Image Title

Search Results for one coherent application:

Jerry Chen, Greylock | AWS re:Invent 2022


 

>>Welcome back. Everyone live here at the I'm John Fur, host of the Cube. We got a special insertion here off the program. Jerry Chen Greylock, 10 years with the Cube coming on. 10 years ago when the cube first came here, Jerry, you were in the hallway. We didn't have any guess list. He was like, Hey, you wanna come up in the cube so much. Now we got three sets. We're gonna do hundreds of interviews already. We're gonna have probably over 200 streaming live. Love it Shorts, Instagram reels, data lake. The cubes expanded. You've been there from the whole >>Time. Its like the, its like the, the mcu, the Marvel Cinematic Universe. The Cube Cinematic universe. You know, it's, its a whole franchise. Congratulations and happy early birthday, John. Thank you very much. Thanks >>For having me. Yeah, you know, I was just graduated high school when I first came to aws. Look, I wanna get your thoughts on, we're gonna do a quick segment here before AMD comes on. Got some great interviews with those guys. You've been here 10 years, you're out in the trenches. Just Andy, Adam Celski, just talked to the VCs, the investment thesis economy. Yeah. This headwinds, tailwinds, depending on which side you're on, you're gonna have a tailwind or headwind. What's the outlook? What's your take of reinvent this year? Aws, the ecosystem and the investment market. >>You know, I think it's, it is a great rebound. The energy's back when it was like pre covid, right? We're saying last year was kind of half the size and you know, be postcode. But I think the show, the energy's great. And Amazon just amazing, right? It's in this economy, what's going on right now in the world. They're still growing, still kicking butt. I think you're gonna see a lot of both enterprise customers and startups start to worry about cost, right? Because I think Amazon's gonna focus like, Hey, how can they help the customers? But the economy for the next year, I think we're gonna see some headwinds. So I think a lot of startups, a lot of customers are gonna worry about cost. >>You're on the board of a lot of startups that are in the cloud, rock sets. One we've covered. I think they're gonna come on here too tomorrow or today. What's your advice on the board level? Go to market. Dial up. Dial down. Sure. What's the strategy marketplace? I mean, how do you give the advice to start? What's the, what's the north star? What's the, what's the advice as the investor? >>Two or three things for most startups, hard roi, like how can you save money? So all the kinda fluffy marketing value you gotta have hard dollar savings, right? Number one, if can save money, you'll do well. Number two, to your point, the marketplace is becoming the channel for startups. These lot of large customers have deals with Amazon through the marketplace. So startup can sell through the marketplace to customers. These lot of CFOs are doing no new vendors, right? It's getting hard, hard to get approved as a startup. So the marketplace become a bigger, bigger deal. >>What about existing ecosystem partners that have been around for the past 10 years? They're independent. They may have their toe in the marketplace, may not, some of them not making their numbers, they're starting to hear things like maybe they'll be re pivoting. People are tooling up. What's the advice for the existing ecosystem partners? Because they're either gonna be like the next data bricks or kind of like maybe >>Everyone's looking for the next data bricks, right? You know, I think for existing partners, you're seeing what's happened. John deals are getting smaller, taking longer to close, right? It's just the reality of what's happening right now. And so for those partners are saying, Hey, focus on the heart roi, be okay with the smaller land and just expand in 23, 24. So just get kind of creative of how you work with customers. And I, like you said, I think Marketplace is is kind of a, a go-to light >>Book. So today, Aruba, the new leader of the, of the partner network, they've merged eight PN with the marketplace. They've now won Coherent organization, not fragmented, I was talking to them last night. They have more startups than ever before coming on board. So the velocity of new venture creation is up, up and to the right still, even in this economy. And as they always say, best time to invest is in a down market. That's like BC 1 0 1, entrepreneurship 1 0 1. What's your advice right now for builders out there looking for that round, trying to get some traction. The agility with the cloud still is there. You can still get time to value. You can still get traction fast. That doesn't go away. What's your advice for the startups? >>Narrow, narrower wedge, right. So I think with like 5,000 startups every single year, there's so much noise. John, look across the floor, a lot of great companies. B, a lot of noise. So I think the more focused wedge you have as a startup and how you can land deliver value, the better land, the very, very sharp wedge expand over time. But just be very specific how you land. >>Awesome. Jerry, great to have you on. I know we wanna make some room on appreciate AMD for squeezing a couple minutes out of their hour and the next hour we're gonna spend with them for your Sage advice final kind of new Insta challenge that Savannah put together, A new host instant challenge, instant challenges. If you had to do an Instagram reel right now, oh, about reinvent this year, what would that Instagram reel be right now? >>I would, I would do the expos scavenger hunt, right? We would have a race of different VCs. You give me a list of five companies, the VCs find the first five companies on the list wins. The wins the race. I think that would be a great challenge. >>All right. What's the most important story this year at Reinvent that you could share with the folks that you could share in terms of what's important, what they should pay attention to, or what's not being told? >>Well, I, I think you talked about your interview with Adam Slosky is the solutions and the what you call the next gen cloud. These high level services. What AWS is doing around these services, it's super interesting. They kind of don't say lead the way, but the responded customers. So they lead the way by kind of following where the customer's going and if, when Slutsky and AWS are doing these solutions, supply chain, et cetera, that tells you kind of where the market's >>Headed. Next Gen Cloud, Jerry, Chad, thanks. Coming on, you're watching The Cube, the leader in high tech coverage. I'm John Furrier. Will be right back with more cube coverages. Day two, day three, here at Reinvent at the short break.

Published Date : Nov 30 2022

SUMMARY :

Everyone live here at the I'm John Fur, host of the Cube. Thank you very much. What's the outlook? But the economy for the next year, I think we're gonna see some headwinds. What's the strategy marketplace? So all the kinda fluffy marketing value you gotta have hard dollar savings, What's the advice for the existing ecosystem So just get kind of creative of how you work with customers. So the velocity of new venture creation is So I think the more focused wedge you have as a startup and how you can land deliver value, of their hour and the next hour we're gonna spend with them for your Sage advice final kind You give me a list of five companies, the VCs find the first five companies on the list wins. What's the most important story this year at Reinvent that you could share with the folks that you could share in terms Well, I, I think you talked about your interview with Adam Slosky is the solutions and the what you call the next gen cloud. Will be right back with more cube coverages.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AndyPERSON

0.99+

Adam CelskiPERSON

0.99+

JohnPERSON

0.99+

Jerry Chen GreylockPERSON

0.99+

AWSORGANIZATION

0.99+

Adam SloskyPERSON

0.99+

AmazonORGANIZATION

0.99+

Jerry ChenPERSON

0.99+

JerryPERSON

0.99+

SavannahPERSON

0.99+

last yearDATE

0.99+

five companiesQUANTITY

0.99+

todayDATE

0.99+

10 yearsQUANTITY

0.99+

John FurrierPERSON

0.99+

John FurPERSON

0.99+

next yearDATE

0.99+

TwoQUANTITY

0.99+

three setsQUANTITY

0.99+

AMDORGANIZATION

0.99+

tomorrowDATE

0.99+

10 years agoDATE

0.98+

GreylockPERSON

0.98+

last nightDATE

0.98+

bothQUANTITY

0.98+

OneQUANTITY

0.98+

23QUANTITY

0.98+

ChadPERSON

0.98+

firstQUANTITY

0.97+

5,000 startupsQUANTITY

0.97+

24QUANTITY

0.97+

Marvel Cinematic UniverseORGANIZATION

0.97+

this yearDATE

0.97+

first five companiesQUANTITY

0.96+

Day twoQUANTITY

0.96+

over 200 streamingQUANTITY

0.95+

day threeQUANTITY

0.95+

The CubeTITLE

0.92+

three thingsQUANTITY

0.9+

eightQUANTITY

0.9+

InstagramORGANIZATION

0.84+

hundreds of interviewsQUANTITY

0.83+

past 10 yearsDATE

0.78+

every single yearQUANTITY

0.75+

SlutskyPERSON

0.74+

InventEVENT

0.73+

ArubaLOCATION

0.65+

Number twoQUANTITY

0.65+

Cube CinematicORGANIZATION

0.62+

ReinventORGANIZATION

0.57+

CoherentORGANIZATION

0.57+

reinventEVENT

0.56+

oneQUANTITY

0.52+

ReinventEVENT

0.47+

PNORGANIZATION

0.46+

2022DATE

0.33+

Chris Grusz, AWS | AWS Marketplace Seller Conference 2022


 

>>Hello. And welcome back to the cubes live coverage here in Seattle for the cubes coverage of AWS marketplace seller conference. Now part of really big move and news, Amazon partner network combines with AWS marketplace to form one organization, the Amazon partner organization, APO where the efficiencies, the next iteration, as they say in Amazon language, where they make things better, simpler, faster, and, and for customers is happening. We're here with Chris Cruz, who's the general manager, worldwide leader of ISV alliances and marketplace, which includes all the channel partners and the buyer and seller relationships all now under one partner organization, bringing together years of work. Yes. If you work with AWS and are a partner and, or sell with them, all kind of coming together, kind of in a new way for the next generation, Chris, congratulations on the new role and the reor. >>Thank you. Yeah, it's very exciting. We're we think it invent, simplifies the process on how we work with our partners and we're really optimistic so far. The feedback's been great. And I think it's just gonna get even better as we kind of work out the final details. >>This is huge news because one, we've been very close to the partner that we've been working with and we talking to, we cover them. We cover the news, the startups from startups, channel partners, big ISVs, big and small from the dorm room to the board room. You guys have great relationships. So check marketplace, the future of procurement, how software will be bought, implemented and deployed is also changed. So you've got the confluence of two worlds coming together, growth in the ecosystem. Yep. NextGen cloud on the horizon for AWS and the customers as digital transformation goes from lift and shift to refactoring businesses. Yep. This is really a seminal moment. Can you share what you talked about on the keynote stage here, around why this is happening now? Yeah. What's the guiding principle. What's the north star where, why what's what's the big news. >>Yeah. And so, you know, a lot of reasons on why we kind of, we pulled the two teams together, but you know, a lot of it kind gets centered around co-sell. And so if you take a look at marketplace where we started off, where it was really a machine image business, and it was a great self-service model and we were working with ISVs that wanted to have this new delivery mechanism on how to bring in at the time was Amazon machine images and you fast forward, we started adding more product types like SAS and containers. And the experience that we saw was that customers would use marketplace for kind of up to a certain limit on a self-service perspective. But then invariably, they wanted by a quantity discount, they wanted to get an enterprise discount and we couldn't do that through marketplace. And so they would exit us and go do a direct deal with a, an ISV. >>And, and so to remedy that we launched private offers, you know, four years ago. And private offers now allowed ISVs to do these larger deals, but do 'em all through marketplace. And so they could start off doing self-service business. And then as a customer graduated up to buying for a full department or an organization, they can now use private offers to execute that larger agreement. And it, we started to do more and more private offers, really kind of coincided with a lot of the initiatives that were going on within Amazon partner network at the time around co-sell. And, and so we started to launch programs like ISV accelerate that really kind of focused on our co-sell relationship with ISVs. And what we found was that marketplace private offers became this awesome way to automate how we co-sell with ISV. And so we kinda had these two organizations that were parallel. We said, you know what, this is gonna be better together. If we put together, it's gonna invent simplify and we can use marketplace private offers as part of that co-sell experience and really feed that automation layer for all of our ISVs as they interacted with native >>Discussions. Well, I gotta give you props, you and Mona work on stage. You guys did a great job and it reminds me of the humble nature of AWS and Amazon. I used to talk to Andy jazzy about this all the time. That reminds me of 2013 here right now, because you're in that mode where Amazon reinvent was in 2013. Yeah. Where you knew it was breaking out. Yeah. Everyone's it was kind of small, but we haven't made it yet. Yeah. But you guys are doing billions of vows in transactions. Yeah. But this event is really, I think the beginning of what we're seeing as the change over from securing and deploying applications in the cloud, because there's a lot of nuanced things I want to get your reaction on one. I heard making your part product as an ISV, more native to AWS's stack. That was one major call out. I heard the other one was, Hey, if you're a channel partner, you can play too. And by the way, there's more choice. There's a lot going on here. That's about to kind of explode in a good way for customers. Yeah. Buyers get more access to assemble their solutions. Yeah. And you got all kinds of like business logic, compensation, integration, and scale. Yeah. This is like unprecedented. >>Yeah. It's, it's exciting to see what's going on. I mean, I think we kind of saw the tipping point probably about two years ago, which, you know, prior to that, you know, we would be working with ISVs and customers and it was really much more of an evangelism role where we were just getting people to try it. Just, just list a product. We think this is gonna be a good idea. And if you're a buyer, it's like just try out a private offer, try out a self, you know, service subscription. And, and what's happened now is there's no longer a lot of that convincing that needs to happen. It's really become accepted. And so a lot of the conversations I have now with ISVs, it's not about, should I do marketplace it's how do I do it better? And how do I really leverage marketplace as part of my co-sell initiatives as, as part of my go to market strategy. >>And so you've, you've really kind of passed this tipping point where marketplaces are now becoming very accepted ways to buy third party software. And so that's really exciting. And, and we see that we, you know, we can really enhance that experience, you know, and what we saw on the machine image side is we had this awesome integrated experience where you would buy it. It was tied right into the EC two control plane. And you could go from buying to deploying in one single motion. SAS is a little bit different, you know, we can do all the buying in a very simple motion, but then deploying it. There's a whole bunch of other stuff that our customers have to do. And so we see all kinds of ways that we can simplify that. You know, recently we launched the ability to put third party solutions outta marketplace, into control tower, which is how we deploy all of our landing zones for AWS. And now it's like, instead of having to go wire that up as you're adding new AWS environments, why not just use that third party solution that you've already integrated to you and have it there as you're span those landing zones through >>Control towers, again, back to humble nature, you guys have dominated the infrastructure as a service layer. You kind of mentioned it. You didn't really kind of highlight it other than saying you're doing pretty good. Yeah. On the IAS or the technology partners as you call or infrastructure as you guys call it. Okay. I can see how the, the, the pan, the control panel is great for those customers. But outside that, when you get into like CRM, you mentioned E R P these business apps, these horizontal and verticals have data they're gonna have SageMaker, they're gonna have edge. They might have, you know, other services that are coming online from Amazon. How do I, as an ISV, get my stuff in there. Yeah. And how do I succeed? And what are you doing to make that better? Cause I know it's kind of new, but not new. Yeah, >>No, it's not. I mean, that's one of the things that we've really invested on is how do we make it really easy to list marketplace? And, you know, again, when we first start started, it was a big, huge spreadsheet that you had to fill out. It was very cumbersome and we've really automated all those aspects. So now we've exposed an API as an example. So you can go straight out of your own build process and you might have your own C I CD pipeline. And then you have a build step at the end. And now you can have that execute marketplace update from your build script, right across that API all the way over to AWS marketplace. So it's taking that effectively, a C CD pipeline from an ISV and extending it all the way to AWS and then eventually to a customer, because now it's just an automated supply chain for that software coming into their environment. And we see that being super powerful. There's nowhere manual steps >>Along. Yeah. I wanna dig into that because you made a comment and I want you to clarify it here in the cube. Some have said, even us on the cube. Oh, marketplace. Just the website's a catalog. Yeah. Feels old school. Yeah. Feels like 1995 database. I'm kind of just, you know, saying no offense sake. And now you're saying, you're now looking at this and, and implementing more of a API based. Why is that relevant? I'm I know the answer. You already set up with APIs, but explain the transition from the mindset of it's a website. Yeah. Buy stuff on a catalog to full blown API layer. Yeah. Services. >>Absolutely. Well, when you look at all AWS services, you know, our customers will interface, you know, they'll interface them through a console initially, but when they're using them in production, they're, it's all about APIs and marketplace, as you mentioned, did start off as a website. And so we've kind of taken the opposite approach. We've got this great website experience, which is great for demand gen and, you know, highlighting those listings. But what we want to do is really have this API service layer that you're interfacing with so that an ISV effectively is not even in our marketplace. They interfacing over APIs to do a variety of their high, you know, value functions, whether it's listing soy, private offers. We don't have that all available through APIs and the same thing on the buyer side. So it's integrating directly into their AWS environment and then they can view all their third party spend within things like our cost management suites. They can look at things like cost Explorer, see third party software, right next to first party software, and have that all integrated this nice as seamless >>For the customer. That's a nice cloud native kind of native experience. I think that's a huge advantage. I'm gonna track that closer. We're we're gonna follow that. I think that's gonna be the killer killer feature. All right. Now let's get to the killer feature and the business logic. Okay. Yeah. All partners all wanna know what's in it for me. Yeah. How do I make more cash? Yeah. How do I compensate my sales people? Yeah. What do you guys don't compete with me? Give me leads. Yeah. Can I get MDF market development funds? Yeah. So take me through the, how you're thinking about supporting the partners that are leaning in that, you know, the parachute will open when they jump outta the plane. Yeah. It's gonna be, they're gonna land safely with you. Yeah. MDF marketing to leads. What are you doing to support the partners to help them serve their >>Customers? It's interesting. Market marketplace has become much more of an accepted way to buy, you know, our customers are, are really defaulting to that as the way to go get that third party software. So we've had some industry analysts do some studies and in what they found, they interviewed a whole cohort of ISVs across various categories within marketplace, whether it was security or network or even line of business software. And what they've found is that on average, our ISVs will see a 24% increased close rate by using marketplace. Right. So when I go talk to a CRO and say, do you want to close, you know, more deals? Yes. Right. And we've got data to show that we're also finding that customers on average, when an ISV sales marketplace, they're seeing an 80% uplift in the actual deal size. And so if your ASP is a hundred K 180 K has a heck of a lot better, right? >>So we're seeing increased deal sizes by going through marketplace. And then the third thing that we've seen, that's a value prop for ISVs is speed of closure. And so on average, what we're finding is that our ISVs are closing deals 40% faster by using marketplace. So if you've got a 10 month sales cycle, shaving four months off of a sales cycle means you're bringing deals in, in an earlier calendar year, earlier quarter. And for ISVs getting that cash flow early is very important. So those are great metrics that we're seeing. And, and, you know, we think that they're only >>Gonna improve and from startups who also want, they don't have a lot of cash ISVs that are rich and doing well. Yeah. They have good, good, good, good, good to market funding. Yeah. You got the range of partners and you know, the next startup could be the next Figma could be in that batch startups. Exactly. Yeah. You don't know the game is changing. Yeah. The next brand could be one of those batch of startups. Yeah. What's the message to the startup community. Yeah. >>I mean, marketplace in a lot of ways becomes a level in effect, right. Because, you know, if, if you look at pre marketplace, if you were a startup, you were having to go generate sales, have a sales force, go compete, you know, kind of hand to hand with these largest ISVs marketplace is really kind of leveling that because now you can both list in marketplace. You have the same advantage of putting that directly in the AWS bill, taking advantage of all the management go features that we offer all the automation that we bring to the table. And so >>A lot of us joint selling >>And joint selling, right? When it goes through marketplace, you know, it's gonna feed into a number of our APN programs like ISV accelerate, our sales teams are gonna get recognized for those deals. And so, you know, it brings nice co-sell behavior to how we work with our, our field sales teams together. It brings nice automation that, you know, pre marketplaces, they would have to go build all that. And that was a heavy lift that really now becomes just kind of table stakes for any kind of ISV selling to an, any of >>Customer. Well, you know, I'm a big fan of the marketplace. I've always have been, even from the early days, I saw this as a procurement game changer. It makes total sense. It's so obvious. Yeah. Not obvious to everyone, but there's a lot of moving parts behind the scenes behind the curtain. So to speak that you're handling. Yeah. What's your message to the audience out there, both the buyers and the sellers. Yeah. About what your mission is, what you're you wake up every day thinking about. Yeah. And what's your promise to them and what you're gonna work on. Cause it's not easy. You're building a, an operating model. That's not a website. It's a full on cloud service. Yeah. What's your promise. And what's >>Your goals. No. And like, you know, ultimately we're trying to do from an Aus market perspective is, is provide that selection experience to the ABUS customer, right? There's the infamous flywheel that Jeff put together that had the concepts of why Amazon is successful. And one are the concepts he points to is the concept of selection. And, and what we mean by that is if you come to Amazon it's is effectively that everything stored. And when you come across, AWS marketplace becomes that selection experience. And so that's what we're trying to do is provide whatever our AWS customers wanna buy, whatever form factor, whatever software type, whatever data type it's gonna be available in AWS marketplace for consumption. And that ultimately helps our customers because now they can get whatever technologies that they need to use alongside Avis. >>And I want, wanna give you props too. You answered the hard question on stage. I've asked Andy EY this on the cube when he was the CEO, Adam Celski last year, I asked him the same question and the answer has been consistent. We have some solutions that people want a AWS end to end, but your ecosystem, you want people to compete yes. And build a product and mostly point to things like snowflake, new Relic. Yeah. Other people that compete with Amazon services. Yeah. You guys want that. You encourage that. Yeah. You're ratifying that same statement. >>Absolutely. Right. Again, it feeds into that selection experience. Right. If a customer wants something, we wanna make sure it's gonna be a great experience. Right. And so a lot of these ISVs are building on top of AWS. We wanna make sure that they're successful. And, you know, while we have a number of our first party services, we have a variety of third party technologies that run very well in a AWS. And ultimately the customer's gonna make their decision. We're customer obsessed. And if they want to go with a third party product, we're absolutely gonna support them in every way shape we can and make sure that's a successful experience for our customers. >>I, I know you referenced two studies check out the website's got buyer and seller surveys on there for Boer. Yeah. I don't want to get into that. I want to just end on one. Yeah. Kind of final note, you got a lot of successful buyers and a lot of successful sellers. The word billions, yes. With an S was and the slide. Can you say the number, how much, how many billions are sold yeah. Through the marketplace. Yeah. And the buyer experience future what's those two things. >>Yeah. So we went on record at reinvent last year, so it's approaching it birthday, but it was the first year that we've in our 10 year history announced how much was actually being sold to the marketplace. And, you know, we are now selling billions of dollars to our marketplace and that's with an S so you can assume, at least it's two, but it's, it's a, it's a large number and it's going >>Very quickly. Yeah. Can't disclose, you know, >>But it's a, it's been a very healthy part of our business. And you know, we look at this, the experience that we >>Saw, there's a lot of headroom. I mean, oh yeah, you have infrastructure nailed down. That's long, you get better, but you have basically growth up upside with these categor other categories. What's the hot categories. You >>Know, we, we started off with infrastructure related products and we've kind of hit critical mass there. Right? We've, there's very few ISVs left that are in that infrastructure related space that are not in our marketplace. And what's happened now is our customers are saying, well, I've been buying infrastructure products for years. I'm gonna buy everything. I wanna buy my line of business software. I wanna buy my vertical solutions. I wanna buy my data and I wanna buy all my services alongside of that. And so there's tons of upside. We're seeing all of these either horizontal business applications coming to our marketplace or vertical specific solutions. Yeah. Which, you know, when we first designed our marketplace, we weren't sure if that would ever happen. We're starting to see that actually really accelerate because customers are now just defaulting to buying everything through their marketplace. >>Chris, thanks for coming on the queue. I know we went a little extra long. There wanted to get that clarification on the new role. Yeah. New organization. Great, great reorg. It makes a lot of sense. Next level NextGen. Thanks for coming on the cube. Okay. >>Thank you for the opportunity. >>All right here, covering the new big news here of AWS marketplace and the AWS partner network coming together under one coherent organization, serving fires and sellers, billions sold the future of how people are gonna be buying software, deploying it, managing it, operating it. It's all happening in the marketplace. This is the big trend. It's the cue here in Seattle with more coverage here at Davis marketplace sellers conference. After the short break.

Published Date : Sep 21 2022

SUMMARY :

If you work with AWS and are a partner and, or sell with them, And I think it's just gonna get even better Can you share what you talked about on the keynote stage here, And so if you take a look at marketplace where And, and so to remedy that we launched private offers, you know, four years ago. And you got all kinds of like business logic, compensation, integration, And so a lot of the conversations I have now with ISVs, it's not about, should I do marketplace it's how do I do and we see that we, you know, we can really enhance that experience, you know, and what we saw on the machine image side is we And what are you doing to make that better? And then you have a build step at the end. I'm kind of just, you know, saying no offense sake. of their high, you know, value functions, whether it's listing soy, private offers. you know, the parachute will open when they jump outta the plane. Market marketplace has become much more of an accepted way to buy, you know, And, and, you know, we think that they're only of partners and you know, the next startup could be the next Figma could be in that batch startups. have a sales force, go compete, you know, kind of hand to hand with these largest ISVs When it goes through marketplace, you know, it's gonna feed into a number of our APN programs And what's your promise to them and what you're gonna work on. And one are the concepts he points to is the concept of selection. And I want, wanna give you props too. And, you know, while we have a number of our first party services, And the buyer experience future what's those two things. And, you know, we are now selling billions of dollars to our marketplace and that's with an S so you can assume, And you know, we look at this, the experience that we I mean, oh yeah, you have infrastructure nailed down. Which, you know, when we first designed our marketplace, we weren't sure if that would ever happen. I know we went a little extra long. It's the cue here in Seattle with more coverage here at Davis marketplace sellers conference.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AWSORGANIZATION

0.99+

ChrisPERSON

0.99+

Chris CruzPERSON

0.99+

SeattleLOCATION

0.99+

AmazonORGANIZATION

0.99+

Chris GruszPERSON

0.99+

10 monthQUANTITY

0.99+

APOORGANIZATION

0.99+

Adam CelskiPERSON

0.99+

24%QUANTITY

0.99+

JeffPERSON

0.99+

twoQUANTITY

0.99+

40%QUANTITY

0.99+

2013DATE

0.99+

80%QUANTITY

0.99+

10 yearQUANTITY

0.99+

last yearDATE

0.99+

two studiesQUANTITY

0.99+

two teamsQUANTITY

0.99+

four monthsQUANTITY

0.99+

bothQUANTITY

0.99+

two thingsQUANTITY

0.99+

billionsQUANTITY

0.98+

two organizationsQUANTITY

0.98+

two worldsQUANTITY

0.98+

four years agoDATE

0.98+

oneQUANTITY

0.98+

1995DATE

0.97+

billions of vowsQUANTITY

0.97+

one organizationQUANTITY

0.97+

one partner organizationQUANTITY

0.97+

firstQUANTITY

0.97+

FigmaORGANIZATION

0.97+

MonaPERSON

0.96+

third thingQUANTITY

0.95+

ABUSORGANIZATION

0.94+

first yearQUANTITY

0.94+

billions of dollarsQUANTITY

0.94+

reinventEVENT

0.93+

ISVORGANIZATION

0.92+

C CDTITLE

0.92+

Andy EYPERSON

0.9+

C I CDTITLE

0.9+

Davis marketplace sellersEVENT

0.9+

one major callQUANTITY

0.86+

one coherent organizationQUANTITY

0.85+

NextGenORGANIZATION

0.85+

Andy jazzyPERSON

0.83+

SageMakerORGANIZATION

0.83+

about two years agoDATE

0.83+

first partyQUANTITY

0.81+

one single motionQUANTITY

0.79+

earlier quarterDATE

0.78+

AWS Marketplace Seller Conference 2022EVENT

0.77+

AvisORGANIZATION

0.77+

4-video test


 

>>don't talk mhm, >>Okay, thing is my presentation on coherent nonlinear dynamics and combinatorial optimization. This is going to be a talk to introduce an approach we're taking to the analysis of the performance of coherent using machines. So let me start with a brief introduction to easing optimization. The easing model represents a set of interacting magnetic moments or spins the total energy given by the expression shown at the bottom left of this slide. Here, the signal variables are meditate binary values. The Matrix element J. I. J. Represents the interaction, strength and signed between any pair of spins. I. J and A Chive represents a possible local magnetic field acting on each thing. The easing ground state problem is to find an assignment of binary spin values that achieves the lowest possible value of total energy. And an instance of the easing problem is specified by giving numerical values for the Matrix J in Vector H. Although the easy model originates in physics, we understand the ground state problem to correspond to what would be called quadratic binary optimization in the field of operations research and in fact, in terms of computational complexity theory, it could be established that the easing ground state problem is np complete. Qualitatively speaking, this makes the easing problem a representative sort of hard optimization problem, for which it is expected that the runtime required by any computational algorithm to find exact solutions should, as anatomically scale exponentially with the number of spends and for worst case instances at each end. Of course, there's no reason to believe that the problem instances that actually arrives in practical optimization scenarios are going to be worst case instances. And it's also not generally the case in practical optimization scenarios that we demand absolute optimum solutions. Usually we're more interested in just getting the best solution we can within an affordable cost, where costs may be measured in terms of time, service fees and or energy required for a computation. This focuses great interest on so called heuristic algorithms for the easing problem in other NP complete problems which generally get very good but not guaranteed optimum solutions and run much faster than algorithms that are designed to find absolute Optima. To get some feeling for present day numbers, we can consider the famous traveling salesman problem for which extensive compilations of benchmarking data may be found online. A recent study found that the best known TSP solver required median run times across the Library of Problem instances That scaled is a very steep route exponential for end up to approximately 4500. This gives some indication of the change in runtime scaling for generic as opposed the worst case problem instances. Some of the instances considered in this study were taken from a public library of T SPS derived from real world Veil aside design data. This feels I TSP Library includes instances within ranging from 131 to 744,710 instances from this library with end between 6880 13,584 were first solved just a few years ago in 2017 requiring days of run time and a 48 core to King hurts cluster, while instances with and greater than or equal to 14,233 remain unsolved exactly by any means. Approximate solutions, however, have been found by heuristic methods for all instances in the VLS i TSP library with, for example, a solution within 0.14% of a no lower bound, having been discovered, for instance, with an equal 19,289 requiring approximately two days of run time on a single core of 2.4 gigahertz. Now, if we simple mindedly extrapolate the root exponential scaling from the study up to an equal 4500, we might expect that an exact solver would require something more like a year of run time on the 48 core cluster used for the N equals 13,580 for instance, which shows how much a very small concession on the quality of the solution makes it possible to tackle much larger instances with much lower cost. At the extreme end, the largest TSP ever solved exactly has an equal 85,900. This is an instance derived from 19 eighties VLSI design, and it's required 136 CPU. Years of computation normalized to a single cord, 2.4 gigahertz. But the 24 larger so called world TSP benchmark instance within equals 1,904,711 has been solved approximately within ophthalmology. Gap bounded below 0.474%. Coming back to the general. Practical concerns have applied optimization. We may note that a recent meta study analyzed the performance of no fewer than 37 heuristic algorithms for Max cut and quadratic pioneer optimization problems and found the performance sort and found that different heuristics work best for different problem instances selected from a large scale heterogeneous test bed with some evidence but cryptic structure in terms of what types of problem instances were best solved by any given heuristic. Indeed, their their reasons to believe that these results from Mexico and quadratic binary optimization reflected general principle of performance complementarity among heuristic optimization algorithms in the practice of solving heart optimization problems there. The cerise is a critical pre processing issue of trying to guess which of a number of available good heuristic algorithms should be chosen to tackle a given problem. Instance, assuming that any one of them would incur high costs to run on a large problem, instances incidence, making an astute choice of heuristic is a crucial part of maximizing overall performance. Unfortunately, we still have very little conceptual insight about what makes a specific problem instance, good or bad for any given heuristic optimization algorithm. This has certainly been pinpointed by researchers in the field is a circumstance that must be addressed. So adding this all up, we see that a critical frontier for cutting edge academic research involves both the development of novel heuristic algorithms that deliver better performance, with lower cost on classes of problem instances that are underserved by existing approaches, as well as fundamental research to provide deep conceptual insight into what makes a given problem in, since easy or hard for such algorithms. In fact, these days, as we talk about the end of Moore's law and speculate about a so called second quantum revolution, it's natural to talk not only about novel algorithms for conventional CPUs but also about highly customized special purpose hardware architectures on which we may run entirely unconventional algorithms for combinatorial optimization such as easing problem. So against that backdrop, I'd like to use my remaining time to introduce our work on analysis of coherent using machine architectures and associate ID optimization algorithms. These machines, in general, are a novel class of information processing architectures for solving combinatorial optimization problems by embedding them in the dynamics of analog, physical or cyber physical systems, in contrast to both MAWR traditional engineering approaches that build using machines using conventional electron ICS and more radical proposals that would require large scale quantum entanglement. The emerging paradigm of coherent easing machines leverages coherent nonlinear dynamics in photonic or Opto electronic platforms to enable near term construction of large scale prototypes that leverage post Simoes information dynamics, the general structure of of current CM systems has shown in the figure on the right. The role of the easing spins is played by a train of optical pulses circulating around a fiber optical storage ring. A beam splitter inserted in the ring is used to periodically sample the amplitude of every optical pulse, and the measurement results are continually read into a refugee A, which uses them to compute perturbations to be applied to each pulse by a synchronized optical injections. These perturbations, air engineered to implement the spin, spin coupling and local magnetic field terms of the easing Hamiltonian, corresponding to a linear part of the CME Dynamics, a synchronously pumped parametric amplifier denoted here as PPL and Wave Guide adds a crucial nonlinear component to the CIA and Dynamics as well. In the basic CM algorithm, the pump power starts very low and has gradually increased at low pump powers. The amplitude of the easing spin pulses behaviors continuous, complex variables. Who Israel parts which can be positive or negative, play the role of play the role of soft or perhaps mean field spins once the pump, our crosses the threshold for parametric self oscillation. In the optical fiber ring, however, the attitudes of the easing spin pulses become effectively Qantas ized into binary values while the pump power is being ramped up. The F P J subsystem continuously applies its measurement based feedback. Implementation of the using Hamiltonian terms, the interplay of the linear rised using dynamics implemented by the F P G A and the threshold conversation dynamics provided by the sink pumped Parametric amplifier result in the final state of the optical optical pulse amplitude at the end of the pump ramp that could be read as a binary strain, giving a proposed solution of the easing ground state problem. This method of solving easing problem seems quite different from a conventional algorithm that runs entirely on a digital computer as a crucial aspect of the computation is performed physically by the analog, continuous, coherent, nonlinear dynamics of the optical degrees of freedom. In our efforts to analyze CIA and performance, we have therefore turned to the tools of dynamical systems theory, namely, a study of modifications, the evolution of critical points and apologies of hetero clinic orbits and basins of attraction. We conjecture that such analysis can provide fundamental insight into what makes certain optimization instances hard or easy for coherent using machines and hope that our approach can lead to both improvements of the course, the AM algorithm and a pre processing rubric for rapidly assessing the CME suitability of new instances. Okay, to provide a bit of intuition about how this all works, it may help to consider the threshold dynamics of just one or two optical parametric oscillators in the CME architecture just described. We can think of each of the pulse time slots circulating around the fiber ring, as are presenting an independent Opio. We can think of a single Opio degree of freedom as a single, resonant optical node that experiences linear dissipation, do toe out coupling loss and gain in a pump. Nonlinear crystal has shown in the diagram on the upper left of this slide as the pump power is increased from zero. As in the CME algorithm, the non linear game is initially to low toe overcome linear dissipation, and the Opio field remains in a near vacuum state at a critical threshold. Value gain. Equal participation in the Popeo undergoes a sort of lazing transition, and the study states of the OPIO above this threshold are essentially coherent states. There are actually two possible values of the Opio career in amplitude and any given above threshold pump power which are equal in magnitude but opposite in phase when the OPI across the special diet basically chooses one of the two possible phases randomly, resulting in the generation of a single bit of information. If we consider to uncoupled, Opio has shown in the upper right diagram pumped it exactly the same power at all times. Then, as the pump power has increased through threshold, each Opio will independently choose the phase and thus to random bits are generated for any number of uncoupled. Oppose the threshold power per opio is unchanged from the single Opio case. Now, however, consider a scenario in which the two appeals air, coupled to each other by a mutual injection of their out coupled fields has shown in the diagram on the lower right. One can imagine that depending on the sign of the coupling parameter Alfa, when one Opio is lazing, it will inject a perturbation into the other that may interfere either constructively or destructively, with the feel that it is trying to generate by its own lazing process. As a result, when came easily showed that for Alfa positive, there's an effective ferro magnetic coupling between the two Opio fields and their collective oscillation threshold is lowered from that of the independent Opio case. But on Lee for the two collective oscillation modes in which the two Opio phases are the same for Alfa Negative, the collective oscillation threshold is lowered on Lee for the configurations in which the Opio phases air opposite. So then, looking at how Alfa is related to the J. I. J matrix of the easing spin coupling Hamiltonian, it follows that we could use this simplistic to a p o. C. I am to solve the ground state problem of a fair magnetic or anti ferro magnetic ankles to easing model simply by increasing the pump power from zero and observing what phase relation occurs as the two appeals first start delays. Clearly, we can imagine generalizing this story toe larger, and however the story doesn't stay is clean and simple for all larger problem instances. And to find a more complicated example, we only need to go to n equals four for some choices of J J for n equals, for the story remains simple. Like the n equals two case. The figure on the upper left of this slide shows the energy of various critical points for a non frustrated and equals, for instance, in which the first bifurcated critical point that is the one that I forget to the lowest pump value a. Uh, this first bifurcated critical point flows as symptomatically into the lowest energy easing solution and the figure on the upper right. However, the first bifurcated critical point flows to a very good but sub optimal minimum at large pump power. The global minimum is actually given by a distinct critical critical point that first appears at a higher pump power and is not automatically connected to the origin. The basic C am algorithm is thus not able to find this global minimum. Such non ideal behaviors needs to become more confident. Larger end for the n equals 20 instance, showing the lower plots where the lower right plot is just a zoom into a region of the lower left lot. It can be seen that the global minimum corresponds to a critical point that first appears out of pump parameter, a around 0.16 at some distance from the idiomatic trajectory of the origin. That's curious to note that in both of these small and examples, however, the critical point corresponding to the global minimum appears relatively close to the idiomatic projector of the origin as compared to the most of the other local minima that appear. We're currently working to characterize the face portrait topology between the global minimum in the antibiotic trajectory of the origin, taking clues as to how the basic C am algorithm could be generalized to search for non idiomatic trajectories that jump to the global minimum during the pump ramp. Of course, n equals 20 is still too small to be of interest for practical optimization applications. But the advantage of beginning with the study of small instances is that we're able reliably to determine their global minima and to see how they relate to the 80 about trajectory of the origin in the basic C am algorithm. In the smaller and limit, we can also analyze fully quantum mechanical models of Syrian dynamics. But that's a topic for future talks. Um, existing large scale prototypes are pushing into the range of in equals 10 to the 4 10 to 5 to six. So our ultimate objective in theoretical analysis really has to be to try to say something about CIA and dynamics and regime of much larger in our initial approach to characterizing CIA and behavior in the large in regime relies on the use of random matrix theory, and this connects to prior research on spin classes, SK models and the tap equations etcetera. At present, we're focusing on statistical characterization of the CIA ingredient descent landscape, including the evolution of critical points in their Eigen value spectra. As the pump power is gradually increased. We're investigating, for example, whether there could be some way to exploit differences in the relative stability of the global minimum versus other local minima. We're also working to understand the deleterious or potentially beneficial effects of non ideologies, such as a symmetry in the implemented these and couplings. Looking one step ahead, we plan to move next in the direction of considering more realistic classes of problem instances such as quadratic, binary optimization with constraints. Eso In closing, I should acknowledge people who did the hard work on these things that I've shown eso. My group, including graduate students Ed winning, Daniel Wennberg, Tatsuya Nagamoto and Atsushi Yamamura, have been working in close collaboration with Syria Ganguly, Marty Fair and Amir Safarini Nini, all of us within the Department of Applied Physics at Stanford University. On also in collaboration with the Oshima Moto over at NTT 55 research labs, Onda should acknowledge funding support from the NSF by the Coherent Easing Machines Expedition in computing, also from NTT five research labs, Army Research Office and Exxon Mobil. Uh, that's it. Thanks very much. >>Mhm e >>t research and the Oshie for putting together this program and also the opportunity to speak here. My name is Al Gore ism or Andy and I'm from Caltech, and today I'm going to tell you about the work that we have been doing on networks off optical parametric oscillators and how we have been using them for icing machines and how we're pushing them toward Cornum photonics to acknowledge my team at Caltech, which is now eight graduate students and five researcher and postdocs as well as collaborators from all over the world, including entity research and also the funding from different places, including entity. So this talk is primarily about networks of resonate er's, and these networks are everywhere from nature. For instance, the brain, which is a network of oscillators all the way to optics and photonics and some of the biggest examples or metal materials, which is an array of small resonate er's. And we're recently the field of technological photonics, which is trying thio implement a lot of the technological behaviors of models in the condensed matter, physics in photonics and if you want to extend it even further, some of the implementations off quantum computing are technically networks of quantum oscillators. So we started thinking about these things in the context of icing machines, which is based on the icing problem, which is based on the icing model, which is the simple summation over the spins and spins can be their upward down and the couplings is given by the JJ. And the icing problem is, if you know J I J. What is the spin configuration that gives you the ground state? And this problem is shown to be an MP high problem. So it's computational e important because it's a representative of the MP problems on NPR. Problems are important because first, their heart and standard computers if you use a brute force algorithm and they're everywhere on the application side. That's why there is this demand for making a machine that can target these problems, and hopefully it can provide some meaningful computational benefit compared to the standard digital computers. So I've been building these icing machines based on this building block, which is a degenerate optical parametric. Oscillator on what it is is resonator with non linearity in it, and we pump these resonate er's and we generate the signal at half the frequency of the pump. One vote on a pump splits into two identical photons of signal, and they have some very interesting phase of frequency locking behaviors. And if you look at the phase locking behavior, you realize that you can actually have two possible phase states as the escalation result of these Opio which are off by pie, and that's one of the important characteristics of them. So I want to emphasize a little more on that and I have this mechanical analogy which are basically two simple pendulum. But there are parametric oscillators because I'm going to modulate the parameter of them in this video, which is the length of the string on by that modulation, which is that will make a pump. I'm gonna make a muscular. That'll make a signal which is half the frequency of the pump. And I have two of them to show you that they can acquire these face states so they're still facing frequency lock to the pump. But it can also lead in either the zero pie face states on. The idea is to use this binary phase to represent the binary icing spin. So each opio is going to represent spin, which can be either is your pie or up or down. And to implement the network of these resonate er's, we use the time off blood scheme, and the idea is that we put impulses in the cavity. These pulses air separated by the repetition period that you put in or t r. And you can think about these pulses in one resonator, xaz and temporarily separated synthetic resonate Er's if you want a couple of these resonator is to each other, and now you can introduce these delays, each of which is a multiple of TR. If you look at the shortest delay it couples resonator wanted to 2 to 3 and so on. If you look at the second delay, which is two times a rotation period, the couple's 123 and so on. And if you have and minus one delay lines, then you can have any potential couplings among these synthetic resonate er's. And if I can introduce these modulators in those delay lines so that I can strength, I can control the strength and the phase of these couplings at the right time. Then I can have a program will all toe all connected network in this time off like scheme, and the whole physical size of the system scales linearly with the number of pulses. So the idea of opium based icing machine is didn't having these o pos, each of them can be either zero pie and I can arbitrarily connect them to each other. And then I start with programming this machine to a given icing problem by just setting the couplings and setting the controllers in each of those delight lines. So now I have a network which represents an icing problem. Then the icing problem maps to finding the face state that satisfy maximum number of coupling constraints. And the way it happens is that the icing Hamiltonian maps to the linear loss of the network. And if I start adding gain by just putting pump into the network, then the OPI ohs are expected to oscillate in the lowest, lowest lost state. And, uh and we have been doing these in the past, uh, six or seven years and I'm just going to quickly show you the transition, especially what happened in the first implementation, which was using a free space optical system and then the guided wave implementation in 2016 and the measurement feedback idea which led to increasing the size and doing actual computation with these machines. So I just want to make this distinction here that, um, the first implementation was an all optical interaction. We also had an unequal 16 implementation. And then we transition to this measurement feedback idea, which I'll tell you quickly what it iss on. There's still a lot of ongoing work, especially on the entity side, to make larger machines using the measurement feedback. But I'm gonna mostly focused on the all optical networks and how we're using all optical networks to go beyond simulation of icing Hamiltonian both in the linear and non linear side and also how we're working on miniaturization of these Opio networks. So the first experiment, which was the four opium machine, it was a free space implementation and this is the actual picture off the machine and we implemented a small and it calls for Mexico problem on the machine. So one problem for one experiment and we ran the machine 1000 times, we looked at the state and we always saw it oscillate in one of these, um, ground states of the icing laboratoria. So then the measurement feedback idea was to replace those couplings and the controller with the simulator. So we basically simulated all those coherent interactions on on FB g. A. And we replicated the coherent pulse with respect to all those measurements. And then we injected it back into the cavity and on the near to you still remain. So it still is a non. They're dynamical system, but the linear side is all simulated. So there are lots of questions about if this system is preserving important information or not, or if it's gonna behave better. Computational wars. And that's still ah, lot of ongoing studies. But nevertheless, the reason that this implementation was very interesting is that you don't need the end minus one delight lines so you can just use one. Then you can implement a large machine, and then you can run several thousands of problems in the machine, and then you can compare the performance from the computational perspective Looks so I'm gonna split this idea of opium based icing machine into two parts. One is the linear part, which is if you take out the non linearity out of the resonator and just think about the connections. You can think about this as a simple matrix multiplication scheme. And that's basically what gives you the icing Hambletonian modeling. So the optical laws of this network corresponds to the icing Hamiltonian. And if I just want to show you the example of the n equals for experiment on all those face states and the history Graham that we saw, you can actually calculate the laws of each of those states because all those interferences in the beam splitters and the delay lines are going to give you a different losses. And then you will see that the ground states corresponds to the lowest laws of the actual optical network. If you add the non linearity, the simple way of thinking about what the non linearity does is that it provides to gain, and then you start bringing up the gain so that it hits the loss. Then you go through the game saturation or the threshold which is going to give you this phase bifurcation. So you go either to zero the pie face state. And the expectation is that Theis, the network oscillates in the lowest possible state, the lowest possible loss state. There are some challenges associated with this intensity Durban face transition, which I'm going to briefly talk about. I'm also going to tell you about other types of non aerodynamics that we're looking at on the non air side of these networks. So if you just think about the linear network, we're actually interested in looking at some technological behaviors in these networks. And the difference between looking at the technological behaviors and the icing uh, machine is that now, First of all, we're looking at the type of Hamilton Ian's that are a little different than the icing Hamilton. And one of the biggest difference is is that most of these technological Hamilton Ian's that require breaking the time reversal symmetry, meaning that you go from one spin to in the one side to another side and you get one phase. And if you go back where you get a different phase, and the other thing is that we're not just interested in finding the ground state, we're actually now interesting and looking at all sorts of states and looking at the dynamics and the behaviors of all these states in the network. So we started with the simplest implementation, of course, which is a one d chain of thes resonate, er's, which corresponds to a so called ssh model. In the technological work, we get the similar energy to los mapping and now we can actually look at the band structure on. This is an actual measurement that we get with this associate model and you see how it reasonably how How? Well, it actually follows the prediction and the theory. One of the interesting things about the time multiplexing implementation is that now you have the flexibility of changing the network as you are running the machine. And that's something unique about this time multiplex implementation so that we can actually look at the dynamics. And one example that we have looked at is we can actually go through the transition off going from top A logical to the to the standard nontrivial. I'm sorry to the trivial behavior of the network. You can then look at the edge states and you can also see the trivial and states and the technological at states actually showing up in this network. We have just recently implement on a two D, uh, network with Harper Hofstadter model and when you don't have the results here. But we're one of the other important characteristic of time multiplexing is that you can go to higher and higher dimensions and keeping that flexibility and dynamics, and we can also think about adding non linearity both in a classical and quantum regimes, which is going to give us a lot of exotic, no classical and quantum, non innate behaviors in these networks. Yeah, So I told you about the linear side. Mostly let me just switch gears and talk about the nonlinear side of the network. And the biggest thing that I talked about so far in the icing machine is this face transition that threshold. So the low threshold we have squeezed state in these. Oh, pios, if you increase the pump, we go through this intensity driven phase transition and then we got the face stays above threshold. And this is basically the mechanism off the computation in these O pos, which is through this phase transition below to above threshold. So one of the characteristics of this phase transition is that below threshold, you expect to see quantum states above threshold. You expect to see more classical states or coherent states, and that's basically corresponding to the intensity off the driving pump. So it's really hard to imagine that it can go above threshold. Or you can have this friends transition happen in the all in the quantum regime. And there are also some challenges associated with the intensity homogeneity off the network, which, for example, is if one opioid starts oscillating and then its intensity goes really high. Then it's going to ruin this collective decision making off the network because of the intensity driven face transition nature. So So the question is, can we look at other phase transitions? Can we utilize them for both computing? And also can we bring them to the quantum regime on? I'm going to specifically talk about the face transition in the spectral domain, which is the transition from the so called degenerate regime, which is what I mostly talked about to the non degenerate regime, which happens by just tuning the phase of the cavity. And what is interesting is that this phase transition corresponds to a distinct phase noise behavior. So in the degenerate regime, which we call it the order state, you're gonna have the phase being locked to the phase of the pump. As I talked about non degenerate regime. However, the phase is the phase is mostly dominated by the quantum diffusion. Off the off the phase, which is limited by the so called shallow towns limit, and you can see that transition from the general to non degenerate, which also has distinct symmetry differences. And this transition corresponds to a symmetry breaking in the non degenerate case. The signal can acquire any of those phases on the circle, so it has a you one symmetry. Okay, and if you go to the degenerate case, then that symmetry is broken and you only have zero pie face days I will look at. So now the question is can utilize this phase transition, which is a face driven phase transition, and can we use it for similar computational scheme? So that's one of the questions that were also thinking about. And it's not just this face transition is not just important for computing. It's also interesting from the sensing potentials and this face transition, you can easily bring it below threshold and just operated in the quantum regime. Either Gaussian or non Gaussian. If you make a network of Opio is now, we can see all sorts off more complicated and more interesting phase transitions in the spectral domain. One of them is the first order phase transition, which you get by just coupling to Opio, and that's a very abrupt face transition and compared to the to the single Opio phase transition. And if you do the couplings right, you can actually get a lot of non her mission dynamics and exceptional points, which are actually very interesting to explore both in the classical and quantum regime. And I should also mention that you can think about the cup links to be also nonlinear couplings. And that's another behavior that you can see, especially in the nonlinear in the non degenerate regime. So with that, I basically told you about these Opio networks, how we can think about the linear scheme and the linear behaviors and how we can think about the rich, nonlinear dynamics and non linear behaviors both in the classical and quantum regime. I want to switch gear and tell you a little bit about the miniaturization of these Opio networks. And of course, the motivation is if you look at the electron ICS and what we had 60 or 70 years ago with vacuum tube and how we transition from relatively small scale computers in the order of thousands of nonlinear elements to billions of non elements where we are now with the optics is probably very similar to 70 years ago, which is a table talk implementation. And the question is, how can we utilize nano photonics? I'm gonna just briefly show you the two directions on that which we're working on. One is based on lithium Diabate, and the other is based on even a smaller resonate er's could you? So the work on Nana Photonic lithium naive. It was started in collaboration with Harvard Marko Loncar, and also might affair at Stanford. And, uh, we could show that you can do the periodic polling in the phenomenon of it and get all sorts of very highly nonlinear processes happening in this net. Photonic periodically polls if, um Diabate. And now we're working on building. Opio was based on that kind of photonic the film Diabate. And these air some some examples of the devices that we have been building in the past few months, which I'm not gonna tell you more about. But the O. P. O. S. And the Opio Networks are in the works. And that's not the only way of making large networks. Um, but also I want to point out that The reason that these Nana photonic goblins are actually exciting is not just because you can make a large networks and it can make him compact in a in a small footprint. They also provide some opportunities in terms of the operation regime. On one of them is about making cat states and Opio, which is, can we have the quantum superposition of the zero pie states that I talked about and the Net a photonic within? I've It provides some opportunities to actually get closer to that regime because of the spatial temporal confinement that you can get in these wave guides. So we're doing some theory on that. We're confident that the type of non linearity two losses that it can get with these platforms are actually much higher than what you can get with other platform their existing platforms and to go even smaller. We have been asking the question off. What is the smallest possible Opio that you can make? Then you can think about really wavelength scale type, resonate er's and adding the chi to non linearity and see how and when you can get the Opio to operate. And recently, in collaboration with us see, we have been actually USC and Creole. We have demonstrated that you can use nano lasers and get some spin Hamilton and implementations on those networks. So if you can build the a P. O s, we know that there is a path for implementing Opio Networks on on such a nano scale. So we have looked at these calculations and we try to estimate the threshold of a pos. Let's say for me resonator and it turns out that it can actually be even lower than the type of bulk Pip Llano Pos that we have been building in the past 50 years or so. So we're working on the experiments and we're hoping that we can actually make even larger and larger scale Opio networks. So let me summarize the talk I told you about the opium networks and our work that has been going on on icing machines and the measurement feedback. And I told you about the ongoing work on the all optical implementations both on the linear side and also on the nonlinear behaviors. And I also told you a little bit about the efforts on miniaturization and going to the to the Nano scale. So with that, I would like Thio >>three from the University of Tokyo. Before I thought that would like to thank you showing all the stuff of entity for the invitation and the organization of this online meeting and also would like to say that it has been very exciting to see the growth of this new film lab. And I'm happy to share with you today of some of the recent works that have been done either by me or by character of Hong Kong. Honest Group indicates the title of my talk is a neuro more fic in silica simulator for the communities in machine. And here is the outline I would like to make the case that the simulation in digital Tektronix of the CME can be useful for the better understanding or improving its function principles by new job introducing some ideas from neural networks. This is what I will discuss in the first part and then it will show some proof of concept of the game and performance that can be obtained using dissimulation in the second part and the protection of the performance that can be achieved using a very large chaos simulator in the third part and finally talk about future plans. So first, let me start by comparing recently proposed izing machines using this table there is elected from recent natural tronics paper from the village Park hard people, and this comparison shows that there's always a trade off between energy efficiency, speed and scalability that depends on the physical implementation. So in red, here are the limitation of each of the servers hardware on, interestingly, the F p G, a based systems such as a producer, digital, another uh Toshiba beautification machine or a recently proposed restricted Bozeman machine, FPD A by a group in Berkeley. They offer a good compromise between speed and scalability. And this is why, despite the unique advantage that some of these older hardware have trust as the currency proposition in Fox, CBS or the energy efficiency off memory Sisters uh P. J. O are still an attractive platform for building large organizing machines in the near future. The reason for the good performance of Refugee A is not so much that they operate at the high frequency. No, there are particular in use, efficient, but rather that the physical wiring off its elements can be reconfigured in a way that limits the funding human bottleneck, larger, funny and phenols and the long propagation video information within the system. In this respect, the LPGA is They are interesting from the perspective off the physics off complex systems, but then the physics of the actions on the photos. So to put the performance of these various hardware and perspective, we can look at the competition of bringing the brain the brain complete, using billions of neurons using only 20 watts of power and operates. It's a very theoretically slow, if we can see and so this impressive characteristic, they motivate us to try to investigate. What kind of new inspired principles be useful for designing better izing machines? The idea of this research project in the future collaboration it's to temporary alleviates the limitations that are intrinsic to the realization of an optical cortex in machine shown in the top panel here. By designing a large care simulator in silicone in the bottom here that can be used for digesting the better organization principles of the CIA and this talk, I will talk about three neuro inspired principles that are the symmetry of connections, neural dynamics orphan chaotic because of symmetry, is interconnectivity the infrastructure? No. Next talks are not composed of the reputation of always the same types of non environments of the neurons, but there is a local structure that is repeated. So here's the schematic of the micro column in the cortex. And lastly, the Iraqi co organization of connectivity connectivity is organizing a tree structure in the brain. So here you see a representation of the Iraqi and organization of the monkey cerebral cortex. So how can these principles we used to improve the performance of the icing machines? And it's in sequence stimulation. So, first about the two of principles of the estimate Trian Rico structure. We know that the classical approximation of the car testing machine, which is the ground toe, the rate based on your networks. So in the case of the icing machines, uh, the okay, Scott approximation can be obtained using the trump active in your position, for example, so the times of both of the system they are, they can be described by the following ordinary differential equations on in which, in case of see, I am the X, I represent the in phase component of one GOP Oh, Theo f represents the monitor optical parts, the district optical Parametric amplification and some of the good I JoJo extra represent the coupling, which is done in the case of the measure of feedback coupling cm using oh, more than detection and refugee A and then injection off the cooking time and eso this dynamics in both cases of CNN in your networks, they can be written as the grand set of a potential function V, and this written here, and this potential functionally includes the rising Maccagnan. So this is why it's natural to use this type of, uh, dynamics to solve the icing problem in which the Omega I J or the eyes in coping and the H is the extension of the icing and attorney in India and expect so. Not that this potential function can only be defined if the Omega I j. R. A. Symmetric. So the well known problem of this approach is that this potential function V that we obtain is very non convicts at low temperature, and also one strategy is to gradually deformed this landscape, using so many in process. But there is no theorem. Unfortunately, that granted conventions to the global minimum of There's even Tony and using this approach. And so this is why we propose, uh, to introduce a macro structures of the system where one analog spin or one D O. P. O is replaced by a pair off one another spin and one error, according viable. And the addition of this chemical structure introduces a symmetry in the system, which in terms induces chaotic dynamics, a chaotic search rather than a learning process for searching for the ground state of the icing. Every 20 within this massacre structure the role of the er variable eyes to control the amplitude off the analog spins toe force. The amplitude of the expense toe become equal to certain target amplitude a uh and, uh, and this is done by modulating the strength off the icing complaints or see the the error variable E I multiply the icing complaint here in the dynamics off air d o p. O. On then the dynamics. The whole dynamics described by this coupled equations because the e I do not necessarily take away the same value for the different. I thesis introduces a symmetry in the system, which in turn creates security dynamics, which I'm sure here for solving certain current size off, um, escape problem, Uh, in which the X I are shown here and the i r from here and the value of the icing energy showing the bottom plots. You see this Celtics search that visit various local minima of the as Newtonian and eventually finds the global minimum? Um, it can be shown that this modulation off the target opportunity can be used to destabilize all the local minima off the icing evertonians so that we're gonna do not get stuck in any of them. On more over the other types of attractors I can eventually appear, such as limits I contractors, Okot contractors. They can also be destabilized using the motivation of the target and Batuta. And so we have proposed in the past two different moderation of the target amateur. The first one is a modulation that ensure the uh 100 reproduction rate of the system to become positive on this forbids the creation off any nontrivial tractors. And but in this work, I will talk about another moderation or arrested moderation which is given here. That works, uh, as well as this first uh, moderation, but is easy to be implemented on refugee. So this couple of the question that represent becoming the stimulation of the cortex in machine with some error correction they can be implemented especially efficiently on an F B. G. And here I show the time that it takes to simulate three system and also in red. You see, at the time that it takes to simulate the X I term the EI term, the dot product and the rising Hamiltonian for a system with 500 spins and Iraq Spain's equivalent to 500 g. O. P. S. So >>in >>f b d a. The nonlinear dynamics which, according to the digital optical Parametric amplification that the Opa off the CME can be computed in only 13 clock cycles at 300 yards. So which corresponds to about 0.1 microseconds. And this is Toby, uh, compared to what can be achieved in the measurements back O C. M. In which, if we want to get 500 timer chip Xia Pios with the one she got repetition rate through the obstacle nine narrative. Uh, then way would require 0.5 microseconds toe do this so the submission in F B J can be at least as fast as ah one g repression. Uh, replicate pulsed laser CIA Um, then the DOT product that appears in this differential equation can be completed in 43 clock cycles. That's to say, one microseconds at 15 years. So I pieced for pouring sizes that are larger than 500 speeds. The dot product becomes clearly the bottleneck, and this can be seen by looking at the the skating off the time the numbers of clock cycles a text to compute either the non in your optical parts or the dog products, respect to the problem size. And And if we had infinite amount of resources and PGA to simulate the dynamics, then the non illogical post can could be done in the old one. On the mattress Vector product could be done in the low carrot off, located off scales as a look at it off and and while the guide off end. Because computing the dot product involves assuming all the terms in the product, which is done by a nephew, GE by another tree, which heights scarce logarithmic any with the size of the system. But This is in the case if we had an infinite amount of resources on the LPGA food, but for dealing for larger problems off more than 100 spins. Usually we need to decompose the metrics into ah, smaller blocks with the block side that are not you here. And then the scaling becomes funny, non inner parts linear in the end, over you and for the products in the end of EU square eso typically for low NF pdf cheap PGA you the block size off this matrix is typically about 100. So clearly way want to make you as large as possible in order to maintain this scanning in a log event for the numbers of clock cycles needed to compute the product rather than this and square that occurs if we decompose the metrics into smaller blocks. But the difficulty in, uh, having this larger blocks eyes that having another tree very large Haider tree introduces a large finding and finance and long distance start a path within the refugee. So the solution to get higher performance for a simulator of the contest in machine eyes to get rid of this bottleneck for the dot product by increasing the size of this at the tree. And this can be done by organizing your critique the electrical components within the LPGA in order which is shown here in this, uh, right panel here in order to minimize the finding finance of the system and to minimize the long distance that a path in the in the fpt So I'm not going to the details of how this is implemented LPGA. But just to give you a idea off why the Iraqi Yahiko organization off the system becomes the extremely important toe get good performance for similar organizing machine. So instead of instead of getting into the details of the mpg implementation, I would like to give some few benchmark results off this simulator, uh, off the that that was used as a proof of concept for this idea which is can be found in this archive paper here and here. I should results for solving escape problems. Free connected person, randomly person minus one spring last problems and we sure, as we use as a metric the numbers of the mattress Victor products since it's the bottleneck of the computation, uh, to get the optimal solution of this escape problem with the Nina successful BT against the problem size here and and in red here, this propose FDJ implementation and in ah blue is the numbers of retrospective product that are necessary for the C. I am without error correction to solve this escape programs and in green here for noisy means in an evening which is, uh, behavior with similar to the Cartesian mission. Uh, and so clearly you see that the scaring off the numbers of matrix vector product necessary to solve this problem scales with a better exponents than this other approaches. So So So that's interesting feature of the system and next we can see what is the real time to solution to solve this SK instances eso in the last six years, the time institution in seconds to find a grand state of risk. Instances remain answers probability for different state of the art hardware. So in red is the F B g. A presentation proposing this paper and then the other curve represent Ah, brick a local search in in orange and silver lining in purple, for example. And so you see that the scaring off this purpose simulator is is rather good, and that for larger plant sizes we can get orders of magnitude faster than the state of the art approaches. Moreover, the relatively good scanning off the time to search in respect to problem size uh, they indicate that the FPD implementation would be faster than risk. Other recently proposed izing machine, such as the hope you know, natural complimented on memories distance that is very fast for small problem size in blue here, which is very fast for small problem size. But which scanning is not good on the same thing for the restricted Bosman machine. Implementing a PGA proposed by some group in Broken Recently Again, which is very fast for small parliament sizes but which canning is bad so that a dis worse than the proposed approach so that we can expect that for programs size is larger than 1000 spins. The proposed, of course, would be the faster one. Let me jump toe this other slide and another confirmation that the scheme scales well that you can find the maximum cut values off benchmark sets. The G sets better candidates that have been previously found by any other algorithms, so they are the best known could values to best of our knowledge. And, um or so which is shown in this paper table here in particular, the instances, uh, 14 and 15 of this G set can be We can find better converse than previously known, and we can find this can vary is 100 times faster than the state of the art algorithm and CP to do this which is a very common Kasich. It s not that getting this a good result on the G sets, they do not require ah, particular hard tuning of the parameters. So the tuning issuing here is very simple. It it just depends on the degree off connectivity within each graph. And so this good results on the set indicate that the proposed approach would be a good not only at solving escape problems in this problems, but all the types off graph sizing problems on Mexican province in communities. So given that the performance off the design depends on the height of this other tree, we can try to maximize the height of this other tree on a large F p g a onda and carefully routing the components within the P G A and and we can draw some projections of what type of performance we can achieve in the near future based on the, uh, implementation that we are currently working. So here you see projection for the time to solution way, then next property for solving this escape programs respect to the prime assize. And here, compared to different with such publicizing machines, particularly the digital. And, you know, 42 is shown in the green here, the green line without that's and, uh and we should two different, uh, hypothesis for this productions either that the time to solution scales as exponential off n or that the time of social skills as expression of square root off. So it seems, according to the data, that time solution scares more as an expression of square root of and also we can be sure on this and this production show that we probably can solve prime escape problem of science 2000 spins, uh, to find the rial ground state of this problem with 99 success ability in about 10 seconds, which is much faster than all the other proposed approaches. So one of the future plans for this current is in machine simulator. So the first thing is that we would like to make dissimulation closer to the rial, uh, GOP oh, optical system in particular for a first step to get closer to the system of a measurement back. See, I am. And to do this what is, uh, simulate Herbal on the p a is this quantum, uh, condoms Goshen model that is proposed described in this paper and proposed by people in the in the Entity group. And so the idea of this model is that instead of having the very simple or these and have shown previously, it includes paired all these that take into account on me the mean off the awesome leverage off the, uh, European face component, but also their violence s so that we can take into account more quantum effects off the g o p. O, such as the squeezing. And then we plan toe, make the simulator open access for the members to run their instances on the system. There will be a first version in September that will be just based on the simple common line access for the simulator and in which will have just a classic or approximation of the system. We don't know Sturm, binary weights and museum in term, but then will propose a second version that would extend the current arising machine to Iraq off F p g. A, in which we will add the more refined models truncated, ignoring the bottom Goshen model they just talked about on the support in which he valued waits for the rising problems and support the cement. So we will announce later when this is available and and far right is working >>hard comes from Universal down today in physics department, and I'd like to thank the organizers for their kind invitation to participate in this very interesting and promising workshop. Also like to say that I look forward to collaborations with with a file lab and Yoshi and collaborators on the topics of this world. So today I'll briefly talk about our attempt to understand the fundamental limits off another continues time computing, at least from the point off you off bullion satisfy ability, problem solving, using ordinary differential equations. But I think the issues that we raise, um, during this occasion actually apply to other other approaches on a log approaches as well and into other problems as well. I think everyone here knows what Dorien satisfy ability. Problems are, um, you have boolean variables. You have em clauses. Each of disjunction of collaterals literally is a variable, or it's, uh, negation. And the goal is to find an assignment to the variable, such that order clauses are true. This is a decision type problem from the MP class, which means you can checking polynomial time for satisfy ability off any assignment. And the three set is empty, complete with K three a larger, which means an efficient trees. That's over, uh, implies an efficient source for all the problems in the empty class, because all the problems in the empty class can be reduced in Polian on real time to reset. As a matter of fact, you can reduce the NP complete problems into each other. You can go from three set to set backing or two maximum dependent set, which is a set packing in graph theoretic notions or terms toe the icing graphs. A problem decision version. This is useful, and you're comparing different approaches, working on different kinds of problems when not all the closest can be satisfied. You're looking at the accusation version offset, uh called Max Set. And the goal here is to find assignment that satisfies the maximum number of clauses. And this is from the NPR class. In terms of applications. If we had inefficient sets over or np complete problems over, it was literally, positively influenced. Thousands off problems and applications in industry and and science. I'm not going to read this, but this this, of course, gives a strong motivation toe work on this kind of problems. Now our approach to set solving involves embedding the problem in a continuous space, and you use all the east to do that. So instead of working zeros and ones, we work with minus one across once, and we allow the corresponding variables toe change continuously between the two bounds. We formulate the problem with the help of a close metrics. If if a if a close, uh, does not contain a variable or its negation. The corresponding matrix element is zero. If it contains the variable in positive, for which one contains the variable in a gated for Mitt's negative one, and then we use this to formulate this products caused quote, close violation functions one for every clause, Uh, which really, continuously between zero and one. And they're zero if and only if the clause itself is true. Uh, then we form the define in order to define a dynamic such dynamics in this and dimensional hyper cube where the search happens and if they exist, solutions. They're sitting in some of the corners of this hyper cube. So we define this, uh, energy potential or landscape function shown here in a way that this is zero if and only if all the clauses all the kmc zero or the clauses off satisfied keeping these auxiliary variables a EMS always positive. And therefore, what you do here is a dynamics that is a essentially ingredient descend on this potential energy landscape. If you were to keep all the M's constant that it would get stuck in some local minimum. However, what we do here is we couple it with the dynamics we cooperated the clothes violation functions as shown here. And if he didn't have this am here just just the chaos. For example, you have essentially what case you have positive feedback. You have increasing variable. Uh, but in that case, you still get stuck would still behave will still find. So she is better than the constant version but still would get stuck only when you put here this a m which makes the dynamics in in this variable exponential like uh, only then it keeps searching until he finds a solution on deer is a reason for that. I'm not going toe talk about here, but essentially boils down toe performing a Grady and descend on a globally time barren landscape. And this is what works. Now I'm gonna talk about good or bad and maybe the ugly. Uh, this is, uh, this is What's good is that it's a hyperbolic dynamical system, which means that if you take any domain in the search space that doesn't have a solution in it or any socially than the number of trajectories in it decays exponentially quickly. And the decay rate is a characteristic in variant characteristic off the dynamics itself. Dynamical systems called the escape right the inverse off that is the time scale in which you find solutions by this by this dynamical system, and you can see here some song trajectories that are Kelty because it's it's no linear, but it's transient, chaotic. Give their sources, of course, because eventually knowledge to the solution. Now, in terms of performance here, what you show for a bunch off, um, constraint densities defined by M overran the ratio between closes toe variables for random, said Problems is random. Chris had problems, and they as its function off n And we look at money toward the wartime, the wall clock time and it behaves quite value behaves Azat party nominally until you actually he to reach the set on set transition where the hardest problems are found. But what's more interesting is if you monitor the continuous time t the performance in terms off the A narrow, continuous Time t because that seems to be a polynomial. And the way we show that is, we consider, uh, random case that random three set for a fixed constraint density Onda. We hear what you show here. Is that the right of the trash hold that it's really hard and, uh, the money through the fraction of problems that we have not been able to solve it. We select thousands of problems at that constraint ratio and resolve them without algorithm, and we monitor the fractional problems that have not yet been solved by continuous 90. And this, as you see these decays exponentially different. Educate rates for different system sizes, and in this spot shows that is dedicated behaves polynomial, or actually as a power law. So if you combine these two, you find that the time needed to solve all problems except maybe appear traction off them scales foreign or merely with the problem size. So you have paranormal, continuous time complexity. And this is also true for other types of very hard constraints and sexual problems such as exact cover, because you can always transform them into three set as we discussed before, Ramsey coloring and and on these problems, even algorithms like survey propagation will will fail. But this doesn't mean that P equals NP because what you have first of all, if you were toe implement these equations in a device whose behavior is described by these, uh, the keys. Then, of course, T the continue style variable becomes a physical work off. Time on that will be polynomial is scaling, but you have another other variables. Oxidative variables, which structured in an exponential manner. So if they represent currents or voltages in your realization and it would be an exponential cost Al Qaeda. But this is some kind of trade between time and energy, while I know how toe generate energy or I don't know how to generate time. But I know how to generate energy so it could use for it. But there's other issues as well, especially if you're trying toe do this son and digital machine but also happens. Problems happen appear. Other problems appear on in physical devices as well as we discuss later. So if you implement this in GPU, you can. Then you can get in order off to magnitude. Speed up. And you can also modify this to solve Max sad problems. Uh, quite efficiently. You are competitive with the best heuristic solvers. This is a weather problems. In 2016 Max set competition eso so this this is this is definitely this seems like a good approach, but there's off course interesting limitations, I would say interesting, because it kind of makes you think about what it means and how you can exploit this thes observations in understanding better on a low continues time complexity. If you monitored the discrete number the number of discrete steps. Don't buy the room, Dakota integrator. When you solve this on a digital machine, you're using some kind of integrator. Um and you're using the same approach. But now you measure the number off problems you haven't sold by given number of this kid, uh, steps taken by the integrator. You find out you have exponential, discrete time, complexity and, of course, thistles. A problem. And if you look closely, what happens even though the analog mathematical trajectory, that's the record here. If you monitor what happens in discrete time, uh, the integrator frustrates very little. So this is like, you know, third or for the disposition, but fluctuates like crazy. So it really is like the intervention frees us out. And this is because of the phenomenon of stiffness that are I'll talk a little bit a more about little bit layer eso. >>You know, it might look >>like an integration issue on digital machines that you could improve and could definitely improve. But actually issues bigger than that. It's It's deeper than that, because on a digital machine there is no time energy conversion. So the outside variables are efficiently representing a digital machine. So there's no exponential fluctuating current of wattage in your computer when you do this. Eso If it is not equal NP then the exponential time, complexity or exponential costs complexity has to hit you somewhere. And this is how um, but, you know, one would be tempted to think maybe this wouldn't be an issue in a analog device, and to some extent is true on our devices can be ordered to maintain faster, but they also suffer from their own problems because he not gonna be affect. That classes soldiers as well. So, indeed, if you look at other systems like Mirandizing machine measurement feedback, probably talk on the grass or selected networks. They're all hinge on some kind off our ability to control your variables in arbitrary, high precision and a certain networks you want toe read out across frequencies in case off CM's. You required identical and program because which is hard to keep, and they kind of fluctuate away from one another, shift away from one another. And if you control that, of course that you can control the performance. So actually one can ask if whether or not this is a universal bottleneck and it seems so aside, I will argue next. Um, we can recall a fundamental result by by showing harder in reaction Target from 1978. Who says that it's a purely computer science proof that if you are able toe, compute the addition multiplication division off riel variables with infinite precision, then you could solve any complete problems in polynomial time. It doesn't actually proposals all where he just chose mathematically that this would be the case. Now, of course, in Real warned, you have also precision. So the next question is, how does that affect the competition about problems? This is what you're after. Lots of precision means information also, or entropy production. Eso what you're really looking at the relationship between hardness and cost of computing off a problem. Uh, and according to Sean Hagar, there's this left branch which in principle could be polynomial time. But the question whether or not this is achievable that is not achievable, but something more cheerful. That's on the right hand side. There's always going to be some information loss, so mental degeneration that could keep you away from possibly from point normal time. So this is what we like to understand, and this information laws the source off. This is not just always I will argue, uh, in any physical system, but it's also off algorithm nature, so that is a questionable area or approach. But China gets results. Security theoretical. No, actual solar is proposed. So we can ask, you know, just theoretically get out off. Curiosity would in principle be such soldiers because it is not proposing a soldier with such properties. In principle, if if you want to look mathematically precisely what the solar does would have the right properties on, I argue. Yes, I don't have a mathematical proof, but I have some arguments that that would be the case. And this is the case for actually our city there solver that if you could calculate its trajectory in a loss this way, then it would be, uh, would solve epic complete problems in polynomial continuous time. Now, as a matter of fact, this a bit more difficult question, because time in all these can be re scared however you want. So what? Burns says that you actually have to measure the length of the trajectory, which is a new variant off the dynamical system or property dynamical system, not off its parameters ization. And we did that. So Suba Corral, my student did that first, improving on the stiffness off the problem off the integrations, using implicit solvers and some smart tricks such that you actually are closer to the actual trajectory and using the same approach. You know what fraction off problems you can solve? We did not give the length of the trajectory. You find that it is putting on nearly scaling the problem sites we have putting on your skin complexity. That means that our solar is both Polly length and, as it is, defined it also poorly time analog solver. But if you look at as a discreet algorithm, if you measure the discrete steps on a digital machine, it is an exponential solver. And the reason is because off all these stiffness, every integrator has tow truck it digitizing truncate the equations, and what it has to do is to keep the integration between the so called stability region for for that scheme, and you have to keep this product within a grimace of Jacoby in and the step size read in this region. If you use explicit methods. You want to stay within this region? Uh, but what happens that some off the Eigen values grow fast for Steve problems, and then you're you're forced to reduce that t so the product stays in this bonded domain, which means that now you have to you're forced to take smaller and smaller times, So you're you're freezing out the integration and what I will show you. That's the case. Now you can move to increase its soldiers, which is which is a tree. In this case, you have to make domain is actually on the outside. But what happens in this case is some of the Eigen values of the Jacobean, also, for six systems, start to move to zero. As they're moving to zero, they're going to enter this instability region, so your soul is going to try to keep it out, so it's going to increase the data T. But if you increase that to increase the truncation hours, so you get randomized, uh, in the large search space, so it's it's really not, uh, not going to work out. Now, one can sort off introduce a theory or language to discuss computational and are computational complexity, using the language from dynamical systems theory. But basically I I don't have time to go into this, but you have for heart problems. Security object the chaotic satellite Ouch! In the middle of the search space somewhere, and that dictates how the dynamics happens and variant properties off the dynamics. Of course, off that saddle is what the targets performance and many things, so a new, important measure that we find that it's also helpful in describing thesis. Another complexity is the so called called Makarov, or metric entropy and basically what this does in an intuitive A eyes, uh, to describe the rate at which the uncertainty containing the insignificant digits off a trajectory in the back, the flow towards the significant ones as you lose information because off arrows being, uh grown or are developed in tow. Larger errors in an exponential at an exponential rate because you have positively up north spawning. But this is an in variant property. It's the property of the set of all. This is not how you compute them, and it's really the interesting create off accuracy philosopher dynamical system. A zay said that you have in such a high dimensional that I'm consistent were positive and negatively upon of exponents. Aziz Many The total is the dimension of space and user dimension, the number off unstable manifold dimensions and as Saddam was stable, manifold direction. And there's an interesting and I think, important passion, equality, equality called the passion, equality that connect the information theoretic aspect the rate off information loss with the geometric rate of which trajectory separate minus kappa, which is the escape rate that I already talked about. Now one can actually prove a simple theorems like back off the envelope calculation. The idea here is that you know the rate at which the largest rated, which closely started trajectory separate from one another. So now you can say that, uh, that is fine, as long as my trajectory finds the solution before the projective separate too quickly. In that case, I can have the hope that if I start from some region off the face base, several close early started trajectories, they kind of go into the same solution orphaned and and that's that's That's this upper bound of this limit, and it is really showing that it has to be. It's an exponentially small number. What? It depends on the end dependence off the exponents right here, which combines information loss rate and the social time performance. So these, if this exponents here or that has a large independence or river linear independence, then you then you really have to start, uh, trajectories exponentially closer to one another in orderto end up in the same order. So this is sort off like the direction that you're going in tow, and this formulation is applicable toe all dynamical systems, uh, deterministic dynamical systems. And I think we can We can expand this further because, uh, there is, ah, way off getting the expression for the escaped rate in terms off n the number of variables from cycle expansions that I don't have time to talk about. What? It's kind of like a program that you can try toe pursuit, and this is it. So the conclusions I think of self explanatory I think there is a lot of future in in, uh, in an allo. Continue start computing. Um, they can be efficient by orders of magnitude and digital ones in solving empty heart problems because, first of all, many of the systems you like the phone line and bottleneck. There's parallelism involved, and and you can also have a large spectrum or continues time, time dynamical algorithms than discrete ones. And you know. But we also have to be mindful off. What are the possibility of what are the limits? And 11 open question is very important. Open question is, you know, what are these limits? Is there some kind off no go theory? And that tells you that you can never perform better than this limit or that limit? And I think that's that's the exciting part toe to derive thes thes this levian 10.

Published Date : Sep 27 2020

SUMMARY :

bifurcated critical point that is the one that I forget to the lowest pump value a. the chi to non linearity and see how and when you can get the Opio know that the classical approximation of the car testing machine, which is the ground toe, than the state of the art algorithm and CP to do this which is a very common Kasich. right the inverse off that is the time scale in which you find solutions by first of all, many of the systems you like the phone line and bottleneck.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Exxon MobilORGANIZATION

0.99+

AndyPERSON

0.99+

Sean HagarPERSON

0.99+

Daniel WennbergPERSON

0.99+

ChrisPERSON

0.99+

USCORGANIZATION

0.99+

CaltechORGANIZATION

0.99+

2016DATE

0.99+

100 timesQUANTITY

0.99+

BerkeleyLOCATION

0.99+

Tatsuya NagamotoPERSON

0.99+

twoQUANTITY

0.99+

1978DATE

0.99+

FoxORGANIZATION

0.99+

six systemsQUANTITY

0.99+

HarvardORGANIZATION

0.99+

Al QaedaORGANIZATION

0.99+

SeptemberDATE

0.99+

second versionQUANTITY

0.99+

CIAORGANIZATION

0.99+

IndiaLOCATION

0.99+

300 yardsQUANTITY

0.99+

University of TokyoORGANIZATION

0.99+

todayDATE

0.99+

BurnsPERSON

0.99+

Atsushi YamamuraPERSON

0.99+

0.14%QUANTITY

0.99+

48 coreQUANTITY

0.99+

0.5 microsecondsQUANTITY

0.99+

NSFORGANIZATION

0.99+

15 yearsQUANTITY

0.99+

CBSORGANIZATION

0.99+

NTTORGANIZATION

0.99+

first implementationQUANTITY

0.99+

first experimentQUANTITY

0.99+

123QUANTITY

0.99+

Army Research OfficeORGANIZATION

0.99+

firstQUANTITY

0.99+

1,904,711QUANTITY

0.99+

oneQUANTITY

0.99+

sixQUANTITY

0.99+

first versionQUANTITY

0.99+

StevePERSON

0.99+

2000 spinsQUANTITY

0.99+

five researcherQUANTITY

0.99+

CreoleORGANIZATION

0.99+

three setQUANTITY

0.99+

second partQUANTITY

0.99+

third partQUANTITY

0.99+

Department of Applied PhysicsORGANIZATION

0.99+

10QUANTITY

0.99+

eachQUANTITY

0.99+

85,900QUANTITY

0.99+

OneQUANTITY

0.99+

one problemQUANTITY

0.99+

136 CPUQUANTITY

0.99+

ToshibaORGANIZATION

0.99+

ScottPERSON

0.99+

2.4 gigahertzQUANTITY

0.99+

1000 timesQUANTITY

0.99+

two timesQUANTITY

0.99+

two partsQUANTITY

0.99+

131QUANTITY

0.99+

14,233QUANTITY

0.99+

more than 100 spinsQUANTITY

0.99+

two possible phasesQUANTITY

0.99+

13,580QUANTITY

0.99+

5QUANTITY

0.99+

4QUANTITY

0.99+

one microsecondsQUANTITY

0.99+

first stepQUANTITY

0.99+

first partQUANTITY

0.99+

500 spinsQUANTITY

0.99+

two identical photonsQUANTITY

0.99+

3QUANTITY

0.99+

70 years agoDATE

0.99+

IraqLOCATION

0.99+

one experimentQUANTITY

0.99+

zeroQUANTITY

0.99+

Amir Safarini NiniPERSON

0.99+

SaddamPERSON

0.99+

Coherent Nonlinear Dynamics and Combinatorial Optimization


 

Hi, I'm Hideo Mabuchi from Stanford University. This is my presentation on coherent nonlinear dynamics, and combinatorial optimization. This is going to be a talk, to introduce an approach, we are taking to the analysis, of the performance of Coherent Ising Machines. So let me start with a brief introduction, to ising optimization. The ising model, represents a set of interacting magnetic moments or spins, with total energy given by the expression, shown at the bottom left of the slide. Here the cigna variables are meant to take binary values. The matrix element jij, represents the interaction, strength and sign, between any pair of spins ij, and hi represents a possible local magnetic field, acting on each thing. The ising ground state problem, is defined in an assignment of binary spin values, that achieves the lowest possible value of total energy. And an instance of the easing problem, is specified by given numerical values, for the matrix j and vector h, although the ising model originates in physics, we understand the ground state problem, to correspond to what would be called, quadratic binary optimization, in the field of operations research. And in fact, in terms of computational complexity theory, it can be established that the, ising ground state problem is NP complete. Qualitatively speaking, this makes the ising problem, a representative sort of hard optimization problem, for which it is expected, that the runtime required by any computational algorithm, to find exact solutions, should asyntonically scale, exponentially with the number of spins, and four worst case instances at each end. Of course, there's no reason to believe that, the problem instances that actually arise, in practical optimization scenarios, are going to be worst case instances. And it's also not generally the case, in practical optimization scenarios, that we demand absolute optimum solutions. Usually we're more interested in, just getting the best solution we can, within an affordable cost, where costs may be measured in terms of time, service fees and or energy required for computation. This focus is great interest on, so-called heuristic algorithms, for the ising problem and other NP complete problems, which generally get very good, but not guaranteed optimum solutions, and run much faster than algorithms, that are designed to find absolute Optima. To get some feeling for present day numbers, we can consider the famous traveling salesman problem, for which extensive compilations, of benchmarking data may be found online. A recent study found that, the best known TSP solver required median runtimes, across a library of problem instances, that scaled as a very steep route exponential, for an up to approximately 4,500. This gives some indication of the change, in runtime scaling for generic, as opposed to worst case problem instances. Some of the instances considered in this study, were taken from a public library of TSPs, derived from real world VLSI design data. This VLSI TSP library, includes instances within ranging from 131 to 744,710, instances from this library within between 6,880 and 13,584, were first solved just a few years ago, in 2017 requiring days of runtime, and a 48 core two gigahertz cluster, all instances with n greater than or equal to 14,233, remain unsolved exactly by any means. Approximate solutions however, have been found by heuristic methods, for all instances in the VLSI TSP library, with, for example, a solution within 0.014% of a known lower bound, having been discovered for an instance, with n equal 19,289, requiring approximately two days of runtime, on a single quarter at 2.4 gigahertz. Now, if we simple-minded the extrapolate, the route exponential scaling, from the study yet to n equal 4,500, we might expect that an exact solver, would require something more like a year of runtime, on the 48 core cluster, used for the n equals 13,580 for instance, which shows how much, a very small concession on the quality of the solution, makes it possible to tackle much larger instances, with much lower costs, at the extreme end, the largest TSP ever solved exactly has n equal 85,900. This is an instance derived from 1980s VLSI design, and this required 136 CPU years of computation, normalized to a single core, 2.4 gigahertz. But the 20 fold larger, so-called world TSP benchmark instance, with n equals 1,904,711, has been solved approximately, with an optimality gap bounded below 0.0474%. Coming back to the general practical concerns, of applied optimization. We may note that a recent meta study, analyze the performance of no fewer than, 37 heuristic algorithms for MaxCut, and quadratic binary optimization problems. And find the performance... Sorry, and found that a different heuristics, work best for different problem instances, selected from a large scale heterogeneous test bed, with some evidence, the cryptic structure, in terms of what types of problem instances, were best solved by any given heuristic. Indeed, there are reasons to believe, that these results for MaxCut, and quadratic binary optimization, reflect to general principle, of a performance complementarity, among heuristic optimization algorithms, and the practice of solving hard optimization problems. There thus arises the critical pre processing issue, of trying to guess, which of a number of available, good heuristic algorithms should be chosen, to tackle a given problem instance. Assuming that any one of them, would incur high cost to run, on a large problem of incidents, making an astute choice of heuristic, is a crucial part of maximizing overall performance. Unfortunately, we still have very little conceptual insight, about what makes a specific problem instance, good or bad for any given heuristic optimization algorithm. This is certainly pinpointed by researchers in the field, as a circumstance and must be addressed. So adding this all up, we see that a critical frontier, for cutting edge academic research involves, both the development of novel heuristic algorithms, that deliver better performance with lower costs, on classes of problem instances, that are underserved by existing approaches, as well as fundamental research, to provide deep conceptual insight, into what makes a given problem instance, easy or hard for such algorithms. In fact, these days, as we talk about the end of Moore's law, and speculate about a so-called second quantum revolution, it's natural to talk not only about novel algorithms, for conventional CPUs, but also about highly customized, special purpose hardware architectures, on which we may run entirely unconventional algorithms, for common tutorial optimizations, such as ising problem. So against that backdrop, I'd like to use my remaining time, to introduce our work on, analysis of coherent using machine architectures, and associated optimization algorithms. Ising machines in general, are a novel class of information processing architectures, for solving combinatorial optimization problems, by embedding them in the dynamics, of analog, physical, or a cyber-physical systems. In contrast to both more traditional engineering approaches, that build ising machines using conventional electronics, and more radical proposals, that would require large scale quantum entanglement the emerging paradigm of coherent ising machines, leverages coherent nominal dynamics, in photonic or optical electronic platforms, to enable near term construction, of large scale prototypes, that leverage posting as information dynamics. The general structure of current of current CIM systems, as shown in the figure on the right, the role of the easing spins, is played by a train of optical pulses, circulating around a fiber optical storage ring, that beam splitter inserted in the ring, is used to periodically sample, the amplitude of every optical pulse. And the measurement results, are continually read into an FPGA, which uses then to compute perturbations, to be applied to each pulse, by a synchronized optical injections. These perturbations are engineered to implement, the spin-spin coupling and local magnetic field terms, of the ising hamiltonian, corresponding to a linear part of the CIM dynamics. Asynchronously pumped parametric amplifier, denoted here as PPL and wave guide, adds a crucial nonlinear component, to the CIM dynamics as well. And the basic CIM algorithm, the pump power starts very low, and is gradually increased, at low pump powers, the amplitudes of the easing spin pulses, behave as continuous complex variables, whose real parts which can be positive or negative, by the role of soft or perhaps mean field spins. Once the pump power crosses the threshold, for perimetric self oscillation in the optical fiber ring, however, the amplitudes of the easing spin pulses, become effectively quantized into binary values, while the pump power is being ramped up, the FPGA subsystem continuously applies, its measurement based feedback implementation, of the using hamiltonian terms. The interplay of the linearized easing dynamics, implemented by the FPGA , and the thresholds quantization dynamics, provided by the sink pumped parametric amplifier, result in a final state, of the optical plus amplitudes, at the end of the pump ramp, that can be read as a binary strain, giving a proposed solution, of the ising ground state problem. This method of solving ising problems, seems quite different from a conventional algorithm, that runs entirely on a digital computer. As a crucial aspect, of the computation is performed physically, by the analog continuous coherent nonlinear dynamics, of the optical degrees of freedom, in our efforts to analyze CA and performance. We have therefore turn to dynamical systems theory. Namely a study of bifurcations, the evolution of critical points, and typologies of heteroclitic orbits, and basins of attraction. We conjecture that such analysis, can provide fundamental insight, into what makes certain optimization instances, hard or easy for coherent ising machines, and hope that our approach, can lead to both improvements of the course CIM algorithm, and the pre processing rubric, for rapidly assessing the CIM insuibility of the instances. To provide a bit of intuition about how this all works. It may help to consider the threshold dynamics, of just one or two optical parametric oscillators, in the CIM architecture just described. We can think of each of the pulse time slots, circulating around the fiber ring, as are presenting an independent OPO. We can think of a single OPO degree of freedom, as a single resonant optical mode, that experiences linear dissipation, due to coupling loss, and gain in a pump near crystal, as shown in the diagram on the upper left of the slide, as the pump power is increased from zero. As in the CIM algorithm, the non-linear gain is initially too low, to overcome linear dissipation. And the OPO field remains in a near vacuum state, at a critical threshold value, gain equals dissipation, and the OPO undergoes a sort of lasing transition. And the steady States of the OPO, above this threshold are essentially coherent States. There are actually two possible values, of the OPO coherent amplitude, and any given above threshold pump power, which are equal in magnitude, but opposite in phase, when the OPO cross this threshold, it basically chooses one of the two possible phases, randomly, resulting in the generation, of a single bit of information. If we consider two uncoupled OPOs, as shown in the upper right diagram, pumped at exactly the same power at all times, then as the pump power is increased through threshold, each OPO will independently choose a phase, and thus two random bits are generated, for any number of uncoupled OPOs, the threshold power per OPOs is unchanged, from the single OPO case. Now, however, consider a scenario, in which the two appeals are coupled to each other, by a mutual injection of their out coupled fields, as shown in the diagram on the lower right. One can imagine that, depending on the sign of the coupling parameter alpha, when one OPO is lasing, it will inject a perturbation into the other, that may interfere either constructively or destructively, with the field that it is trying to generate, via its own lasing process. As a result, when can easily show that for alpha positive, there's an effective ferromagnetic coupling, between the two OPO fields, and their collective oscillation threshold, is lowered from that of the independent OPO case, but only for the two collective oscillation modes, in which the two OPO phases are the same. For alpha negative, the collective oscillation threshold, is lowered only for the configurations, in which the OPO phases are opposite. So then looking at how alpha is related to the jij matrix, of the ising spin coupling hamilitonian, it follows the, we could use this simplistic to OPO CIM, to solve the ground state problem, of the ferromagnetic or antiferromagnetic angles, to ising model, simply by increasing the pump power, from zero and observing what phase relation occurs, as the two appeals first start to lase. Clearly we can imagine generalizing the story to larger, and, however, the story doesn't stay as clean and simple, for all larger problem instances. And to find a more complicated example, we only need to go to n equals four, for some choices of jij for n equals four, the story remains simple, like the n equals two case. The figure on the upper left of this slide, shows the energy of various critical points, for a non frustrated n equals for instance, in which the first bifurcated critical point, that is the one that, by forgets of the lowest pump value a, this first bifurcated critical point, flows asyntonically into the lowest energy using solution, and the figure on the upper right, however, the first bifurcated critical point, flows to a very good, but suboptimal minimum at large pump power. The global minimum is actually given, by a distinct critical point. The first appears at a higher pump power, and is not needed radically connected to the origin. The basic CIM algorithm, is this not able to find this global minimum, such non-ideal behavior, seems to become more common at margin end, for the n equals 20 instance show in the lower plots, where the lower right pod is just a zoom into, a region of the lower left block. It can be seen that the global minimum, corresponds to a critical point, that first appears that of pump parameter a around 0.16, at some distance from the adriatic trajectory of the origin. That's curious to note that, in both of these small and examples, however, the critical point corresponding to the global minimum, appears relatively close, to the adiabatic trajectory of the origin, as compared to the most of the other, local minimum that appear. We're currently working to characterise, the face portrait typology, between the global minimum, and the adiabatic trajectory of the origin, taking clues as to how the basic CIM algorithm, could be generalized, to search for non-adiabatic trajectories, that jumped to the global minimum, during the pump up, of course, n equals 20 is still too small, to be of interest for practical optimization applications. But the advantage of beginning, with the study of small instances, is that we're able to reliably to determine, their global minima, and to see how they relate to the idea, that trajectory of the origin, and the basic CIM algorithm. And the small land limit, We can also analyze, for the quantum mechanical models of CAM dynamics, but that's a topic for future talks. Existing large-scale prototypes, are pushing into the range of, n equals, 10 to the four, 10 to the five, 10 to the six. So our ultimate objective in theoretical analysis, really has to be, to try to say something about CAM dynamics, and regime of much larger in. Our initial approach to characterizing CAM behavior, in the large end regime, relies on the use of random matrix theory. And this connects to prior research on spin classes, SK models, and the tap equations, et cetera, at present we're focusing on, statistical characterization, of the CIM gradient descent landscape, including the evolution of critical points, And their value spectra, as the pump powers gradually increase. We're investigating, for example, whether there could be some way, to explain differences in the relative stability, of the global minimum versus other local minima. We're also working to understand the deleterious, or potentially beneficial effects, of non-ideologies such as asymmetry, in the implemented using couplings, looking one step ahead, we plan to move next into the direction, of considering more realistic classes of problem instances, such as quadratic binary optimization with constraints. So in closing I should acknowledge, people who did the hard work, on these things that I've shown. So my group, including graduate students, Edwin Ng, Daniel Wennberg, Ryatatsu Yanagimoto, and Atsushi Yamamura have been working, in close collaboration with, Surya Ganguli, Marty Fejer and Amir Safavi-Naeini. All of us within the department of applied physics, at Stanford university and also in collaboration with Yoshihisa Yamamoto, over at NTT-PHI research labs. And I should acknowledge funding support, from the NSF by the Coherent Ising Machines, expedition in computing, also from NTT-PHI research labs, army research office, and ExxonMobil. That's it. Thanks very much.

Published Date : Sep 21 2020

SUMMARY :

by forgets of the lowest pump value a,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Edwin NgPERSON

0.99+

ExxonMobilORGANIZATION

0.99+

Daniel WennbergPERSON

0.99+

85,900QUANTITY

0.99+

Marty FejerPERSON

0.99+

Ryatatsu YanagimotoPERSON

0.99+

4,500QUANTITY

0.99+

Hideo MabuchiPERSON

0.99+

2017DATE

0.99+

Amir Safavi-NaeiniPERSON

0.99+

13,580QUANTITY

0.99+

Surya GanguliPERSON

0.99+

48 coreQUANTITY

0.99+

136 CPUQUANTITY

0.99+

1980sDATE

0.99+

14,233QUANTITY

0.99+

20QUANTITY

0.99+

Yoshihisa YamamotoPERSON

0.99+

oneQUANTITY

0.99+

NTT-PHIORGANIZATION

0.99+

1,904,711QUANTITY

0.99+

2.4 gigahertzQUANTITY

0.99+

Atsushi YamamuraPERSON

0.99+

19,289QUANTITY

0.99+

firstQUANTITY

0.99+

twoQUANTITY

0.99+

two appealsQUANTITY

0.99+

two possible phasesQUANTITY

0.99+

10QUANTITY

0.99+

two caseQUANTITY

0.99+

Coherent Ising MachinesORGANIZATION

0.98+

0.014%QUANTITY

0.98+

131QUANTITY

0.98+

each pulseQUANTITY

0.98+

two possible valuesQUANTITY

0.98+

NSFORGANIZATION

0.98+

744,710QUANTITY

0.98+

fourQUANTITY

0.98+

Stanford UniversityORGANIZATION

0.98+

20 foldQUANTITY

0.98+

13,584QUANTITY

0.98+

bothQUANTITY

0.97+

two gigahertzQUANTITY

0.96+

single coreQUANTITY

0.96+

singleQUANTITY

0.95+

sixQUANTITY

0.95+

zeroQUANTITY

0.95+

fiveQUANTITY

0.95+

6,880QUANTITY

0.94+

approximately two daysQUANTITY

0.94+

eachQUANTITY

0.93+

each endQUANTITY

0.93+

37 heuristicQUANTITY

0.93+

MoorePERSON

0.93+

each OPOQUANTITY

0.93+

two collective oscillation modesQUANTITY

0.93+

single bitQUANTITY

0.92+

each thingQUANTITY

0.92+

20 instanceQUANTITY

0.91+

one stepQUANTITY

0.9+

around 0.16QUANTITY

0.89+

Stanford universityORGANIZATION

0.88+

single quarterQUANTITY

0.87+

approximately 4,500QUANTITY

0.87+

second quantum revolutionQUANTITY

0.85+

a yearQUANTITY

0.84+

two random bitsQUANTITY

0.83+

two OPOQUANTITY

0.81+

few years agoDATE

0.77+

two uncoupled OPOsQUANTITY

0.76+

MaxCutTITLE

0.74+

four worst caseQUANTITY

0.71+

0.0474%QUANTITY

0.7+

up toQUANTITY

0.7+

CoherentORGANIZATION

0.69+

Dominik Tornow, Cisco | CUBEConversations, October 2019


 

(smooth music) >> From our studios in the heart of Silicon Valley, Palo Alto, California, this is a CUBE Conversation. >> Hello and welcome to theCUBE Studios in Palo Alto, California, for another CUBE Conversation where we go in-depth with thought leaders driving innovation across the tech industry. I'm your host Peter Burris. This is going to be the second in our series of demystifying cloud native that we've undertaken with some of the thought leaders at Cisco. The basic thrust of this conversation, the basic thrust of the series is to have developers learn something about what it means to build increasingly distributed applications utilizing cloud native services that will work, scale, and serve enterprise need. Now to have that conversation we've got Dominik Tornow, who is a principal engineer of the office of the CTO at Cisco. Dominik, welcome back to theCUBE. >> Hey, thank you very much for having me again. >> Okay, so upfront I said we're going to continue in our series of demystifying cloud native, but before we do let's review what do we mean by cloud native? >> So in our last installment we talked about cloud native and defined cloud native applications as applications that are scalable and reliable by construction, and in order to be scalable and reliable by construction an application has to be able to detect and mitigate load and failure. >> So if we think about detecting and mitigating load and failure it's a very, very simple definition but very powerful, as all good definitions are. What types of technologies are available today that allow us to actually instantiate this notion of cloud native as you've defined it? >> So you want to look under the umbrella term of operation automation, and there are multiple solutions available that you'll find either proprietary on clouds like AWS, Google, or Azure, or you'll also find solutions in the opensource space, and the most prominent solution of that nowadays is obviously Kubernetes. >> And so microservices is kind of an architectural approach that people can start thinking about. >> And microservices is an approach people can start thinking about, because microservices are, especially when they are stateless microservices, scalable and reliable by construction by themselves. Now you have a very good foundation to build a scalable and reliable application out of scalable and reliable components. >> Look, I've been around in the IT industry for a long time. Worked inside IT, run IT organizations, been an analyst, and I know from experience that you can take great technology and nonetheless create crap applications with it, so what is it about microservices that increases the likelihood of success with cloud native, but also very importantly what must developers stay cognizant of to ensure that they stay within the good guardrails and don't drift out to junk applications? >> So first let's look at what microservice application architecture actually is, because when we contrast it to a traditional, also called monolithic application architecture, we see that on the boundaries looking from the outside in we are still talking about one coherent application, right? From an end user's perspective we are not looking at a loose assortment of services. We are still looking at one coherent application performing a task, but looking into the inside we see significant differences. So for a traditional application all components of the application run within one process and one machine local network, so to say. However, when we move to a microservice application, through microservice application, the individual components, and actually the individual component instances, run in their own processes, and they communicate via an actual network. Now having your individual component instances run in individual processes allow you to easily meet scalability and reliability. You can easily scale up more component instances, or in case of failure you can easily scale up replacements for them, but as you said, you have to keep in mind this does not come for free because you are throwing a few challenges the developer's way. On a workload level the challenge is now partial failure. One of these component instances may have experienced a crash fault at any point in time, whereas in a traditional application the application as a whole would experience a crash fault, but not part of the application. And when we move to the network level then it looks actually even more bleak because now messages may get lost, messages may get duplicated, messages may experience delay, so latency, and with all of that this is something the developer has to face and has to work around. This is-- >> Well, let's dig into this a little bit. So the monolithic application basically you have a single process so all the resources are bind, or bind together inside a single memory space or inside a single shared state, and when one of them fails that brings them all down, so the user knows explicitly it's up or it's down. >> Correct. >> But when you start building some of these microservices where each of these individual components, the loss of a particular, perhaps critical, perhaps not, like but let's say a security feature within the cluster could go down, but the rest of it might feel like it's still working, which could dramatically increase the likelihood of exposure on any number of different levels, have I got that right? >> You got that right, and especially if we talk about state, dreaded state, but the one that we actually all need in our applications. If we talk about state we're talking about inconsistencies, and that is obviously the nightmare of every application developer and application operator. >> So we've got message loss, message deduplication, message reordering, and we're introducing latency because we're putting a stateless network as the mechanism through which we get the communication amongst the different components, have I got that right? >> That is absolutely correct, and let me throw in one more caveat in that case. We were talking about workload level partial failure and network level message loss or message duplication. Unfortunately there is actually no way to reliably detect has the request not been sent, was it lost? Did the process, the receiving process experience a partial failure? Or has response not been received, was it lost? So you cannot reliably detect any of these conditions, which leads us to the point that we cannot guarantee exactly once message delivery. We can only guarantee at most once or at least once, but as developers all we ever want is one service consumer call a service provider exactly once. However, we have to work around these terms, and this is what makes our application development very, very complex. >> Yeah, we want that consistency and that ability to discretely say what is or is not isolated in the overall notion of what constitutes a transaction. >> Very correct. Bottom line that is a good takeaway. Microservices, one way or another, will kill your transaction. (laughs) >> If you don't do them right. So from a developer standpoint, as you, you know, you're within Cisco, but you spend a lot of time thinking about the developer role, thinking about what developers need to do differently to fully exploit these cloud native capabilities. How do you communicate or see developers and infrastructure people doing a better job of communicating so that they can each be aware of the realities that the other is facing? >> So personally I strongly believe in strong, accurate, and tangible definitions in order to have a solid basis and foundation for good communication, because our responsibilities in a cloud native world, whether it's application developer, application operator, or infrastructure operator, are only going to get more complex. So we rely on solid and precise technical communication to A, identify the challenges and communicate solutions for these challenges effectively. >> Now one of the things that's interesting about the cloud native microservices sets of technologies is that they're starting to be paired with other classes of technologies for doing a better job of going beyond just simply orchestrating the communication amongst various resources in a cluster. Where do you see some of these new technologies, like Istio and whatnot, starting to assert themselves to help developers do a better job of building cloud native applications? >> So let me state the following hypothesis, for cloud native we got the workload management right. We didn't get the network right just yet. And when it comes to workload management solutions like Kubernetes do a fantastic job for the application developer and the application operator and provide solid primitives to build your applications on top of it. However, we are still suffering from problems not within a Kubernetes cluster but across Kubernetes clusters, so when we look at, for example, the Kubernetes networking model communication within the cluster, we are set, we're good. Communication across clusters we still have some challenges. And we do see emerging solutions in the space, like for example Istio and other service meshes that increasingly do not only address the situation within the cluster but also across clusters, but we still need to make a leap forward into a different kind of cloud native networking, and I do believe that cloud native networking will show itself or define itself as a workload to workload connectivity. So eventually we will separate the runtime domain, the cluster from the connectivity domain, and then enable a workload on one cluster to talk to a workload on another cluster seamlessly without opening about 15 or 25 tickets. >> Yeah, exactly. (chuckles) And so the communications becomes natural to each of the workloads. >> Correct. The communication becomes natural to each of the workloads, which is a prerequisite for efficient development. Of course I quipped a bit with the tickets, but it is an actual reality that as soon as you leave one cluster and you, for example, need to reach workloads that are on-premise or you need to reach workloads in a different cloud, sometimes even just a different availability zone, you will encounter communication processes with infrastructure folks in your department. The communication is heavily around tickets. It will slow you down a lot, and in our agile world that is not sustainable. >> Well look, as you said earlier, there are four things you have to worry about as you request services from the network, latency, loss, deduplication, partial, et cetera. As you increase the latency the other three are absolutely going to create problems for you. >> Oh yes, absolutely. >> And so I think that's kind of what you're saying is even within a single cloud provider if you start changing reasons and you start introducing distances you start introducing latency, the issues of partial message delivery, deduplication of messages, message loss, et cetera, will assert themselves and become a bigger challenge for developers. >> You know the heisenbug theorem, right? In distributed applications the heisenbug is a bug that will disappear as soon as you look at it. (laughs) So-- (chuckles) >> I didn't know that. >> So a distributed-- (chuckles) >> But now I'm thinking about it. (chuckles) >> In distributed applications when you test your system on a local machine or even a set of local machines, right, you have a very good chance that the actual corner cases will never show up in your test cases, but as you said, when you introduce latency the heisenbug from an alt outsider will become a surefire thing. So as soon as you roll your application in production and then roll it out across geographical regions introducing the latency you will see a lot of that. >> Heisenbug. >> The heisenbug. >> I like that. (chuckles) All right, Dominik Tornow, the principal engineer in office of the CTO at Cisco talking about demystifying cloud native. I want to thank you once again for being on theCUBE. We look forward to seeing you again. >> Thank you very much, me too. >> And once again, thanks for joining us for another CUBE Conversation. I'm Peter Burris, see you next time. (smooth music)

Published Date : Nov 4 2019

SUMMARY :

From our studios in the heart of the office of the CTO at Cisco. and in order to be scalable and reliable by construction So if we think about detecting in the opensource space, and the most prominent solution that people can start thinking about. Now you have a very good foundation that increases the likelihood of success with cloud native, but looking into the inside we see significant differences. So the monolithic application basically you have and that is obviously the nightmare of every has the request not been sent, was it lost? and that ability to discretely Bottom line that is a good takeaway. of the realities that the other is facing? and tangible definitions in order to have a solid basis Now one of the things that's interesting that increasingly do not only address the situation And so the communications becomes natural or you need to reach workloads in a different cloud, there are four things you have to worry about the issues of partial message delivery, the heisenbug is a bug that will disappear But now I'm thinking about it. introducing the latency you will see a lot of that. We look forward to seeing you again. I'm Peter Burris, see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DominikPERSON

0.99+

Peter BurrisPERSON

0.99+

Dominik TornowPERSON

0.99+

CiscoORGANIZATION

0.99+

October 2019DATE

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

secondQUANTITY

0.99+

OneQUANTITY

0.99+

AWSORGANIZATION

0.98+

one clusterQUANTITY

0.98+

GoogleORGANIZATION

0.98+

one processQUANTITY

0.98+

25 ticketsQUANTITY

0.98+

threeQUANTITY

0.98+

one machineQUANTITY

0.98+

firstQUANTITY

0.97+

eachQUANTITY

0.96+

oneQUANTITY

0.96+

one serviceQUANTITY

0.96+

single processQUANTITY

0.95+

onceQUANTITY

0.95+

KubernetesTITLE

0.94+

about 15QUANTITY

0.94+

CUBE ConversationEVENT

0.94+

todayDATE

0.91+

one coherent applicationQUANTITY

0.91+

four thingsQUANTITY

0.91+

single sharedQUANTITY

0.89+

theCUBEORGANIZATION

0.89+

single memoryQUANTITY

0.88+

IstioORGANIZATION

0.87+

one coherent applicationQUANTITY

0.87+

single cloudQUANTITY

0.87+

one more caveatQUANTITY

0.86+

Silicon Valley,LOCATION

0.81+

theCUBE StudiosORGANIZATION

0.77+

one wayQUANTITY

0.72+

CTOORGANIZATION

0.65+

heisenbugOTHER

0.58+

at least onceQUANTITY

0.54+

AzureTITLE

0.48+

Wikibon Research Meeting


 

>> Dave: The cloud. There you go. I presume that worked. >> David: Hi there. >> Dave: Hi David. We had agreed, Peter and I had talked and we said let's just pick three topics, allocate enough time. Maybe a half hour each, and then maybe a little bit longer if we have the time. Then try and structure it so we can gather some opinions on what it all means. Ultimately the goal is to have an outcome with some research that hits the network. The three topics today, Jim Kobeielus is going to present on agile and data science, David Floyer on NVMe over fabric and of course keying off of the Micron news announcement. I think Nick is, is that Nick who just joined? He can contribute to that as well. Then George Gilbert has this concept of digital twin. We'll start with Jim. I guess what I'd suggest is maybe present this in the context of, present a premise or some kind of thesis that you have and maybe the key issues that you see and then kind of guide the conversation and we'll all chime in. >> Jim: Sure, sure. >> Dave: Take it away, Jim. >> Agile development and team data science. Agile methodology obviously is well-established as a paradigm and as a set of practices in various schools in software development in general. Agile is practiced in data science in terms of development, the pipelines. The overall premise for my piece, first of all starting off with a core definition of what agile is as a methodology. Self-organizing, cross-functional teams. They sprint toward results in steps that are fast, iterative, incremental, adaptive and so forth. Specifically the premise here is that agile has already come to data science and is coming even more deeply into the core practice of data science where data science is done in team environment. It's not just unicorns that are producing really work on their own, but more to the point, it's teams of specialists that come together in co-location, increasingly in co-located environments or in co-located settings to produce (banging) weekly check points and so forth. That's the basic premise that I've laid out for the piece. The themes. First of all, the themes, let me break it out. In terms of the overall how I design or how I'm approaching agile in this context is I'm looking at the basic principles of agile. It's really practices that are minimal, modular, incremental, iterative, adaptive, and co-locational. I've laid out how all that maps in to how data science is done in the real world right now in terms of tight teams working in an iterative fashion. A couple of issues that I see as regards to the adoption and sort of the ramifications of agile in a data science context. One of which is a co-location. What we have increasingly are data science teams that are virtual and distributed where a lot of the functions are handled by statistical modelers and data engineers and subject matter experts and visualization specialists that are working remotely from each other and are using collaborative tools like the tools from the company that I just left. How can agile, the co-location work primer for agile stand up in a world with more of the development team learning deeper and so forth is being done on a scrutiny basis and needs to be by teams of specialists that may be in different cities or different time zones, operating around the clock, produce brilliant results? Another one of which is that agile seems to be predicated on the notion that you improvise the process as you go, trial and error which seems to fly in the face of documentation or tidy documentation. Without tidy documentation about how you actually arrived at your results, how come those results can not be easily reproduced by independent researchers, independent data scientists? If you don't have well defined processes for achieving results in a certain data science initiative, it can't be reproduced which means they're not terribly scientific. By definition it's not science if you can't reproduce it by independent teams. To the extent that it's all loosey-goosey and improvised and undocumented, it's not reproducible. If it's not reproducible, to what extent should you put credence in the results of a given data science initiative if it's not been documented? Agile seems to fly in the face of reproducibility of data science results. Those are sort of my core themes or core issues that I'm pondering with or will be. >> Dave: Jim, just a couple questions. You had mentioned, you rattled off a bunch of parameters. You went really fast. One of them was co-location. Can you just review those again? What were they? >> Sure. They are minimal. The minimum viable product is the basis for agile, meaning a team puts together data a complete monolithic sect, but an initial deliverable that can stand alone, provide some value to your stakeholders or users and then you iteratively build upon that in what I call minimum viable product going forward to pull out more complex applications as needed. There's sort of a minimum viable product is at the heart of agile the way it's often looked at. The big question is, what is the minimum viable product in a data science initiative? One way you might approach that is saying that what you're doing, say you're building a predictive model. You're predicting a single scenario, for example such as whether one specific class of customers might accept one specific class of offers under the constraining circumstances. That's an example of minimum outcome to be achieved from a data science deliverable. A minimum product that addresses that requirement might be pulling the data from a single source. We'll need a very simplified feature set of predictive variables like maybe two or three at the most, to predict customer behavior, and use one very well understood algorithm like linear regressions and do it. With just a few lines of programming code in Python or Aura or whatever and build us some very crisp, simple rules. That's the notion in a data science context of a minimum viable product. That's the foundation of agile. Then there's the notion of modular which I've implied with minimal viable product. The initial product is the foundation upon which you build modular add ons. The add ons might be building out more complex algorithms based on more data sets, using more predictive variables, throwing other algorithms in to the initiative like logistic regression or decision trees to do more fine-grained customer segmentation. What I'm giving you is a sense for the modular add ons and builds on to the initial product that generally weaken incrementally in the course of a data science initiative. Then there's this, and I've already used the word incremental where each new module that gets built up or each new feature or tweak on the core model gets added on to the initial deliverable in a way that's incremental. Ideally it should all compose ultimately the sum of the useful set of capabilities that deliver a wider range of value. For example, in a data science initiative where it's customer data, you're doing predictive analysis to identify whether customers are likely to accept a given offer. One way to add on incrementally to that core functionality is to embed that capability, for example, in a target marketing application like an outbound marketing application that uses those predictive variables to drive responses in line to, say an e-commerce front end. Then there's the notion of iterative and iterative really comes down to check points. Regular reviews of the standards and check points where the team comes together to review the work in a context of data science. Data science by its very nature is exploratory. It's visualization, it's model building and testing and training. It's iterative scoring and testing and refinement of the underlying model. Maybe on a daily basis, maybe on a weekly basis, maybe adhoc, but iteration goes on all the time in data science initiatives. Adaptive. Adaptive is all about responding to circumstances. Trial and error. What works, what doesn't work at the level of the clinical approach. It's also in terms of, do we have the right people on this team to deliver on the end results? A data science team might determine mid-way through that, well we're trying to build a marketing application, but we don't have the right marketing expertise in our team, maybe we need to tap Joe over there who seems to know a little bit about this particular application we're trying to build and this particular scenario, this particular customers, we're trying to get a good profile of how to reach them. You might adapt by adding, like I said, new data sources, adding on new algorithms, totally changing your approach for future engineering as you go along. In addition to supervised learning from ground troops, you might add some unsupervised learning algorithms to being able to find patterns in say unstructured data sets as you bring those into the picture. What I'm getting at is there's a lot, 10 zillion variables that, for a data science team that you have to add in to your overall research plan going forward based on, what you're trying to derive from data science is its insights. They're actionable and ideally repeatable. That you can embed them in applications. It's just a matter of figuring out what actually helps you, what set of variables and team members and data and sort of what helps you to achieve the goals of your project. Finally, co-locational. It's all about the core team needs to be, usually in the same physical location according to the book how people normally think of agile. The company that I just left is basically doing a massive social engineering exercise, ongoing about making their marketing and R&D teams a little more agile by co-locating them in different cities like San Francisco and Austin and so forth. The whole notion that people will collaborate far better if they're not virtual. That's highly controversial, but none-the-less, that's the foundation of agile as it's normally considered. One of my questions, really an open question is what hard core, you might have a sprawling team that's doing data science, doing various aspects, but what solid core of that team needs to be physically co-located all or most of the time? Is it the statistical modeler and a data engineer alone? The one who stands up how to do cluster and the person who actually does the building and testing of the model? Do the visualization specialists need to be co-located as well? Are other specialties like subject matter experts who have the knowledge in marketing, whatever it is, do they also need to be in the physical location day in, day out, week in and week out to achieve results on these projects? Anyway, so there you go. That's how I sort of appealed the argument of (mumbling). >> Dave: Okay. I got a minimal modular, incremental, iterative, adaptive, co-locational. What was six again? I'm sorry. >> Jim: Co-locational. >> Dave: What was the one before that? >> Jim: I'm sorry. >> Dave: Adaptive. >> Minimal, modular, incremental, iterative, adaptive, and co-locational. >> Dave: Okay, there were only six. Sorry, I thought it was seven. Good. A couple of questions then we can get the discussion going here. Of course, you're talking specifically in the context of data science, but some of the questions that I've seen around agile generally are, it's not for everybody, when and where should it be used? Waterfalls still make sense sometimes. Some of the criticisms I've read, heard, seen, and sometimes experienced with agile are sort of quality issues, I'll call it lack of accountability. I don't know if that's the right terminology. We're going for speed so as long as we're fast, we checked that box, quality can sacrifice. Thoughts on that. Where does it fit and again understanding specifically you're talking about data science. Does it always fit in data science or because it's so new and hip and cool or like traditional programming environments, is it horses for courses? >> David: Can I add to that, Dave? It's a great, fundamental question. It seems to me there's two really important aspects of artificial intelligence. The first is the research part of it which is developing the algorithms, developing the potential data sources that might or might not matter. Then the second is taking that and putting it into production. That is that somewhere along the line, it's saving money, time, etc., and it's integrated with the rest of the organization. That second piece is, the first piece it seems to be like most research projects, the ROI is difficult to predict in a new sort of way. The second piece of actually implementing it is where you're going to make money. Is agile, if you can integrate that with your systems of record, for example and get automation of many of the aspects that you've researched, is agile the right way of doing it at that stage? How would you bridge the gap between the initial development and then the final instantiation? >> That's an important concern, David. Dev Ops, that's a closely related issue but it's not exactly the same scope. As data science and machine learning, let's just net it out. As machine learning and deep learning get embedded in applications, in operations I should say, like in your e-commerce site or whatever it might be, then data science itself becomes an operational function. The people who continue to iterate those models in line the operational applications. Really, where it comes down to an operational function, everything that these people do needs to be documented and version controlled and so forth. These people meaning data science professionals. You need documentation. You need accountability. The development of these assets, machine learning and so forth, needs to be, is compliance. When you look at compliance, algorithmic accountability comes into it where lawyers will, like e-discovery. They'll subpoena, theoretically all your algorithms and data and say explain how you arrived at this particular recommendation that you made to grant somebody or not grant somebody a loan or whatever it might be. The transparency of the entire development process is absolutely essential to the data science process downstream and when it's a production application. In many ways, agile by saying, speed's the most important thing. Screw documentation, you can sort of figure that out and that's not as important, that whole pathos, it goes by the wayside. Agile can not, should not skip on documentation. Documentation is even more important as data science becomes an operational function. That's one of my concerns. >> David: I think it seems to me that the whole rapid idea development is difficult to get a combination of that and operational, boring testing, regression testing, etc. The two worlds are very different. The interface between the two is difficult. >> Everybody does their e-commerce tweaks through AB testing of different layouts and so forth. AB testing is fundamentally data science and so it's an ongoing thing. (static) ... On AB testing in terms of tweaking. All these channels and all the service flow, systems of engagement and so forth. All this stuff has to be documented so agile sort of, in many ways flies in the face of that or potentially compromises the visibility of (garbled) access. >> David: Right. If you're thinking about IOT for example, you've got very expensive machines out there in the field which you're trying to optimize true put through and trying to minimize machine's breaking, etc. At the Micron event, it was interesting that Micron's use of different methodologies of putting systems together, they were focusing on the data analysis, etc., to drive greater efficiency through their manufacturing process. Having said that, they need really, really tested algorithms, etc. to make sure there isn't a major (mumbling) or loss of huge amounts of potential revenue if something goes wrong. I'm just interested in how you would create the final product that has to go into production in a very high value chain like an IOT. >> When you're running, say AI from learning algorithms all the way down to the end points, it gets even trickier than simply documenting the data and feature sets and the algorithms and so forth that were used to build up these models. It also comes down to having to document the entire life cycle in terms of how these algorithms were trained to make the predictors of whatever it is you're trying to do at the edge with a particular algorithm. The whole notion of how are all of these edge points applications being trained, with what data, at what interval? Are they being retrained on a daily basis, hourly basis, moment by moment basis? All of those are critical concerns to know whether they're making the best automated decisions or actions possible in all scenarios. That's like a black box in terms of the sheer complexity of what needs to be logged to figure out whether the application is doing its job as best a possible. You need a massive log, you need a massive event log from end to end of the IOT to do that right and to provide that visibility ongoing into the performance of these AI driven edge devices. I don't know anybody who's providing the tool to do it. >> David: If I think about how it's done at the moment, it's obviously far too slow at the moment. At the same time, you've got to have some testing and things like that. It seems to me that you've got a research model on one side and then you need to create a working model from that which is your production model. That's the one that goes through the testing and everything of that sort. It seems to me that the interface would be that transition from the research model to the working model that would be critical here and the working model is obviously a subset and it's going to be optimized for performance, etc. in real time, as opposed to the development model which can be a lot to do and take half a week to manage it necessary. It seems to me that you've got a different set of business pressures on the working model and a different set of skills as well. I think having one team here doesn't sound right to me. You've got to have a Dev Ops team who are going to take the working model from the developers and then make sure that it's sound and save. Especially in a high value IOT area that the level of iteration is not going to be nearly as high as in a lower cost marketing type application. Does that sound sensible? >> That sounds sensible. In fact in Dev Ops, the Dev Ops team would definitely be the ones that handle the continuous training and retraining of the working models on an ongoing basis. That's a core observation. >> David: Is that the right way of doing it, Jim? It seems to me that the research people would be continuing to adapt from data from a lot of different places whereas the operational model would be at a specific location with a specific IOT and they wouldn't have necessarily all the data there to do that. I'm not quite sure whether - >> Dave: Hey guys? Hey guys, hey guys? Can I jump in here? Interesting discussion, but highly nuanced and I'm struggling to figure out how this turns into a piece or sort of debating some certain specifics that are very kind of weedy. I wonder if we could just reset for a second and come back to sort of what I was trying to get to before which is really the business impact. Should this be applied broadly? Should this be applied specifically? What does it mean if I'm a practitioner? What should I take away from, Jim your premise and your sort of fixed parameters? Should I be implementing this? Why? Where? What's the value to my organization - the value I guess is obvious, but does it fit everywhere? Should it be across the board? Can you address that? >> Neil: Can I jump in here for a second? >> Dave: Please, that would be great. Is that Neil? >> Neil: Neil. I've never been a data scientist, but I was an actuary a long time ago. When the truth actuary came to me and said we need to develop a liability insurance coverage for floating oil rigs in the North Sea, I'm serious, it took a couple of months of research and modeling and so forth. If I had to go to all of those meetings and stand ups in an agile development environment, I probably would have gone postal on the place. I think that there's some confusion about what data science is. It's not a vector. It's not like a Dev Op situation where you start with something and you go (mumbling). When a data scientist or whatever you want to call them comes up with a model, that model has to be constantly revisited until it's put out of business. It's refined, it's evaluated. It doesn't have an end point like that. The other thing is that data scientist is typically going to be running multiple projects simultaneously so how in the world are you going to agilize that? I think if you look at the data science group, they're probably, I think Nick said this, there are probably groups in there that are doing fewer Dev Ops, software engineering and so forth and you can apply agile techniques to them. The whole data science thing is too squishy for that, in my opinion. >> Jim: Squishy? What do you mean by squishy, Neil? >> Neil: It's not one thing. I think if you try to represent data science as here's a project, we gather data, we work on a model, we test it, and then we put it into production, it doesn't end there. It never ends. It's constantly being revised. >> Yeah, of course. It's akin to application maintenance. The application meaning the model, the algorithm to be fit for purpose has to continually be evaluated, possibly tweaked, always retrained to determine its predictive fit for whatever task it's been assigned. You don't build it once and assume its strong predictive fit forever and ever. You can never assume that. >> Neil: James and I called that adaptive control mechanisms. You put a model out there and you monitor the return you're getting. You talk about AB testing, that's one method of doing it. I think that a data scientist, somebody who really is keyed into the machine learning and all that jazz. I just don't see them as being project oriented. I'll tell you one other thing, I have a son who's a software engineer and he said something to me the other day. He said, "Agile? Agile's dead." I haven't had a chance to find out what he meant by that. I'll get back to you. >> Oh, okay. If you look at - Go ahead. >> Dave: I'm sorry, Neil. Just to clarify, he said agile's dead? Was that what he said? >> Neil: I didn't say it, my son said it. >> Dave: Yeah, yeah, yeah right. >> Neil: No idea what he was talking about. >> Dave: Go ahead, Jim. Sorry. >> If you look at waterfall development in general, for larger projects it's absolutely essential to get requirements nailed down and the functional specifications and all that. Where you have some very extensive projects and many moving parts, obviously you need a master plan that it all fits into and waterfall, those checkpoints and so forth, those controls that are built into that methodology are critically important. Within the context of a broad project, some of the assets being build up might be machine loading models and analytics models and so forth so in the context of our broader waterfall oriented software development initiative, you might need to have multiple data science projects spun off within the sub-projects. Each of those would fit into, by itself might be indicated sort of like an exploration task where you have a team doing data visualization, exploration in more of an open-ended fashion because while they're trying to figure out the right set of predictors and the right set of data to be able to build out the right model to deliver the right result. What I'm getting at is that agile approaches might be embedded into broader waterfall oriented development initiatives, agile data science approaches. Fundamentally, data science began and still is predominantly very smart people, PhDs in statistics and math, doing open-ended exploration of complex data looking for non-obvious patterns that you wouldn't be able to find otherwise. Sort of a fishing expedition, a high priced fishing expedition. Kind of a mode of operation as how data science often is conducted in the real world. Looking for that eureka moment when the correlations just jump out at you. There's a lot of that that goes on. A lot of that is very important data science, it's more akin to pure science. What I'm getting at is there might be some role for more structure in waterfall development approaches in projects that have a data science, core data science capability to them. Those are my thoughts. >> Dave: Okay, we probably should move on to the next topic here, but just in closing can we get people to chime in on sort of the bottom line here? If you're writing to an audience of data scientists or data scientist want to be's, what's the one piece of advice or a couple of pieces of advice that you would give them? >> First of all, data science is a developer competency. The modern developers are, many of them need to be data scientists or have a strong grounding and understanding of data science, because much of that machine learning and all that is increasingly the core of what software developers are building so you can't not understand data science if you're a modern software developer. You can't understand data science as it (garbled) if you don't understand the need for agile iterative steps within the, because they're looking for the needle in the haystack quite often. The right combination of predictive variables and the right combination of algorithms and the right training regimen in order to get it all fit. It's a new world competency that need be mastered if you're a software development professional. >> Dave: Okay, anybody else want to chime in on the bottom line there? >> David: Just my two penny worth is that the key aspect of all the data scientists is to come up with the algorithm and then implement them in a way that is robust and it part of the system as a whole. The return on investment on the data science piece as an insight isn't worth anything until it's actually implemented and put into production of some sort. It seems that second stage of creating the working model is what is the output of your data scientists. >> Yeah, it's the repeatable deployable asset that incorporates the crux of data science which is algorithms that are data driven, statistical algorithms that are data driven. >> Dave: Okay. If there's nothing else, let's close this agenda item out. Is Nick on? Did Nick join us today? Nick, you there? >> Nick: Yeah. >> Dave: Sounds like you're on. Tough to hear you. >> Nick: How's that? >> Dave: Better, but still not great. Okay, we can at least hear you now. David, you wanted to present on NVMe over fabric pivoting off the Micron news. What is NVMe over fabric and who gives a fuck? (laughing) >> David: This is Micron, we talked about it last week. This is Micron announcement. What they announced is NVMe over fabric which, last time we talked about is the ability to create a whole number of nodes. They've tested 250, the architecture will take them to 1,000. 1,000 processor or 1,000 nodes, and be able to access the data on any single node at roughly the same speed. They are quoting 200 microseconds. It's 195 if it's local and it's 200 if it's remote. That is a very, very interesting architecture which is like nothing else that's been announced. >> Participant: David, can I ask a quick question? >> David: Sure. >> Participant: This latency and the node count sounds astonishing. Is Intel not replicating this or challenging in scope with their 3D Crosspoint? >> David: 3D Crosspoint, Intel would love to sell that as a key component of this. The 3D Crosspoint as a storage device is very, very, very expensive. You can replicate most of the function of 3D Crosspoint at a much lower price point by using a combination of D-RAM and protective D-RAM and Flash. At the moment, 3D Crosspoint is a nice to have and there'll be circumstances where they will use it, but at the meeting yesterday, I don't think they, they might have brought it up once. They didn't emphasize it (mumbles) at all as being part of it. >> Participant: To be clear, this means rather than buying Intel servers rounded out with lots of 3D Crosspoint, you buy Intel servers just with the CPU and then all the Micron niceness for their NVMe and their Interconnect? >> David: Correct. They are still Intel servers. The ones they were displaying yesterday were HP1's, they also used SuperMicro. They want certain characteristics of the chip set that are used, but those are just standard pieces. The other parts of the architecture are the Mellanox, the 100 gigabit converged ethernet and using Rocky which is IDMA over converged ethernet. That is the secret sauce which allows you and Mellanox themselves, their cards have a lot of offload of a lot of functionality. That's the secret sauce which allows you to go from any point to any point in 5 microseconds. Then create a transfer and other things. Files are on top of that. >> Participant: David, Another quick question. The latency is incredibly short. >> David: Yep. >> Participant: What happens if, as say an MPP SQL database with 1,000 nodes, what if they have to shuffle a lot of data? What's the throughput? Is it limited by that 100 gig or is that so insanely large that it doesn't matter? >> David: They key is this, that it allows you to move the processing to wherever the data is very, very easily. In the principle that will evolve from this architecture, is that you know where the data is so don't move the data around, that'll block things up. Move the processing to that particular node or some adjacent node and do the processing as close as possible. That is as an architecture is a long term goal. Obviously in the short term, you've got to take things as they are. Clearly, a different type of architecture for databases will need to eventually evolve out of this. At the moment, what they're focusing on is big problems which need low latency solutions and using databases as they are and the whole end to end use stack which is a much faster way of doing it. Then over time, they'll adapt new databases, new architectures to really take advantage of it. What they're offering is a POC at the moment. It's in Beta. They had their customers talking about it and they were very complimentary in general about it. They hope to get it into full production this year. There's going to be a host of other people that are doing this. I was trying to bottom line this in terms of really what the link is with digital enablement. For me, true digital enablement is enabling any relevant data to be available for processing at the point of business engagement in real time or near real time. The definition that this architecture enables. It's a, in my view a potential game changer in that this is an architecture which will allow any data to be available for processing. You don't have to move the data around, you move the processing to that data. >> Is Micron the first market with this capability, David? NV over Me? NVMe. >> David: Over fabric? Yes. >> Jim: Okay. >> David: Having said that, there are a lot of start ups which have got a significant amount of money and who are coming to market with their own versions. You would expect Dell, HP to be following suit. >> Dave: David? Sorry. Finish your thought and then I have another quick question. >> David: No, no. >> Dave: The principle, and you've helped me understand this many times, going all the way back to Hadoop, bring the application to the data, but when you're using conventional relational databases and you've had it all normalized, you've got to join stuff that might not be co-located. >> David: Yep. That's the whole point about the five microseconds. Now that the impact of non co-location if you have to join stuff or whatever it is, is much, much lower. It's so you can do the logical draw in, whatever it is, very quickly and very easily across that whole fabric. In terms of processing against that data, then you would choose to move the application to that node because it's much less data to move, that's an optimization of the architecture as opposed to a fundamental design point. You can then optimize about where you run the thing. This is ideal architecture for where I personally see things going which is traditional systems of record which need to be exactly as they've ever been and then alongside it, the artificial intelligence, the systems of understanding, data warehouses, etc. Having that data available in the same space so that you can combine those two elements in real time or in near real time. The advantage of that in terms of business value, digital enablement, and business value is the biggest thing of all. That's a 50% improvement in overall productivity of a company, that's the thing that will drive, in my view, 99% of the business value. >> Dave: Going back just to the joint thing, 100 gigs with five microseconds, that's really, really fast, but if you've got petabytes of data on these thousand nodes and you have to do a join, you still got to go through that 100 gig pipe of stuff that's not co-located. >> David: Absolutely. The way you would design that is as you would design any query. You've got a process you would need, a process in front of that which is query optimization to be able to farm all of the independent jobs needed to do in each of the nodes and take the output of that and bring that together. Both the concepts are already there. >> Dave: Like a map. >> David: Yes. That's right. All of the data science is there. You're starting from an architecture which is fundamentally different from the traditional let's get it out architectures that have existed, by removing that huge overhead of going from one to another. >> Dave: Oh, because this goes, it's like a mesh not a ring? >> David: Yes, yes. >> Dave: It's like the high performance compute of this MPI type architecture? >> David: Absolutely. NVMe, by definition is a point to point architecture. Rocky, underneath it is a point to point architecture. Everything is point to point. Yes. >> Dave: Oh, got it. That really does call for a redesign. >> David: Yes, you can take it in steps. It'll work as it is and then over time you'll optimize it to take advantage of it more. Does that definition of (mumbling) make sense to you guys? The one I quoted to you? Enabling any relevant data to be available for processing at the point of business engagement, in real time or near real time? That's where you're trying to get to and this is a very powerful enabler of that design. >> Nick: You're emphasizing the network topology, while I kind of thought the heart of the argument was performance. >> David: Could you repeat that? It's very - >> Dave: Let me repeat. Nick's a little light, but I could hear him fine. You're emphasizing the network topology, but Nick's saying his takeaway was the whole idea was the thrust was performance. >> Nick: Correct. >> David: Absolutely. Absolutely. The result of that network topology is a many times improvement in performance of the systems as a whole that you couldn't achieve in any previous architecture. I totally agree. That's what it's about is enabling low latency applications with much, much more data available by being able to break things up in parallel and delivering multiple streams to an end result. Yes. >> Participant: David, let me just ask, if I can play out how databases are designed now, how they can take advantage of it unmodified, but how things could be very, very different once they do take advantage of it which is that today, if you're doing transaction processing, you're pretty much bottle necked on a single node that sort of maintains the fresh cache of shared data and that cache, even if it's in memory, it's associated with shared storage. What you're talking about means because you've got memory speed access to that cache from anywhere, it no longer is tied to a node. That's what allows you to scale out to 1,000 nodes even for transaction processing. That's something we've never really been able to do. Then the fact that you have a large memory space means that you no longer optimize for mapping back and forth from disk and disk structures, but you have everything in a memory native structure and you don't go through this thing straw for IO to storage, you go through memory speed IO. That's a big, big - >> David: That's the end point. I agree. That's not here quite yet. It's still IO, so the IO has been improved dramatically, the protocol within the Me and the over fabric part of it. The elapsed time has been improved, but it's not yet the same as, for example, the HPV initiative. That's saying you change your architecture, you change your way of processing just in the memory. Everything is assumed to be memory. We're not there yet. 200 microseconds is still a lot, lot slower than the process that - one impact of this architecture is that the amount of data that you can pass through it is enormously higher and therefore, the memory sizes themselves within each node will need to be much, much bigger. There is a real opportunity for architectures which minimize the impact, which hold data coherently across multiple nodes and where there's minimal impact of, no tapping on the shoulder for every byte transferred so you can move large amounts of data into memory and then tell people that it's there and allow it to be shared, for example between the different calls and the GPUs and FPGAs that will be in these processes. There's more to come in terms of the architecture in the future. This is a step along the way, it's not the whole journey. >> Participant: Dave, another question. You just referenced 200 milliseconds or microseconds? >> David: Did I say milliseconds? I meant microseconds. >> Participant: You might have, I might have misheard. Relate that to the five microsecond thing again. >> David: If you have data directly attached to your processor, the access time is 195 microseconds. If you need to go to a remote, anywhere else in the thousand nodes, your access time is 200 microseconds. In other words, the additional overhead of that data is five microseconds. >> Participant: That's incredible. >> David: Yes, yes. That is absolutely incredible. That's something that data scientists have been working on for years and years. Okay. That's the reason why you can now do what I talked about which was you can have access from any node to any data within that large amount of nodes. You can have petabytes of data there and you can have access from any single node to any of that data. That, in terms of data enablement, digital enablement, is absolutely amazing. In other words, you don't have to pre put the data that's local in one application in one place. You're allowing an enormous flexibility in how you design systems. That coming back to artificial intelligence, etc. allows you a much, much larger amount of data that you can call on for improving applications. >> Participant: You can explore and train models, huge models, really quickly? >> David: Yes, yes. >> Participant: Apparently that process works better when you have an MPI like mesh than a ring. >> David: If you compare this architecture to the DSST architecture which was the first entrance into this that MP bought for a billion dollars, then that one stopped at 40 nodes. It's architecture was very, very proprietary all the way through. This one takes you to 1,000 nodes with much, much lower cost. They believe that the cost of the equivalent DSSD system will be between 10 and 20% of that cost. >> Dave: Can I ask a question about, you mentioned query optimizer. Who develops the query optimizer for the system? >> David: Nobody does yet. >> Jim: The DBMS vendor would have to re-write theirs with a whole different pensive cost. >> Dave: So we would have an optimizer database system? >> David: Who's asking a question, I'm sorry. I don't recognize the voice. >> Dave: That was Neil. Hold on one second, David. Hold on one second. Go ahead Nick. You talk about translation. >> Nick: ... On a network. It's SAN. It happens to be very low latency and very high throughput, but it's just a storage sub-system. >> David: Yep. Yep. It's a storage sub-system. It's called a server SAN. That's what we've been talking about for a long time is you need the same characteristics which is that you can get at all the data, but you need to be able to get at it in compute time as opposed to taking a stroll down the road time. >> Dave: Architecturally it's a SAN without an array controller? >> David: Exactly. Yeah, the array controller is software from a company called Xcellate, what was the name of it? I can't remember now. Say it again. >> Nick: Xcelero or Xceleron? >> David: Xcelero. That's the company that has produced the software for the data services, etc. >> Dave: Let's, as we sort of wind down this segment, let's talk about the business impact again. We're talking about different ways potentially to develop applications. There's an ecosystem requirement here it sounds like, from the ISDs to support this and other developers. It's the final, portends the elimination of the last electromechanical device in computing which has implications for a lot of things. Performance value, application development, application capability. Maybe you could talk about that a little bit again thinking in terms of how practitioners should look at this. What are the actions that they should be taking and what kinds of plans should they be making in their strategies? >> David: I thought Neil's comment last week was very perceptive which is, you wouldn't start with people like me who have been imbued with the 100 database call limits for umpteen years. You'd start with people, millennials, or sub-millenials or whatever you want to call them, who can take a completely fresh view of how you would exploit this type of architecture. Fundamentally you will be able to get through 10 or 100 times more data in real time than you can with today's systems. There's two parts of that data as I said before. The traditional systems of record that need to be updated, and then a whole host of applications that will allow you to do processes which are either not possible, or very slow today. To give one simple example, if you want to do real time changing of pricing based on availability of your supply chain, based on what you've got in stock, based on the delivery capabilities, that's a very, very complex problem. The optimization of all these different things and there are many others that you could include in that. This will give you the ability to automate that process and optimize that process in real time as part of the systems of record and update everything together. That, in terms of business value is extracting a huge number of people who previously would be involved in that chain, reducing their involvement significantly and making the company itself far more agile, far more responsive to change in the marketplace. That's just one example, you can think of hundreds for every marketplace where the application now becomes the systems of record, augmented by AI and huge amounts more data can improve the productivity of an organization and the agility of an organization in the marketplace. >> This is a godsend for AI. AI, the draw of AI is all this training data. If you could just move that in memory speed to the application in real time, it makes the applications much sharper and more (mumbling). >> David: Absolutely. >> Participant: How long David, would it take for the cloud vendors to not just offer some instances of this, but essentially to retool their infrastructure. (laughing) >> David: This is, to me a disruption and a half. The people who can be first to market in this are the SaaS vendors who can take their applications or new SaaS vendors. ISV. Sorry, say that again, sorry. >> Participant: The SaaS vendors who have their own infrastructure? >> David: Yes, but it's not going to be long before the AWS' and Microsofts put this in their tool bag. The SaaS vendors have the greatest capability of making this change in the shortest possible time. To me, that's one area where we're going to see results. Make no mistake about it, this is a big change and at the Micron conference, I can't remember what the guys name was, he said it takes two Olympics for people to start adopting things for real. I think that's going to be shorter than two Olympics, but it's going to be quite a slow process for pushing this out. It's radically different and a lot of the traditional ways of doing things are going to be affected. My view is that SaaS is going to be the first and then there are going to be individual companies that solve the problems themselves. Large companies, even small companies that put in systems of this sort and then use it to outperform the marketplace in a significant way. Particularly in the finance area and particularly in other data intent areas. That's my two pennies worth. Anybody want to add anything else? Any other thoughts? >> Dave: Let's wrap some final thoughts on this one. >> Participant: Big deal for big data. >> David: Like it, like it. >> Participant: It's actually more than that because there used to be a major trade off between big data and fast data. Latency and throughput and this starts to push some of those boundaries out so that you sort of can have both at once. >> Dave: Okay, good. Big deal for big data and fast data. >> David: Yeah, I like it. >> Dave: George, you want to talk about digital twins? I remember when you first sort of introduced this, I was like, "Huh? What's a digital twin? "That's an interesting name." I guess, I'm not sure you coined it, but why don't you tell us what digital twin is and why it's relevant. >> George: All right. GE coined it. I'm going to, at a high level talk about what it is, why it's important, and a little bit about as much as we can tell, how it's likely to start playing out and a little bit on the differences of the different vendors who are going after it. As far as sort of defining it, I'm cribbing a little bit from a report that's just in the edit process. It's data representation, this is important, or a model of a product, process, service, customer, supplier. It's not just an industrial device. It can be any entity involved in the business. This is a refinement sort of Peter helped with. The reason it's any entity is because there is, it can represent the structure and behavior, not just of a machine tool or a jet engine, but a business process like sales order process when you see it on a screen and its workflow. That's a digital twin of what used to be a physical process. It applied to both the devices and assets and processes because when you can model them, you can integrate them within a business process and improve that process. Going back to something that's more physical so I can do a more concrete definition, you might take a device like a robotic machine tool and the idea is that the twin captures the structure and the behavior across its lifecycle. As it's designed, as it's built, tested, deployed, operated, and serviced. I don't know if you all know the myth of, in the Greek Gods, one of the Goddesses sprang fully formed from the forehead of Zeus. I forgot who it was. The point of that is digital twin is not going to spring fully formed from any developers head. Getting to the level of fidelity I just described is a journey and a long one. Maybe a decade or more because it's difficult. You have to integrate a lot of data from different systems and you have to add structure and behavior for stuff that's not captured anywhere and may not be captured anywhere. Just for example, CAD data might have design information, manufacturing information might come from there or another system. CRM data might have support information. Maintenance repair and overhaul applications might have information on how it's serviced. Then you also connect the physical version with the digital version with essentially telemetry data that says how its been operating over time. That sort of helps define its behavior so you can manipulate that and predict things or simulate things that you couldn't do with just the physical version. >> You have to think about combined with say 3D printers, you could create a hot physical back up of some malfunctioning thing in the field because you have the entire design, you have the entire history of its behavior and its current state before it went kablooey. Conceivably, it can be fabricated on the fly and reconstituted as a physicologic from the digital twin that was maintained. >> George: Yes, you know what actually that raises a good point which is that the behavior that was represented in the telemetry helps the designer simulate a better version for the next version. Just what you're saying. Then with 3D printing, you can either make a prototype or another instance. Some of the printers are getting sophisticated enough to punch out better versions or parts for better versions. That's a really good point. There's one thing that has to hold all this stuff together which is really kind of difficult, which is challenging technology. IBM calls it a knowledge graph. It's pretty much in anyone's version. They might not call it a knowledge graph. It's a graph is, instead of a tree where you have a parent and then children and then the children have more children, a graph, many things can relate to many things. The reason I point that out is that puts a holistic structure over all these desperate sources of data behavior. You essentially talk to the graph, sort of like with Arnold, talk to the hand. That didn't, I got crickets. (laughing) Let me give you guys the, I put a definitions table in this dock. I had a couple things. Beta models. These are some important terms. Beta model represents the structure but not the behavior of the digital twin. The API represents the behavior of the digital twin and it should conform to the data model for maximum developer usability. Jim, jump in anywhere where you feel like you want to correct or refine. The object model is a combination of the data model and API. You were going to say something? >> Jim: No, I wasn't. >> George: Okay. The object model ultimately is the digital twin. Another way of looking at it, defining the structure and behavior. This sounds like one of these, say "T" words, the canonical model. It's a generic version of the digital twin or really the one where you're going to have a representation that doesn't have customer specific extensions. This is important because the way these things are getting built today is mostly custom spoke and so if you want to be able to reuse work. If someone's building this for you like a system integrator, you want to be able to, or they want to be able to reuse this on the next engagement and you want to be able to take the benefit of what they've learned on the next engagement back to you. There has to be this canonical model that doesn't break every time you essentially add new capabilities. It doesn't break your existing stuff. Knowledge graph again is this thing that holds together all the pieces and makes them look like one coherent hole. I'll get to, I talked briefly about network compatibility and I'll get to level of detail. Let me go back to, I'm sort of doing this from crib notes. We talked about telemetry which is sort of combining the physical and the twin. Again, telemetry's really important because this is like the time series database. It says, this is all the stuff that was going on over time. Then you can look at telemetry data that tells you, we got a dirty power spike and after three of those, this machine sort of started vibrating. That's part of how you're looking to learn about its behavior over time. In that process, models get better and better about predicting and enabling you to optimize their behavior and the business process with which it integrates. I'll give some examples of that. Twins, these digital twins can themselves be composed in levels of detail. I think I used the example of a robotic machine tool. Then you might have a bunch of machine tools on an assembly line and then you might have a bunch of assembly lines in a factory. As you start modeling, not just the single instance, but the collections that higher up and higher levels of extractions, or levels of detail, you get a richer and richer way to model the behavior of your business. More and more of your business. Again, it's not just the assets, but it's some of the processes. Let me now talk a little bit about how the continual improvement works. As Jim was talking about, we have data feedback loops in our machine learning models. Once you have a good quality digital twin in place, you get the benefit of increasing returns from the data feedback loops. In other words, if you can get to a better starting point than your competitor and then you get on the increasing returns of the data feedback loops, that is improving the fidelity of the digital twins now faster than your competitor. For one twin, I'll talk about how you want to make the whole ecosystem of twins sort of self-reinforcing. I'll get to that in a sec. There's another point to make about these data feedback loops which is traditional apps, and this came up with Jim and Neil, traditional apps are static. You want upgrades, you get stuff from the vendor. With digital twins, they're always learning from the customer's data and that has implications when the partner or vendor who helped build it for a customer takes learnings from the customer and goes to a similar customer for another engagement. I'll talk about the implications from that. This is important because it's half packaged application and half bespoke. The fact that you don't have to take the customer's data, but your model learns from the data. Think of it as, I'm not going to take your coffee beans, your data, but I'm going to run or make coffee from your beans and I'm going to take that to the next engagement with another customer who could be your competitor. In other words, you're extracting all the value from the data and that helps modify the behavior of the model and the next guy gets the benefit of it. Dave, this is the stuff where IBM keeps saying, we don't take your data. You're right, but you're taking the juice you squeezed out of it. That's one of my next reports. >> Dave: It's interesting, George. Their contention is, they uniquely, unlike Amazon and Google, don't swap spit, your spit with their competitors. >> George: That's misleading. To say Amazon and Google, those guys aren't building digital twins. Parametric technology is. I've got this definitely from a parametric technical fellow at an AWS event last week, which is they, not only don't use the data, they don't use the structure of the twin either from engagement to engagement. That's a big difference from IBM. I have a quote, Chris O'Connor from IBM Munich saying, "We'll take the data model, "but we won't take the data." I'm like, so you take the coffee from the beans even if you don't take the beans? I'm going to be very specific about saying that saying you don't do what Google and FaceBook do, what they do, it's misleading. >> Dave: My only caution there is do some more vetting and checking. A lot of times what some guy says on a Cube interview, he or she doesn't even know, in my experience. Make sure you validate that. >> George: I'll send it to them for feedback, but it wasn't just him. I got it from the CTO of the IOT division as well. >> Dave: When you were in Munich? >> George: This wasn't on the Cube either. This was by the side of, at the coffee table during our break. >> Dave: I understand and CTO's in theory should know. I can't tell you how many times I've gotten a definitive answer from a pretty senior level person and it turns out it was, either they weren't listening to me or they didn't know or they were just yessing me or whatever. Just be really careful and make sure you do your background checks. >> George: I will. I think the key is leave them room to provide a nuanced answer. It's more of a really, really, really concrete about really specific edge conditions and say do you or don't you. >> Dave: This is a pretty big one. If I'm a CIO, a chief digital officer, a chief data officer, COO, head of IT, head of data science, what should I be doing in this regard? What's the advice? >> George: Okay, can I go through a few more or are we out of time? >> Dave: No, we have time. >> George: Let me do a couple more points. I talked about training a single twin or an instance of a twin and I talked about the acceleration of the learning curve. There's edge analytics, David has educated us with the help of looking at GE Predicts. David, you have been talking about this fpr a long time. You want edge analytics to inform or automate a low latency decision and so this is where you're going to have to run some amount of analytics. Right near the device. Although I got to mention, hopefully this will elicit a chuckle. When you get some vendors telling you what their edge and cloud strategies are. Map R said, we'll have a hadoop cluster that only needs four or five nodes as our edge device. And we'll need five admins to care and feed it. He didn't say the last part, but that obviously isn't going to work. The edge analytics could be things like recalibrating the machine for different tolerance. If it's seeing that it's getting out of the tolerance window or something like that. The cloud, and this is old news for anyone who's been around David, but you're going to have a lot of data, not all of it, but going back to the cloud to train both the instances of each robotic machine tool and the master of that machine tool. The reason is, an instance would be oh I'm operating in a high humidity environment, something like that. Another one would be operating where there's a lot of sand or something that screws up the behavior. Then the master might be something that has behavior that's sort of common to all of them. It's when the training, the training will take place on the instances and the master and will in all likelihood push down versions of each. Next to the physical device process, whatever, you'll have the instance one and a class one and between the two of them, they should give you the optimal view of behavior and the ability to simulate to improve things. It's worth mentioning, again as David found out, not by talking to GE, but by accidentally looking at their documentation, their whole positioning of edge versus cloud is a little bit hand waving and in talking to the guys from ThingWorks which is a division of what used to be called Parametric Technology which is just PTC, it appears that they're negotiating with GE to give them the orchestration and distributed database technology that GE can't build itself. I've heard also from two ISV's, one a major one and one a minor one who are both in the IOT ecosystem one who's part of the GE ecosystem that predicts as a mess. It's analysis paralysis. It's not that they don't have talent, it's just that they're not getting shit done. Anyway, the key thing now is when you get all this - >> David: Just from what I learned when I went to the GE event recently, they're aware of their requirement. They've actually already got some sub parts of the predix which they can put in the cloud, but there needs to be more of it and they're aware of that. >> George: As usual, just another reason I need a red phone hotline to David for any and all questions I have. >> David: Flattery will get you everywhere. >> George: All right. One of the key takeaways, not the action item, but the takeaway for a customer is when you get these data feedback loops reinforcing each other, the instances of say the robotic machine tools to the master, then the instance to the assembly line to the factory, when all that is being orchestrated and all the data is continually enhancing the models as well as the manual process of adding contextual information or new levels of structure, this is when you're on increasing returns sort of curve that really contributes to sustaining competitive advantage. Remember, think of how when Google started off on search, it wasn't just their algorithm, but it was collecting data about which links you picked, in which order and how long you were there that helped them reinforce the search rankings. They got so far ahead of everyone else that even if others had those algorithms, they didn't have that data to help refine the rankings. You get this same process going when you essentially have your ecosystem of learning models across the enterprise sort of all orchestrating. This sounds like motherhood and apple pie and there's going to be a lot of challenges to getting there and I haven't gotten all the warts of having gone through, talked to a lot of customers who've gotten the arrows in the back, but that's the theoretical, really cool end point or position where the entire company becomes a learning organization from these feedback loops. I want to, now that we're in the edit process on the overall digital twin, I do want to do a follow up on IBM's approach. Hopefully we can do it both as a report and then as a version that's for Silicon Angle because that thing I wrote on Cloudera got the immediate attention of Cloudera and Amazon and hopefully we can both provide client proprietary value add, but also the public impact stuff. That's my high level. >> This is fascinating. If you're the Chief of Data Science for example, in a large industrial company, having the ability to compile digital twins of all your edge devices can be extraordinarily valuable because then you can use that data to do more fine-grained segmentation of the different types of edges based on their behavior and their state under various scenarios. Basically then your team of data scientists can then begin to identify the extent to which they need to write different machine learning models that are tuned to the specific requirements or status or behavior of different end points. What I'm getting at is ultimately, you're going to have 10 zillion different categories of edge devices performing in various scenarios. They're going to be driven by an equal variety of machine learning, deep learning AI and all that. All that has to be built up by your data science team in some coherent architecture where there might be a common canonical template that all devices will, all the algorithms and so forth on those devices are being built from. Each of those algorithms will then be tweaked to the specific digital twins profile of each device is what I'm getting at. >> George: That's a great point that I didn't bring up which is folks who remember object oriented programming, not that I ever was able to write a single line of code, but the idea, go into this robotic machine tool, you can inherit a couple of essentially component objects that can also be used in slightly different models, but let's say in this machine tool, there's a model for a spinning device, I forget what it's called. Like a drive shaft. That drive shaft can be in other things as well. Eventually you can compose these twins, even instances of a twin with essentially component models themselves. Thing Works does this. I don't know if GE does this. I don't think IBM does. The interesting thing about IBM is, their go to market really influences their approach to this which is they have this huge industry solutions group and then obviously the global business services group. These guys are all custom development and domain experts so they'll go into, they're literally working with Airbus and with the goal of building a model of a particular airliner. Right now I think they're doing the de-icing subsystem, I don't even remember on which model. In other words they're helping to create this bespoke thing and so that's what actually gets them into trouble with potentially channel conflict or maybe it's more competitor conflict because Airbus is not going to be happy if they take their learnings and go work with Boeing next. Whereas with PTC and Thing Works, at least their professional services arm, they treat this much more like the implementation of a packaged software product and all the learnings stay with the customer. >> Very good. >> Dave: I got a question, George. In terms of the industrial design and engineering aspect of building products, you mentioned PTC which has been in the CAD business and the engineering business for software for 50 years, and Ansis and folks like that who do the simulation of industrial products or any kind of a product that gets built. Is there a natural starting point for digital twin coming out of that area? That would be the vice president of engineering would be the guy that would be a key target for this kind of thinking. >> George: Great point. This is, I think PTC is closely aligned with Terradata and they're attitude is, hey if it's not captured in the CAD tool, then you're just hand waving because you won't have a high fidelity twin. >> Dave: Yeah, it's a logical starting point for any mechanical kind of device. What's a thing built to do and what's it built like? >> George: Yeah, but if it's something that was designed in a CAD tool, yes, but if it's something that was not, then you start having to build it up in a different way. I think, I'm trying to remember, but IBM did not look like they had something that was definitely oriented around CAD. Theirs looked like it was more where the knowledge graph was the core glue that pulled all the structure and behavior together. Again, that was a reflection of their product line which doesn't have a CAD tool and the fact that they're doing these really, really, really bespoke twins. >> Dave: I'm thinking that it strikes me that from the industrial design in engineering area, it's really the individual product is really the focus. That's one part of the map. The dynamic you're pointing at, there's lots of other elements of the map in terms of an operational, a business process. That might be the fleet of wind turbines or the fleet of trucks. How they behave collectively. There's lots of different entry points. I'm just trying to grapple with, isn't the CAD area, the engineering area at least for hard products, have an obvious starting point for users to begin to look at this. The BP of Engineering needs to be on top of this stuff. >> George: That's a great point that I didn't bring up which is, a guy at Microsoft who was their CTO in their IT organization gave me an example which was, you have a pipeline that's 1,000 miles long. It's got 10,000 valves in it, but you're not capturing the CAD design of the valve, you just put a really simple model that measures pressure, temperature, and leakage or something. You string 10,000 of those together into an overall model of the pipeline. That is a low fidelity thing, but that's all they need to start with. Then they can see when they're doing maintenance or when the flow through is higher or what the impact is on each of the different valves or flanges or whatever. It doesn't always have to start with super high fidelity. It depends on which optimizing for. >> Dave: It's funny. I had a conversation years ago with a guy, the engineering McNeil Schwendler if you remember those folks. He was telling us about 30 to 40 years ago when they were doing computational fluid dynamics, they were doing one dimensional computational fluid dynamics if you can imagine that. Then they were able, because of the compute power or whatever, to get the two dimensional computational fluid dynamics and finally they got to three dimensional and they're looking also at four and five dimensional as well. It's serviceable, I guess what I'm saying in that pipeline example, the way that they build that thing or the way that they manage that pipeline is that they did the one dimensional model of a valve is good enough, but over time, maybe a two or three dimensional is going to be better. >> George: That's why I say that this is a journey that's got to take a decade or more. >> Dave: Yeah, definitely. >> Take the example of airplane. The old joke is it's six million parts flying in close formation. It's going to be a while before you fit that in one model. >> Dave: Got it. Yes. Right on. When you have that model, that's pretty cool. All right guys, we're about out of time. I need a little time to prep for my next meeting which is in 15 minutes, but final thoughts. Do you guys feel like this was useful in terms of guiding things that you might be able to write about? >> George: Hugely. This is hugely more valuable than anything we've done as a team. >> Jim: This is great, I learned a lot. >> Dave: Good. Thanks you guys. This has been recorded. It's up on the cloud and I'll figure out how to get it to Peter and we'll go from there. Thanks everybody. (closing thank you's)

Published Date : May 9 2017

SUMMARY :

There you go. and maybe the key issues that you see and is coming even more deeply into the core practice You had mentioned, you rattled off a bunch of parameters. It's all about the core team needs to be, I got a minimal modular, incremental, iterative, iterative, adaptive, and co-locational. in the context of data science, and get automation of many of the aspects everything that these people do needs to be documented that the whole rapid idea development flies in the face of that create the final product that has to go into production and the algorithms and so forth that were used and the working model is obviously a subset that handle the continuous training and retraining David: Is that the right way of doing it, Jim? and come back to sort of what I was trying to get to before Dave: Please, that would be great. so how in the world are you going to agilize that? I think if you try to represent data science the algorithm to be fit for purpose and he said something to me the other day. If you look at - Just to clarify, he said agile's dead? Dave: Go ahead, Jim. and the functional specifications and all that. and all that is increasingly the core that the key aspect of all the data scientists that incorporates the crux of data science Nick, you there? Tough to hear you. pivoting off the Micron news. the ability to create a whole number of nodes. Participant: This latency and the node count At the moment, 3D Crosspoint is a nice to have That is the secret sauce which allows you The latency is incredibly short. Move the processing to that particular node Is Micron the first market with this capability, David? David: Over fabric? and who are coming to market with their own versions. Dave: David? bring the application to the data, Now that the impact of non co-location and you have to do a join, and take the output of that and bring that together. All of the data science is there. NVMe, by definition is a point to point architecture. Dave: Oh, got it. Does that definition of (mumbling) make sense to you guys? Nick: You're emphasizing the network topology, the whole idea was the thrust was performance. of the systems as a whole Then the fact that you have a large memory space is that the amount of data that you can pass through it You just referenced 200 milliseconds or microseconds? David: Did I say milliseconds? Relate that to the five microsecond thing again. anywhere else in the thousand nodes, That's the reason why you can now do what I talked about when you have an MPI like mesh than a ring. They believe that the cost of the equivalent DSSD system Who develops the query optimizer for the system? Jim: The DBMS vendor would have to re-write theirs I don't recognize the voice. Dave: That was Neil. It happens to be very low latency which is that you can get at all the data, Yeah, the array controller is software from a company called That's the company that has produced the software from the ISDs to support this and other developers. and the agility of an organization in the marketplace. AI, the draw of AI is all this training data. for the cloud vendors to not just offer are the SaaS vendors who can take their applications and then there are going to be individual companies Latency and throughput and this starts to push Dave: Okay, good. I guess, I'm not sure you coined it, and the idea is that the twin captures the structure Conceivably, it can be fabricated on the fly and it should conform to the data model and that helps modify the behavior Dave: It's interesting, George. saying, "We'll take the data model, Make sure you validate that. I got it from the CTO of the IOT division as well. This was by the side of, at the coffee table I can't tell you how many times and say do you or don't you. What's the advice? of behavior and the ability to simulate to improve things. of the predix which they can put in the cloud, I need a red phone hotline to David and all the data is continually enhancing the models having the ability to compile digital twins and all the learnings stay with the customer. and the engineering business for software hey if it's not captured in the CAD tool, What's a thing built to do and what's it built like? and the fact that they're doing these that from the industrial design in engineering area, but that's all they need to start with. and finally they got to three dimensional that this is a journey that's got to take It's going to be a while before you fit that I need a little time to prep for my next meeting This is hugely more valuable than anything we've done how to get it to Peter and we'll go from there.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

JimPERSON

0.99+

Chris O'ConnorPERSON

0.99+

GeorgePERSON

0.99+

DavePERSON

0.99+

AirbusORGANIZATION

0.99+

BoeingORGANIZATION

0.99+

Jim KobeielusPERSON

0.99+

JamesPERSON

0.99+

AmazonORGANIZATION

0.99+

IBMORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

NeilPERSON

0.99+

JoePERSON

0.99+

NickPERSON

0.99+

David FloyerPERSON

0.99+

George GilbertPERSON

0.99+

1,000 milesQUANTITY

0.99+

10QUANTITY

0.99+

PeterPERSON

0.99+

195 microsecondsQUANTITY

0.99+