Image Title

Search Results for IATA:

Io-Tahoe Episode 5: Enterprise Digital Resilience on Hybrid and Multicloud


 

>>from around the globe. It's the Cube presenting enterprise. Digital resilience on hybrid and multi cloud Brought to You by Iota Ho. Hello, everyone, and welcome to our continuing Siri's covering data automation brought to you by Io Tahoe. Today we're gonna look at how to ensure enterprise resilience for hybrid and multi cloud. Let's welcome in age. Eva Hora, who is the CEO of Iota A J. Always good to see you again. Thanks for coming on. >>Great to be back. David Pleasure. >>And he's joined by Fozzy Coons, who is a global principal architect for financial services. The vertical of financial services. That red hat. He's got deep experiences in that sector. Welcome, Fozzie. Good to see you. >>Thank you very much. Happy to be here. >>Fancy. Let's start with you. Look, there are a lot of views on cloud and what it is. I wonder if you could explain to us how you think about what is a hybrid cloud and and how it works. >>Sure, yes. So the hybrid cloud is a 90 architecture that incorporates some degree off workload, possibility, orchestration and management across multiple clouds. Those clouds could be private cloud or public cloud or even your own data centers. And how does it all work? It's all about secure interconnectivity and on demand. Allocation of resources across clouds and separate clouds can become hydrate when they're similarly >>interconnected. And >>it is that interconnectivity that allows the workloads workers to be moved and how management can be unified in off the street. You can work and how well you have. These interconnections has a direct impact on how well your hybrid cloud will work. >>Okay, so we'll fancy staying with you for a minute. So in the early days of Cloud that turned private Cloud was thrown a lot around a lot, but often just meant virtualization of an on PREM system and a network connection to the public cloud. Let's bring it forward. What, in your view, does a modern hybrid cloud architecture look like? >>Sure. So for modern public clouds, we see that, um, teams organizations need to focus on the portability off applications across clouds. That's very important, right? And when organizations build applications, they need to build and deploy these applications as small collections off independently, loosely coupled services, and then have those things run on the same operating system which means, in other words, running it on Lenox everywhere and building cloud native applications and being able to manage and orchestrate thes applications with platforms like KUBERNETES or read it open shit, for example. >>Okay, so that Z, that's definitely different from building a monolithic application that's fossilized and and doesn't move. So what are the challenges for customers, you know, to get to that modern cloud? Aziz, you've just described it. Is it skill sets? Is that the ability to leverage things like containers? What's your view there? >>So, I mean, from what we've seen around around the industry, especially around financial services, where I spent most of my time, we see that the first thing that we see is management right now because you have all these clouds and all these applications, you have a massive array off connections off interconnections. You also have massive array off integrations, possibility and resource allocations as well, and then orchestrating all those different moving pieces. Things like storage networks and things like those are really difficult to manage, right? That's one. What s O Management is the first challenge. The second one is workload, placement, placement. Where do you place this? How do you place this cloud? Native applications. Do you or do you keep on site on Prem? And what do you put in the cloud? That is the the the other challenge. The major one. The third one is security. Security now becomes the key challenge and concern for most customers. And we could talk about how hundreds? Yeah, >>we're definitely gonna dig into that. Let's bring a J into the conversation. A J. You know, you and I have talked about this in the past. One of the big problems that virtually every companies face is data fragmentation. Um, talk a little bit about how I owe Tahoe unifies data across both traditional systems legacy systems. And it connects to these modern I t environments. >>Yeah, sure, Dave. I mean, fancy just nailed it. There used to be about data of the volume of data on the different types of data. But as applications become or connected and interconnected at the location of that data really matters how we serve that data up to those those app. So working with red hat in our partnership with Red Hat being able Thio, inject our data Discovery machine learning into these multiple different locations. Would it be in AWS on IBM Cloud or A D. C p R. On Prem being able thio Automate that discovery? I'm pulling that. That single view of where is all my data then allows the CEO to manage cast that can do things like one. I keep the data where it is on premise or in my Oracle Cloud or in my IBM cloud on Connect. The application that needs to feed off that data on the way in which you do that is machine learning. That learns over time is it recognizes different types of data, applies policies to declassify that data. Andi and brings it all together with automation. >>Right? And that's one of the big themes and we've talked about this on earlier episodes. Is really simplification really abstracting a lot of that heavy lifting away so we can focus on things A. J A. Z. You just mentioned e nifaz e. One of the big challenges that, of course, we all talk about his governance across thes disparity data sets. I'm curious as your thoughts. How does Red Hat really think about helping customers adhere to corporate edicts and compliance regulations, which, of course, are are particularly acute within financial services. >>Oh, yeah, Yes. So for banks and the payment providers, like you've just mentioned their insurers and many other financial services firms, Um, you know, they have to adhere Thio standards such as a PC. I. D. S s in Europe. You've got the G g d p g d p r, which requires strange and tracking, reporting documentation. And you know, for them to to remain in compliance and the way we recommend our customers to address these challenges is by having an automation strategy. Right. And that type of strategy can help you to improve the security on compliance off the organization and reduce the risk after the business. Right. And we help organizations build security and compliance from the start without consulting services residencies. We also offer courses that help customers to understand how to address some of these challenges. And that's also we help organizations build security into their applications without open sources. Mueller, where, um, middle offerings and even using a platform like open shift because it allows you to run legacy applications and also continue rights applications in a unified platform right And also that provides you with, you know, with the automation and the truly that you need to continuously monitor, manage and automate the systems for security and compliance >>purposes. Hey, >>Jay, anything. Any color you could add to this conversation? >>Yeah, I'm pleased. Badly brought up Open shift. I mean, we're using open shift to be able. Thio, take that security application of controls to to the data level. It's all about context. So, understanding what data is there being able to assess it to say who should have access to it. Which application permission should be applied to it. Um, that za great combination of Red Hat tonight. Tahoe. >>But what about multi Cloud? Doesn't that complicate the situation even even further? Maybe you could talk about some of the best practices to apply automation across not only hybrid cloud, but multi >>cloud a swell. Yeah, sure. >>Yeah. So the right automation solution, you know, can be the difference between, you know, cultivating an automated enterprise or automation caress. And some of the recommendations we give our clients is to look for an automation platform that can offer the first thing is complete support. So that means have an automation solution that provides that provides, um, you know, promotes I t availability and reliability with your platform so that you can provide, you know, enterprise great support, including security and testing, integration and clear roadmaps. The second thing is vendor interoperability interoperability in that you are going to be integrating multiple clouds. So you're going to need a solution that can connect to multiple clouds. Simples lee, right? And with that comes the challenge off maintain ability. So you you you're going to need to look into a automation Ah, solution that that is easy to learn or has an easy learning curve. And then the fourth idea that we tell our customers is scalability in the in the hybrid cloud space scale is >>is >>a big, big deal here, and you need a to deploy an automation solution that can span across the whole enterprise in a constituent, consistent manner, right? And then also, that allows you finally to, uh, integrate the multiple data centers that you have, >>So A J I mean, this is a complicated situation, for if a customer has toe, make sure things work on AWS or azure or Google. Uh, they're gonna spend all their time doing that, huh? What can you add really? To simplify that that multi cloud and hybrid cloud equation? >>Yeah. I could give a few customer examples here Warming a manufacturer that we've worked with to drive that simplification Onda riel bonuses for them is has been a reduction cost. We worked with them late last year to bring the cost bend down by $10 million in 2021 so they could hit that reduced budget. Andre, What we brought to that was the ability thio deploy using open shift templates into their different environments. Where there is on premise on bond or in as you mentioned, a W s. They had G cps well, for their marketing team on a cross, those different platforms being out Thio use a template, use pre built scripts to get up and running in catalog and discover that data within minutes. It takes away the legacy of having teams of people having Thio to jump on workshop cause and I know we're all on a lot of teens. The zoom cause, um, in these current times, they just sent me is in in of hours in the day Thio manually perform all of this. So yeah, working with red hat applying machine learning into those templates those little recipes that we can put that automation toe work, regardless of which location the data is in allows us thio pull that unified view together. Right? >>Thank you, Fozzie. I wanna come back to you. So the early days of cloud, you're in the big apple, you know, financial services. Really well. Cloud was like an evil word within financial services, and obviously that's changed. It's evolved. We talked about the pandemic, has even accelerated that, Um And when you really, you know, dug into it when you talk to customers about their experiences with security in the cloud it was it was not that it wasn't good. It was great, whatever. But it was different. And there's always this issue of skill, lack of skills and multiple tools suck up teams, they're really overburdened. But in the cloud requires new thinking. You've got the shared responsibility model you've got obviously have specific corporate requirements and compliance. So this is even more complicated when you introduce multiple clouds. So what are the differences that you can share from your experience is running on a sort of either on Prem or on a mono cloud, um, or, you know, and versus across clouds. What? What? What do you suggest there? >>Yeah, you know, because of these complexities that you have explained here, Miss Configurations and the inadequate change control the top security threats. So human error is what we want to avoid because is, you know, as your clouds grow with complexity and you put humans in the mix, then the rate off eras is going to increase, and that is going to exposure to security threat. So this is where automation comes in because automation will streamline and increase the consistency off your infrastructure management. Also application development and even security operations to improve in your protection, compliance and change control. So you want to consistently configure resources according to a pre approved um, you know, pre approved policies and you want to proactively maintain a to them in a repeatable fashion over the whole life cycle. And then you also want to rapid the identified system that require patches and and reconfiguration and automate that process off patching and reconfiguring so that you don't have humans doing this type of thing, right? And you want to be able to easily apply patches and change assistant settings. According Thio, Pre defined, based on like explained before, you know, with the pre approved policies and also you want is off auditing and troubleshooting, right? And from a rate of perspective, we provide tools that enable you to do this. We have, for example, a tool called danceable that enables you to automate data center operations and security and also deployment of applications and also obvious shit yourself, you know, automates most of these things and obstruct the human beings from putting their fingers on, causing, uh, potentially introducing errors right now in looking into the new world off multiple clouds and so forth. The difference is that we're seeing here between running a single cloud or on prem is three main areas which is control security and compliance. Right control here it means if your on premise or you have one cloud, um, you know, in most cases you have control over your data and your applications, especially if you're on Prem. However, if you're in the public cloud, there is a difference there. The ownership, it is still yours. But your resources are running on somebody else's or the public clouds. You know, e w s and so forth infrastructure. So people that are going to do this need to really especially banks and governments need to be aware off the regulatory constraints off running, uh, those applications in the public cloud. And we also help customers regionalize some of these choices and also on security. You will see that if you're running on premises or in a single cloud, you have more control, especially if you're on Prem. You can control this sensitive information that you have, however, in the cloud. That's a different situation, especially from personal information of employees and things like that. You need to be really careful off that. And also again, we help you rationalize some of those choices. And then the last one is compliant. Aziz. Well, you see that if you're running on Prem or a single cloud, um, regulations come into play again, right? And if you're running a problem, you have control over that. You can document everything you have access to everything that you need. But if you're gonna go to the public cloud again, you need to think about that. We have automation, and we have standards that can help you, uh, you know, address some of these challenges for security and compliance. >>So that's really strong insights, Potsie. I mean, first of all, answerable has a lot of market momentum. Red hats in a really good job with that acquisition, your point about repeatability is critical because you can't scale otherwise. And then that idea you're you're putting forth about control, security compliance It's so true is I called it the shared responsibility model. And there was a lot of misunderstanding in the early days of cloud. I mean, yeah, maybe a W s is gonna physically secure the, you know, s three, but in the bucket. But we saw so many Miss configurations early on. And so it's key to have partners that really understand this stuff and can share the experiences of other clients. So this all sounds great. A j. You're sharp, you know, financial background. What about the economics? >>You >>know, our survey data shows that security it's at the top of the spending priority list, but budgets are stretched thin. E especially when you think about the work from home pivot and and all the areas that they had toe the holes that they had to fill their, whether it was laptops, you know, new security models, etcetera. So how do organizations pay for this? What's the business case look like in terms of maybe reducing infrastructure costs so I could, you know, pay it forward or there's a There's a risk reduction angle. What can you share >>their? Yeah. I mean, the perspective I'd like to give here is, um, not being multi cloud is multi copies of an application or data. When I think about 20 years, a lot of the work in financial services I was looking at with managing copies of data that we're feeding different pipelines, different applications. Now what we're saying I talk a lot of the work that we're doing is reducing the number of copies of that data so that if I've got a product lifecycle management set of data, if I'm a manufacturer, I'm just gonna keep that in one location. But across my different clouds, I'm gonna have best of breed applications developed in house third parties in collaboration with my supply chain connecting securely to that. That single version of the truth. What I'm not going to do is to copy that data. So ah, lot of what we're seeing now is that interconnectivity using applications built on kubernetes. Um, that decoupled from the data source that allows us to reduce those copies of data within that you're gaining from the security capability and resilience because you're not leaving yourself open to those multiple copies of data on with that. Couldn't come. Cost, cost of storage on duh cost of compute. So what we're seeing is using multi cloud to leverage the best of what each cloud platform has to offer That goes all the way to Snowflake and Hiroko on Cloud manage databases, too. >>Well, and the people cost to a swell when you think about yes, the copy creep. But then you know when something goes wrong, a human has to come in and figured out um, you brought up snowflake, get this vision of the data cloud, which is, you know, data data. I think this we're gonna be rethinking a j, uh, data architectures in the coming decade where data stays where it belongs. It's distributed, and you're providing access. Like you said, you're separating the data from the applications applications as we talked about with Fozzie. Much more portable. So it Z really the last 10 years will be different than the next 10 years. A. >>J Definitely. I think the people cast election is used. Gone are the days where you needed thio have a dozen people governing managing black policies to data. Ah, lot of that repetitive work. Those tests can be in power automated. We've seen examples in insurance were reduced teams of 15 people working in the the back office China apply security controls compliance down to just a couple of people who are looking at the exceptions that don't fit. And that's really important because maybe two years ago the emphasis was on regulatory compliance of data with policies such as GDP are in CCP a last year, very much the economic effect of reduce headcounts on on enterprises of running lean looking to reduce that cost. This year, we can see that already some of the more proactive cos they're looking at initiatives such as net zero emissions how they use data toe under understand how cape how they can become more have a better social impact. Um, and using data to drive that, and that's across all of their operations and supply chain. So those regulatory compliance issues that may have been external we see similar patterns emerging for internal initiatives that benefiting the environment, social impact and and, of course, course, >>great perspectives. Yeah, Jeff Hammer, Bucker once famously said, The best minds of my generation are trying to get people to click on ads and a J. Those examples that you just gave of, you know, social good and moving. Uh, things forward are really critical. And I think that's where Data is gonna have the biggest societal impact. Okay, guys, great conversation. Thanks so much for coming on the program. Really appreciate your time. Keep it right there from, or insight and conversation around, creating a resilient digital business model. You're watching the >>Cube digital resilience, automated compliance, privacy and security for your multi cloud. Congratulations. You're on the journey. You have successfully transformed your organization by moving to a cloud based platform to ensure business continuity in these challenging times. But as you scale your digital activities, there is an inevitable influx of users that outpaces traditional methods of cybersecurity, exposing your data toe underlying threats on making your company susceptible toe ever greater risk to become digitally resilient. Have you applied controls your data continuously throughout the data Lifecycle? What are you doing to keep your customer on supply data private and secure? I owe Tahoe's automated, sensitive data. Discovery is pre programmed with over 300 existing policies that meet government mandated risk and compliance standards. Thes automate the process of applying policies and controls to your data. Our algorithm driven recommendation engine alerts you to risk exposure at the data level and suggests the appropriate next steps to remain compliant on ensure sensitive data is secure. Unsure about where your organization stands In terms of digital resilience, Sign up for a minimal cost commitment. Free data Health check. Let us run our sensitive data discovery on key unmapped data silos and sources to give you a clear understanding of what's in your environment. Book time within Iot. Tahoe Engineer Now >>Okay, let's now get into the next segment where we'll explore data automation. But from the angle of digital resilience within and as a service consumption model, we're now joined by Yusuf Khan, who heads data services for Iot, Tahoe and Shirish County up in. Who's the vice president and head of U. S. Sales at happiest Minds? Gents, welcome to the program. Great to have you in the Cube. >>Thank you, David. >>Trust you guys talk about happiest minds. This notion of born digital, foreign agile. I like that. But talk about your mission at the company. >>Sure. >>A former in 2011 Happiest Mind is a born digital born a child company. The reason is that we are focused on customers. Our customer centric approach on delivering digitals and seamless solutions have helped us be in the race. Along with the Tier one providers, Our mission, happiest people, happiest customers is focused to enable customer happiness through people happiness. We have Bean ranked among the top 25 i t services company in the great places to work serving hour glass to ratings off 41 against the rating off. Five is among the job in the Indian nineties services company that >>shows the >>mission on the culture. What we have built on the values right sharing, mindful, integrity, learning and social on social responsibilities are the core values off our company on. That's where the entire culture of the company has been built. >>That's great. That sounds like a happy place to be. Now you said you had up data services for Iot Tahoe. We've talked in the past. Of course you're out of London. What >>do you what? Your >>day to day focus with customers and partners. What you focused >>on? Well, David, my team work daily with customers and partners to help them better understand their data, improve their data quality, their data governance on help them make that data more accessible in a self service kind of way. To the stakeholders within those businesses on dis is all a key part of digital resilience that will will come on to talk about but later. You're >>right, e mean, that self service theme is something that we're gonna we're gonna really accelerate this decade, Yussef and so. But I wonder before we get into that, maybe you could talk about the nature of the partnership with happiest minds, you know? Why do you guys choose toe work closely together? >>Very good question. Um, we see Hyo Tahoe on happiest minds as a great mutual fit. A Suresh has said, uh, happiest minds are very agile organization um, I think that's one of the key things that attracts their customers on Io. Tahoe is all about automation. Uh, we're using machine learning algorithms to make data discovery data cataloging, understanding, data done. See, uh, much easier on. We're enabling customers and partners to do it much more quickly. So when you combine our emphasis on automation with the emphasis on agility that happiest minds have that that's a really nice combination work works very well together, very powerful. I think the other things that a key are both businesses, a serious have said, are really innovative digital native type type companies. Um, very focused on newer technologies, the cloud etcetera on. Then finally, I think they're both Challenger brands on happiest minds have a really positive, fresh ethical approach to people and customers that really resonates with us at Ideo Tahoe to >>great thank you for that. So Russia, let's get into the whole notion of digital resilience. I wanna I wanna sort of set it up with what I see, and maybe you can comment be prior to the pandemic. A lot of customers that kind of equated disaster recovery with their business continuance or business resilient strategy, and that's changed almost overnight. How have you seen your clients respond to that? What? I sometimes called the forced march to become a digital business. And maybe you could talk about some of the challenges that they faced along the way. >>Absolutely. So, uh, especially during this pandemic, times when you say Dave, customers have been having tough times managing their business. So happiest minds. Being a digital Brazilian company, we were able to react much faster in the industry, apart from the other services company. So one of the key things is the organisation's trying to adopt onto the digital technologies. Right there has bean lot off data which has been to manage by these customers on There have been lot off threats and risk, which has been to manage by the CEO Seo's so happiest minds digital resilient technology, right where we bring in the data. Complaints as a service were ableto manage the resilience much ahead off other competitors in the market. We were ableto bring in our business continuity processes from day one, where we were ableto deliver our services without any interruption to the services. What we were delivered to our customers So that is where the digital resilience with business community process enabled was very helpful for us. Toe enable our customers continue their business without any interruptions during pandemics. >>So I mean, some of the challenges that customers tell me they obviously they had to figure out how to get laptops to remote workers and that that whole remote work from home pivot figure out how to secure the end points. And, you know, those were kind of looking back there kind of table stakes, But it sounds like you've got a digital business. Means a data business putting data at the core, I like to say, but so I wonder if you could talk a little bit more about maybe the philosophy you have toward digital resilience in the specific approach you take with clients? >>Absolutely. They seen any organization data becomes. The key on that, for the first step is to identify the critical data. Right. So we this is a six step process. What we following happiest minds. First of all, we take stock off the current state, though the customers think that they have a clear visibility off their data. How are we do more often assessment from an external point off view on see how critical their data is, then we help the customers to strategies that right. The most important thing is to identify the most important critical herself. Data being the most critical assert for any organization. Identification off the data's key for the customers. Then we help in building a viable operating model to ensure these identified critical assets are secure on monitor dearly so that they are consumed well as well as protected from external threats. Then, as 1/4 step, we try to bring in awareness, toe the people we train them >>at >>all levels in the organization. That is a P for people to understand the importance off the digital ourselves and then as 1/5 step, we work as a back up plan in terms of bringing in a very comprehensive and a holistic testing approach on people process as well as in technology. We'll see how the organization can withstand during a crisis time, and finally we do a continuous governance off this data, which is a key right. It is not just a one step process. We set up the environment, we do the initial analysis and set up the strategy on continuously govern this data to ensure that they are not only know managed will secure as well as they also have to meet the compliance requirements off the organization's right. That is where we help organizations toe secure on Meet the regulations off the organizations. As for the privacy laws, so this is a constant process. It's not on one time effort. We do a constant process because every organization goes towards their digital journey on. They have to face all these as part off the evolving environment on digital journey. And that's where they should be kept ready in terms off. No recovering, rebounding on moving forward if things goes wrong. >>So let's stick on that for a minute, and then I wanna bring yourself into the conversation. So you mentioned compliance and governance when when your digital business, you're, as you say, you're a data business, so that brings up issues. Data sovereignty. Uh, there's governance, this compliance. There's things like right to be forgotten. There's data privacy, so many things. These were often kind of afterthoughts for businesses that bolted on, if you will. I know a lot of executives are very much concerned that these air built in on, and it's not a one shot deal. So do you have solutions around compliance and governance? Can you deliver that as a service? Maybe you could talk about some of the specifics there, >>so some of way have offered multiple services. Tow our customers on digital against. On one of the key service is the data complaints. As a service here we help organizations toe map the key data against the data compliance requirements. Some of the features includes in terms off the continuous discovery off data right, because organizations keep adding on data when they move more digital on helping the helping and understanding the actual data in terms off the residents of data, it could be a heterogeneous data soldiers. It could be on data basis, or it could be even on the data legs. Or it could be a no even on compromise all the cloud environment. So identifying the data across the various no heterogeneous environment is very key. Feature off our solution. Once we identify classify this sensitive data, the data privacy regulations on the traveling laws have to be map based on the business rules So we define those rules on help map those data so that organizations know how critical their digital assets are. Then we work on a continuous marching off data for anomalies because that's one of the key teachers off the solution, which needs to be implemented on the day to day operational basis. So we're helping monitoring those anomalies off data for data quality management on an ongoing basis. On finally, we also bringing the automated data governance where we can manage the sensory data policies on their later relationships in terms off mapping on manage their business roots on we drive reputations toe Also suggest appropriate actions to the customers. Take on those specific data sets. >>Great. Thank you, Yousef. Thanks for being patient. I want to bring in Iota ho thio discussion and understand where your customers and happiest minds can leverage your data automation capability that you and I have talked about in the past. I'm gonna be great if you had an example is well, but maybe you could pick it up from there, >>John. I mean, at a high level, assertions are clearly articulated. Really? Um, Hyoty, who delivers business agility. So that's by, um accelerating the time to operationalize data, automating, putting in place controls and actually putting helping put in place digital resilience. I mean way if we step back a little bit in time, um, traditional resilience in relation to data often met manually, making multiple copies of the same data. So you have a d b A. They would copy the data to various different places, and then business users would access it in those functional style owes. And of course, what happened was you ended up with lots of different copies off the same data around the enterprise. Very inefficient. ONDA course ultimately, uh, increases your risk profile. Your risk of a data breach. Um, it's very hard to know where everything is. And I realized that expression. They used David the idea of the forced march to digital. So with enterprises that are going on this forced march, what they're finding is they don't have a single version of the truth, and almost nobody has an accurate view of where their critical data is. Then you have containers bond with containers that enables a big leap forward so you could break applications down into micro services. Updates are available via a p I s on. So you don't have the same need thio to build and to manage multiple copies of the data. So you have an opportunity to just have a single version of the truth. Then your challenge is, how do you deal with these large legacy data states that the service has been referring Thio, where you you have toe consolidate and that's really where I attack comes in. Um, we massively accelerate that process of putting in a single version of the truth into place. So by automatically discovering the data, discovering what's dubica? What's redundant? Uh, that means you can consolidate it down to a single trusted version much more quickly. We've seen many customers have tried to do this manually, and it's literally taken years using manual methods to cover even a small percentage of their I T estates. With our tire, you could do it really very quickly on you can have tangible results within weeks and months on Ben, you can apply controls to the data based on context. So who's the user? What's the content? What's the use case? Things like data quality validations or access permissions on. Then, once you've done there. Your applications and your enterprise are much more secure, much more resilient. As a result, you've got to do these things whilst retaining agility, though. So coming full circle. This is where the partnership with happiest minds really comes in as well. You've got to be agile. You've gotta have controls. Um, on you've got a drug toward the business outcomes. Uh, and it's doing those three things together that really deliver for the customer. >>Thank you. Use f. I mean you and I. In previous episodes, we've looked in detail at the business case. You were just talking about the manual labor involved. We know that you can't scale, but also there's that compression of time. Thio get to the next step in terms of ultimately getting to the outcome. And we talked to a number of customers in the Cube, and the conclusion is, it's really consistent that if you could accelerate the time to value, that's the key driver reducing complexity, automating and getting to insights faster. That's where you see telephone numbers in terms of business impact. So my question is, where should customers start? I mean, how can they take advantage of some of these opportunities that we've discussed today. >>Well, we've tried to make that easy for customers. So with our Tahoe and happiest minds, you can very quickly do what we call a data health check. Um, this is a is a 2 to 3 week process, uh, to really quickly start to understand on deliver value from your data. Um, so, iota, who deploys into the customer environment? Data doesn't go anywhere. Um, we would look at a few data sources on a sample of data. Onda. We can very rapidly demonstrate how they discovery those catalog e on understanding Jupiter data and redundant data can be done. Um, using machine learning, um, on how those problems can be solved. Um, And so what we tend to find is that we can very quickly, as I say in the matter of a few weeks, show a customer how they could get toe, um, or Brazilian outcome on then how they can scale that up, take it into production on, then really understand their data state? Better on build. Um, Brasiliense into the enterprise. >>Excellent. There you have it. We'll leave it right there. Guys, great conversation. Thanks so much for coming on the program. Best of luck to you and the partnership Be well, >>Thank you, David Suresh. Thank you. Thank >>you for watching everybody, This is Dave Volonte for the Cuban are ongoing Siris on data automation without >>Tahoe, digital resilience, automated compliance, privacy and security for your multi cloud. Congratulations. You're on the journey. You have successfully transformed your organization by moving to a cloud based platform to ensure business continuity in these challenging times. But as you scale your digital activities, there is an inevitable influx of users that outpaces traditional methods of cybersecurity, exposing your data toe underlying threats on making your company susceptible toe ever greater risk to become digitally resilient. Have you applied controls your data continuously throughout the data lifecycle? What are you doing to keep your customer on supply data private and secure? I owe Tahoe's automated sensitive data. Discovery is pre programmed with over 300 existing policies that meet government mandated risk and compliance standards. Thes automate the process of applying policies and controls to your data. Our algorithm driven recommendation engine alerts you to risk exposure at the data level and suggests the appropriate next steps to remain compliant on ensure sensitive data is secure. Unsure about where your organization stands in terms of digital resilience. Sign up for our minimal cost commitment. Free data health check. Let us run our sensitive data discovery on key unmapped data silos and sources to give you a clear understanding of what's in your environment. Book time within Iot. Tahoe Engineer. Now. >>Okay, now we're >>gonna go into the demo. We want to get a better understanding of how you can leverage open shift. And I owe Tahoe to facilitate faster application deployment. Let me pass the mic to Sabetta. Take it away. >>Uh, thanks, Dave. Happy to be here again, Guys, uh, they've mentioned names to be the Davis. I'm the enterprise account executive here. Toyota ho eso Today we just wanted to give you guys a general overview of how we're using open shift. Yeah. Hey, I'm Noah Iota host data operations engineer, working with open ship. And I've been learning the Internets of open shift for, like, the past few months, and I'm here to share. What a plan. Okay, so So before we begin, I'm sure everybody wants to know. Noel, what are the benefits of using open shift. Well, there's five that I can think of a faster time, the operation simplicity, automation control and digital resilience. Okay, so that that's really interesting, because there's an exact same benefits that we had a Tahoe delivered to our customers. But let's start with faster time the operation by running iota. Who on open shift? Is it faster than, let's say, using kubernetes and other platforms >>are >>objective iota. Who is to be accessible across multiple cloud platforms, right? And so by hosting our application and containers were able to achieve this. So to answer your question, it's faster to create and use your application images using container tools like kubernetes with open shift as compared to, like kubernetes with docker cry over container D. Okay, so we got a bit technical there. Can you explain that in a bit more detail? Yeah, there's a bit of vocabulary involved, uh, so basically, containers are used in developing things like databases, Web servers or applications such as I have top. What's great about containers is that they split the workload so developers can select the libraries without breaking anything. And since Hammond's can update the host without interrupting the programmers. Uh, now, open shift works hand in hand with kubernetes to provide a way to build those containers for applications. Okay, got It s basically containers make life easier for developers and system happens. How does open shift differ from other platforms? Well, this kind of leads into the second benefit I want to talk about, which is simplicity. Basically, there's a lot of steps involved with when using kubernetes with docker. But open shift simplifies this with their source to image process that takes the source code and turns it into a container image. But that's not all. Open shift has a lot of automation and features that simplify working with containers, an important one being its Web console. Here. I've set up a light version of open ship called Code Ready Containers, and I was able to set up her application right from the Web console. And I was able to set up this entire thing in Windows, Mac and Lennox. So its environment agnostic in that sense. Okay, so I think I've seen the top left that this is a developers view. What would a systems admin view look like? It's a good question. So here's the administrator view and this kind of ties into the benefit of control. Um, this view gives insights into each one of the applications and containers that are running, and you could make changes without affecting deployment. Andi can also, within this view, set up each layer of security, and there's multiple that you can prop up. But I haven't fully messed around with it because with my luck, I'd probably locked myself out. So that seems pretty secure. Is there a single point security such as you use a log in? Or are there multiple layers of security? Yeah, there are multiple layers of security. There's your user login security groups and general role based access controls. Um, but there's also a ton of layers of security surrounding like the containers themselves. But for the sake of time, I won't get too far into it. Okay, eso you mentioned simplicity In time. The operation is being two of the benefits. You also briefly mention automation. And as you know, automation is the backbone of our platform here, Toyota Ho. So that's certainly grabbed my attention. Can you go a bit more in depth in terms of automation? Open shift provides extensive automation that speeds up that time the operation. Right. So the latest versions of open should come with a built in cryo container engine, which basically means that you get to skip that container engine insulation step and you don't have to, like, log into each individual container host and configure networking, configure registry servers, storage, etcetera. So I'd say, uh, it automates the more boring kind of tedious process is Okay, so I see the iota ho template there. What does it allow me to do? Um, in terms of automation in application development. So we've created an open shift template which contains our application. This allows developers thio instantly, like set up our product within that template. So, Noah Last question. Speaking of vocabulary, you mentioned earlier digital resilience of the term we're hearing, especially in the banking and finance world. Um, it seems from what you described, industries like banking and finance would be more resilient using open shift, Correct. Yeah, In terms of digital resilience, open shift will give you better control over the consumption of resource is each container is using. In addition, the benefit of containers is that, like I mentioned earlier since Hammond's can troubleshoot servers about bringing down the application and if the application does go down is easy to bring it back up using templates and, like the other automation features that open ship provides. Okay, so thanks so much. Know us? So any final thoughts you want to share? Yeah. I just want to give a quick recap with, like, the five benefits that you gained by using open shift. Uh, the five are timeto operation automation, control, security and simplicity. You could deploy applications faster. You could simplify the workload you could automate. A lot of the otherwise tedious processes can maintain full control over your workflow. And you could assert digital resilience within your environment. Guys, >>Thanks for that. Appreciate the demo. Um, I wonder you guys have been talking about the combination of a Iot Tahoe and red hat. Can you tie that in subito Digital resilience >>Specifically? Yeah, sure, Dave eso when we speak to the benefits of security controls in terms of digital resilience at Io Tahoe, we automated detection and apply controls at the data level, so this would provide for more enhanced security. >>Okay, But so if you were trying to do all these things manually. I mean, what what does that do? How much time can I compress? What's the time to value? >>So with our latest versions, Biota we're taking advantage of faster deployment time associated with container ization and kubernetes. So this kind of speeds up the time it takes for customers. Start using our software as they be ableto quickly spin up io towel on their own on premise environment are otherwise in their own cloud environment, like including aws. Assure or call GP on IBM Cloud a quick start templates allow flexibility deploy into multi cloud environments all just using, like, a few clicks. Okay, so so now just quickly add So what we've done iota, Who here is We've really moved our customers away from the whole idea of needing a team of engineers to apply controls to data as compared to other manually driven work flows. Eso with templates, automation, previous policies and data controls. One person can be fully operational within a few hours and achieve results straight out of the box on any cloud. >>Yeah, we've been talking about this theme of abstracting the complexity. That's really what we're seeing is a major trend in in this coming decade. Okay, great. Thanks, Sabina. Noah, How could people get more information or if they have any follow up questions? Where should they go? >>Yeah, sure. They've. I mean, if you guys are interested in learning more, you know, reach out to us at info at iata ho dot com to speak with one of our sales engineers. I mean, we love to hear from you, so book a meeting as soon as you can. All >>right. Thanks, guys. Keep it right there from or cube content with.

Published Date : Jan 27 2021

SUMMARY :

Always good to see you again. Great to be back. Good to see you. Thank you very much. I wonder if you could explain to us how you think about what is a hybrid cloud and So the hybrid cloud is a 90 architecture that incorporates some degree off And it is that interconnectivity that allows the workloads workers to be moved So in the early days of Cloud that turned private Cloud was thrown a lot to manage and orchestrate thes applications with platforms like Is that the ability to leverage things like containers? And what do you put in the cloud? One of the big problems that virtually every companies face is data fragmentation. the way in which you do that is machine learning. And that's one of the big themes and we've talked about this on earlier episodes. And that type of strategy can help you to improve the security on Hey, Any color you could add to this conversation? is there being able to assess it to say who should have access to it. Yeah, sure. the difference between, you know, cultivating an automated enterprise or automation caress. What can you add really? bond or in as you mentioned, a W s. They had G cps well, So what are the differences that you can share from your experience is running on a sort of either And from a rate of perspective, we provide tools that enable you to do this. A j. You're sharp, you know, financial background. know, our survey data shows that security it's at the top of the spending priority list, Um, that decoupled from the data source that Well, and the people cost to a swell when you think about yes, the copy creep. Gone are the days where you needed thio have a dozen people governing managing to get people to click on ads and a J. Those examples that you just gave of, you know, to give you a clear understanding of what's in your environment. Great to have you in the Cube. Trust you guys talk about happiest minds. We have Bean ranked among the mission on the culture. Now you said you had up data services for Iot Tahoe. What you focused To the stakeholders within those businesses on dis is of the partnership with happiest minds, you know? So when you combine our emphasis on automation with the emphasis And maybe you could talk about some of the challenges that they faced along the way. So one of the key things putting data at the core, I like to say, but so I wonder if you could talk a little bit more about maybe for the first step is to identify the critical data. off the digital ourselves and then as 1/5 step, we work as a back up plan So you mentioned compliance and governance when when your digital business, you're, as you say, So identifying the data across the various no heterogeneous environment is well, but maybe you could pick it up from there, So you don't have the same need thio to build and to manage multiple copies of the data. and the conclusion is, it's really consistent that if you could accelerate the time to value, to really quickly start to understand on deliver value from your data. Best of luck to you and the partnership Be well, Thank you, David Suresh. to give you a clear understanding of what's in your environment. Let me pass the mic to And I've been learning the Internets of open shift for, like, the past few months, and I'm here to share. into each one of the applications and containers that are running, and you could make changes without affecting Um, I wonder you guys have been talking about the combination of apply controls at the data level, so this would provide for more enhanced security. What's the time to value? a team of engineers to apply controls to data as compared to other manually driven work That's really what we're seeing I mean, if you guys are interested in learning more, you know, reach out to us at info at iata Keep it right there from or cube content with.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Jeff HammerPERSON

0.99+

JohnPERSON

0.99+

Eva HoraPERSON

0.99+

David SureshPERSON

0.99+

SabinaPERSON

0.99+

DavePERSON

0.99+

Yusuf KhanPERSON

0.99+

EuropeLOCATION

0.99+

LondonLOCATION

0.99+

2021DATE

0.99+

twoQUANTITY

0.99+

AWSORGANIZATION

0.99+

Dave VolontePERSON

0.99+

SiriTITLE

0.99+

GoogleORGANIZATION

0.99+

FozziePERSON

0.99+

2QUANTITY

0.99+

fiveQUANTITY

0.99+

David PleasurePERSON

0.99+

iata ho dot comORGANIZATION

0.99+

JayPERSON

0.99+

FiveQUANTITY

0.99+

six stepQUANTITY

0.99+

five benefitsQUANTITY

0.99+

15 peopleQUANTITY

0.99+

YousefPERSON

0.99+

$10 millionQUANTITY

0.99+

This yearDATE

0.99+

first stepQUANTITY

0.99+

Ideo TahoeORGANIZATION

0.99+

last yearDATE

0.99+

AndrePERSON

0.99+

hundredsQUANTITY

0.99+

OneQUANTITY

0.99+

one cloudQUANTITY

0.99+

2011DATE

0.99+

TahoeORGANIZATION

0.99+

TodayDATE

0.99+

NoelPERSON

0.99+

Red HatORGANIZATION

0.99+

PremORGANIZATION

0.99+

todayDATE

0.99+

tonightDATE

0.99+

Io TahoeORGANIZATION

0.99+

second benefitQUANTITY

0.99+

oneQUANTITY

0.99+

Iota A J.ORGANIZATION

0.99+

one stepQUANTITY

0.99+

bothQUANTITY

0.98+

third oneQUANTITY

0.98+

SirisTITLE

0.98+

AzizPERSON

0.98+

red hatORGANIZATION

0.98+

each layerQUANTITY

0.98+

both businessesQUANTITY

0.98+

fourth ideaQUANTITY

0.98+

appleORGANIZATION

0.98+

1/5 stepQUANTITY

0.98+

Toyota HoORGANIZATION

0.98+

first challengeQUANTITY

0.98+

41QUANTITY

0.98+

azureORGANIZATION

0.98+

Io TahoePERSON

0.98+

One personQUANTITY

0.98+

one locationQUANTITY

0.98+

singleQUANTITY

0.98+

NoahPERSON

0.98+

over 300 existing policiesQUANTITY

0.98+

Iot TahoeORGANIZATION

0.98+

ThioPERSON

0.98+

LenoxORGANIZATION

0.98+

two years agoDATE

0.98+

A. J A. Z.PERSON

0.98+

single pointQUANTITY

0.98+

first thingQUANTITY

0.97+

YussefPERSON

0.97+

JupiterLOCATION

0.97+

second thingQUANTITY

0.97+

three thingsQUANTITY

0.97+

about 20 yearsQUANTITY

0.97+

single cloudQUANTITY

0.97+

FirstQUANTITY

0.97+

SureshPERSON

0.97+

3 weekQUANTITY

0.97+

each containerQUANTITY

0.97+

each cloud platformQUANTITY

0.97+

Sabita Davis and Patrick Zeimet | Io-Tahoe Adaptive Data Governance


 

>>from around the globe. It's the Cube presenting adaptive data governance brought >>to you by >>Iota Ho. In this next segment, we're gonna be talking to you about getting to know your data. And specifically you're gonna hear from two folks at Io Tahoe. We've got enterprise account execs Evita Davis here, as well as Enterprise Data engineer Patrick Simon. They're gonna be sharing insights and tips and tricks for how you can get to know your data and quickly on. We also want to encourage you to engage with Sabina and Patrick. Use the chat feature to the right, send comments, questions or feedback so you can participate. All right, Patrick Sabetta, take it away. All right. >>Thanks, Lisa. Great to be here as Lisa mentioned guys. I'm the enterprise account executive here in Ohio. Tahoe you Pat? >>Yeah. Hey, everyone so great to be here. A said My name's Patrick Samit. I'm the enterprise data engineer here at Iota Ho. And we're so excited to be here and talk about this topic as one thing we're really trying to perpetuate is that data is everyone's business. >>I couldn't agree more, Pat. So, guys, what patent? I patent. I've actually had multiple discussions with clients from different organizations with different roles. So we spoke with both your technical and your non technical audience. So while they were interested in different aspects of our platform, we found that what they had in common was they wanted to make data easy to understand and usable. So that comes back. The pats point off being everybody's business because no matter your role, we're all dependent on data. So what Pan I wanted to do today was wanted toe walk. You guys through some of those client questions, slash pain points that we're hearing from different industries and different roles and demo how our platform here, like Tahoe, is used for automating those, uh, automating Dozier related tasks. So with that said, are you ready for the first one, Pat? >>Yeah, Let's do it. >>Great. So I'm gonna put my technical hat on for this one, So I'm a data practitioner. I just started my job. ABC Bank. I have over 100 different data sources. So I have data kept in Data Lakes, legacy data, sources, even the cloud. So my issue is I don't know what those data sources hold. I don't know what data sensitive, and I don't even understand how that data is connected. So how can I talk to help? >>Yeah, I think that's a very common experience many are facing and definitely something I've encountered in my past. Typically, the first step is to catalog the data and then start mapping the relationships between your various data stores. Now, more often than not, this has tackled through numerous meetings and a combination of Excel and something similar to video, which are too great tools in their own part. But they're very difficult to maintain. Just due to the rate that we are creating data in the modern world. It starts to beg for an idea that can scale with your business needs. And this is where a platform like Io Tahoe becomes so appealing. You can see here visualization of the data relationships created by the I Ho Tahoe service. Now, what is fantastic about this is it's not only laid out in a very human and digestible format in the same action of creating this view, the data catalog was constructed. >>Um, So is the data catalog automatically populated? Correct. Okay, so So what? I'm using iota. Hope at what I'm getting is this complete, unified automated platform without the added cost, of course. >>Exactly. And that's at the heart of Iota Ho. A great feature with that data catalog is that Iota Ho will also profile your data as it creates the catalog, assigning some meaning to those pesky column Underscore ones and custom variable underscore tents that are always such a joy to deal with. Uh, now, by leveraging this interface, we can start to answer the first part of your question and understand where the core relationships within our data exists. Personally, I'm a big fan of this >>view, >>as it really just helps the i b naturally John to these focal points that coincide with these key columns following that train of thought. Let's examine the customer I D column that seems to be at the center of a lot of these relationships. We can see that it's a fairly important column as it's maintaining the relationship between at least three other tables. Now you notice all the connectors are in this blue color. This means that their system defined relationships. But I hope Tahoe goes that extra mile and actually creates thes orange colored connectors as well. These air ones that are machine learning algorithms have predicted to be relationships. Uh, and you can leverage to try and make new and powerful relationships within your data. So I hope that answers the first part of your question. >>Eso So this is really cool. And I can see how this could be leverage quickly. Now. What if I added new data sources or your multiple data sources and needed toe? Identify what data sensitive. Can I Oh, Tahoe, Detect that. >>Yeah, definitely. Within the i o ta platform. There already over 300 pre defined policies such as HIPAA, ferpa, C, c, p, a and the like. One can choose which of these policies to run against their data along for flexibility and efficiency and running the policies that affect organization. >>Okay, so so 300 is an exceptional number. I'll give you that. But what about internal policies that apply to my organization? Is there any ability for me to write custom policies? >>Yeah, that's no issue. And is something that clients leverage fairly often to utilize this function when simply has to write a rejects that our team has helped many deploy. After that, the custom policy is stored for future use to profile sensitive data. One then selects the data sources they're interested in and select the policies that meet your particular needs. The interface will automatically take your data according to the policies of detects, after which you can review the discoveries confirming or rejecting the tagging. All of these insights are easily exported through the interface, so one can work these into the action items within your project management systems. And I think this lends to the collaboration as a team can work through the discovery simultaneously. And as each item is confirmed or rejected, they can see it ni instantaneously. All this translates to a confidence that with iota how you can be sure you're in compliance. >>Um, so I'm glad you mentioned compliance because that's extremely important to my organization. >>So >>what you're saying when I use the eye a Tahoe automated platform, we'd be 90% more compliant that before were other than if you were going to be using a human. >>Yeah, definitely. The collaboration and documentation that the iota ho interface lends itself to can really help you build that confidence that your compliance is sound. >>Does >>that answer your question about sense of data? >>Definitely so. So path. I have the next question for you. So we're planning on migration on guy. Have a set of reports I need to migrate. But what I need to know is that well, what what data sources? Those report those reports are dependent on and what's feeding those tables? >>Yeah, it's a fantastic questions to be toe identifying critical data elements, and the interdependencies within the various databases could be a time consuming but vital process and the migration initiative. Luckily, Iota Ho does have an answer, and again, it's presented in a very visual format. >>So what I'm looking at here is my entire day landscape. >>Yes, exactly. >>So let's say I add another data source. I can still see that Unified 3 60 view. >>Yeah, One feature that is particularly helpful is the ability to add data sources after the data lineage. Discovery has finished along for the flexibility and scope necessary for any data migration project. If you only need need to select a few databases or your entirety, this service will provide the answers. You're looking for this visual representation of the connectivity makes the identification of critical data elements a simple matter. The connections air driven by both system defined flows as well as those predicted by our algorithms, the confidence of which, uh can actually be customized to make sure that they're meeting the needs of the initiative that you have in place. Now, this also provides tabular output in case you need it for your own internal documentation or for your action items, which we can see right here. Uh, in this interface, you can actually also confirm or deny the pair rejection the pair directions along to make sure that the data is as accurate as possible. Does that help with your data lineage needs? >>Definitely. So So, Pat, My next big question here is So now I know a little bit about my data. How do I know I can trust it? So what I'm interested in knowing really is is it in a fit state for Meteo use it? Is it accurate? Does it conform to the right format? >>Yeah, that's a great question. I think that is a pain point felt across the board, be it by data practitioners or data consumers alike. another service that iota hope provides is the ability to write custom data quality rules and understand how well the data pertains to these rules. This dashboard gives a unified view of the strength of these rules, and your dad is overall quality. >>Okay, so Pat s o on on the accuracy scores there. So if my marketing team needs to run, a campaign can read dependent those accuracy scores to know what what tables have quality data to use for our marketing campaign. >>Yeah, this view would allow you to understand your overall accuracy as well as dive into the minutia to see which data elements are of the highest quality. So for that marketing campaign, if you need everything in a strong form, you'll be able to see very quickly with these high level numbers. But if you're only dependent on a few columns to get that information out the door, you can find that within this view, uh, >>so you >>no longer have to rely on reports about reports, but instead just come to this one platform to help drive conversations between stakeholders and data practitioners. I hope that helps answer your questions about that quality. >>Oh, definitely. So I have another one for you here. Path. So I get now the value of IATA who brings by automatically captured all those technical metadata from sources. But how do we match that with the business glossary? >>Yeah, within the same data quality service that we just reviewed. One can actually add business rules detailing the definitions and the business domains that these fall into. What's more is that the data quality rules were just looking at can then be tied into these definitions, allowing insight into the strength of these business rules. It is this service that empowers stakeholders across the business to be involved with the data life cycle and take ownership over the rules that fall within their domain. >>Okay, so those custom rules can I apply that across data sources? >>Yeah. You can bring in as many data sources as you need, so long as you could tie them to that unified definition. >>Okay, great. Thanks so much bad. And we just want to quickly say to everyone working in data, we understand your pain, so please feel free to reach out >>to us. We >>are website the chapel. Oh, Arlington. And let's get a conversation started on how iota Who can help you guys automate all those manual task to help save you time and money. Thank you. Thank >>you. Erin. >>Impact. If I could ask you one quick question, how do you advise customers? You just walk in this great example This banking example that you and city to talk through. How do you advise customers get started? >>Yeah, I think the number one thing that customers could do to get started with our platform is to just run the tag discovery and build up that data catalog. It lends itself very quickly to the other needs you might have, such as thes quality rules as well as identifying those kind of tricky columns that might exist in your data. Those custom variable underscore tens I mentioned before >>last questions to be to anything to add to what Pat just described as a starting place. >>Um, no, I think actually passed something that pretty well, I mean, just just by automating all those manual tasks, I mean, it definitely can save your company a lot of time and money, so we we encourage you just reach out to us. Let's get that conversation started. >>Excellent. Savita and Pat, Thank you so much. We hope you have learned a lot from these folks about how to get to know your data. Make sure that it's quality so that you can maximize the value of it. Thanks for watching.

Published Date : Dec 10 2020

SUMMARY :

from around the globe. for how you can get to know your data and quickly on. I'm the enterprise account executive here in Ohio. I'm the enterprise data engineer here at Iota Ho. So we spoke with both your technical and your non technical So I have data kept in Data Lakes, legacy data, sources, even the cloud. Typically, the first step is to catalog the data and then start mapping the relationships Um, So is the data catalog automatically populated? Uh, now, by leveraging this interface, we can start to answer the first part of your question So I hope that answers the first part of your question. And I can see how this could be leverage quickly. to run against their data along for flexibility and efficiency and running the policies that affect organization. policies that apply to my organization? And I think this lends to the collaboration as a team can work through the discovery that before were other than if you were going to be using a human. interface lends itself to can really help you build that confidence that your compliance is I have the next question for you. Yeah, it's a fantastic questions to be toe identifying critical data elements, and the interdependencies within I can still see that Unified 3 60 view. Yeah, One feature that is particularly helpful is the ability to add data sources after the data Does it conform to the right format? hope provides is the ability to write custom data quality rules and understand how well the data needs to run, a campaign can read dependent those accuracy scores to know what what tables have quality Yeah, this view would allow you to understand your overall accuracy as well as dive into the minutia I hope that helps answer your questions about that quality. So I have another one for you here. to be involved with the data life cycle and take ownership over the rules that fall within their domain. so long as you could tie them to that unified definition. we understand your pain, so please feel free to reach out to us. help you guys automate all those manual task to help save you time and money. you. This banking example that you and city to talk through. Yeah, I think the number one thing that customers could do to get started with our platform so we we encourage you just reach out to us. Make sure that it's quality so that you can maximize the value of it.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SabinaPERSON

0.99+

SavitaPERSON

0.99+

PatPERSON

0.99+

PatrickPERSON

0.99+

Patrick ZeimetPERSON

0.99+

Patrick SimonPERSON

0.99+

Evita DavisPERSON

0.99+

LisaPERSON

0.99+

OhioLOCATION

0.99+

ABC BankORGANIZATION

0.99+

Patrick SabettaPERSON

0.99+

Sabita DavisPERSON

0.99+

I Ho TahoeORGANIZATION

0.99+

Patrick SamitPERSON

0.99+

90%QUANTITY

0.99+

ErinPERSON

0.99+

ExcelTITLE

0.99+

each itemQUANTITY

0.99+

first stepQUANTITY

0.99+

two folksQUANTITY

0.99+

todayDATE

0.99+

Io TahoeORGANIZATION

0.98+

bothQUANTITY

0.98+

first partQUANTITY

0.98+

JohnPERSON

0.98+

HIPAATITLE

0.98+

first oneQUANTITY

0.97+

iotaTITLE

0.95+

one quick questionQUANTITY

0.94+

ferpaTITLE

0.93+

Iota HoTITLE

0.93+

CubeORGANIZATION

0.93+

One featureQUANTITY

0.92+

IATAORGANIZATION

0.92+

over 100 different data sourcesQUANTITY

0.9+

oneQUANTITY

0.89+

one platformQUANTITY

0.88+

three other tablesQUANTITY

0.86+

PanPERSON

0.85+

TahoeORGANIZATION

0.84+

Iota HoTITLE

0.84+

one thingQUANTITY

0.82+

TahoePERSON

0.82+

Iota HoORGANIZATION

0.75+

over 300QUANTITY

0.74+

CTITLE

0.74+

both systemQUANTITY

0.72+

at leastQUANTITY

0.68+

Data LakesLOCATION

0.68+

MeteoORGANIZATION

0.64+

OneQUANTITY

0.58+

Io-TahoeORGANIZATION

0.56+

DozierORGANIZATION

0.56+

pTITLE

0.52+

300OTHER

0.48+

ArlingtonPERSON

0.41+

TahoeLOCATION

0.4+

3 60OTHER

0.38+

IO TAHOE EPISODE 4 DATA GOVERNANCE V2


 

>>from around the globe. It's the Cube presenting adaptive data governance brought to you by Iota Ho. >>And we're back with the data automation. Siri's. In this episode, we're gonna learn more about what I owe Tahoe is doing in the field of adaptive data governance how it can help achieve business outcomes and mitigate data security risks. I'm Lisa Martin, and I'm joined by a J. Bihar on the CEO of Iot Tahoe and Lester Waters, the CEO of Bio Tahoe. Gentlemen, it's great to have you on the program. >>Thank you. Lisa is good to be back. >>Great. Staley's >>likewise very socially distant. Of course as we are. Listen, we're gonna start with you. What's going on? And I am Tahoe. What's name? Well, >>I've been with Iot Tahoe for a little over the year, and one thing I've learned is every customer needs air just a bit different. So we've been working on our next major release of the I O. Tahoe product. But to really try to address these customer concerns because, you know, we wanna we wanna be flexible enough in order to come in and not just profile the date and not just understand data quality and lineage, but also to address the unique needs of each and every customer that we have. And so that required a platform rewrite of our product so that we could, uh, extend the product without building a new version of the product. We wanted to be able to have plausible modules. We also focused a lot on performance. That's very important with the bulk of data that we deal with that we're able to pass through that data in a single pass and do the analytics that are needed, whether it's, uh, lineage, data quality or just identifying the underlying data. And we're incorporating all that we've learned. We're tuning up our machine learning we're analyzing on MAWR dimensions than we've ever done before. We're able to do data quality without doing a Nen initial rejects for, for example, just out of the box. So I think it's all of these things were coming together to form our next version of our product. We're really excited by it, >>So it's exciting a J from the CEO's level. What's going on? >>Wow, I think just building on that. But let's still just mentioned there. It's were growing pretty quickly with our partners. And today, here with Oracle are excited. Thio explain how that shaping up lots of collaboration already with Oracle in government, in insurance, on in banking and we're excited because we get to have an impact. It's real satisfying to see how we're able. Thio. Help businesses transform, Redefine what's possible with their data on bond. Having I recall there is a partner, uh, to lean in with is definitely helping. >>Excellent. We're gonna dig into that a little bit later. Let's let's go back over to you. Explain adaptive data governance. Help us understand that >>really adaptive data governance is about achieving business outcomes through automation. It's really also about establishing a data driven culture and pushing what's traditionally managed in I t out to the business. And to do that, you've got to you've got Thio. You've got to enable an environment where people can actually access and look at the information about the data, not necessarily access the underlying data because we've got privacy concerns itself. But they need to understand what kind of data they have, what shape it's in what's dependent on it upstream and downstream, and so that they could make their educated decisions on on what they need to do to achieve those business outcomes. >>Ah, >>lot of a lot of frameworks these days are hardwired, so you can set up a set of business rules, and that set of business rules works for a very specific database and a specific schema. But imagine a world where you could just >>say, you >>know, the start date of alone must always be before the end date of alone and having that generic rule, regardless of the underlying database and applying it even when a new database comes online and having those rules applied. That's what adaptive data governance about I like to think of. It is the intersection of three circles, Really. It's the technical metadata coming together with policies and rules and coming together with the business ontology ease that are that are unique to that particular business. And this all of this. Bringing this all together allows you to enable rapid change in your environment. So it's a mouthful, adaptive data governance. But that's what it kind of comes down to. >>So, Angie, help me understand this. Is this book enterprise companies are doing now? Are they not quite there yet. >>Well, you know, Lisa, I think every organization is is going at its pace. But, you know, markets are changing the economy and the speed at which, um, some of the changes in the economy happening is is compelling more businesses to look at being more digital in how they serve their own customers. Eh? So what we're seeing is a number of trends here from heads of data Chief Data Officers, CEO, stepping back from, ah, one size fits all approach because they've tried that before, and it it just hasn't worked. They've spent millions of dollars on I T programs China Dr Value from that data on Bennett. And they've ended up with large teams of manual processing around data to try and hardwire these policies to fit with the context and each line of business and on that hasn't worked. So the trends that we're seeing emerge really relate. Thio, How do I There's a chief data officer as a CEO. Inject more automation into a lot of these common tax. Andi, you know, we've been able toc that impact. I think the news here is you know, if you're trying to create a knowledge graph a data catalog or Ah, business glossary. And you're trying to do that manually will stop you. You don't have to do that manually anymore. I think best example I can give is Lester and I We we like Chinese food and Japanese food on. If you were sitting there with your chopsticks, you wouldn't eat the bowl of rice with the chopsticks, one grain at a time. What you'd want to do is to find a more productive way to to enjoy that meal before it gets cold. Andi, that's similar to how we're able to help the organizations to digest their data is to get through it faster, enjoy the benefits of putting that data to work. >>And if it was me eating that food with you guys, I would be not using chopsticks. I would be using a fork and probably a spoon. So eso Lester, how then does iota who go about doing this and enabling customers to achieve this? >>Let me, uh, let me show you a little story have here. So if you take a look at the challenges the most customers have, they're very similar, but every customers on a different data journey, so but it all starts with what data do I have? What questions or what shape is that data in? Uh, how is it structured? What's dependent on it? Upstream and downstream. Um, what insights can I derive from that data? And how can I answer all of those questions automatically? So if you look at the challenges for these data professionals, you know, they're either on a journey to the cloud. Maybe they're doing a migration oracle. Maybe they're doing some data governance changes on bits about enabling this. So if you look at these challenges and I'm gonna take you through a >>story here, E, >>I want to introduce Amanda. Man does not live like, uh, anyone in any large organization. She's looking around and she just sees stacks of data. I mean, different databases, the one she knows about, the one she doesn't know about what should know about various different kinds of databases. And a man is just tasking with understanding all of this so that they can embark on her data journey program. So So a man who goes through and she's great. I've got some handy tools. I can start looking at these databases and getting an idea of what we've got. Well, as she digs into the databases, she starts to see that not everything is as clear as she might have hoped it would be. You know, property names or column names, or have ambiguous names like Attribute one and attribute to or maybe date one and date to s Oh, man is starting to struggle, even though she's get tools to visualize. And look what look at these databases. She still No, she's got a long road ahead. And with 2000 databases in her large enterprise, yes, it's gonna be a long turkey but Amanda Smart. So she pulls out her trusty spreadsheet to track all of her findings on what she doesn't know about. She raises a ticket or maybe tries to track down the owner to find what the data means. And she's tracking all this information. Clearly, this doesn't scale that well for Amanda, you know? So maybe organization will get 10 Amanda's to sort of divide and conquer that work. But even that doesn't work that well because they're still ambiguities in the data with Iota ho. What we do is we actually profile the underlying data. By looking at the underlying data, we can quickly see that attribute. One looks very much like a U. S. Social Security number and attribute to looks like a I c D 10 medical code. And we do this by using anthologies and dictionaries and algorithms to help identify the underlying data and then tag it. Key Thio Doing, uh, this automation is really being able to normalize things across different databases, so that where there's differences in column names, I know that in fact, they contain contain the same data. And by going through this exercise with a Tahoe, not only can we identify the data, but we also could gain insights about the data. So, for example, we can see that 97% of that time that column named Attribute one that's got us Social Security numbers has something that looks like a Social Security number. But 3% of the time, it doesn't quite look right. Maybe there's a dash missing. Maybe there's a digit dropped. Or maybe there's even characters embedded in it. So there may be that may be indicative of a data quality issues, so we try to find those kind of things going a step further. We also try to identify data quality relationships. So, for example, we have two columns, one date, one date to through Ah, observation. We can see that date 1 99% of the time is less than date, too. 1% of the time. It's not probably indicative of a data quality issue, but going a step further, we can also build a business rule that says Day one is less than date to. And so then when it pops up again, we can quickly identify and re mediate that problem. So these are the kinds of things that we could do with with iota going even a step further. You could take your your favorite data science solution production ISAT and incorporated into our next version a zey what we call a worker process to do your own bespoke analytics. >>We spoke analytics. Excellent, Lester. Thank you. So a J talk us through some examples of where you're putting this to use. And also what is some of the feedback from >>some customers? But I think it helped do this Bring it to life a little bit. Lisa is just to talk through a case study way. Pull something together. I know it's available for download, but in ah, well known telecommunications media company, they had a lot of the issues that lasted. You spoke about lots of teams of Amanda's, um, super bright data practitioners, um, on baby looking to to get more productivity out of their day on, deliver a good result for their own customers for cell phone subscribers, Um, on broadband users. So you know that some of the examples that we can see here is how we went about auto generating a lot of that understanding off that data within hours. So Amanda had her data catalog populated automatically. A business class three built up on it. Really? Then start to see. Okay, where do I want Thio? Apply some policies to the data to to set in place some controls where they want to adapt, how different lines of business, maybe tax versus customer operations have different access or permissions to that data on What we've been able to do there is, is to build up that picture to see how does data move across the entire organization across the state. Andi on monitor that overtime for improvement, so have taken it from being a reactive. Let's do something Thio. Fix something. Thio, Now more proactive. We can see what's happening with our data. Who's using it? Who's accessing it, how it's being used, how it's being combined. Um, on from there. Taking a proactive approach is a real smart use of of the talents in in that telco organization Onda folks that worked there with data. >>Okay, Jason, dig into that a little bit deeper. And one of the things I was thinking when you were talking through some of those outcomes that you're helping customers achieve is our ally. How do customers measure are? Why? What are they seeing with iota host >>solution? Yeah, right now that the big ticket item is time to value on. And I think in data, a lot of the upfront investment cause quite expensive. They have been today with a lot of the larger vendors and technologies. So what a CEO and economic bio really needs to be certain of is how quickly can I get that are away. I think we've got something we can show. Just pull up a before and after, and it really comes down to hours, days and weeks. Um, where we've been able Thio have that impact on in this playbook that we pulled together before and after picture really shows. You know, those savings that committed a bit through providing data into some actionable form within hours and days to to drive agility, but at the same time being out and forced the controls to protect the use of that data who has access to it. So these are the number one thing I'd have to say. It's time on. We can see that on the the graphic that we've just pulled up here. >>We talk about achieving adaptive data governance. Lester, you guys talk about automation. You talk about machine learning. How are you seeing those technologies being a facilitator of organizations adopting adaptive data governance? Well, >>Azaz, we see Mitt Emmanuel day. The days of manual effort are so I think you know this >>is a >>multi step process. But the very first step is understanding what you have in normalizing that across your data estate. So you couple this with the ontology, that air unique to your business. There is no algorithms, and you basically go across and you identify and tag tag that data that allows for the next steps toe happen. So now I can write business rules not in terms of columns named columns, but I could write him in terms of the tags being able to automate. That is a huge time saver and the fact that we can suggest that as a rule, rather than waiting for a person to come along and say, Oh, wow. Okay, I need this rule. I need this will thes air steps that increased that are, I should say, decrease that time to value that A. J talked about and then, lastly, a couple of machine learning because even with even with great automation and being able to profile all of your data and getting a good understanding, that brings you to a certain point. But there's still ambiguities in the data. So, for example, I might have to columns date one and date to. I may have even observed the date. One should be less than day two, but I don't really know what date one and date to our other than a date. So this is where it comes in, and I might ask the user said, >>Can >>you help me identify what date? One and date You are in this in this table. Turns out they're a start date and an end date for alone That gets remembered, cycled into the machine learning. So if I start to see this pattern of date one day to elsewhere, I'm going to say, Is it start dating and date? And these Bringing all these things together with this all this automation is really what's key to enabling this This'll data governance. Yeah, >>great. Thanks. Lester and a j wanna wrap things up with something that you mentioned in the beginning about what you guys were doing with Oracle. Take us out by telling us what you're doing there. How are you guys working together? >>Yeah, I think those of us who worked in i t for many years we've We've learned Thio trust articles technology that they're shifting now to ah, hybrid on Prohm Cloud Generation to platform, which is exciting. Andi on their existing customers and new customers moving to article on a journey. So? So Oracle came to us and said, you know, we can see how quickly you're able to help us change mindsets Ondas mindsets are locked in a way of thinking around operating models of I t. That there may be no agile and what siloed on day wanting to break free of that and adopt a more agile A p I at driven approach. A lot of the work that we're doing with our recall no is around, uh, accelerating what customers conduce with understanding their data and to build digital APS by identifying the the underlying data that has value. Onda at the time were able to do that in in in hours, days and weeks. Rather many months. Is opening up the eyes to Chief Data Officers CEO to say, Well, maybe we can do this whole digital transformation this year. Maybe we can bring that forward and and transform who we are as a company on that's driving innovation, which we're excited about it. I know Oracle, a keen Thio to drive through and >>helping businesses transformed digitally is so incredibly important in this time as we look Thio things changing in 2021 a. J. Lester thank you so much for joining me on this segment explaining adaptive data governance, how organizations can use it benefit from it and achieve our Oi. Thanks so much, guys. >>Thank you. Thanks again, Lisa. >>In a moment, we'll look a adaptive data governance in banking. This is the Cube, your global leader in high tech coverage. >>Innovation, impact influence. Welcome to the Cube. Disruptors. Developers and practitioners learn from the voices of leaders who share their personal insights from the hottest digital events around the globe. Enjoy the best this community has to offer on the Cube, your global leader in high tech digital coverage. >>Our next segment here is an interesting panel you're gonna hear from three gentlemen about adaptive data. Governments want to talk a lot about that. Please welcome Yusuf Khan, the global director of data services for Iot Tahoe. We also have Santiago Castor, the chief data officer at the First Bank of Nigeria, and good John Vander Wal, Oracle's senior manager of digital transformation and industries. Gentlemen, it's great to have you joining us in this in this panel. Great >>to be >>tried for me. >>Alright, Santiago, we're going to start with you. Can you talk to the audience a little bit about the first Bank of Nigeria and its scale? This is beyond Nigeria. Talk to us about that. >>Yes, eso First Bank of Nigeria was created 125 years ago. One of the oldest ignored the old in Africa because of the history he grew everywhere in the region on beyond the region. I am calling based in London, where it's kind of the headquarters and it really promotes trade, finance, institutional banking, corporate banking, private banking around the world in particular, in relationship to Africa. We are also in Asia in in the Middle East. >>So, Sanjay, go talk to me about what adaptive data governance means to you. And how does it help the first Bank of Nigeria to be able to innovate faster with the data that you have? >>Yes, I like that concept off adaptive data governor, because it's kind of Ah, I would say an approach that can really happen today with the new technologies before it was much more difficult to implement. So just to give you a little bit of context, I I used to work in consulting for 16, 17 years before joining the president of Nigeria, and I saw many organizations trying to apply different type of approaches in the governance on by the beginning early days was really kind of a year. A Chicago A. A top down approach where data governance was seeing as implement a set of rules, policies and procedures. But really, from the top down on is important. It's important to have the battle off your sea level of your of your director. Whatever I saw, just the way it fails, you really need to have a complimentary approach. You can say bottom are actually as a CEO are really trying to decentralize the governor's. Really, Instead of imposing a framework that some people in the business don't understand or don't care about it, it really needs to come from them. So what I'm trying to say is that data basically support business objectives on what you need to do is every business area needs information on the detector decisions toe actually be able to be more efficient or create value etcetera. Now, depending on the business questions they have to solve, they will need certain data set. So they need actually to be ableto have data quality for their own. For us now, when they understand that they become the stores naturally on their own data sets. And that is where my bottom line is meeting my top down. You can guide them from the top, but they need themselves to be also empower and be actually, in a way flexible to adapt the different questions that they have in orderto be able to respond to the business needs. Now I cannot impose at the finish for everyone. I need them to adapt and to bring their answers toe their own business questions. That is adaptive data governor and all That is possible because we have. And I was saying at the very beginning just to finalize the point, we have new technologies that allow you to do this method data classifications, uh, in a very sophisticated way that you can actually create analitico of your metadata. You can understand your different data sources in order to be able to create those classifications like nationalities, a way of classifying your customers, your products, etcetera. >>So one of the things that you just said Santa kind of struck me to enable the users to be adaptive. They probably don't want to be logging in support ticket. So how do you support that sort of self service to meet the demand of the users so that they can be adaptive. >>More and more business users wants autonomy, and they want to basically be ableto grab the data and answer their own question. Now when you have, that is great, because then you have demand of businesses asking for data. They're asking for the insight. Eso How do you actually support that? I would say there is a changing culture that is happening more and more. I would say even the current pandemic has helped a lot into that because you have had, in a way, off course, technology is one of the biggest winners without technology. We couldn't have been working remotely without these technologies where people can actually looking from their homes and still have a market data marketplaces where they self serve their their information. But even beyond that data is a big winner. Data because the pandemic has shown us that crisis happened, that we cannot predict everything and that we are actually facing a new kind of situation out of our comfort zone, where we need to explore that we need to adapt and we need to be flexible. How do we do that with data. Every single company either saw the revenue going down or the revenue going very up For those companies that are very digital already. Now it changed the reality, so they needed to adapt. But for that they needed information. In order to think on innovate, try toe, create responses So that type of, uh, self service off data Haider for data in order to be able to understand what's happening when the prospect is changing is something that is becoming more, uh, the topic today because off the condemning because of the new abilities, the technologies that allow that and then you then are allowed to basically help your data. Citizens that call them in the organization people that no other business and can actually start playing and an answer their own questions. Eso so these technologies that gives more accessibility to the data that is some cataloging so they can understand where to go or what to find lineage and relationships. All this is is basically the new type of platforms and tools that allow you to create what are called a data marketplace. I think these new tools are really strong because they are now allowing for people that are not technology or I t people to be able to play with data because it comes in the digital world There. Used to a given example without your who You have a very interesting search functionality. Where if you want to find your data you want to sell, Sir, you go there in that search and you actually go on book for your data. Everybody knows how to search in Google, everybody's searching Internet. So this is part of the data culture, the digital culture. They know how to use those schools. Now, similarly, that data marketplace is, uh, in you can, for example, see which data sources they're mostly used >>and enabling that speed that we're all demanding today during these unprecedented times. Goodwin, I wanted to go to you as we talk about in the spirit of evolution, technology is changing. Talk to us a little bit about Oracle Digital. What are you guys doing there? >>Yeah, Thank you. Um, well, Oracle Digital is a business unit that Oracle EMEA on. We focus on emerging countries as well as low and enterprises in the mid market, in more developed countries and four years ago. This started with the idea to engage digital with our customers. Fear Central helps across EMEA. That means engaging with video, having conference calls, having a wall, a green wall where we stand in front and engage with our customers. No one at that time could have foreseen how this is the situation today, and this helps us to engage with our customers in the way we were already doing and then about my team. The focus of my team is to have early stage conversations with our with our customers on digital transformation and innovation. And we also have a team off industry experts who engaged with our customers and share expertise across EMEA, and we inspire our customers. The outcome of these conversations for Oracle is a deep understanding of our customer needs, which is very important so we can help the customer and for the customer means that we will help them with our technology and our resource is to achieve their goals. >>It's all about outcomes, right? Good Ron. So in terms of automation, what are some of the things Oracle's doing there to help your clients leverage automation to improve agility? So that they can innovate faster, which in these interesting times it's demanded. >>Yeah, thank you. Well, traditionally, Oracle is known for their databases, which have bean innovated year over year. So here's the first lunch on the latest innovation is the autonomous database and autonomous data warehouse. For our customers, this means a reduction in operational costs by 90% with a multi medal converts, database and machine learning based automation for full life cycle management. Our databases self driving. This means we automate database provisioning, tuning and scaling. The database is self securing. This means ultimate data protection and security, and it's self repairing the automates failure, detection fail over and repair. And then the question is for our customers, What does it mean? It means they can focus on their on their business instead off maintaining their infrastructure and their operations. >>That's absolutely critical use if I want to go over to you now. Some of the things that we've talked about, just the massive progression and technology, the evolution of that. But we know that whether we're talking about beta management or digital transformation, a one size fits all approach doesn't work to address the challenges that the business has, um that the i t folks have, as you're looking through the industry with what Santiago told us about first Bank of Nigeria. What are some of the changes that you're seeing that I owe Tahoe seeing throughout the industry? >>Uh, well, Lisa, I think the first way I'd characterize it is to say, the traditional kind of top down approach to data where you have almost a data Policeman who tells you what you can and can't do, just doesn't work anymore. It's too slow. It's too resource intensive. Uh, data management data, governments, digital transformation itself. It has to be collaborative on. There has to be in a personalization to data users. Um, in the environment we find ourselves in. Now, it has to be about enabling self service as well. Um, a one size fits all model when it comes to those things around. Data doesn't work. As Santiago was saying, it needs to be adapted toe how the data is used. Andi, who is using it on in order to do this cos enterprises organizations really need to know their data. They need to understand what data they hold, where it is on what the sensitivity of it is they can then any more agile way apply appropriate controls on access so that people themselves are and groups within businesses are our job and could innovate. Otherwise, everything grinds to a halt, and you risk falling behind your competitors. >>Yeah, that one size fits all term just doesn't apply when you're talking about adaptive and agility. So we heard from Santiago about some of the impact that they're making with First Bank of Nigeria. Used to talk to us about some of the business outcomes that you're seeing other customers make leveraging automation that they could not do >>before it's it's automatically being able to classify terabytes, terabytes of data or even petabytes of data across different sources to find duplicates, which you can then re mediate on. Deletes now, with the capabilities that iota offers on the Oracle offers, you can do things not just where the five times or 10 times improvement, but it actually enables you to do projects for Stop that otherwise would fail or you would just not be able to dio I mean, uh, classifying multi terrible and multi petabytes states across different sources, formats very large volumes of data in many scenarios. You just can't do that manually. I mean, we've worked with government departments on the issues there is expect are the result of fragmented data. There's a lot of different sources. There's lot of different formats and without these newer technologies to address it with automation on machine learning, the project isn't durable. But now it is on that that could lead to a revolution in some of these businesses organizations >>to enable that revolution that there's got to be the right cultural mindset. And one of the when Santiago was talking about folks really kind of adapted that. The thing I always call that getting comfortably uncomfortable. But that's hard for organizations to. The technology is here to enable that. But well, you're talking with customers use. How do you help them build the trust in the confidence that the new technologies and a new approaches can deliver what they need? How do you help drive the kind of a tech in the culture? >>It's really good question is because it can be quite scary. I think the first thing we'd start with is to say, Look, the technology is here with businesses like I Tahoe. Unlike Oracle, it's already arrived. What you need to be comfortable doing is experimenting being agile around it, Andi trying new ways of doing things. Uh, if you don't wanna get less behind that Santiago on the team that fbn are a great example off embracing it, testing it on a small scale on, then scaling up a Toyota, we offer what we call a data health check, which can actually be done very quickly in a matter of a few weeks. So we'll work with a customer. Picky use case, install the application, uh, analyzed data. Drive out Cem Cem quick winds. So we worked in the last few weeks of a large entity energy supplier, and in about 20 days, we were able to give them an accurate understanding of their critical data. Elements apply. Helping apply data protection policies. Minimize copies of the data on work out what data they needed to delete to reduce their infrastructure. Spend eso. It's about experimenting on that small scale, being agile on, then scaling up in a kind of very modern way. >>Great advice. Uh, Santiago, I'd like to go back to Is we kind of look at again that that topic of culture and the need to get that mindset there to facilitate these rapid changes, I want to understand kind of last question for you about how you're doing that from a digital transformation perspective. We know everything is accelerating in 2020. So how are you building resilience into your data architecture and also driving that cultural change that can help everyone in this shift to remote working and a lot of the the digital challenges and changes that we're all going through? >>The new technologies allowed us to discover the dating anyway. Toe flawed and see very quickly Information toe. Have new models off over in the data on giving autonomy to our different data units. Now, from that autonomy, they can then compose an innovator own ways. So for me now, we're talking about resilience because in a way, autonomy and flexibility in a organization in a data structure with platform gives you resilience. The organizations and the business units that I have experienced in the pandemic are working well. Are those that actually because they're not physically present during more in the office, you need to give them their autonomy and let them actually engaged on their own side that do their own job and trust them in a way on as you give them, that they start innovating and they start having a really interesting ideas. So autonomy and flexibility. I think this is a key component off the new infrastructure. But even the new reality that on then it show us that, yes, we used to be very kind off structure, policies, procedures as very important. But now we learn flexibility and adaptability of the same side. Now, when you have that a key, other components of resiliency speed, because people want, you know, to access the data and access it fast and on the site fast, especially changes are changing so quickly nowadays that you need to be ableto do you know, interact. Reiterate with your information to answer your questions. Pretty, um, so technology that allows you toe be flexible iterating on in a very fast job way continue will allow you toe actually be resilient in that way, because you are flexible, you adapt your job and you continue answering questions as they come without having everything, setting a structure that is too hard. We also are a partner off Oracle and Oracle. Embodies is great. They have embedded within the transactional system many algorithms that are allowing us to calculate as the transactions happened. What happened there is that when our customers engaged with algorithms and again without your powers, well, the machine learning that is there for for speeding the automation of how you find your data allows you to create a new alliance with the machine. The machine is their toe, actually, in a way to your best friend to actually have more volume of data calculated faster. In a way, it's cover more variety. I mean, we couldn't hope without being connected to this algorithm on >>that engagement is absolutely critical. Santiago. Thank you for sharing that. I do wanna rap really quickly. Good On one last question for you, Santiago talked about Oracle. You've talked about a little bit. As we look at digital resilience, talk to us a little bit in the last minute about the evolution of Oracle. What you guys were doing there to help your customers get the resilience that they have toe have to be not just survive but thrive. >>Yeah. Oracle has a cloud offering for infrastructure, database, platform service and a complete solutions offered a South on Daz. As Santiago also mentioned, We are using AI across our entire portfolio and by this will help our customers to focus on their business innovation and capitalize on data by enabling new business models. Um, and Oracle has a global conference with our cloud regions. It's massively investing and innovating and expanding their clouds. And by offering clouds as public cloud in our data centers and also as private cloud with clouded customer, we can meet every sovereignty and security requirements. And in this way we help people to see data in new ways. We discover insights and unlock endless possibilities. And and maybe 11 of my takeaways is if I If I speak with customers, I always tell them you better start collecting your data. Now we enable this partners like Iota help us as well. If you collect your data now, you are ready for tomorrow. You can never collect your data backwards, So that is my take away for today. >>You can't collect your data backwards. Excellently, John. Gentlemen, thank you for sharing all of your insights. Very informative conversation in a moment, we'll address the question. Do you know your data? >>Are you interested in test driving the iota Ho platform kick Start the benefits of data automation for your business through the Iota Ho Data Health check program. Ah, flexible, scalable sandbox environment on the cloud of your choice with set up service and support provided by Iota ho. Look time with a data engineer to learn more and see Io Tahoe in action from around the globe. It's the Cube presenting adaptive data governance brought to you by Iota Ho. >>In this next segment, we're gonna be talking to you about getting to know your data. And specifically you're gonna hear from two folks at Io Tahoe. We've got enterprise account execs to be to Davis here, as well as Enterprise Data engineer Patrick Simon. They're gonna be sharing insights and tips and tricks for how you could get to know your data and quickly on. We also want to encourage you to engage with the media and Patrick, use the chat feature to the right, send comments, questions or feedback so you can participate. All right, Patrick Savita, take it away. Alright. >>Thankfully saw great to be here as Lisa mentioned guys, I'm the enterprise account executive here in Ohio. Tahoe you Pat? >>Yeah. Hey, everyone so great to be here. I said my name is Patrick Samit. I'm the enterprise data engineer here in Ohio Tahoe. And we're so excited to be here and talk about this topic as one thing we're really trying to perpetuate is that data is everyone's business. >>So, guys, what patent I got? I've actually had multiple discussions with clients from different organizations with different roles. So we spoke with both your technical and your non technical audience. So while they were interested in different aspects of our platform, we found that what they had in common was they wanted to make data easy to understand and usable. So that comes back. The pats point off to being everybody's business because no matter your role, we're all dependent on data. So what Pan I wanted to do today was wanted to walk you guys through some of those client questions, slash pain points that we're hearing from different industries and different rules and demo how our platform here, like Tahoe, is used for automating Dozier related tasks. So with that said are you ready for the first one, Pat? >>Yeah, Let's do it. >>Great. So I'm gonna put my technical hat on for this one. So I'm a data practitioner. I just started my job. ABC Bank. I have, like, over 100 different data sources. So I have data kept in Data Lakes, legacy data, sources, even the cloud. So my issue is I don't know what those data sources hold. I don't know what data sensitive, and I don't even understand how that data is connected. So how can I saw who help? >>Yeah, I think that's a very common experience many are facing and definitely something I've encountered in my past. Typically, the first step is to catalog the data and then start mapping the relationships between your various data stores. Now, more often than not, this has tackled through numerous meetings and a combination of excel and something similar to video which are too great tools in their own part. But they're very difficult to maintain. Just due to the rate that we are creating data in the modern world. It starts to beg for an idea that can scale with your business needs. And this is where a platform like Io Tahoe becomes so appealing, you can see here visualization of the data relationships created by the I. O. Tahoe service. Now, what is fantastic about this is it's not only laid out in a very human and digestible format in the same action of creating this view, the data catalog was constructed. >>Um so is the data catalog automatically populated? Correct. Okay, so So what I'm using Iota hope at what I'm getting is this complete, unified automated platform without the added cost? Of course. >>Exactly. And that's at the heart of Iota Ho. A great feature with that data catalog is that Iota Ho will also profile your data as it creates the catalog, assigning some meaning to those pesky column underscore ones and custom variable underscore tents. They're always such a joy to deal with. Now, by leveraging this interface, we can start to answer the first part of your question and understand where the core relationships within our data exists. Uh, personally, I'm a big fan of this view, as it really just helps the i b naturally John to these focal points that coincide with these key columns following that train of thought, Let's examine the customer I D column that seems to be at the center of a lot of these relationships. We can see that it's a fairly important column as it's maintaining the relationship between at least three other tables. >>Now you >>notice all the connectors are in this blue color. This means that their system defined relationships. But I hope Tahoe goes that extra mile and actually creates thes orange colored connectors as well. These air ones that are machine learning algorithms have predicted to be relationships on. You can leverage to try and make new and powerful relationships within your data. >>Eso So this is really cool, and I can see how this could be leverage quickly now. What if I added new data sources or your multiple data sources and need toe identify what data sensitive can iota who detect that? >>Yeah, definitely. Within the hotel platform. There, already over 300 pre defined policies such as hip for C, C, P. A and the like one can choose which of these policies to run against their data along for flexibility and efficiency and running the policies that affect organization. >>Okay, so so 300 is an exceptional number. I'll give you that. But what about internal policies that apply to my organization? Is there any ability for me to write custom policies? >>Yeah, that's no issue. And it's something that clients leverage fairly often to utilize this function when simply has to write a rejects that our team has helped many deploy. After that, the custom policy is stored for future use to profile sensitive data. One then selects the data sources they're interested in and select the policies that meet your particular needs. The interface will automatically take your data according to the policies of detects, after which you can review the discoveries confirming or rejecting the tagging. All of these insights are easily exported through the interface. Someone can work these into the action items within your project management systems, and I think this lends to the collaboration as a team can work through the discovery simultaneously, and as each item is confirmed or rejected, they can see it ni instantaneously. All this translates to a confidence that with iota hope, you can be sure you're in compliance. >>So I'm glad you mentioned compliance because that's extremely important to my organization. So what you're saying when I use the eye a Tahoe automated platform, we'd be 90% more compliant that before were other than if you were going to be using a human. >>Yeah, definitely the collaboration and documentation that the Iot Tahoe interface lends itself to really help you build that confidence that your compliance is sound. >>So we're planning a migration. Andi, I have a set of reports I need to migrate. But what I need to know is, uh well, what what data sources? Those report those reports are dependent on. And what's feeding those tables? >>Yeah, it's a fantastic questions to be toe identifying critical data elements, and the interdependencies within the various databases could be a time consuming but vital process and the migration initiative. Luckily, Iota Ho does have an answer, and again, it's presented in a very visual format. >>Eso So what I'm looking at here is my entire day landscape. >>Yes, exactly. >>Let's say I add another data source. I can still see that unified 3 60 view. >>Yeah, One future that is particularly helpful is the ability to add data sources after the data lineage. Discovery has finished alone for the flexibility and scope necessary for any data migration project. If you only need need to select a few databases or your entirety, this service will provide the answers. You're looking for things. Visual representation of the connectivity makes the identification of critical data elements a simple matter. The connections air driven by both system defined flows as well as those predicted by our algorithms, the confidence of which, uh, can actually be customized to make sure that they're meeting the needs of the initiative that you have in place. This also provides tabular output in case you needed for your own internal documentation or for your action items, which we can see right here. Uh, in this interface, you can actually also confirm or deny the pair rejection the pair directions, allowing to make sure that the data is as accurate as possible. Does that help with your data lineage needs? >>Definitely. So So, Pat, My next big question here is So now I know a little bit about my data. How do I know I can trust >>it? So >>what I'm interested in knowing, really is is it in a fit state for me to use it? Is it accurate? Does it conform to the right format? >>Yeah, that's a great question. And I think that is a pain point felt across the board, be it by data practitioners or data consumers alike. Another service that I owe Tahoe provides is the ability to write custom data quality rules and understand how well the data pertains to these rules. This dashboard gives a unified view of the strength of these rules, and your dad is overall quality. >>Okay, so Pat s o on on the accuracy scores there. So if my marketing team needs to run, a campaign can read dependent those accuracy scores to know what what tables have quality data to use for our marketing campaign. >>Yeah, this view would allow you to understand your overall accuracy as well as dive into the minutia to see which data elements are of the highest quality. So for that marketing campaign, if you need everything in a strong form, you'll be able to see very quickly with these high level numbers. But if you're only dependent on a few columns to get that information out the door, you can find that within this view, eso >>you >>no longer have to rely on reports about reports, but instead just come to this one platform to help drive conversations between stakeholders and data practitioners. >>So I get now the value of IATA who brings by automatically capturing all those technical metadata from sources. But how do we match that with the business glossary? >>Yeah, within the same data quality service that we just reviewed, one can actually add business rules detailing the definitions and the business domains that these fall into. What's more is that the data quality rules were just looking at can then be tied into these definitions. Allowing insight into the strength of these business rules is this service that empowers stakeholders across the business to be involved with the data life cycle and take ownership over the rules that fall within their domain. >>Okay, >>so those custom rules can I apply that across data sources? >>Yeah, you could bring in as many data sources as you need, so long as you could tie them to that unified definition. >>Okay, great. Thanks so much bad. And we just want to quickly say to everyone working in data, we understand your pain, so please feel free to reach out to us. we are Website the chapel. Oh, Arlington. And let's get a conversation started on how iota Who can help you guys automate all those manual task to help save you time and money. Thank you. Thank >>you. Your Honor, >>if I could ask you one quick question, how do you advise customers? You just walk in this great example this banking example that you instantly to talk through. How do you advise customers get started? >>Yeah, I think the number one thing that customers could do to get started with our platform is to just run the tag discovery and build up that data catalog. It lends itself very quickly to the other needs you might have, such as thes quality rules. A swell is identifying those kind of tricky columns that might exist in your data. Those custom variable underscore tens I mentioned before >>last questions to be to anything to add to what Pat just described as a starting place. >>I'm no, I think actually passed something that pretty well, I mean, just just by automating all those manual task. I mean, it definitely can save your company a lot of time and money, so we we encourage you just reach out to us. Let's get that conversation >>started. Excellent. So, Pete and Pat, thank you so much. We hope you have learned a lot from these folks about how to get to know your data. Make sure that it's quality, something you can maximize the value of it. Thanks >>for watching. Thanks again, Lisa, for that very insightful and useful deep dive into the world of adaptive data governance with Iota Ho Oracle First Bank of Nigeria This is Dave a lot You won't wanna mess Iota, whose fifth episode in the data automation Siri's in that we'll talk to experts from Red Hat and Happiest Minds about their best practices for managing data across hybrid cloud Inter Cloud multi Cloud I T environment So market calendar for Wednesday, January 27th That's Episode five. You're watching the Cube Global Leader digital event technique

Published Date : Dec 10 2020

SUMMARY :

adaptive data governance brought to you by Iota Ho. Gentlemen, it's great to have you on the program. Lisa is good to be back. Great. Listen, we're gonna start with you. But to really try to address these customer concerns because, you know, we wanna we So it's exciting a J from the CEO's level. It's real satisfying to see how we're able. Let's let's go back over to you. But they need to understand what kind of data they have, what shape it's in what's dependent lot of a lot of frameworks these days are hardwired, so you can set up a set It's the technical metadata coming together with policies Is this book enterprise companies are doing now? help the organizations to digest their data is to And if it was me eating that food with you guys, I would be not using chopsticks. So if you look at the challenges for these data professionals, you know, they're either on a journey to the cloud. Well, as she digs into the databases, she starts to see that So a J talk us through some examples of where But I think it helped do this Bring it to life a little bit. And one of the things I was thinking when you were talking through some We can see that on the the graphic that we've just How are you seeing those technologies being think you know this But the very first step is understanding what you have in normalizing that So if I start to see this pattern of date one day to elsewhere, I'm going to say, in the beginning about what you guys were doing with Oracle. So Oracle came to us and said, you know, we can see things changing in 2021 a. J. Lester thank you so much for joining me on this segment Thank you. is the Cube, your global leader in high tech coverage. Enjoy the best this community has to offer on the Cube, Gentlemen, it's great to have you joining us in this in this panel. Can you talk to the audience a little bit about the first Bank of One of the oldest ignored the old in Africa because of the history And how does it help the first Bank of Nigeria to be able to innovate faster with the point, we have new technologies that allow you to do this method data So one of the things that you just said Santa kind of struck me to enable the users to be adaptive. Now it changed the reality, so they needed to adapt. I wanted to go to you as we talk about in the spirit of evolution, technology is changing. customer and for the customer means that we will help them with our technology and our resource is to achieve doing there to help your clients leverage automation to improve agility? So here's the first lunch on the latest innovation Some of the things that we've talked about, Otherwise, everything grinds to a halt, and you risk falling behind your competitors. Used to talk to us about some of the business outcomes that you're seeing other customers make leveraging automation different sources to find duplicates, which you can then re And one of the when Santiago was talking about folks really kind of adapted that. Minimize copies of the data can help everyone in this shift to remote working and a lot of the the and on the site fast, especially changes are changing so quickly nowadays that you need to be What you guys were doing there to help your customers I always tell them you better start collecting your data. Gentlemen, thank you for sharing all of your insights. adaptive data governance brought to you by Iota Ho. In this next segment, we're gonna be talking to you about getting to know your data. Thankfully saw great to be here as Lisa mentioned guys, I'm the enterprise account executive here in Ohio. I'm the enterprise data engineer here in Ohio Tahoe. So with that said are you ready for the first one, Pat? So I have data kept in Data Lakes, legacy data, sources, even the cloud. Typically, the first step is to catalog the data and then start mapping the relationships Um so is the data catalog automatically populated? i b naturally John to these focal points that coincide with these key columns following These air ones that are machine learning algorithms have predicted to be relationships Eso So this is really cool, and I can see how this could be leverage quickly now. such as hip for C, C, P. A and the like one can choose which of these policies policies that apply to my organization? And it's something that clients leverage fairly often to utilize this So I'm glad you mentioned compliance because that's extremely important to my organization. interface lends itself to really help you build that confidence that your compliance is Andi, I have a set of reports I need to migrate. Yeah, it's a fantastic questions to be toe identifying critical data elements, I can still see that unified 3 60 view. Yeah, One future that is particularly helpful is the ability to add data sources after So now I know a little bit about my data. the data pertains to these rules. So if my marketing team needs to run, a campaign can read dependent those accuracy scores to know what the minutia to see which data elements are of the highest quality. no longer have to rely on reports about reports, but instead just come to this one So I get now the value of IATA who brings by automatically capturing all those technical to be involved with the data life cycle and take ownership over the rules that fall within their domain. Yeah, you could bring in as many data sources as you need, so long as you could manual task to help save you time and money. you. this banking example that you instantly to talk through. Yeah, I think the number one thing that customers could do to get started with our so we we encourage you just reach out to us. folks about how to get to know your data. into the world of adaptive data governance with Iota Ho Oracle First Bank of Nigeria

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmandaPERSON

0.99+

JasonPERSON

0.99+

LisaPERSON

0.99+

Patrick SimonPERSON

0.99+

Lisa MartinPERSON

0.99+

SantiagoPERSON

0.99+

OracleORGANIZATION

0.99+

Yusuf KhanPERSON

0.99+

AsiaLOCATION

0.99+

16QUANTITY

0.99+

Santiago CastorPERSON

0.99+

OhioLOCATION

0.99+

LondonLOCATION

0.99+

ABC BankORGANIZATION

0.99+

Patrick SavitaPERSON

0.99+

10 timesQUANTITY

0.99+

SanjayPERSON

0.99+

AngiePERSON

0.99+

Wednesday, January 27thDATE

0.99+

AfricaLOCATION

0.99+

ThioPERSON

0.99+

John Vander WalPERSON

0.99+

2020DATE

0.99+

PatrickPERSON

0.99+

two columnsQUANTITY

0.99+

90%QUANTITY

0.99+

SiriTITLE

0.99+

ToyotaORGANIZATION

0.99+

Bio TahoeORGANIZATION

0.99+

AzazPERSON

0.99+

PatPERSON

0.99+

11QUANTITY

0.99+

five timesQUANTITY

0.99+

Oracle DigitalORGANIZATION

0.99+

J. BiharPERSON

0.99+

1%QUANTITY

0.99+

StaleyPERSON

0.99+

Iot TahoeORGANIZATION

0.99+

Iota hoORGANIZATION

0.99+

todayDATE

0.99+

RonPERSON

0.99+

firstQUANTITY

0.99+

10QUANTITY

0.99+

Iota HoORGANIZATION

0.99+

AndiPERSON

0.99+

Io TahoeORGANIZATION

0.99+

one dateQUANTITY

0.99+

OneQUANTITY

0.99+

excelTITLE

0.99+

tomorrowDATE

0.99+

3%QUANTITY

0.99+

JohnPERSON

0.99+

First Bank of NigeriaORGANIZATION

0.99+

Middle EastLOCATION

0.99+

Patrick SamitPERSON

0.99+

I. O. TahoeORGANIZATION

0.99+

first stepQUANTITY

0.99+

97%QUANTITY

0.99+

LesterPERSON

0.99+

two folksQUANTITY

0.99+

DavePERSON

0.99+

2021DATE

0.99+

fifth episodeQUANTITY

0.99+

one grainQUANTITY

0.99+

Massimo Morin, Peter Yen, Lawrence Fong | AWS Executive Summit 2018


 

>> Live from Las Vegas, it's theCUBE covering the AWS Accenture Executive Summit. Brought to you by Accenture. >> Welcome back, everyone, to theCUBE's live coverage of the AWS Executive Summit, here at The Venetian. I'm your host, Rebecca Knight. We have three guests for this segment. We have Lawrence Fong, general manager, information technology at Cathay Pacific; Peter Yen, managing director, Hong Kong Accenture; and Massimo Morin, head world wide business development travel at AWS. Thank you so much, gentlemen, for coming on theCUBE. >> Thank you. >> Thank you. >> So we're going to be talking about applying blockchain to a travel rewards program at Cathay Pacific, but I want to start with you, Lawrence. Let's describe the business problem that you were trying to solve. The Asia Miles program is already, sort of a world-class program, very competitive. But it still had it's kinks. So, what were you trying to do to make it better? >> Okay, first of all, Asia Miles is a lifestyle, you know, frequent flyer loyalty program, and almost every year they're running over 460 marketing campaign a year. So, you can imagine how much work they have to do. So, from the customer point of view, they have a pin point of whatever activities of redemption or for award, all these kind of thing. It's going to take a long time for them to get their miles. So, from the customer point of view, this is not really ideal. And on the other hand, at the back office, because we're running so many marketing campaign. So, there's a lot of back office operation and lot of, where people work and all this kind of thing. So, it's also not, I think, a very good operation efficiency. So, from the customer point of view, from the back office point of view, so that's the key pinpoint we want to be solved. >> Right. So, it was tedious to operate for both the customer and for the business itself. So, why was blockchain the technology? That could solve it? >> Well, we study one of the key features, or component of blockchain, it's called 'smart contract'. And we could see the smart contract would be able to help bringing our customer and Asia Miles, and also our merchant together. So, by using blockchain, the miles, the redemption, all this will happen almost in a second. >> So, how did this work, Lawrence? I mean, in terms of getting, working together with Cathay Pacific, how did you work together to create this new program? >> Okay. Effectively, it's a very co-create process. It started with a conversation with Lawrence. We had the idea, so Lawrence was courageous enough to let us try. We did a very short, quick pilot. We proved the concept. Then we went into a very rapid development cycle, as well. And then, within weeks, we get the product done, and then we launch and go to the market. >> So, Peter, is that generally the way it goes, in terms of this co-creative process? I mean, we're hearing so much, that Accenture and AWS have these solutions that they can bring to clients, and then, is it sort of happening in the background or are you on the ground together, sort of dreaming up ways to make this better and make the technology work? >> Well, we used to call this the new way of doing things, but I think now this is the way of doing things, right? Because it is the perfect combination. The client has perfect knowledge about the business, we understand the technology, and we have enablement partners like Amazon. So, we just work together and make it happen. >> So, from Amazon, so we hear blockchain you automatically think Bitcoin. You just do. But this is actually a very different kind of use case for blockchain, and it's one that really is so pertinent. Can you talk a little, Massimo, about other uses cases that you're seeing? >> So, indeed that you are right. Blockchain has been very nebulous, and always associated to Bitcoins, but there are actually some uses cases that are much more relevant, especially in the travel industry where you complex transaction, multi-party, where you are actually going to do transparency and data integrity. For example, we had a proof of concept to to read IATA about a one ID project that allows a travel agency to register themselves with this authority and get the key, and then seamlessly doing transaction with travel providers by identifying themselves through blockchain. That allows them to actually be recognized, and you have a seamless process with the new NDC, new distribution capabilities coming along. That is going to be extremely important. This is one type. Another type is when you wanted the immutability of the data. For example, when you have planes an you want to see you getting leases, on and off lease, and you want to see all the maintenance that occur there, and you want that that doesn't change. You want to use a trusted system that is transparent, and that is not changeable. And that provide a lot of value. And the third use case that I personally like, is automatic contract. So, when, for example, you have corporate buyers, that buy travel products from a travel provider, like Cathay Pacific, and you wanted that, you buy the ticket. But when is the airline going to get the money? That reconciliation is like, with the frequent flyer miles, you want to be done as soon as possible. Other cases is, is the passengers flying around? If it doesn't fly, well, what happened to the taxes? Taxes should be actually returning back to the customer. So, with automatic contracts, you would be able actually to reconcile that behind the scene. These are use cases that are very valuable in travel industry. >> So, does this immediate reconciliation and this trust, I mean , trust is such an important, thick concept right now. What are you hearing? From both the clients' side and the provider's side. I mean, where are we? >> Yeah, that's true. I think trust is one of the key elements of, you know, doing reconciliation. So, what we are doing now is still within our legal system. So, we trust each other. But, looking forward, I think one of the key areas that blockchain will help a lot, is the entire supply chain. But, when we talk about the supply chain, there's so many stakeholder. So, building a trust, of course, of domestic holder will be a challenge. I think that's something, you know, of course the industry has to put more thought onto it. >> What are we seeing so far? So, this was implemented in April of this year. What has been the return on investments so far? >> It's phenomenal. For those marketing campaign, we're using blockchain. These new capabilities, we had a triple digit growth, in terms of our sales, and also, because we also use kind of a game to gamify the whole thing. So, we create a lot of traction in there, you know? A lot of excitement. So, the number of people and the number of customer engaged in those marketing campaigns also have more than, you know, more than double, you know, growth. >> Peter, what's most exciting to you about this process? >> The most exciting thing is that, as you heard from Lawrence, is indeed generating performance and results. And the process of co-creating a successful solution is a very rewarding experience. >> So, I mean, and then AWS is, in terms of the co-creative process, where does AWS fit into this? >> So, we are their neighbor, and I'm glad that you're able, Cathay Pacific and Accenture, as using AWS for this. So, we have standard templates, blockchain templates that actually take away all the heavy lifting of putting place to platform to found the blockchain. So, actually, the customer and the partner can focus on the business need that they have attend. And this is all open-source, so you can see how it works. And it's so transparent, that we are very glad to enable our customer to do transformative things like this. >> So, the word is out that blockchain is not just for Bitcoin anymore. So, where do we go from here? We're talking about the travel industry, but are the learnings that Cathay Pacific has had and Accenture, in terms of how applicable are they to other industries? And how are you sharing what you've learned in a collaborate, co-creative process? >> Well, all of that, in Asia Miles, now we are taking what we learned from the blockchain, we are going to apply to the cargo industry, and also apply to the airport operation. Particular, the baggage, the consideration baggage between different people, of course they're all the blockchain. >> Great. >> Actually, many clients are now talking about this Cathay Pacific case, and they have very creative ideas, how to borrow the concept and apply to their own business. So, we should see more and more application of this solution. >> And we are seeing acceleration of adoption of cloud technology throughout the travel industry, with airline, and technology providers out there. And I'm very glad that there are taught leadership, for example, from Cathay Pacific, to take this hypothetical use cases and taking the lead on showing how it is done and sharing with the industry. We are looking for those travel leaders that will help the industry to move forward. >> That's true. >> Because it's very challenging industry with very low margin, and any improvement in customer service is going to go a long way. And we are glad to be part of that. >> And is that what it is? I mean, as you said, it sort of seen, even the incremental improvement and how that can be, just, so transformational for a company's bottom line. >> Yep. >> Yes. >> Yep. Absolutely. >> Well, Massimo, Peter, Massimo, Peter, Lawrence, thank you so much for joining us on theCUBE. It's been a really fun conversation. >> Thank you. >> Thank you very much. >> I'm Rebecca Knight. We will have more of theCUBE's live coverage of the AWS Executive Summit coming up in just a little bit. (thrilling music)

Published Date : Nov 28 2018

SUMMARY :

Brought to you by Accenture. of the AWS Executive Summit, here at The Venetian. So, what were you trying to do to make it better? So, from the customer point of view, and for the business itself. And we could see the smart contract would be able to help and then we launch and go to the market. So, we just work together and make it happen. So, from Amazon, so we hear blockchain So, indeed that you are right. So, does this immediate reconciliation and this trust, of course the industry has to put more thought onto it. So, this was implemented in April of this year. So, we create a lot of traction in there, you know? And the process of co-creating a successful solution So, actually, the customer and the partner can focus So, the word is out that blockchain is the blockchain, we are going to apply to the cargo industry, So, we should see more and more application And we are seeing acceleration of adoption And we are glad to be part of that. I mean, as you said, it sort of seen, thank you so much for joining us on theCUBE. of the AWS Executive Summit coming up in just a little bit.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Rebecca KnightPERSON

0.99+

Massimo MorinPERSON

0.99+

Lawrence FongPERSON

0.99+

AWSORGANIZATION

0.99+

Cathay PacificORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Peter YenPERSON

0.99+

PeterPERSON

0.99+

LawrencePERSON

0.99+

AccentureORGANIZATION

0.99+

MassimoPERSON

0.99+

oneQUANTITY

0.99+

bothQUANTITY

0.99+

Las VegasLOCATION

0.99+

three guestsQUANTITY

0.99+

theCUBEORGANIZATION

0.98+

one typeQUANTITY

0.98+

Hong Kong AccentureORGANIZATION

0.97+

AWS Executive SummitEVENT

0.95+

over 460 marketing campaignQUANTITY

0.95+

third use caseQUANTITY

0.95+

April of this yearDATE

0.94+

AWS Executive Summit 2018EVENT

0.9+

more than doubleQUANTITY

0.85+

one IDQUANTITY

0.83+

Accenture Executive SummitEVENT

0.82+

Asia MilesORGANIZATION

0.81+

a yearQUANTITY

0.7+

AsiaLOCATION

0.7+

MilesORGANIZATION

0.7+

AWSEVENT

0.67+

Asia Miles programOTHER

0.6+

AsiaTITLE

0.57+

eachQUANTITY

0.56+

IATATITLE

0.56+

VenetianLOCATION

0.55+

BitcoinOTHER

0.53+

BitcoinsOTHER

0.51+

elementsQUANTITY

0.48+

MilesOTHER

0.46+

secondQUANTITY

0.44+