with Unistore, we really believe that customers will be able to remove that complexity from their lives and have that single platform that really makes their lives easier. >> I mean, they'll still have a transactional system, will they not? Or do you see a day where they sort of sunset that? >> I mean, there's a set of workloads that are not going to be the best choice today for Unistore and Hybrid Tables, right? And so we know that customers will continue to have their own transactional systems, right? And there's lots of transactional systems that customers rely and have entire applications, and systems built around, right? Right now with Hybrid Tables and Unistore, customers can take those enterprise applications, not consumer-facing applications and move them over to leverage Snowflake, and then really think about re-imagining how they can use their data that's both realtime transactional, as well as all the historical data without the need to move things between systems or use a ton of different services. >> The Adobe example that you just gave seems like, I loved how you described the phases they're in, they're discovering, it's like peeling the onion and just discovering more, and more, but what it sounds like is that Snowflake has enabled Adobe to transform part of it's business, how is Unistore positioned to be so transformational for your customers? >> Well, I mean I think there's a couple of things, so one, they have this like level of complexity today for a set of applications that they can completely stop worrying about, right? No need to maintain that separate transactional system for that again, enterprise application, no need to maintain that ETL pipeline, that's kind of like one step, the next step is, I mean all your data's in Snowflake, so you can start leveraging that data for insight and action immediately, there's no delay in being able to take advantage of that data, right? And then number three, which I think is the most compelling part is because it's part of Snowflake, you getting the benefit of Snowflake's entire ecosystem, whether it's first party capabilities like easy to manage and enforce really powerful governance, and security policies, right? Being able to take data from the market place and actually join it with my realtime transactional data, this is game-changing and then most importantly is the third-party ecosystem of partners who are building all these incredible solutions on top of Snowflake, I can't even begin to imagine what they're going to do with Hybrid Tables in Unistore. >> So, Carl I have to ask you, so I talked to a lot of customers and I talked to a lot of technology companies, explain, so Snowflake obviously was the first to separate compute from storage and you know the cloud, cloud database and then tons of investment came into that space, kind of follow you on, so that's cool, you reached escape velocity, awesome, but a lot of the companies that I talked to are saying, "We're converging transaction and analytics," I think (speaking softly) calls it HTAP or something, they came up with a name, explain the difference between what you're doing and what everybody else is doing, and why, what customer benefits you're delivering? >> Yeah, so I mean I think that's a really great question and to use the term you used HTAP, right? It's a industry understood term, really when people think about HTAP, what that is about is taking your transactional data that you have and enabling you to do fast analytical capabilities on that, and that's great, but there are a couple of problems that historical HTAP solutions have suffered from, so number one, that acceleration, that colander format of data is all in memory, so you're bound by the total amount of memory that you can use to accelerate the queries that you want to, so that's kind of problem one, this is not the approach that Snowflake is taking, most importantly, it's not just about accelerating queries on transactional data, whether it's a single-row lookup or a complex aggregate, it's about being able to leverage that data within the data cloud, right? I don't want to have a separate dataset on a transactional system or an HTAP system that can give me great analytics on transactional data and then I can't use it with all the other data that I have, it's truly about enabling the transformation with the data cloud and completely taking away silos, so that your data, whether it's realtime, whether it's historical, can be treated as a single dataset, this is the key thing that is different about Unistore, you can take the power of the data cloud, all of it, all of the partners, all the solutions and all the capabilities we continue to add, and leverage your data in ways that nobody's thought of possible before. >> Governance is a huge, huge component of that, right? So, in the press release, you have this statement, "As part of the Unistore Snowflake is introducing Hybrid Tables," you explained that, "Which offer fast, single-row operations and allow customers to build transactional business applications directly on Snowflake"- >> Yep. >> That's a little interesting tidbit, so you expect customers are going to build transactional applications inside the data cloud? And somewhat minimize the work that is going to be required by their existing transactional databases, correct? >> Exactly and I think, so let me say a couple things on this, right? So, first of all, there's a class of applications that will be able to just build on top of Hybrid Tables and run on Snowflake directly, for their transactional needs, I think what's super interesting here though is when you again start to talk about all your data, one example that we're going to walk through tomorrow in our talk is being able to do a transaction that updates data in a Hybrid Table and then updates data in a Standard Snowflake Table, and then either being able to atomically commit, or rollback that transaction, this is a transaction that's spanning multiple different table types inside Snowflake and you'll have consistency of either the rollback or the commit, this type of functionality doesn't exist elsewhere and being able to take, and build transactional applications with these capabilities, we think is transformative- >> And that's all going to happen inside the Snowflake Data Cloud, with all the capabilities and it's not like you know what you're doing with Dell and Pure, it's nice, but it's read-only, you can't you know add and delete, and do all that stuff, this is Native? First class citizen inside the database? >> Yep, just like other table types, you'll be able to take on and leverage the power of the data cloud as a normal table that you'd be able to use elsewhere. >> Got to ask you, your energy in the way that you're talking about this is fantastic, the transformation that it's going to be, how central it is to the product innovations that Snowflake is coming out with, what's been the feedback from customers? As there's so many thousands of folks here today, the keynote was standing in your room only, there was an overflow, what are you hearing on the floor here? >> Well, I mean, I think it was funny in the talk when I announced that primary keys are going to be required and enforced, and we got a standing ovation, I was like, "Wow, I didn't expect people to be so excited about primary key enforcement." I mean, what's been amazing both about the private preview and the feedback we're getting there, and then some of the early feedback we're getting from customers is that they want to understand and they're really thinking about like, "Wait, I can use Snowflake for all of this now?" And honestly I think that people are kind of like, "But wait, what would I do if I could have those applications running on Snowflake and not have to worry about multiple systems? Wait, I can combine it with all my historical data and anything that's in the data cloud, like what can I do?" Is the question they're asking and I think that this is the most fascinating thing, customers are going to build things they haven't been able to build before and I'm super excited to see what they do. >> But more specifically, my takeaway is that customers, actually application builders are going to be able to build applications that have data inherent to those apps, I mean John Furrier years ago said, "You know data is the new development kit." And it never happened the data, the data stack if you will separate from the application development stack, you're bringing those two worlds together, so what do you think the implications are of that? >> Well, I mean I think that we're going to dramatically simplify our customers lives, right? A thing that we focus on at Snowflake is relentless customer innovation, so we can make their lives better, so I mean frankly we talk to customers like, "Wait, I can do all this? Wait, are you sure that I'll be able to do this?" And we walk through what we can do, and what we can't do, and they really are like, "Wow, this could just dramatically simplify our lives and wait, what could we do with our data here?" And so, I think with the announcement of Unistore, and also all the Native app stuff that we're announcing today, I think we're really trying to enable customers and app developers there to think about, and being able to leverage Snowflake as their transactional system, the system of source, so I mean, I'm super excited about this, I came to Snowflake to work on this and I'm like, "Can't believe we get to talk about it." >> How do you, how, how? How does this work? What's the secret sauce behind it? Is it architecture or is it? >> Yeah, so I mean I think a big part of it is the architecture that we chose, so you know number one, a key product philosophy that we have at Snowflake is we have one product, we don't have many, we don't put the onus of complexity onto our customers and so building that into Snowflake is actually really hard, so underlying Hybrid Tables, which is the feature that powers Unistore is a row storage engine, a row-based storage engine, right? And then data is asynchronously copied over into a colander format and what this provides, because it's just another table that's deeply integrated with Snowflake is the compiler's completely aware of this, so you can write a query that spans multiple tables and take advantage of it, and we'll take over all the complexity, whether it needs to be a fast response to a single-row lookup, or it needs to aggregate and scan a ton of data, we'll make sure that we choose the right thing and provide you with the best performance that we have- >> You built that intelligence inside of that? >> Completely built in and amazing, but provided in a very simple fashion. >> You said you came to Snowflake to do this? How long ago was that? >> I came here a little over a year and a half. >> Okay, and had they started working on this obviously beforehand, or at least envisioning it, right? >> Yeah, this I mean, this is absolutely incredible, I have been working on this now for a year and a half, some of the team members have been working on it for more and it's incredible to finally be able to talk to customers and everybody about it, and for them to tell us what they're trying to do. I've already talked to a bunch of customers like, "Well wait, I could do this, or this, what about this scenario?" And it's awesome to hear their requirements, right? The thing that's been most amazing and you'll hear it in the talk tomorrow with Adobe who's been a great customer is like, "Customers give us insanely hard requirements." And what I love about this company is not, "Well, you know it's easier to do it this way." It's like, "No, how can we actually make their life easier?" And so, we really focus on doing that with Snowflake. >> And that's one of the things Frank talked about this morning with that mission alignment being critical there. So, it's in private preview now, when can folks expect to get their hands on it? >> Well, we don't have a date right now we're talking about, but you can go signup to be notified of the public preview when we get there, I think it's like snowflake.com/try-unistore, but we'll publish that later and you know if you're interested in the private preview, talk to your account team and we'll see if we can get you in. >> Carl, thank you so much for joining Dave and me in an action-packed 15 minutes, talking about the power of Unistore, what it's going to enable organizations to do and it sounds like you're tapping the surface, there's just so much more innovation that's to come, you're going to have to come back. >> Yes, that sounds awesome, thank you so much. >> Our pleasure. For Carl and Dave Vellante, I'm Lisa Martin, you're watching theCUBE's live coverage of Snowflake Summit '22 from the show floor in Las Vegas, we're going to be right back with our next guest. (calm music)

Published Date : Jun 15 2022

SUMMARY :

in the next 10 minutes with you, Oh, thank you so much for having me, and now, you have your transactional data, and that's what Hybrid and then they started to look at, and have that single platform and move them over to leverage Snowflake, and actually join it with my and to use the term you used HTAP, right? and leverage the power of the data cloud and I'm super excited to see what they do. the data stack if you will separate and being able to leverage Snowflake and amazing, and a half. and for them to tell us And that's one of the things and you know if you're interested and it sounds like you're Yes, that sounds awesome, and Dave Vellante,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

CarlPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

Carl PerryPERSON

0.99+

John FurrierPERSON

0.99+

Las VegasLOCATION

0.99+

FrankPERSON

0.99+

AdobeORGANIZATION

0.99+

15 minutesQUANTITY

0.99+

UnistoreORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

a year and a halfQUANTITY

0.99+

DellORGANIZATION

0.99+

first phaseQUANTITY

0.99+

SnowflakeTITLE

0.99+

tomorrowDATE

0.98+

fiscal 23Q1DATE

0.98+

one productQUANTITY

0.98+

todayDATE

0.98+

singleQUANTITY

0.98+

Snowflake Summit '22EVENT

0.98+

snowflake.com/try-unistoreOTHER

0.97+

two worldsQUANTITY

0.97+

firstQUANTITY

0.97+

one exampleQUANTITY

0.97+

Unistore SnowflakeORGANIZATION

0.96+

single platformQUANTITY

0.96+

over a year and a halfQUANTITY

0.96+

bothQUANTITY

0.95+

394 millionQUANTITY

0.95+

this morningDATE

0.93+

one stepQUANTITY

0.93+

Las Vegas,LOCATION

0.92+

Hybrid TablesORGANIZATION

0.92+

single-rowQUANTITY

0.91+

oneQUANTITY

0.91+

theCUBEORGANIZATION

0.91+

Snowflake Summit 2022EVENT

0.89+

85% growthQUANTITY

0.89+

tonsQUANTITY

0.87+

single dayQUANTITY

0.87+

number oneQUANTITY

0.86+

years agoDATE

0.85+

thousands of folksQUANTITY

0.84+

Hybrid TablesTITLE

0.81+

Adobe Campaign PlatformTITLE

0.79+

single rowQUANTITY

0.79+

phase threeQUANTITY

0.77+

Campaign PlatformTITLE

0.76+

FirstQUANTITY

0.75+

Caesars ForumLOCATION

0.72+