Image Title

Search Results for three jobs:

Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud


 

>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great questions, Dave. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)

Published Date : Feb 17 2023

SUMMARY :

and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Jack GreenfieldPERSON

0.99+

DavePERSON

0.99+

JackPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Martin FowlerPERSON

0.99+

WalmartORGANIZATION

0.99+

USLOCATION

0.99+

Zhamak DehghaniPERSON

0.99+

TodayDATE

0.99+

eachQUANTITY

0.99+

OneQUANTITY

0.99+

twoQUANTITY

0.99+

GoogleORGANIZATION

0.99+

todayDATE

0.99+

two thingsQUANTITY

0.99+

threeQUANTITY

0.99+

firstQUANTITY

0.99+

each stepQUANTITY

0.99+

FirstQUANTITY

0.99+

early 1960sDATE

0.99+

StarlinkORGANIZATION

0.99+

oneQUANTITY

0.98+

a dayQUANTITY

0.97+

GCPTITLE

0.97+

AzureTITLE

0.96+

WCNPTITLE

0.96+

10 millisecondsQUANTITY

0.96+

bothQUANTITY

0.96+

KubernetesTITLE

0.94+

Cloud SpannerTITLE

0.94+

LinkerdORGANIZATION

0.93+

tripletQUANTITY

0.92+

three cloud providersQUANTITY

0.91+

CubeORGANIZATION

0.9+

SuperCloud2ORGANIZATION

0.89+

two core setsQUANTITY

0.88+

John FurrierPERSON

0.88+

one more pieceQUANTITY

0.86+

two public cloudsQUANTITY

0.86+

thousand locationsQUANTITY

0.83+

Vice PresidentPERSON

0.8+

10-ishQUANTITY

0.79+

WCNPORGANIZATION

0.75+

decadesQUANTITY

0.75+

three different major regionsQUANTITY

0.74+

Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud


 

>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great question, Steve. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, and it does get disconnected on a regular basis. In fact, I forget the exact number, but some several dozen locations get disconnected daily just by virtue of the fact that there's construction going on and things are happening in the real world. When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)

Published Date : Jan 9 2023

SUMMARY :

and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
StevePERSON

0.99+

Dave VellantePERSON

0.99+

Jack GreenfieldPERSON

0.99+

DavePERSON

0.99+

JackPERSON

0.99+

MicrosoftORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

Martin FowlerPERSON

0.99+

USLOCATION

0.99+

Zhamak DehghaniPERSON

0.99+

TodayDATE

0.99+

eachQUANTITY

0.99+

OneQUANTITY

0.99+

twoQUANTITY

0.99+

StarlinkORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

two thingsQUANTITY

0.99+

todayDATE

0.99+

threeQUANTITY

0.99+

firstQUANTITY

0.99+

each stepQUANTITY

0.99+

FirstQUANTITY

0.99+

early 1960sDATE

0.98+

oneQUANTITY

0.98+

a dayQUANTITY

0.98+

GCPTITLE

0.97+

AzureTITLE

0.96+

WCNPTITLE

0.96+

10 millisecondsQUANTITY

0.96+

bothQUANTITY

0.96+

KubernetesTITLE

0.94+

Cloud SpannerTITLE

0.94+

LinkerdORGANIZATION

0.93+

CubeORGANIZATION

0.93+

tripletQUANTITY

0.92+

three cloud providersQUANTITY

0.91+

two core setsQUANTITY

0.88+

John FurrierPERSON

0.86+

one more pieceQUANTITY

0.86+

SuperCloud2ORGANIZATION

0.86+

two public cloudsQUANTITY

0.86+

thousand locationsQUANTITY

0.83+

Vice PresidentPERSON

0.8+

10-ishQUANTITY

0.79+

WCNPORGANIZATION

0.75+

decadesQUANTITY

0.75+

three different major regionsQUANTITY

0.74+

Breaking Analysis: Supercloud2 Explores Cloud Practitioner Realities & the Future of Data Apps


 

>> Narrator: From theCUBE Studios in Palo Alto and Boston bringing you data-driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante >> Enterprise tech practitioners, like most of us they want to make their lives easier so they can focus on delivering more value to their businesses. And to do so, they want to tap best of breed services in the public cloud, but at the same time connect their on-prem intellectual property to emerging applications which drive top line revenue and bottom line profits. But creating a consistent experience across clouds and on-prem estates has been an elusive capability for most organizations, forcing trade-offs and injecting friction into the system. The need to create seamless experiences is clear and the technology industry is starting to respond with platforms, architectures, and visions of what we've called the Supercloud. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis we give you a preview of Supercloud 2, the second event of its kind that we've had on the topic. Yes, folks that's right Supercloud 2 is here. As of this recording, it's just about four days away 33 guests, 21 sessions, combining live discussions and fireside chats from theCUBE's Palo Alto Studio with prerecorded conversations on the future of cloud and data. You can register for free at supercloud.world. And we are super excited about the Supercloud 2 lineup of guests whereas Supercloud 22 in August, was all about refining the definition of Supercloud testing its technical feasibility and understanding various deployment models. Supercloud 2 features practitioners, technologists and analysts discussing what customers need with real-world examples of Supercloud and will expose thinking around a new breed of cross-cloud apps, data apps, if you will that change the way machines and humans interact with each other. Now the example we'd use if you think about applications today, say a CRM system, sales reps, what are they doing? They're entering data into opportunities they're choosing products they're importing contacts, et cetera. And sure the machine can then take all that data and spit out a forecast by rep, by region, by product, et cetera. But today's applications are largely about filling in forms and or codifying processes. In the future, the Supercloud community sees a new breed of applications emerging where data resides on different clouds, in different data storages, databases, Lakehouse, et cetera. And the machine uses AI to inspect the e-commerce system the inventory data, supply chain information and other systems, and puts together a plan without any human intervention whatsoever. Think about a system that orchestrates people, places and things like an Uber for business. So at Supercloud 2, you'll hear about this vision along with some of today's challenges facing practitioners. Zhamak Dehghani, the founder of Data Mesh is a headliner. Kit Colbert also is headlining. He laid out at the first Supercloud an initial architecture for what that's going to look like. That was last August. And he's going to present his most current thinking on the topic. Veronika Durgin of Sachs will be featured and talk about data sharing across clouds and you know what she needs in the future. One of the main highlights of Supercloud 2 is a dive into Walmart's Supercloud. Other featured practitioners include Western Union Ionis Pharmaceuticals, Warner Media. We've got deep, deep technology dives with folks like Bob Muglia, David Flynn Tristan Handy of DBT Labs, Nir Zuk, the founder of Palo Alto Networks focused on security. Thomas Hazel, who's going to talk about a new type of database for Supercloud. It's several analysts including Keith Townsend Maribel Lopez, George Gilbert, Sanjeev Mohan and so many more guests, we don't have time to list them all. They're all up on supercloud.world with a full agenda, so you can check that out. Now let's take a look at some of the things that we're exploring in more detail starting with the Walmart Cloud native platform, they call it WCNP. We definitely see this as a Supercloud and we dig into it with Jack Greenfield. He's the head of architecture at Walmart. Here's a quote from Jack. "WCNP is an implementation of Kubernetes for the Walmart ecosystem. We've taken Kubernetes off the shelf as open source." By the way, they do the same thing with OpenStack. "And we have integrated it with a number of foundational services that provide other aspects of our computational environment. Kubernetes off the shelf doesn't do everything." And so what Walmart chose to do, they took a do-it-yourself approach to build a Supercloud for a variety of reasons that Jack will explain, along with Walmart's so-called triplet architecture connecting on-prem, Azure and GCP. No surprise, there's no Amazon at Walmart for obvious reasons. And what they do is they create a common experience for devs across clouds. Jack is going to talk about how Walmart is evolving its Supercloud in the future. You don't want to miss that. Now, next, let's take a look at how Veronica Durgin of SAKS thinks about data sharing across clouds. Data sharing we think is a potential killer use case for Supercloud. In fact, let's hear it in Veronica's own words. Please play the clip. >> How do we talk to each other? And more importantly, how do we data share? You know, I work with data, you know this is what I do. So if you know I want to get data from a company that's using, say Google, how do we share it in a smooth way where it doesn't have to be this crazy I don't know, SFTP file moving? So that's where I think Supercloud comes to me in my mind, is like practical applications. How do we create that mesh, that network that we can easily share data with each other? >> Now data mesh is a possible architectural approach that will enable more facile data sharing and the monetization of data products. You'll hear Zhamak Dehghani live in studio talking about what standards are missing to make this vision a reality across the Supercloud. Now one of the other things that we're really excited about is digging deeper into the right approach for Supercloud adoption. And we're going to share a preview of a debate that's going on right now in the community. Bob Muglia, former CEO of Snowflake and Microsoft Exec was kind enough to spend some time looking at the community's supercloud definition and he felt that it needed to be simplified. So in near real time he came up with the following definition that we're showing here. I'll read it. "A Supercloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers." So not only did Bob simplify the initial definition he's stressed that the Supercloud is a platform versus an architecture implying that the platform provider eg Snowflake, VMware, Databricks, Cohesity, et cetera is responsible for determining the architecture. Now interestingly in the shared Google doc that the working group uses to collaborate on the supercloud de definition, Dr. Nelu Mihai who is actually building a Supercloud responded as follows to Bob's assertion "We need to avoid creating many Supercloud platforms with their own architectures. If we do that, then we create other proprietary clouds on top of existing ones. We need to define an architecture of how Supercloud interfaces with all other clouds. What is the information model? What is the execution model and how users will interact with Supercloud?" What does this seemingly nuanced point tell us and why does it matter? Well, history suggests that de facto standards will emerge more quickly to resolve real world practitioner problems and catch on more quickly than consensus-based architectures and standards-based architectures. But in the long run, the ladder may serve customers better. So we'll be exploring this topic in more detail in Supercloud 2, and of course we'd love to hear what you think platform, architecture, both? Now one of the real technical gurus that we'll have in studio at Supercloud two is David Flynn. He's one of the people behind the the movement that enabled enterprise flash adoption, that craze. And he did that with Fusion IO and he is now working on a system to enable read write data access to any user in any application in any data center or on any cloud anywhere. So think of this company as a Supercloud enabler. Allow me to share an excerpt from a conversation David Flore and I had with David Flynn last year. He as well gave a lot of thought to the Supercloud definition and was really helpful with an opinionated point of view. He said something to us that was, we thought relevant. "What is the operating system for a decentralized cloud? The main two functions of an operating system or an operating environment are one the process scheduler and two, the file system. The strongest argument for supercloud is made when you go down to the platform layer and talk about it as an operating environment on which you can run all forms of applications." So a couple of implications here that will be exploring with David Flynn in studio. First we're inferring from his comment that he's in the platform camp where the platform owner is responsible for the architecture and there are obviously trade-offs there and benefits but we'll have to clarify that with him. And second, he's basically saying, you kill the concept the further you move up the stack. So the weak, the further you move the stack the weaker the supercloud argument becomes because it's just becoming SaaS. Now this is something we're going to explore to better understand is thinking on this, but also whether the existing notion of SaaS is changing and whether or not a new breed of Supercloud apps will emerge. Which brings us to this really interesting fellow that George Gilbert and I RIFed with ahead of Supercloud two. Tristan Handy, he's the founder and CEO of DBT Labs and he has a highly opinionated and technical mind. Here's what he said, "One of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse inside of your data lake. These are core concepts that the business should be able to create applications around very easily. In fact, that's not the case because it involves a lot of data engineering pipeline and other work to make these available. So if you really want to make it easy to create these data experiences for users you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes and they don't need to." A lot of implications to this statement that will explore at Supercloud two versus Jamma Dani's data mesh comes into play here with her critique of hyper specialized data pipeline experts with little or no domain knowledge. Also the need for simplified self-service infrastructure which Kit Colbert is likely going to touch upon. Veronica Durgin of SAKS and her ideal state for data shearing along with Harveer Singh of Western Union. They got to deal with 200 locations around the world in data privacy issues, data sovereignty how do you share data safely? Same with Nick Taylor of Ionis Pharmaceutical. And not to blow your mind but Thomas Hazel and Bob Muglia deposit that to make data apps a reality across the Supercloud you have to rethink everything. You can't just let in memory databases and caching architectures take care of everything in a brute force manner. Rather you have to get down to really detailed levels even things like how data is laid out on disk, ie flash and think about rewriting applications for the Supercloud and the MLAI era. All of this and more at Supercloud two which wouldn't be complete without some data. So we pinged our friends from ETR Eric Bradley and Darren Bramberm to see if they had any data on Supercloud that we could tap. And so we're going to be analyzing a number of the players as well at Supercloud two. Now, many of you are familiar with this graphic here we show some of the players involved in delivering or enabling Supercloud-like capabilities. On the Y axis is spending momentum and on the horizontal accesses market presence or pervasiveness in the data. So netscore versus what they call overlap or end in the data. And the table insert shows how the dots are plotted now not to steal ETR's thunder but the first point is you really can't have supercloud without the hyperscale cloud platforms which is shown on this graphic. But the exciting aspect of Supercloud is the opportunity to build value on top of that hyperscale infrastructure. Snowflake here continues to show strong spending velocity as those Databricks, Hashi, Rubrik. VMware Tanzu, which we all put under the magnifying glass after the Broadcom announcements, is also showing momentum. Unfortunately due to a scheduling conflict we weren't able to get Red Hat on the program but they're clearly a player here. And we've put Cohesity and Veeam on the chart as well because backup is a likely use case across clouds and on-premises. And now one other call out that we drill down on at Supercloud two is CloudFlare, which actually uses the term supercloud maybe in a different way. They look at Supercloud really as you know, serverless on steroids. And so the data brains at ETR will have more to say on this topic at Supercloud two along with many others. Okay, so why should you attend Supercloud two? What's in it for me kind of thing? So first of all, if you're a practitioner and you want to understand what the possibilities are for doing cross-cloud services for monetizing data how your peers are doing data sharing, how some of your peers are actually building out a Supercloud you're going to get real world input from practitioners. If you're a technologist, you're trying to figure out various ways to solve problems around data, data sharing, cross-cloud service deployment there's going to be a number of deep technology experts that are going to share how they're doing it. We're also going to drill down with Walmart into a practical example of Supercloud with some other examples of how practitioners are dealing with cross-cloud complexity. Some of them, by the way, are kind of thrown up their hands and saying, Hey, we're going mono cloud. And we'll talk about the potential implications and dangers and risks of doing that. And also some of the benefits. You know, there's a question, right? Is Supercloud the same wine new bottle or is it truly something different that can drive substantive business value? So look, go to Supercloud.world it's January 17th at 9:00 AM Pacific. You can register for free and participate directly in the program. Okay, that's a wrap. I want to give a shout out to the Supercloud supporters. VMware has been a great partner as our anchor sponsor Chaos Search Proximo, and Alura as well. For contributing to the effort I want to thank Alex Myerson who's on production and manages the podcast. Ken Schiffman is his supporting cast as well. Kristen Martin and Cheryl Knight to help get the word out on social media and at our newsletters. And Rob Ho is our editor-in-chief over at Silicon Angle. Thank you all. Remember, these episodes are all available as podcast. Wherever you listen we really appreciate the support that you've given. We just saw some stats from from Buzz Sprout, we hit the top 25% we're almost at 400,000 downloads last year. So really appreciate your participation. All you got to do is search Breaking Analysis podcast and you'll find those I publish each week on wikibon.com and siliconangle.com. Or if you want to get ahold of me you can email me directly at David.Vellante@siliconangle.com or dm me DVellante or comment on our LinkedIn post. I want you to check out etr.ai. They've got the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. We'll see you next week at Supercloud two or next time on breaking analysis. (light music)

Published Date : Jan 14 2023

SUMMARY :

with Dave Vellante of the things that we're So if you know I want to get data and on the horizontal

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Bob MugliaPERSON

0.99+

Alex MyersonPERSON

0.99+

Cheryl KnightPERSON

0.99+

David FlynnPERSON

0.99+

VeronicaPERSON

0.99+

JackPERSON

0.99+

Nelu MihaiPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

Thomas HazelPERSON

0.99+

Nick TaylorPERSON

0.99+

Dave VellantePERSON

0.99+

Jack GreenfieldPERSON

0.99+

Kristen MartinPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Veronica DurginPERSON

0.99+

WalmartORGANIZATION

0.99+

Rob HoPERSON

0.99+

Warner MediaORGANIZATION

0.99+

Tristan HandyPERSON

0.99+

Veronika DurginPERSON

0.99+

George GilbertPERSON

0.99+

Ionis PharmaceuticalORGANIZATION

0.99+

George GilbertPERSON

0.99+

Bob MugliaPERSON

0.99+

David FlorePERSON

0.99+

DBT LabsORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

BobPERSON

0.99+

Palo AltoLOCATION

0.99+

21 sessionsQUANTITY

0.99+

Darren BrambermPERSON

0.99+

33 guestsQUANTITY

0.99+

Nir ZukPERSON

0.99+

BostonLOCATION

0.99+

AmazonORGANIZATION

0.99+

Harveer SinghPERSON

0.99+

Kit ColbertPERSON

0.99+

DatabricksORGANIZATION

0.99+

Sanjeev MohanPERSON

0.99+

Supercloud 2TITLE

0.99+

SnowflakeORGANIZATION

0.99+

last yearDATE

0.99+

Western UnionORGANIZATION

0.99+

CohesityORGANIZATION

0.99+

SupercloudORGANIZATION

0.99+

200 locationsQUANTITY

0.99+

AugustDATE

0.99+

Keith TownsendPERSON

0.99+

Data MeshORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

David.Vellante@siliconangle.comOTHER

0.99+

next weekDATE

0.99+

bothQUANTITY

0.99+

oneQUANTITY

0.99+

secondQUANTITY

0.99+

first pointQUANTITY

0.99+

OneQUANTITY

0.99+

FirstQUANTITY

0.99+

VMwareORGANIZATION

0.98+

Silicon AngleORGANIZATION

0.98+

ETRORGANIZATION

0.98+

Eric BradleyPERSON

0.98+

twoQUANTITY

0.98+

todayDATE

0.98+

SachsORGANIZATION

0.98+

SAKSORGANIZATION

0.98+

SupercloudEVENT

0.98+

last AugustDATE

0.98+

each weekQUANTITY

0.98+

Juan Loaiza, Oracle | Building the Mission Critical Supercloud


 

(upbeat music) >> Welcome back to Supercloud two where we're gathering a number of industry luminaries to discuss the future of cloud services. And we'll be focusing on various real world practitioners today, their challenges, their opportunities with an emphasis on data, self-service infrastructure and how organizations are evolving their data and cloud strategies to prepare for that next era of digital innovation. And we really believe that support for multiple cloud estates is a first step of any Supercloud. And in that regard Oracle surprise some folks with its Azure collaboration the Oracle database and exit database services. And to discuss the challenges of developing a mission critical Supercloud we welcome Juan Loaiza, who's the executive vice president of Mission Critical Database Technologies at Oracle. Juan, you're many time CUBE alums so welcome back to the show. Great to see you. >> Great to see you, and happy to be here with you. >> Yeah, thank you. So a lot of people felt that Oracle was resistant to multicloud strategies and preferred to really have everything run just on the Oracle cloud infrastructure, OCI and maybe that was a misperception maybe you guys were misunderstood or maybe you had to change your heart. Take us through the decision to support multiple cloud platforms >> Now we've supported multiple cloud platforms for many years, so I think that was probably a misperception. Oracle database, we partnered up with Amazon very early on in their cloud when they had kind of the the first cloud out there. And we had Oracle database running on their cloud. We have backup, we have a lot of stuff running. So, yeah, part of the philosophy of Oracle has always been we partner with every platform. We're very open we started with SQL and APIs. As we develop new technologies we push them into the SQL standard. So that's always been part of the ecosystem at Oracle. That's how we think we get an advantage by being more open. I think if we try to create this isolated little world it actually hurts us and hurts customers. So for us it's a win-win to be open across the clouds. >> So Supercloud is this concept that we put forth to describe a platform or some people think it's an architecture if you have an opinion, and I'd love to hear it but it provides a programmatically consistent set of services that hosted on heterogeneous cloud providers. And so we look at the Oracle database service for Azure as fitting within this definition. In your view, is this accurate? >> Yeah, I would broaden it. I'd see a little bit more than that. We just think that services should be available from everywhere, right? So, I mean, it's a little bit like if you go back to the pre-internet world, there was things like AOL and CompuServe and those were kind of islands. And if you were on AOL, you really didn't have access to anything on CompuServe and vice versa. And the cloud world has evolved a little bit like that. And we just think that's the wrong model. They shouldn't these clouds are part of the world and they need to be interconnected like all the rest of the world. It's been a long time with telephones internet, everything, everything's interconnected. Everything should work seamlessly together. So that's how we believe if you're running in one cloud and you're running let's say an application, one cloud you want to use a service from another cloud should be completely simple to do that. It shouldn't be, I can only use what's in AOL or CompuServe or whatever else. It should not be isolated. >> Well, we got a long way to go before that Nirvana exists but one example is the Oracle database service with Azure. So what exactly does that service provide? I'm interested in how consistent the service experience is across clouds. Did you create a purpose-built PaaS layer to achieve this common experience? Or is it off the shelf Terraform? Is there unique value in the PaaS layer? Let's dig into some of those questions. I know I just threw six at you. >> Yeah, I mean, so what this is, is what we're trying to do is very simple. Which is, for example, starting with the Oracle database we want to make that seamless to use from anywhere you're running. Whether it's on-prem, on some other cloud, anywhere else you should be able to seamlessly use the Oracle database and it should look like the internet. There's no friction. There's not a lot of hoops you got to jump just because you're trying to use a database that isn't local to you. So it's pretty straightforward. And in terms of things like Azure, it's not easy to do because all these clouds have a lot of kind of very unique technologies. So what we've done is at Oracle is we've said, "Okay we're going to make Oracle database look exactly like if it was running on Azure." That means we'll use the Azure security systems, the identity management systems, the networking, there's things like monitoring and management. So we'll push all these technologies. For example, when we have monitoring event or we have alerts we'll push those into the Azure console. So as a user, it looks to you exactly as if that Oracle database was running inside Azure. Also, the networking is a big challenge across these clouds. So we've basically made that whole thing seamless. So we create the super high bandwidth network between Azure and Oracle. We make sure that's extremely low latency, under two milliseconds round trip. It's all within the local metro region. So it's very fast, very high bandwidth, very low latency. And we take care establishing the links and making sure that it's secure and all that kind of stuff. So at a high level, it looks to you like the database is--even the look and feel of the screens. It's the Azure colors, it's the Azure buttons it's the Azure layout of the screens so it looks like you're running there and we take care of all the technical details underlying that which there's a lot which has taken a lot of work to make it work seamlessly. >> In the magic of that abstraction. Juan, does it happen at the PaaS layer? Could you take us inside that a little bit? Is there intelligence in there that helps you deal with latency or are there any kind of purpose-built functions for this service? >> You could think of it as... I mean it happens at a lot of different layers. It happens at the identity management layer, it happens at the networking layer, it happens at the database layer, it happens at the monitoring layer, at the management layer. So all those things have been integrated. So it's not one thing that you just go and do. You have to integrate all these different services together. You can access files in Azure from the Oracle database. Again, that's completely seamless. You, it's just like if it was local to our cloud you get your Azure files in your kind of S3 equivalent. So yeah, the, it's not one thing. There's a whole lot of pieces to the ecosystem. And what we've done is we've worked on each piece separately to make sure that it's completely seamless and transparent so you don't have to think about it, it just works. >> So you kind of answered my next question which is one of the technical hurdles. It sounds like the technical hurdles are that integration across the entire stack. That's the sort of architecture that you've built. What was the catalyst for this service? >> Yeah, the catalyst is just fulfilling our vision of an open cloud world. It's really like I said, Oracle, from the very beginning has been believed in open standards. Customers should be able to have choice customers should be able to use whatever they want from wherever they want. And we saw that, you know in the new world of cloud that had broken down everybody had their own authentication system management system, monitoring system networking system, configuration system. And it became very difficult. There was a lot of friction to using services across cloud. So we said, "Well, okay we can fix that." It's work, it's significant amount of work but we know how to do it and let's just go do it and make it easy for customers. >> So given Oracle is really your main focus is on mission critical workloads. You talked about this low latency network, I mean but you still have physical distances, so how are you managing that latency? What's the experience been for customers across Azure and OCI? >> Yeah, so it, it's a good point. I mean, latency can be an issue. So the good thing about clouds is we have a lot of cloud data centers. We have dozens and dozens of cloud data centers around the world. And Azure has dozens and dozens of cloud data centers. And in most cases, they're in the same metro region because there's kind of natural metro regions within each country that you want to put your cloud data centers in. So most of our data centers are actually very close to the Azure data centers. There's the kind of northern Virginia, there's London, there's Tokyo I mean, there's natural places where everybody puts their data centers Seoul et cetera. And so that's the real key. So that allows us to put a very high bandwidth and low latency network. The real problems with latency come when you're trying to go along physical distance. If you're trying to connect, you know across the Pacific or you know across the country or something like that, then you can get in trouble with latency within the same metro region. It's extremely fast. It tends to be around one, you know the highest two millisecond that's roundtrip through all the routers and connections and gateways and everything else. With everything taken into consideration, what we guarantee is it's always less than two millisecond which is a very low latency time. So that tends to not be a problem because it's extremely low latency. >> I was going to ask you less than two milliseconds. So, earlier in the program we had Jack Greenfield who runs architecture for Walmart, and he was explaining what we call their Supercloud, and it's runs across Azure, GCP, and they're on-prem. They have this thing called the triplet model. So my question to you is, are you in situations where you guaranteeing that less than two milliseconds do you have situations where you're bringing, you know Exadata Cloud, a customer on-prem to achieve that? Or is this just across clouds? >> Yeah, in this case, we're talking public cloud data center to public cloud data center. >> Oh okay. >> So add your public cloud data center to Oracle Public Cloud data center. They're in the same metro region. We set up the connections, we do all the technology to make it seamless. And from a customer point of view they don't really see the network. Also, remember that SQL is actually designed to have very low bandwidth and latency requirements. So it is a language. So you don't go to the database and say do this one little thing for me. You send it a SQL statement that can actually access lots of data while in the database. So the real latency requirement of a SQL database is within the database. So I need to access all that data fast. So I need very fast access to storage very fast access across node. That's what exit data gives you. But you send one request and that request can do a huge amount of work and then return one answer. And that's kind of the design point of SQL. So SQL is inherently low bandwidth requirements, it was used back in the eighties when we used to have 10 megabit networks and the the biggest companies in the world ran back then. So right now we're talking over hundred hundreds of gigabits. So it's really not much of a challenge. When you're designed to run on 10 megabit to say, okay I'm going to give you 10,000 times what you were designed for it's really, it's a pretty low hurdle jump. >> What about the deployment models? How do you handle this? Is it a single global instance across clouds or do you sort of instantiate in each you got exudate in Azure and exudates in OCI? What's the deployment model look like? >> It's pretty straightforward. So customer decides where they want to run their application and database. So there's natural places where people go. If you're in Tokyo, you're going to choose the local Tokyo data centers for both, you know Microsoft and Oracle. If you're in London, you're going to do that. If you're in California you're going to choose maybe San Jose, something like that. So a customer just chooses. We both have data centers in that metro region. So they create their service on Azure and then they go to our console which looks just like an Azure console and say all right create me a database. And then we choose the closest Oracle data center which is generally a few miles away, and then it it all gets created. So from a customer point of view, it's very straightforward. >> I'm always in awe about how simple you make things sound. All right what about security? You talked a little bit before about identity access how you sort of abstracting the Azure capabilities away so that you've simplified it for your customers but are there any other specific security things that you need to do? How much did you have to abstract the underlying primitives of Azure or OCI to present that common experience to customers? >> Yeah, so there's really two big things. One is the identity management. Like my name is X on Azure and I have this set of privileges. Oracle has its own identity management system, right? So what we didn't want is that you have to kind of like bridge these things yourself. It's a giant pain to do that. So we actually what we call federate across these identity managements. So you put your credentials into Azure and then they automatically get to use the exact same credentials and identity in the Oracle cloud. So again, you don't have to think about it, it just works. And then the second part is that the whole bridging the network. So within a cloud you generally have virtual network that's private to your company. And so at Oracle, we bridge the private network that you created in, for example, Azure to the private network that we create for you in Oracle. So it is still a private network without you having to do a whole bunch of work. So it's just like if you were in your own data center other people can't get into your network. So it's secured at the network level, it's secured at the identity management, and encryption level. And again we did a lot of work to make that seamless for customers and they don't have to worry about it because we did the work. That's really as simple as it gets. >> That's what's Supercloud's supposed to be all about. Alright, we were talking earlier about sort of the misperception around multicloud, your view of Open I think, which is you run the Oracle database, wherever the customer wants to run it. So you got this database service across OCI and Azure customers today, they run Oracle database in AWS. You got heat wave, MySQL, heat wave that you announced on AWS, Google touts a bare metal offering where you can run Oracle on GCP. Do you see a day when you extend an OCI Azure like situation across multiple clouds? Would that bring benefits to customers or will the world of database generally remain largely fenced with maybe a few exceptions like what you're doing with OCI and Azure? I'm particularly interested in your thoughts on egress fees as maybe one of the reasons that there is a barrier to this happening and why maybe these stove pipes, exist today and in the future. What are your thoughts on that? >> Yeah, we're very open to working with everyone else out there. Like I said, we've always been, big believers in customers should have choice and you should be able to run wherever you want. So that's been kind of a founding principle of Oracle. We have the Azure, we did a partnership with them, we're open to doing other partnerships and you're going to see other things coming down the pipe on the topic of egress. Yeah, the large egress fees, it's pretty obvious what goes on with that. Various vendors like to have large egress fees because they want to keep things kind of locked into their cloud. So it's not a very customer friendly thing to do. And I think everybody recognizes that it's really trying to kind of course or put a lot of friction on moving data out of a particular cloud. And that's not what we do. We have very, very low egress fees. So we don't really do that and we don't think anybody else should do that. But I think customers at the end of the day, will win that battle. They're going to have to go back to their vendor and say, well I have choice in clouds and if you're going to impose these limits on me, maybe I'll make a different choice. So that's ultimately how these things get resolved. >> So do you think other cloud providers are going to take a page out of what you're doing with Azure and provide similar solutions? >> Yeah, well I think customers want, I mean, I've talked to a lot of customers, this is what they want, right? I mean, there's really no doubt no customer wants to be locked into a single ecosystem. There's nobody out there that wants that. And as the competition, when they start seeing an open ecosystem evolving they're going to be like, okay, I'd rather go there than the closed ecosystem, and that's going to put pressure on the closed ecosystems. So that's the nature of competition. That's what ultimately will tip the balance on these things. >> So Juan, even though you have this capability of distributing a workload across multiple clouds as in our Supercloud premise it's still something that's relatively new. It's a big decision that maybe many people might consider somewhat of a risk. So I'm curious who's driving the decisions for your initial customers? What do they want to get out of it? What's the decision point there? >> Yeah, I mean, this is generally driven by customers that want a specific technology in a cloud. I think the risk, I haven't seen a lot of people worry too much about the risk. Everybody involved in this is a very well known, very reputable firm. I mean, Oracle's been around for 40 years. We run most of the world's largest companies. I think customers understand we're not going to build a solution that's going to put their technology and their business at risk. And the same thing with Azure and others. So I don't see customers too worried about this is a risky move because it's really not. And you know, everybody understands networking at the end the day networking works. I mean, how does the internet work? It's a known quantity. It's not like it's some brand new invention. What we're really doing is breaking down the barriers to interconnecting things. Automating 'em, making 'em easy. So there's not a whole lot of risk here for customers. And like I said, every single customer in the world loves an open ecosystem. It's just not a question. If you go to a customer would you rather put your technology or your business to run on a closed ecosystem or an open system? It's kind of not even worth asking a question. It's a no-brainer. >> All right, so we got to go. My last question. What do you think of the term "Supercloud"? You think it'll stick? >> We'll see. There's a lot of terms out there and it's always fun to see which terms stick. It's a cool term. I like it, but the decision makers are actually the public, what sticks and what doesn't. It's very hard to predict. >> Yeah well, it's been a lot of fun having you on, Juan. Really appreciate your time and always good to see you. >> All right, Dave, thanks a lot. It's always fun to talk to you. >> You bet. All right, keep it right there. More Supercloud two content from theCUBE Community Dave Vellante for John Furrier. We'll be right back. (upbeat music)

Published Date : Jan 12 2023

SUMMARY :

and cloud strategies to prepare happy to be here with you. just on the Oracle cloud of the ecosystem at Oracle. and I'd love to hear it And the cloud world has Or is it off the shelf Terraform? So at a high level, it looks to you Juan, does it happen at the PaaS layer? it happens at the database layer, So you kind of And we saw that, you know What's the experience been for customers across the Pacific or you know So my question to you is, to public cloud data center. So the real latency requirement and then they go to our console the Azure capabilities away So it's secured at the network level, So you got this database We have the Azure, we did So that's the nature of competition. What's the decision point there? down the barriers to the term "Supercloud"? and it's always fun to and always good to see you. It's always fun to talk to you. Vellante for John Furrier.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
MicrosoftORGANIZATION

0.99+

OracleORGANIZATION

0.99+

DavePERSON

0.99+

WalmartORGANIZATION

0.99+

Juan LoaizaPERSON

0.99+

AmazonORGANIZATION

0.99+

San JoseLOCATION

0.99+

CaliforniaLOCATION

0.99+

Dave VellantePERSON

0.99+

TokyoLOCATION

0.99+

JuanPERSON

0.99+

LondonLOCATION

0.99+

sixQUANTITY

0.99+

10,000 timesQUANTITY

0.99+

Jack GreenfieldPERSON

0.99+

GoogleORGANIZATION

0.99+

second partQUANTITY

0.99+

AWSORGANIZATION

0.99+

less than two millisecondQUANTITY

0.99+

less than two millisecondsQUANTITY

0.99+

OneQUANTITY

0.99+

SQLTITLE

0.99+

10 megabitQUANTITY

0.99+

bothQUANTITY

0.99+

AOLORGANIZATION

0.98+

each pieceQUANTITY

0.98+

MySQLTITLE

0.98+

first cloudQUANTITY

0.98+

singleQUANTITY

0.98+

each countryQUANTITY

0.98+

John FurrierPERSON

0.98+

two big thingsQUANTITY

0.98+

under two millisecondsQUANTITY

0.98+

oneQUANTITY

0.98+

northern VirginiaLOCATION

0.98+

CompuServeORGANIZATION

0.97+

first stepQUANTITY

0.97+

Mission Critical Database TechnologiesORGANIZATION

0.97+

one requestQUANTITY

0.97+

SeoulLOCATION

0.97+

AzureTITLE

0.97+

eachQUANTITY

0.97+

two millisecondQUANTITY

0.97+

AzureORGANIZATION

0.96+

one cloudQUANTITY

0.95+

one thingQUANTITY

0.95+

cloud data centersQUANTITY

0.95+

one answerQUANTITY

0.95+

SupercloudORGANIZATION

0.94+