Scott Castle, Sisense | AWS re:Invent 2022
>>Good morning fellow nerds and welcome back to AWS Reinvent. We are live from the show floor here in Las Vegas, Nevada. My name is Savannah Peterson, joined with my fabulous co-host John Furrier. Day two keynotes are rolling. >>Yeah. What do you thinking this? This is the day where everything comes, so the core gets popped off the bottle, all the announcements start flowing out tomorrow. You hear machine learning from swee lot more in depth around AI probably. And then developers with Verner Vos, the CTO who wrote the seminal paper in in early two thousands around web service that becames. So again, just another great year of next level cloud. Big discussion of data in the keynote bulk of the time was talking about data and business intelligence, business transformation easier. Is that what people want? They want the easy button and we're gonna talk a lot about that in this segment. I'm really looking forward to this interview. >>Easy button. We all want the >>Easy, we want the easy button. >>I love that you brought up champagne. It really feels like a champagne moment for the AWS community as a whole. Being here on the floor feels a bit like the before times. I don't want to jinx it. Our next guest, Scott Castle, from Si Sense. Thank you so much for joining us. How are you feeling? How's the show for you going so far? Oh, >>This is exciting. It's really great to see the changes that are coming in aws. It's great to see the, the excitement and the activity around how we can do so much more with data, with compute, with visualization, with reporting. It's fun. >>It is very fun. I just got a note. I think you have the coolest last name of anyone we've had on the show so far, castle. Oh, thank you. I'm here for it. I'm sure no one's ever said that before, but I'm so just in case our audience isn't familiar, tell us about >>Soy Sense is an embedded analytics platform. So we're used to take the queries and the analysis that you can power off of Aurora and Redshift and everything else and bring it to the end user in the applications they already know how to use. So it's all about embedding insights into tools. >>Embedded has been a, a real theme. Nobody wants to, it's I, I keep using the analogy of multiple tabs. Nobody wants to have to leave where they are. They want it all to come in there. Yep. Now this space is older than I think everyone at this table bis been around since 1958. Yep. How do you see Siente playing a role in the evolution there of we're in a different generation of analytics? >>Yeah, I mean, BI started, as you said, 58 with Peter Lu's paper that he wrote for IBM kind of get became popular in the late eighties and early nineties. And that was Gen one bi, that was Cognos and Business Objects and Lotus 1 23 think like green and black screen days. And the way things worked back then is if you ran a business and you wanted to get insights about that business, you went to it with a big check in your hand and said, Hey, can I have a report? And they'd come back and here's a report. And it wasn't quite right. You'd go back and cycle, cycle, cycle and eventually you'd get something. And it wasn't great. It wasn't all that accurate, but it's what we had. And then that whole thing changed in about two, 2004 when self-service BI became a thing. And the whole idea was instead of going to it with a big check in your hand, how about you make your own charts? >>And that was totally transformative. Everybody started doing this and it was great. And it was all built on semantic modeling and having very fast databases and data warehouses. Here's the problem, the tools to get to those insights needed to serve both business users like you and me and also power users who could do a lot more complex analysis and transformation. And as the tools got more complicated, the barrier to entry for everyday users got higher and higher and higher to the point where now you look, look at Gartner and Forester and IDC this year. They're all reporting in the same statistic. Between 10 and 20% of knowledge workers have learned business intelligence and everybody else is just waiting in line for a data analyst or a BI analyst to get a report for them. And that's why the focus on embedded is suddenly showing up so strong because little startups have been putting analytics into their products. People are seeing, oh my, this doesn't have to be hard. It can be easy, it can be intuitive, it can be native. Well why don't I have that for my whole business? So suddenly there's a lot of focus on how do we embed analytics seamlessly? How do we embed the investments people make in machine learning in data science? How do we bring those back to the users who can actually operationalize that? Yeah. And that's what Tysons does. Yeah. >>Yeah. It's interesting. Savannah, you know, data processing used to be what the IT department used to be called back in the day data processing. Now data processing is what everyone wants to do. There's a ton of data we got, we saw the keynote this morning at Adam Lesky. There was almost a standing of vision, big applause for his announcement around ML powered forecasting with Quick Site Cube. My point is people want automation. They want to have this embedded semantic layer in where they are not having all the process of ETL or all the muck that goes on with aligning the data. All this like a lot of stuff that goes on. How do you make it easier? >>Well, to be honest, I, I would argue that they don't want that. I think they, they think they want that, cuz that feels easier. But what users actually want is they want the insight, right? When they are about to make a decision. If you have a, you have an ML powered forecast, Andy Sense has had that built in for years, now you have an ML powered forecast. You don't need it two weeks before or a week after in a report somewhere. You need it when you're about to decide do I hire more salespeople or do I put a hundred grand into a marketing program? It's putting that insight at the point of decision that's important. And you don't wanna be waiting to dig through a lot of infrastructure to find it. You just want it when you need it. What's >>The alternative from a time standpoint? So real time insight, which is what you're saying. Yep. What's the alternative? If they don't have that, what's >>The alternative? Is what we are currently seeing in the market. You hire a bunch of BI analysts and data analysts to do the work for you and you hire enough that your business users can ask questions and get answers in a timely fashion. And by the way, if you're paying attention, there's not enough data analysts in the whole world to do that. Good luck. I am >>Time to get it. I really empathize with when I, I used to work for a 3D printing startup and I can, I have just, I mean, I would call it PTSD flashbacks of standing behind our BI guy with my list of queries and things that I wanted to learn more about our e-commerce platform in our, in our marketplace and community. And it would take weeks and I mean this was only in 2012. We're not talking 1958 here. We're talking, we're talking, well, a decade in, in startup years is, is a hundred years in the rest of the world life. But I think it's really interesting. So talk to us a little bit about infused and composable analytics. Sure. And how does this relate to embedded? Yeah. >>So embedded analytics for a long time was I want to take a dashboard I built in a BI environment. I wanna lift it and shift it into some other application so it's close to the user and that is the right direction to go. But going back to that statistic about how, hey, 10 to 20% of users know how to do something with that dashboard. Well how do you reach the rest of users? Yeah. When you think about breaking that up and making it more personalized so that instead of getting a dashboard embedded in a tool, you get individual insights, you get data visualizations, you get controls, maybe it's not even actually a visualization at all. Maybe it's just a query result that influences the ordering of a list. So like if you're a csm, you have a list of accounts in your book of business, you wanna rank those by who's priorities the most likely to churn. >>Yeah. You get that. How do you get that most likely to churn? You get it from your BI system. So how, but then the question is, how do I insert that back into the application that CSM is using? So that's what we talk about when we talk about Infusion. And SI started the infusion term about two years ago and now it's being used everywhere. We see it in marketing from Click and Tableau and from Looker just recently did a whole launch on infusion. The idea is you break this up into very small digestible pieces. You put those pieces into user experiences where they're relevant and when you need them. And to do that, you need a set of APIs, SDKs, to program it. But you also need a lot of very solid building blocks so that you're not building this from scratch, you're, you're assembling it from big pieces. >>And so what we do aty sense is we've got machine learning built in. We have an LQ built in. We have a whole bunch of AI powered features, including a knowledge graph that helps users find what else they need to know. And we, we provide those to our customers as building blocks so that they can put those into their own products, make them look and feel native and get that experience. In fact, one of the things that was most interesting this last couple of couple of quarters is that we built a technology demo. We integrated SI sensee with Office 365 with Google apps for business with Slack and MS teams. We literally just threw an Nlq box into Excel and now users can go in and say, Hey, which of my sales people in the northwest region are on track to meet their quota? And they just get the table back in Excel. They can build charts of it and PowerPoint. And then when they go to their q do their QBR next week or week after that, they just hit refresh to get live data. It makes it so much more digestible. And that's the whole point of infusion. It's bigger than just, yeah. The iframe based embedding or the JavaScript embedding we used to talk about four or five years >>Ago. APIs are very key. You brought that up. That's gonna be more of the integration piece. How does embedable and composable work as more people start getting on board? It's kind of like a Yeah. A flywheel. Yes. What, how do you guys see that progression? Cause everyone's copying you. We see that, but this is a, this means it's standard. People want this. Yeah. What's next? What's the, what's that next flywheel benefit that you guys coming out with >>Composability, fundamentally, if you read the Gartner analysis, right, they, when they talk about composable, they're talking about building pre-built analytics pieces in different business units for, for different purposes. And being able to plug those together. Think of like containers and services that can, that can talk to each other. You have a composition platform that can pull it into a presentation layer. Well, the presentation layer is where I focus. And so the, so for us, composable means I'm gonna have formulas and queries and widgets and charts and everything else that my, that my end users are gonna wanna say almost minority report style. If I'm not dating myself with that, I can put this card here, I can put that chart here. I can set these filters here and I get my own personalized view. But based on all the investments my organization's made in data and governance and quality so that all that infrastructure is supporting me without me worrying much about it. >>Well that's productivity on the user side. Talk about the software angle development. Yeah. Is your low code, no code? Is there coding involved? APIs are certainly the connective tissue. What's the impact to Yeah, the >>Developer. Oh. So if you were working on a traditional legacy BI platform, it's virtually impossible because this is an architectural thing that you have to be able to do. Every single tool that can make a chart has an API to embed that chart somewhere. But that's not the point. You need the life cycle automation to create models, to modify models, to create new dashboards and charts and queries on the fly. And be able to manage the whole life cycle of that. So that in your composable application, when you say, well I want chart and I want it to go here and I want it to do this and I want it to be filtered this way you can interact with the underlying platform. And most importantly, when you want to use big pieces like, Hey, I wanna forecast revenue for the next six months. You don't want it popping down into Python and writing that yourself. >>You wanna be able to say, okay, here's my forecasting algorithm. Here are the inputs, here's the dimensions, and then go and just put it somewhere for me. And so that's what you get withy sense. And there aren't any other analytics platforms that were built to do that. We were built that way because of our architecture. We're an API first product. But more importantly, most of the legacy BI tools are legacy. They're coming from that desktop single user, self-service, BI environment. And it's a small use case for them to go embedding. And so composable is kind of out of reach without a complete rebuild. Right? But with SI senses, because our bread and butter has always been embedding, it's all architected to be API first. It's integrated for software developers with gi, but it also has all those low code and no code capabilities for business users to do the minority report style thing. And it's assemble endless components into a workable digital workspace application. >>Talk about the strategy with aws. You're here at the ecosystem, you're in the ecosystem, you're leading product and they have a strategy. We know their strategy, they have some stuff, but then the ecosystem goes faster and ends up making a better product in most of the cases. If you compare, I know they'll take me to school on that, but I, that's pretty much what we report on. Mongo's doing a great job. They have databases. So you kind of see this balance. How are you guys playing in the ecosystem? What's the, what's the feedback? What's it like? What's going on? >>AWS is actually really our best partner. And the reason why is because AWS has been clear for many, many years. They build componentry, they build services, they build infrastructure, they build Redshift, they build all these different things, but they need, they need vendors to pull it all together into something usable. And fundamentally, that's what Cient does. I mean, we didn't invent sequel, right? We didn't invent jackal or dle. These are not, these are underlying analytics technologies, but we're taking the bricks out of the briefcase. We're assembling it into something that users can actually deploy for their use cases. And so for us, AWS is perfect because they focus on the hard bits. The the underlying technologies we assemble those make them usable for customers. And we get the distribution. And of course AWS loves that. Cause it drives more compute and it drives more, more consumption. >>How much do they pay you to say that >>Keynote, >>That was a wonderful pitch. That's >>Absolutely, we always say, hey, they got a lot of, they got a lot of great goodness in the cloud, but they're not always the best at the solutions and that they're trying to bring out, and you guys are making these solutions for customers. Yeah. That resonates with what they got with Amazon. For >>Example, we, last year we did a, a technology demo with Comprehend where we put comprehend inside of a semantic model and we would compile it and then send it back to Redshift. And it takes comprehend, which is a very cool service, but you kind of gotta be a coder to use it. >>I've been hear a lot of hype about the semantic layer. What is, what is going on with that >>Semantec layer is what connects the actual data, the tables in your database with how they're connected and what they mean so that a user like you or me who's saying I wanna bar chart with revenue over time can just work with revenue and time. And the semantic layer translates between what we did and what the database knows >>About. So it speaks English and then they converts it to data language. It's >>Exactly >>Right. >>Yeah. It's facilitating the exchange of information. And, and I love this. So I like that you actually talked about it in the beginning, the knowledge map and helping people figure out what they might not know. Yeah. I, I am not a bi analyst by trade and I, I don't always know what's possible to know. Yeah. And I think it's really great that you're doing that education piece. I'm sure, especially working with AWS companies, depending on their scale, that's gotta be a big part of it. How much is the community play a role in your product development? >>It's huge because I'll tell you, one of the challenges in embedding is someone who sees an amazing experience in outreach or in seismic. And to say, I want that. And I want it to be exactly the way my product is built, but I don't wanna learn a lot. And so you, what you want do is you want to have a community of people who have already built things who can help lead the way. And our community, we launched a new version of the SES community in early 2022 and we've seen a 450% growth in the c in that community. And we've gone from an average of one response, >>450%. I just wanna put a little exclamation point on that. Yeah, yeah. That's awesome. We, >>We've tripled our organic activity. So now if you post this Tysons community, it used to be, you'd get one response maybe from us, maybe from from a customer. Now it's up to three. And it's continuing to trend up. So we're, it's >>Amazing how much people are willing to help each other. If you just get in the platform, >>Do it. It's great. I mean, business is so >>Competitive. I think it's time for the, it's time. I think it's time. Instagram challenge. The reels on John. So we have a new thing. We're gonna run by you. Okay. We just call it the bumper sticker for reinvent. Instead of calling it the Instagram reels. If we're gonna do an Instagram reel for 30 seconds, what would be your take on what's going on this year at Reinvent? What you guys are doing? What's the most important story that you would share with folks on Instagram? >>You know, I think it's really what, what's been interesting to me is the, the story with Redshift composable, sorry. No, composable, Redshift Serverless. Yeah. One of the things I've been >>Seeing, we know you're thinking about composable a lot. Yes. Right? It's, it's just, it's in there, it's in your mouth. Yeah. >>So the fact that Redshift Serverless is now kind becoming the defacto standard, it changes something for, for my customers. Cuz one of the challenges with Redshift that I've seen in, in production is if as people use it more, you gotta get more boxes. You have to manage that. The fact that serverless is now available, it's, it's the default means it now people are just seeing Redshift as a very fast, very responsive repository. And that plays right into the story I'm telling cuz I'm telling them it's not that hard to put some analysis on top of things. So for me it's, it's a, maybe it's a narrow Instagram reel, but it's an >>Important one. Yeah. And that makes it better for you because you get to embed that. Yeah. And you get access to better data. Faster data. Yeah. Higher quality, relevant, updated. >>Yep. Awesome. As it goes into that 80% of knowledge workers, they have a consumer great expectation of experience. They're expecting that five ms response time. They're not waiting 2, 3, 4, 5, 10 seconds. They're not trained on theola expectations. And so it's, it matters a lot. >>Final question for you. Five years out from now, if things progress the way they're going with more innovation around data, this front end being very usable, semantic layer kicks in, you got the Lambda and you got serverless kind of coming in, helping out along the way. What's the experience gonna look like for a user? What's it in your mind's eye? What's that user look like? What's their experience? >>I, I think it shifts almost every role in a business towards being a quantitative one. Talking about, Hey, this is what I saw. This is my hypothesis and this is what came out of it. So here's what we should do next. I, I'm really excited to see that sort of scientific method move into more functions in the business. Cuz for decades it's been the domain of a few people like me doing strategy, but now I'm seeing it in CSMs, in support people and sales engineers and line engineers. That's gonna be a big shift. Awesome. >>Thank >>You Scott. Thank you so much. This has been a fantastic session. We wish you the best at si sense. John, always pleasure to share the, the stage with you. Thank you to everybody who's attuning in, tell us your thoughts. We're always eager to hear what, what features have got you most excited. And as you know, we will be live here from Las Vegas at reinvent from the show floor 10 to six all week except for Friday. We'll give you Friday off with John Furrier. My name's Savannah Peterson. We're the cube, the the, the leader in high tech coverage.
SUMMARY :
We are live from the show floor here in Las Vegas, Nevada. Big discussion of data in the keynote bulk of the time was We all want the How's the show for you going so far? the excitement and the activity around how we can do so much more with data, I think you have the coolest last name of anyone we've had on the show so far, queries and the analysis that you can power off of Aurora and Redshift and everything else and How do you see Siente playing a role in the evolution there of we're in a different generation And the way things worked back then is if you ran a business and you wanted to get insights about that business, the tools to get to those insights needed to serve both business users like you and me the muck that goes on with aligning the data. And you don't wanna be waiting to dig through a lot of infrastructure to find it. What's the alternative? and data analysts to do the work for you and you hire enough that your business users can ask questions And how does this relate to embedded? Maybe it's just a query result that influences the ordering of a list. And SI started the infusion term And that's the whole point of infusion. That's gonna be more of the integration piece. And being able to plug those together. What's the impact to Yeah, the And most importantly, when you want to use big pieces like, Hey, I wanna forecast revenue for And so that's what you get withy sense. How are you guys playing in the ecosystem? And the reason why is because AWS has been clear for That was a wonderful pitch. the solutions and that they're trying to bring out, and you guys are making these solutions for customers. which is a very cool service, but you kind of gotta be a coder to use it. I've been hear a lot of hype about the semantic layer. And the semantic layer translates between It's So I like that you actually talked about it in And I want it to be exactly the way my product is built, but I don't wanna I just wanna put a little exclamation point on that. And it's continuing to trend up. If you just get in the platform, I mean, business is so What's the most important story that you would share with One of the things I've been Seeing, we know you're thinking about composable a lot. right into the story I'm telling cuz I'm telling them it's not that hard to put some analysis on top And you get access to better data. And so it's, it matters a lot. What's the experience gonna look like for a user? see that sort of scientific method move into more functions in the business. And as you know, we will be live here from Las Vegas at reinvent from the show floor
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Scott | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
2012 | DATE | 0.99+ |
Peter Lu | PERSON | 0.99+ |
Friday | DATE | 0.99+ |
80% | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
John | PERSON | 0.99+ |
450% | QUANTITY | 0.99+ |
Excel | TITLE | 0.99+ |
10 | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Office 365 | TITLE | 0.99+ |
IDC | ORGANIZATION | 0.99+ |
1958 | DATE | 0.99+ |
PowerPoint | TITLE | 0.99+ |
20% | QUANTITY | 0.99+ |
Forester | ORGANIZATION | 0.99+ |
Python | TITLE | 0.99+ |
Verner Vos | PERSON | 0.99+ |
early 2022 | DATE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
10 seconds | QUANTITY | 0.99+ |
five ms | QUANTITY | 0.99+ |
Las Vegas, Nevada | LOCATION | 0.99+ |
this year | DATE | 0.99+ |
first product | QUANTITY | 0.99+ |
aws | ORGANIZATION | 0.98+ |
one response | QUANTITY | 0.98+ |
late eighties | DATE | 0.98+ |
Five years | QUANTITY | 0.98+ |
2 | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
Savannah | PERSON | 0.98+ |
Scott Castle | PERSON | 0.98+ |
one | QUANTITY | 0.98+ |
Sisense | PERSON | 0.97+ |
5 | QUANTITY | 0.97+ |
English | OTHER | 0.96+ |
Click and Tableau | ORGANIZATION | 0.96+ |
Andy Sense | PERSON | 0.96+ |
Looker | ORGANIZATION | 0.96+ |
two weeks | DATE | 0.96+ |
next week | DATE | 0.96+ |
early nineties | DATE | 0.95+ |
ORGANIZATION | 0.95+ | |
serverless | TITLE | 0.94+ |
AWS Reinvent | ORGANIZATION | 0.94+ |
Mongo | ORGANIZATION | 0.93+ |
single | QUANTITY | 0.93+ |
Aurora | TITLE | 0.92+ |
Lotus 1 23 | TITLE | 0.92+ |
One | QUANTITY | 0.92+ |
JavaScript | TITLE | 0.92+ |
SES | ORGANIZATION | 0.92+ |
next six months | DATE | 0.91+ |
MS | ORGANIZATION | 0.91+ |
five years | QUANTITY | 0.89+ |
six | QUANTITY | 0.89+ |
a week | DATE | 0.89+ |
Soy Sense | TITLE | 0.89+ |
hundred grand | QUANTITY | 0.88+ |
Redshift | TITLE | 0.88+ |
Adam Lesky | PERSON | 0.88+ |
Day two keynotes | QUANTITY | 0.87+ |
floor 10 | QUANTITY | 0.86+ |
two thousands | QUANTITY | 0.85+ |
Redshift Serverless | TITLE | 0.85+ |
both business | QUANTITY | 0.84+ |
3 | QUANTITY | 0.84+ |
Dr. Matt Wood, AWS | AWS Summit SF 2022
(gentle melody) >> Welcome back to theCUBE's live coverage of AWS Summit in San Francisco, California. Events are back. AWS Summit in New York City this summer, theCUBE will be there as well. Check us out there. I'm glad to have events back. It's great to have of everyone here. I'm John Furrier, host of theCUBE. Dr. Matt Wood is with me, CUBE alumni, now VP of Business Analytics Division of AWS. Matt, great to see you. >> Thank you, John. It's great to be here. I appreciate it. >> I always call you Dr. Matt Wood because Andy Jackson always says, "Dr. Matt, we would introduce you on the arena." (Matt laughs) >> Matt: The one and only. >> The one and only, Dr. Matt Wood. >> In joke, I love it. (laughs) >> Andy style. (Matt laughs) I think you had walk up music too. >> Yes, we all have our own personalized walk up music. >> So talk about your new role, not a new role, but you're running the analytics business for AWS. What does that consist of right now? >> Sure. So I work. I've got what I consider to be one of the best jobs in the world. I get to work with our customers and the teams at AWS to build the analytics services that millions of our customers use to slice dice, pivot, better understand their data, look at how they can use that data for reporting, looking backwards. And also look at how they can use that data looking forward, so predictive analytics and machine learning. So whether it is slicing and dicing in the lower level of Hadoop and the big data engines, or whether you're doing ETL with Glue, or whether you're visualizing the data in QuickSight or building your models in SageMaker. I got my fingers in a lot of pies. >> One of the benefits of having CUBE coverage with AWS since 2013 is watching the progression. You were on theCUBE that first year we were at Reinvent in 2013, and look at how machine learning just exploded onto the scene. You were involved in that from day one. It's still day one, as you guys say. What's the big thing now? Look at just what happened. Machine learning comes in and then a slew of services come in. You've got SageMaker, became a hot seller right out of the gate. The database stuff was kicking butt. So all this is now booming. That was a real generational change over for database. What's the perspective? What's your perspective on that's evolved? >> I think it's a really good point. I totally agree. I think for machine learning, there's sort of a Renaissance in machine learning and the application of machine learning. Machine learning as a technology has been around for 50 years, let's say. But to do machine learning right, you need like a lot of data. The data needs to be high quality. You need a lot of compute to be able to train those models and you have to be able to evaluate what those models mean as you apply them to real world problems. And so the cloud really removed a lot of the constraints. Finally, customers had all of the data that they needed. We gave them services to be able to label that data in a high quality way. There's all the compute you need to be able to train the models. And so where you go? And so the cloud really enabled this Renaissance with machine learning. And we're seeing honestly a similar Renaissance with data and analytics. If you look back five to ten years, analytics was something you did in batch, your data warehouse ran an analysis to do reconciliation at the end of the month, and that was it. (John laughs) And so that's when you needed it. But today, if your Redshift cluster isn't available, Uber drivers don't turn up, DoorDash deliveries don't get made. Analytics is now central to virtually every business, and it is central to virtually every business's digital transformation. And being able to take that data from a variety of sources, be able to query it with high performance, to be able to actually then start to augment that data with real information, which usually comes from technical experts and domain experts to form wisdom and information from raw data. That's kind of what most organizations are trying to do when they kind of go through this analytics journey. >> It's interesting. Dave Velanta and I always talk on theCUBE about the future. And you look back, the things we're talking about six years ago are actually happening now. And it's not hyped up statement to say digital transformation is actually happening now. And there's also times when we bang our fists on the table saying, say, "I really think this is so important." And David says, "John, you're going to die on that hill." (Matt laughs) And so I'm excited that this year, for the first time, I didn't die on that hill. I've been saying- >> Do all right. >> Data as code is the next infrastructure as code. And Dave's like, "What do you mean by that?" We're talking about how data gets... And it's happening. So we just had an event on our AWS startups.com site, a showcase for startups, and the theme was data as code. And interesting new trends emerging really clearly, the role of a data engineer, right? Like an SRE, what an SRE did for cloud, you have a new data engineering role because of the developer onboarding is massively increasing, exponentially, new developers. Data science scientists are growing, but the pipelining and managing and engineering as a system, almost like an operating system. >> Kind of as a discipline. >> So what's your reaction to that about this data engineer, data as code? Because if you have horizontally scalable data, you've got to be open, that's hard (laughs), okay? And you got to silo the data that needs to be siloed for compliance and reason. So that's a big policy around that. So what's your reaction to data's code and the data engineering phenomenon? >> It's a really good point. I think with any technology project inside of an organization, success with analytics or machine learning, it's kind of 50% technology and then 50% cultural. And you have often domain experts. Those could be physicians or drug design experts, or they could be financial experts or whoever they might be, got deep domain expertise, and then you've got technical implementation teams. And there's kind of a natural, often repulsive force. I don't mean that rudely, but they just don't talk the same language. And so the more complex a domain and the more complex the technology, the stronger their repulsive force. And it can become very difficult for domain experts to work closely with the technical experts to be able to actually get business decisions made. And so what data engineering does and data engineering is, in some cases a team, or it can be a role that you play. It's really allowing those two disciplines to speak the same language. You can think of it as plumbing, but I think of it as like a bridge. It's a bridge between the technical implementation and the domain experts, and that requires a very disparate range of skills. You've got to understand about statistics, you've got to understand about the implementation, you got to understand about the data, you got to understand about the domain. And if you can put all of that together, that data engineering discipline can be incredibly transformative for an organization because it builds the bridge between those two groups. >> I was advising some young computer science students at the sophomore, junior level just a couple of weeks ago, and I told them I would ask someone at Amazon this question. So I'll ask you, >> Matt: Okay. since you've been in the middle of it for years, they were asking me, and I was trying to mentor them on how do you become a data engineer, from a practical standpoint? Courseware, projects to work on, how to think, not just coding Python, because everyone's coding in Python, but what else can they do? So I was trying to help them. I didn't really know the answer myself. I was just trying to kind of help figure it out with them. So what is the answer, in your opinion, or the thoughts around advice to young students who want to be data engineers? Because data scientists is pretty clear on what that is. You use tools, you make visualizations, you manage data, you get answers and insights and then apply that to the business. That's an application. That's not the standing up a stack or managing the infrastructure. So what does that coding look like? What would your advice be to folks getting into a data engineering role? >> Yeah, I think if you believe this, what I said earlier about 50% technology, 50 % culture, the number one technology to learn as a data engineer is the tools in the cloud which allow you to aggregate data from virtually any source into something which is incrementally more valuable for the organization. That's really what data engineering is all about. It's about taking from multiple sources. Some people call them silos, but silos indicates that the storage is kind of fungible or undifferentiated. That's really not the case. Success requires you to have really purpose built, well crafted, high performance, low cost engines for all of your data. So understanding those tools and understanding how to use them, that's probably the most important technical piece. Python and programming and statistics go along with that, I think. And then the most important cultural part, I think is... It's just curiosity. You want to be able to, as a data engineer, you want to have a natural curiosity that drives you to seek the truth inside an organization, seek the truth of a particular problem, and to be able to engage because probably you're going to some choice as you go through your career about which domain you end up in. Maybe you're really passionate about healthcare, or you're really just passionate about transportation or media, whatever it might be. And you can allow that to drive a certain amount of curiosity. But within those roles, the domains are so broad you kind of got to allow your curiosity to develop and lead you to ask the right questions and engage in the right way with your teams, because you can have all the technical skills in the world. But if you're not able to help the team's truth seek through that curiosity, you simply won't be successful. >> We just had a guest, 20 year old founder, Johnny Dallas who was 16 when he worked at Amazon. Youngest engineer- >> Johnny Dallas is a great name, by the way. (both chuckle) >> It's his real name. It sounds like a football player. >> That's awesome. >> Rock star. Johnny CUBE, it's me. But he's young and he was saying... His advice was just do projects. >> Matt: And get hands on. Yeah. >> And I was saying, hey, I came from the old days where you get to stand stuff up and you hugged on for the assets because you didn't want to kill the project because you spent all this money. And he's like, yeah, with cloud you can shut it down. If you do a project that's not working and you get bad data no one's adopting it or you don't like it anymore, you shut it down, just something else. >> Yeah, totally. >> Instantly abandon it and move on to something new. That's a progression. >> Totally! The blast radius of decisions is just way reduced. We talk a lot about in the old world, trying to find the resources and get the funding is like, all right, I want to try out this kind of random idea that could be a big deal for the organization. I need $50 million and a new data center. You're not going to get anywhere. >> And you do a proposal, working backwards, documents all kinds of stuff. >> All that sort of stuff. >> Jump your hoops. >> So all of that is gone. But we sometimes forget that a big part of that is just the prototyping and the experimentation and the limited blast radius in terms of cost, and honestly, the most important thing is time, just being able to jump in there, fingers on keyboards, just try this stuff out. And that's why at AWS, we have... Part of the reason we have so many services, because we want, when you get into AWS, we want the whole toolbox to be available to every developer. And so as your ideas develop, you may want to jump from data that you have that's already in a database to doing realtime data. And then you have the tools there. And when you want to get into real time data, you don't just have kinesis, you have real time analytics, and you can run SQL against that data. The capabilities and the breadth really matter when it comes to prototyping. >> That's the culture piece, because what was once a dysfunctional behavior. I'm going to go off the reservation and try something behind my boss' back, now is a side hustle or fun project. So for fun, you can just code something. >> Yeah, totally. I remember my first Hadoop projects. I found almost literally a decommissioned set of servers in the data center that no one was using. They were super old. They're about to be literally turned off. And I managed to convince the team to leave them on for me for another month. And I installed Hadoop on them and got them going. That just seems crazy to me now that I had to go and convince anybody not to turn these servers off. But what it was like when you- >> That's when you came up with Elastic MapReduce because you said this is too hard, we got to make it easier. >> Basically yes. (John laughs) I was installing Hadoop version Beta 9.9 or whatever. It was like, this is really hard. >> We got to make it simpler. All right, good stuff. I love the walk down memory Lane. And also your advice. Great stuff. I think culture is huge. That's why I like Adam's keynote at Reinvent, Adam Selipsky talk about Pathfinders and trailblazers, because that's a blast radius impact when you can actually have innovation organically just come from anywhere. That's totally cool. >> Matt: Totally cool. >> All right, let's get into the product. Serverless has been hot. We hear a lot of EKS is hot. Containers are booming. Kubernetes is getting adopted, still a lot of work to do there. Cloud native developers are booming. Serverless, Lambda. How does that impact the analytics piece? Can you share the hot products around how that translates? >> Absolutely, yeah. >> Aurora, SageMaker. >> Yeah, I think it's... If you look at kind of the evolution and what customers are asking for, they don't just want low cost. They don't just want this broad set of services. They don't just want those services to have deep capabilities. They want those services to have as low an operating cost over time as possible. So we kind of really got it down. We got built a lot of muscle, a lot of services about getting up and running and experimenting and prototyping and turning things off and turning them on and turning them off. And that's all great. But actually, you really only in most projects start something once and then stop something once, and maybe there's an hour in between or maybe there's a year. But the real expense in terms of time and operations and complexity is sometimes in that running cost. And so we've heard very loudly and clearly from customers that running cost is just undifferentiated to them. And they want to spend more time on their work. And in analytics, that is slicing the data, pivoting the data, combining the data, labeling the data, training their models, running inference against their models, and less time doing the operational pieces. >> Is that why the service focuses there? >> Yeah, absolutely. It dramatically reduces the skill required to run these workloads of any scale. And it dramatically reduces the undifferentiated heavy lifting because you get to focus more of the time that you would have spent on the operations on the actual work that you want to get done. And so if you look at something just like Redshift Serverless, that we launched a Reinvent, we have a lot of customers that want to run the cluster, and they want to get into the weeds where there is benefit. We have a lot of customers that say there's no benefit for me, I just want to do the analytics. So you run the operational piece, you're the experts. We run 60 million instant startups every single day. We do this a lot. >> John: Exactly. We understand the operations- >> I just want the answers. Come on. >> So just give me the answers or just give me the notebook or just give me the inference prediction. Today, for example, we announced Serverless Inference. So now once you've trained your machine learning model, just run a few lines of code or you just click a few buttons and then you got an inference endpoint that you do not have to manage. And whether you're doing one query against that end point per hour or you're doing 10 million, we'll just scale it on the back end. I know we got not a lot of time left, but I want to get your reaction on this. One of the things about the data lakes not being data swamps has been, from what I've been reporting and hearing from customers, is that they want to retrain their machine learning algorithm. They need that data, they need the real time data, and they need the time series data. Even though the time has passed, they got to store in the data lake. So now the data lake's main function is being reusing the data to actually retrain. It works properly. So a lot of post mortems turn into actually business improvements to make the machine learnings smarter, faster. Do you see that same way? Do you see it the same way? >> Yeah, I think it's really interesting >> Or is that just... >> No, I think it's totally interesting because it's convenient to kind of think of analytics as a very clear progression from point A to point B. But really, you're navigating terrain for which you do not have a map, and you need a lot of help to navigate that terrain. And so having these services in place, not having to run the operations of those services, being able to have those services be secure and well governed. And we added PII detection today. It's something you can do automatically, to be able to use any unstructured data, run queries against that unstructured data. So today we added text queries. So you can just say, well, you can scan a badge, for example, and say, well, what's the name on this badge? And you don't have to identify where it is. We'll do all of that work for you. It's more like a branch than it is just a normal A to B path, a linear path. And that includes loops backwards. And sometimes you've got to get the results and use those to make improvements further upstream. And sometimes you've got to use those... And when you're downstream, it will be like, "Ah, I remember that." And you come back and bring it all together. >> Awesome. >> So it's a wonderful world for sure. >> Dr. Matt, we're here in theCUBE. Just take the last word and give the update while you're here what's the big news happening that you're announcing here at Summit in San Francisco, California, and update on the business analytics group. >> Yeah, we did a lot of announcements in the keynote. I encourage everyone to take a look at, that this morning with Swami. One of the ones I'm most excited about is the opportunity to be able to take dashboards, visualizations. We're all used to using these things. We see them in our business intelligence tools, all over the place. However, what we've heard from customers is like, yes, I want those analytics, I want that visualization, I want it to be up to date, but I don't actually want to have to go from my tools where I'm actually doing my work to another separate tool to be able to look at that information. And so today we announced 1-click public embedding for QuickSight dashboard. So today you can literally as easily as embedding a YouTube video, you can take a dashboard that you've built inside QuickSight, cut and paste the HTML, paste it into your application and that's it. That's what you have to do. It takes seconds. >> And it gets updated in real time. >> Updated in real time. It's interactive. You can do everything that you would normally do. You can brand it, there's no power by QuickSight button or anything like that. You can change the colors, fit in perfectly with your application. So that's an incredibly powerful way of being able to take an analytics capability that today sits inside its own little fiefdom and put it just everywhere. Very transformative. >> Awesome. And the business is going well. You got the Serverless detail win for you there. Good stuff. Dr. Matt Wood, thank you for coming on theCUBE. >> Anytime. Thank you. >> Okay, this is theCUBE's coverage of AWS Summit 2022 in San Francisco, California. I'm John Furrier, host of theCUBE. Stay with us for more coverage of day two after this short break. (gentle music)
SUMMARY :
It's great to have of everyone here. I appreciate it. I always call you Dr. Matt Wood The one and only, In joke, I love it. I think you had walk up music too. Yes, we all have our own So talk about your and the big data engines, One of the benefits and you have to be able to evaluate And you look back, and the theme was data as code. And you got to silo the data And so the more complex a domain students at the sophomore, junior level I didn't really know the answer myself. the domains are so broad you kind of We just had a guest, is a great name, by the way. It's his real name. His advice was just do projects. Matt: And get hands on. and you hugged on for the assets move on to something new. and get the funding is like, And you do a proposal, And then you have the tools there. So for fun, you can just code something. And I managed to convince the team That's when you came I was installing Hadoop I love the walk down memory Lane. How does that impact the analytics piece? that is slicing the data, And so if you look at something We understand the operations- I just want the answers. that you do not have to manage. And you don't have to and give the update while you're here is the opportunity to be able that you would normally do. And the business is going well. Thank you. I'm John Furrier, host of theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Johnny Dallas | PERSON | 0.99+ |
Andy Jackson | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Dave Velanta | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Matt | PERSON | 0.99+ |
Adam Selipsky | PERSON | 0.99+ |
10 million | QUANTITY | 0.99+ |
$50 million | QUANTITY | 0.99+ |
Matt Wood | PERSON | 0.99+ |
60 million | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
50% | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Adam | PERSON | 0.99+ |
two groups | QUANTITY | 0.99+ |
San Francisco, California | LOCATION | 0.99+ |
16 | QUANTITY | 0.99+ |
2013 | DATE | 0.99+ |
Python | TITLE | 0.99+ |
1-click | QUANTITY | 0.99+ |
a year | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
Hadoop | TITLE | 0.99+ |
ten years | QUANTITY | 0.99+ |
two disciplines | QUANTITY | 0.99+ |
New York City | LOCATION | 0.99+ |
San Francisco, California | LOCATION | 0.99+ |
an hour | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
CUBE | ORGANIZATION | 0.99+ |
first time | QUANTITY | 0.98+ |
50 % | QUANTITY | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
millions | QUANTITY | 0.98+ |
AWS Summit | EVENT | 0.98+ |
YouTube | ORGANIZATION | 0.98+ |
memory Lane | LOCATION | 0.98+ |
Uber | ORGANIZATION | 0.98+ |
20 year old | QUANTITY | 0.97+ |
day two | QUANTITY | 0.97+ |
One | QUANTITY | 0.97+ |
SageMaker | TITLE | 0.97+ |
AWS Summit 2022 | EVENT | 0.97+ |
QuickSight | TITLE | 0.96+ |
both | QUANTITY | 0.96+ |
Swami | PERSON | 0.96+ |
50 years | QUANTITY | 0.96+ |
one | QUANTITY | 0.96+ |
SQL | TITLE | 0.95+ |
Elastic MapReduce | TITLE | 0.95+ |
Dr. | PERSON | 0.94+ |
Johnny CUBE | PERSON | 0.93+ |