Exascale – Why So Hard? | Exascale Day
from around the globe it's thecube with digital coverage of exascale day made possible by hewlett packard enterprise welcome everyone to the cube celebration of exascale day ben bennett is here he's an hpc strategist and evangelist at hewlett-packard enterprise ben welcome good to see you good to see you too son hey well let's evangelize exascale a little bit you know what's exciting you uh in regards to the coming of exoskilled computing um well there's a couple of things really uh for me historically i've worked in super computing for many years and i have seen the coming of several milestones from you know actually i'm old enough to remember gigaflops uh coming through and teraflops and petaflops exascale is has been harder than many of us anticipated many years ago the sheer amount of technology that has been required to deliver machines of this performance has been has been us utterly staggering but the exascale era brings with it real solutions it gives us opportunities to do things that we've not been able to do before if you look at some of the the most powerful computers around today they've they've really helped with um the pandemic kovid but we're still you know orders of magnitude away from being able to design drugs in situ test them in memory and release them to the public you know we still have lots and lots of lab work to do and exascale machines are going to help with that we are going to be able to to do more um which ultimately will will aid humanity and they used to be called the grand challenges and i still think of them as that i still think of these challenges for scientists that exascale class machines will be able to help but also i'm a realist is that in 10 20 30 years time you know i should be able to look back at this hopefully touch wood look back at it and look at much faster machines and say do you remember the days when we thought exascale was faster yeah well you mentioned the pandemic and you know the present united states was tweeting this morning that he was upset that you know the the fda in the u.s is not allowing the the vaccine to proceed as fast as you'd like it in fact it the fda is loosening some of its uh restrictions and i wonder if you know high performance computing in part is helping with the simulations and maybe predicting because a lot of this is about probabilities um and concerns is is is that work that is going on today or are you saying that that exascale actually you know would be what we need to accelerate that what's the role of hpc that you see today in regards to sort of solving for that vaccine and any other sort of pandemic related drugs so so first a disclaimer i am not a geneticist i am not a biochemist um my son is he tries to explain it to me and it tends to go in one ear and out the other um um i just merely build the machines he uses so we're sort of even on that front um if you read if you had read the press there was a lot of people offering up systems and computational resources for scientists a lot of the work that has been done understanding the mechanisms of covid19 um have been you know uncovered by the use of very very powerful computers would exascale have helped well clearly the faster the computers the more simulations we can do i think if you look back historically no vaccine has come to fruition as fast ever under modern rules okay admittedly the first vaccine was you know edward jenner sat quietly um you know smearing a few people and hoping it worked um i think we're slightly beyond that the fda has rules and regulations for a reason and we you don't have to go back far in our history to understand the nature of uh drugs that work for 99 of the population you know and i think exascale widely available exoscale and much faster computers are going to assist with that imagine having a genetic map of very large numbers of people on the earth and being able to test your drug against that breadth of person and you know that 99 of the time it works fine under fda rules you could never sell it you could never do that but if you're confident in your testing if you can demonstrate that you can keep the one percent away for whom that drug doesn't work bingo you now have a drug for the majority of the people and so many drugs that have so many benefits are not released and drugs are expensive because they fail at the last few moments you know the more testing you can do the more testing in memory the better it's going to be for everybody uh personally are we at a point where we still need human trials yes do we still need due diligence yes um we're not there yet exascale is you know it's coming it's not there yet yeah well to your point the faster the computer the more simulations and the higher the the chance that we're actually going to going to going to get it right and maybe compress that time to market but talk about some of the problems that you're working on uh and and the challenges for you know for example with the uk government and maybe maybe others that you can you can share with us help us understand kind of what you're hoping to accomplish so um within the united kingdom there was a report published um for the um for the uk research institute i think it's the uk research institute it might be epsrc however it's the body of people responsible for funding um science and there was a case a science case done for exascale i'm not a scientist um a lot of the work that was in this documentation said that a number of things that can be done today aren't good enough that we need to look further out we need to look at machines that will do much more there's been a program funded called asimov and this is a sort of a commercial problem that the uk government is working with rolls royce and they're trying to research how you build a full engine model and by full engine model i mean one that takes into account both the flow of gases through it and how those flow of gases and temperatures change the physical dynamics of the engine and of course as you change the physical dynamics of the engine you change the flow so you need a closely coupled model as air travel becomes more and more under the microscope we need to make sure that the air travel we do is as efficient as possible and currently there aren't supercomputers that have the performance one of the things i'm going to be doing as part of this sequence of conversations is i'm going to be having an in detailed uh sorry an in-depth but it will be very detailed an in-depth conversation with professor mark parsons from the edinburgh parallel computing center he's the director there and the dean of research at edinburgh university and i'm going to be talking to him about the azimoth program and and mark's experience as the person responsible for looking at exascale within the uk to try and determine what are the sort of science problems that we can solve as we move into the exoscale era and what that means for humanity what are the benefits for humans yeah and that's what i wanted to ask you about the the rolls-royce example that you gave it wasn't i if i understood it wasn't so much safety as it was you said efficiency and so that's that's what fuel consumption um it's it's partly fuel consumption it is of course safety there is a um there is a very specific test called an extreme event or the fan blade off what happens is they build an engine and they put it in a cowling and then they run the engine at full speed and then they literally explode uh they fire off a little explosive and they fire a fan belt uh a fan blade off to make sure that it doesn't go through the cowling and the reason they do that is there has been in the past uh a uh a failure of a fan blade and it came through the cowling and came into the aircraft depressurized the aircraft i think somebody was killed as a result of that and the aircraft went down i don't think it was a total loss one death being one too many but as a result you now have to build a jet engine instrument it balance the blades put an explosive in it and then blow the fan blade off now you only really want to do that once it's like car crash testing you want to build a model of the car you want to demonstrate with the dummy that it is safe you don't want to have to build lots of cars and keep going back to the drawing board so you do it in computers memory right we're okay with cars we have computational power to resolve to the level to determine whether or not the accident would hurt a human being still a long way to go to make them more efficient uh new materials how you can get away with lighter structures but we haven't got there with aircraft yet i mean we can build a simulation and we can do that and we can be pretty sure we're right um we still need to build an engine which costs in excess of 10 million dollars and blow the fan blade off it so okay so you're talking about some pretty complex simulations obviously what are some of the the barriers and and the breakthroughs that are kind of required you know to to do some of these things that you're talking about that exascale is going to enable i mean presumably there are obviously technical barriers but maybe you can shed some light on that well some of them are very prosaic so for example power exoscale machines consume a lot of power um so you have to be able to design systems that consume less power and that goes into making sure they're cooled efficiently if you use water can you reuse the water i mean the if you take a laptop and sit it on your lap and you type away for four hours you'll notice it gets quite warm um an exascale computer is going to generate a lot more heat several megawatts actually um and it sounds prosaic but it's actually very important to people you've got to make sure that the systems can be cooled and that we can power them yeah so there's that another issue is the software the software models how do you take a software model and distribute the data over many tens of thousands of nodes how do you do that efficiently if you look at you know gigaflop machines they had hundreds of nodes and each node had effectively a processor a core a thread of application we're looking at many many tens of thousands of nodes cores parallel threads running how do you make that efficient so is the software ready i think the majority of people will tell you that it's the software that's the problem not the hardware of course my friends in hardware would tell you ah software is easy it's the hardware that's the problem i think for the universities and the users the challenge is going to be the software i think um it's going to have to evolve you you're just you want to look at your machine and you just want to be able to dump work onto it easily we're not there yet not by a long stretch of the imagination yeah consequently you know we one of the things that we're doing is that we have a lot of centers of excellence is we will provide well i hate say the word provide we we sell super computers and once the machine has gone in we work very closely with the establishments create centers of excellence to get the best out of the machines to improve the software um and if a machine's expensive you want to get the most out of it that you can you don't just want to run a synthetic benchmark and say look i'm the fastest supercomputer on the planet you know your users who want access to it are the people that really decide how useful it is and the work they get out of it yeah the economics is definitely a factor in fact the fastest supercomputer in the planet but you can't if you can't afford to use it what good is it uh you mentioned power uh and then the flip side of that coin is of course cooling you can reduce the power consumption but but how challenging is it to cool these systems um it's an engineering problem yeah we we have you know uh data centers in iceland where it gets um you know it doesn't get too warm we have a big air cooled data center in in the united kingdom where it never gets above 30 degrees centigrade so if you put in water at 40 degrees centigrade and it comes out at 50 degrees centigrade you can cool it by just pumping it round the air you know just putting it outside the building because the building will you know never gets above 30 so it'll easily drop it back to 40 to enable you to put it back into the machine um right other ways to do it um you know is to take the heat and use it commercially there's a there's a lovely story of they take the hot water out of the supercomputer in the nordics um and then they pump it into a brewery to keep the mash tuns warm you know that's that's the sort of engineering i can get behind yeah indeed that's a great application talk a little bit more about your conversation with professor parsons maybe we could double click into that what are some of the things that you're going to you're going to probe there what are you hoping to learn so i think some of the things that that are going to be interesting to uncover is just the breadth of science that can be uh that could take advantage of exascale you know there are there are many things going on that uh that people hear about you know we people are interested in um you know the nobel prize they might have no idea what it means but the nobel prize for physics was awarded um to do with research into black holes you know fascinating and truly insightful physics um could it benefit from exascale i have no idea uh i i really don't um you know one of the most profound pieces of knowledge in in the last few hundred years has been the theory of relativity you know an austrian patent clerk wrote e equals m c squared on the back of an envelope and and voila i i don't believe any form of exascale computing would have helped him get there any faster right that's maybe flippant but i think the point is is that there are areas in terms of weather prediction climate prediction drug discovery um material knowledge engineering uh problems that are going to be unlocked with the use of exascale class systems we are going to be able to provide more tools more insight [Music] and that's the purpose of computing you know it's not that it's not the data that that comes out and it's the insight we get from it yeah i often say data is plentiful insights are not um ben you're a bit of an industry historian so i've got to ask you you mentioned you mentioned mentioned gigaflop gigaflops before which i think goes back to the early 1970s uh but the history actually the 80s is it the 80s okay well the history of computing goes back even before that you know yes i thought i thought seymour cray was you know kind of father of super computing but perhaps you have another point of view as to the origination of high performance computing [Music] oh yes this is um this is this is one for all my colleagues globally um you know arguably he says getting ready to be attacked from all sides arguably you know um computing uh the parallel work and the research done during the war by alan turing is the father of high performance computing i think one of the problems we have is that so much of that work was classified so much of that work was kept away from commercial people that commercial computing evolved without that knowledge i uh i have done in in in a previous life i have done some work for the british science museum and i have had the great pleasure in walking through the the british science museum archives um to look at how computing has evolved from things like the the pascaline from blaise pascal you know napier's bones the babbage's machines uh to to look all the way through the analog machines you know what conrad zeus was doing on a desktop um i think i think what's important is it doesn't matter where you are is that it is the problem that drives the technology and it's having the problems that requires the you know the human race to look at solutions and be these kicks started by you know the terrible problem that the us has with its nuclear stockpile stewardship now you've invented them how do you keep them safe originally done through the ascii program that's driven a lot of computational advances ultimately it's our quest for knowledge that drives these machines and i think as long as we are interested as long as we want to find things out there will always be advances in computing to meet that need yeah and you know it was a great conversation uh you're a brilliant guest i i love this this this talk and uh and of course as the saying goes success has many fathers so there's probably a few polish mathematicians that would stake a claim in the uh the original enigma project as well i think i think they drove the algorithm i think the problem is is that the work of tommy flowers is the person who took the algorithms and the work that um that was being done and actually had to build the poor machine he's the guy that actually had to sit there and go how do i turn this into a machine that does that and and so you know people always remember touring very few people remember tommy flowers who actually had to turn the great work um into a working machine yeah super computer team sport well ben it's great to have you on thanks so much for your perspectives best of luck with your conversation with professor parsons we'll be looking forward to that and uh and thanks so much for coming on thecube a complete pleasure thank you and thank you everybody for watching this is dave vellante we're celebrating exascale day you're watching the cube [Music]
SUMMARY :
that requires the you know the human
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
mark parsons | PERSON | 0.99+ |
ben bennett | PERSON | 0.99+ |
today | DATE | 0.99+ |
hundreds of nodes | QUANTITY | 0.99+ |
dave vellante | PERSON | 0.98+ |
pandemic | EVENT | 0.98+ |
united kingdom | LOCATION | 0.98+ |
seymour cray | PERSON | 0.98+ |
one ear | QUANTITY | 0.98+ |
first vaccine | QUANTITY | 0.98+ |
mark | PERSON | 0.98+ |
four hours | QUANTITY | 0.97+ |
tens of thousands of nodes | QUANTITY | 0.97+ |
blaise pascal | PERSON | 0.97+ |
one percent | QUANTITY | 0.97+ |
50 degrees centigrade | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
40 | QUANTITY | 0.97+ |
nobel prize | TITLE | 0.97+ |
rolls royce | ORGANIZATION | 0.96+ |
each node | QUANTITY | 0.96+ |
early 1970s | DATE | 0.96+ |
hpc | ORGANIZATION | 0.96+ |
10 million dollars | QUANTITY | 0.95+ |
uk government | ORGANIZATION | 0.95+ |
fda | ORGANIZATION | 0.95+ |
united states | ORGANIZATION | 0.94+ |
both | QUANTITY | 0.94+ |
this morning | DATE | 0.94+ |
40 degrees centigrade | QUANTITY | 0.94+ |
one death | QUANTITY | 0.93+ |
hewlett packard | ORGANIZATION | 0.93+ |
earth | LOCATION | 0.93+ |
exascale | TITLE | 0.93+ |
above 30 | QUANTITY | 0.93+ |
99 of the population | QUANTITY | 0.92+ |
Why So Hard? | TITLE | 0.92+ |
uk research institute | ORGANIZATION | 0.92+ |
lots of cars | QUANTITY | 0.92+ |
exascale day | EVENT | 0.9+ |
conrad zeus | PERSON | 0.9+ |
first | QUANTITY | 0.9+ |
edinburgh university | ORGANIZATION | 0.89+ |
many years ago | DATE | 0.89+ |
asimov | TITLE | 0.88+ |
Exascale Day | EVENT | 0.88+ |
uk | LOCATION | 0.87+ |
professor | PERSON | 0.87+ |
parsons | PERSON | 0.86+ |
99 of | QUANTITY | 0.86+ |
above 30 degrees centigrade | QUANTITY | 0.85+ |
edward jenner | PERSON | 0.85+ |
alan turing | PERSON | 0.83+ |
things | QUANTITY | 0.83+ |
80s | DATE | 0.82+ |
epsrc | ORGANIZATION | 0.82+ |
last few hundred years | DATE | 0.82+ |
Exascale | TITLE | 0.8+ |
a lot of people | QUANTITY | 0.79+ |
covid19 | OTHER | 0.78+ |
hewlett-packard | ORGANIZATION | 0.77+ |
british | OTHER | 0.76+ |
tommy | PERSON | 0.75+ |
edinburgh parallel computing center | ORGANIZATION | 0.74+ |
one of | QUANTITY | 0.73+ |
nordics | LOCATION | 0.71+ |
so many drugs | QUANTITY | 0.7+ |
many | QUANTITY | 0.69+ |
many years | QUANTITY | 0.68+ |
lots and lots of lab work | QUANTITY | 0.68+ |
large numbers of people | QUANTITY | 0.68+ |
hpc | EVENT | 0.68+ |
people | QUANTITY | 0.68+ |
Intro | Exascale Day
>> Hi everyone, this is Dave Vellante and I want to welcome you to our celebration of Exascale Day. A community event with support from Hewlett Packard Enterprise. Now, Exascale Day is October 18th, that's 10, 18 as in 10 to the power of 18. And on that day we celebrate the scientists, and researchers, who make breakthrough discoveries, with the assistance, of some of the most sophisticated supercomputers in the world. Ones that can run and Exascale. Now in this program, we're going to kick off the weekend and discuss the significance of Exascale computing, how we got here, why it's so challenging to get to the point where we're at now where we can perform almost, 10 to the 18th floating point operations per second. Or an exaFLOP. We should be there by 2021. And importantly, what innovations and possibilities Exascale computing will unlock. So today, we got a great program for you. We're not only going to dig into a bit of the history of supercomputing, we're going to talk with experts, folks like Dr. Ben Bennett, who's doing and some work with the UK government. And he's going to talk about some of the breakthroughs that we can expect with Exascale. You'll also hear from experts like, Professor Mark Parsons of the University of Edinburgh, who cut his teeth at CERN, in Geneva. And Dr. Brian Pigeon Nuskey of Purdue University, who's studying buyer diversity. We're going to also hear about supercomputers in space as we get as a great action going on with supercomputers up at the International Space Station. Let me think about that, powerful high performance water-cooled supercomputers, running on solar, and mounted overhead, that's right. Even though at the altitude at the International Space Station, there's 90% of the Earth's gravity. Objects, including humans they're essentially in a state of free fall. At 400 kilometers above earth, there no air. You're in a vacuum. Like have you ever been on the Tower of Terror at Disney? In that free fall ride, or a nosedive in an airplane, I have. And if you have binoculars around your neck, they would float. So the supercomputers can actually go into the ceiling, crazy right? And that's not all. We're going to hear from experts on what the exascale era. will usher in for not only space exploration, but things like weather forecasting, life sciences, complex modeling, and all types of scientific endeavors. So stay right there for all the great content. You can use the #ExascaleDay on Twitter, and, enjoy the program. Thanks everybody for watching.
SUMMARY :
of the history of supercomputing,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Geneva | LOCATION | 0.99+ |
Ben Bennett | PERSON | 0.99+ |
2021 | DATE | 0.99+ |
90% | QUANTITY | 0.99+ |
October 18th | DATE | 0.99+ |
University of Edinburgh | ORGANIZATION | 0.99+ |
International Space Station | LOCATION | 0.99+ |
Brian Pigeon Nuskey | PERSON | 0.99+ |
Earth | LOCATION | 0.99+ |
400 kilometers | QUANTITY | 0.99+ |
Mark Parsons | PERSON | 0.99+ |
Exascale Day | EVENT | 0.99+ |
Hewlett Packard Enterprise | ORGANIZATION | 0.99+ |
earth | LOCATION | 0.99+ |
Exascale | TITLE | 0.98+ |
CERN | ORGANIZATION | 0.98+ |
18 | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
Purdue University | ORGANIZATION | 0.97+ |
Disney | ORGANIZATION | 0.93+ |
#ExascaleDay | EVENT | 0.93+ |
UK government | ORGANIZATION | 0.92+ |
18th | QUANTITY | 0.92+ |
10 | DATE | 0.89+ |
Professor | PERSON | 0.87+ |
Exascale | EVENT | 0.82+ |
ORGANIZATION | 0.79+ | |
10 | QUANTITY | 0.72+ |
Tower of Terror | TITLE | 0.66+ |
second | QUANTITY | 0.61+ |
Day | TITLE | 0.59+ |
Armstrong and Guhamad and Jacques V2
>>from around the globe. It's the Cube covering >>space and cybersecurity. Symposium 2020 hosted by Cal Poly >>Over On Welcome to this Special virtual conference. The Space and Cybersecurity Symposium 2020 put on by Cal Poly with support from the Cube. I'm John for your host and master of ceremonies. Got a great topic today in this session. Really? The intersection of space and cybersecurity. This topic and this conversation is the cybersecurity workforce development through public and private partnerships. And we've got a great lineup. We have Jeff Armstrong's the president of California Polytechnic State University, also known as Cal Poly Jeffrey. Thanks for jumping on and Bang. Go ahead. The second director of C four s R Division. And he's joining us from the office of the Under Secretary of Defense for the acquisition Sustainment Department of Defense, D O D. And, of course, Steve Jake's executive director, founder, National Security Space Association and managing partner at Bello's. Gentlemen, thank you for joining me for this session. We got an hour conversation. Thanks for coming on. >>Thank you. >>So we got a virtual event here. We've got an hour, have a great conversation and love for you guys do? In opening statement on how you see the development through public and private partnerships around cybersecurity in space, Jeff will start with you. >>Well, thanks very much, John. It's great to be on with all of you. Uh, on behalf Cal Poly Welcome, everyone. Educating the workforce of tomorrow is our mission to Cal Poly. Whether that means traditional undergraduates, master students are increasingly mid career professionals looking toe up, skill or re skill. Our signature pedagogy is learn by doing, which means that our graduates arrive at employers ready Day one with practical skills and experience. We have long thought of ourselves is lucky to be on California's beautiful central Coast. But in recent years, as we have developed closer relationships with Vandenberg Air Force Base, hopefully the future permanent headquarters of the United States Space Command with Vandenberg and other regional partners, we have discovered that our location is even more advantages than we thought. We're just 50 miles away from Vandenberg, a little closer than u C. Santa Barbara, and the base represents the southern border of what we have come to think of as the central coast region. Cal Poly and Vandenberg Air force base have partner to support regional economic development to encourage the development of a commercial spaceport toe advocate for the space Command headquarters coming to Vandenberg and other ventures. These partnerships have been possible because because both parties stand to benefit Vandenberg by securing new streams of revenue, workforce and local supply chain and Cal Poly by helping to grow local jobs for graduates, internship opportunities for students, and research and entrepreneurship opportunities for faculty and staff. Crucially, what's good for Vandenberg Air Force Base and for Cal Poly is also good for the Central Coast and the US, creating new head of household jobs, infrastructure and opportunity. Our goal is that these new jobs bring more diversity and sustainability for the region. This regional economic development has taken on a life of its own, spawning a new nonprofit called Reach, which coordinates development efforts from Vandenberg Air Force Base in the South to camp to Camp Roberts in the North. Another factor that is facilitated our relationship with Vandenberg Air Force Base is that we have some of the same friends. For example, Northrop Grumman has has long been an important defense contractor, an important partner to Cal poly funding scholarships and facilities that have allowed us to stay current with technology in it to attract highly qualified students for whom Cal Poly's costs would otherwise be prohibitive. For almost 20 years north of grimness funded scholarships for Cal Poly students this year, their funding 64 scholarships, some directly in our College of Engineering and most through our Cal Poly Scholars program, Cal Poly Scholars, a support both incoming freshman is transfer students. These air especially important because it allows us to provide additional support and opportunities to a group of students who are mostly first generation, low income and underrepresented and who otherwise might not choose to attend Cal Poly. They also allow us to recruit from partner high schools with large populations of underrepresented minority students, including the Fortune High School in Elk Grove, which we developed a deep and lasting connection. We know that the best work is done by balanced teams that include multiple and diverse perspectives. These scholarships help us achieve that goal, and I'm sure you know Northrop Grumman was recently awarded a very large contract to modernized the U. S. I. C B M Armory with some of the work being done at Vandenberg Air Force Base, thus supporting the local economy and protecting protecting our efforts in space requires partnerships in the digital realm. How Polly is partnered with many private companies, such as AWS. Our partnerships with Amazon Web services has enabled us to train our students with next generation cloud engineering skills, in part through our jointly created digital transformation hub. Another partnership example is among Cal Poly's California Cybersecurity Institute, College of Engineering and the California National Guard. This partnership is focused on preparing a cyber ready workforce by providing faculty and students with a hands on research and learning environment, side by side with military, law enforcement professionals and cyber experts. We also have a long standing partnership with PG and E, most recently focused on workforce development and redevelopment. Many of our graduates do indeed go on to careers in aerospace and defense industry as a rough approximation. More than 4500 Cal Poly graduates list aerospace and defense as their employment sector on linked in, and it's not just our engineers and computer sciences. When I was speaking to our fellow Panelists not too long ago, >>are >>speaking to bang, we learned that Rachel sins, one of our liberal arts arts majors, is working in his office. So shout out to you, Rachel. And then finally, of course, some of our graduates sword extraordinary heights such as Commander Victor Glover, who will be heading to the International space station later this year as I close. All of which is to say that we're deeply committed the workforce, development and redevelopment that we understand the value of public private partnerships and that were eager to find new ways in which to benefit everyone from this further cooperation. So we're committed to the region, the state in the nation and our past efforts in space, cybersecurity and links to our partners at as I indicated, aerospace industry and governmental partners provides a unique position for us to move forward in the interface of space and cybersecurity. Thank you so much, John. >>President, I'm sure thank you very much for the comments and congratulations to Cal Poly for being on the forefront of innovation and really taking a unique progressive. You and wanna tip your hat to you guys over there. Thank you very much for those comments. Appreciate it. Bahng. Department of Defense. Exciting you gotta defend the nation spaces Global. Your opening statement. >>Yes, sir. Thanks, John. Appreciate that day. Thank you, everybody. I'm honored to be this panel along with President Armstrong, Cal Poly in my long longtime friend and colleague Steve Jakes of the National Security Space Association, to discuss a very important topic of cybersecurity workforce development, as President Armstrong alluded to, I'll tell you both of these organizations, Cal Poly and the N S. A have done and continue to do an exceptional job at finding talent, recruiting them in training current and future leaders and technical professionals that we vitally need for our nation's growing space programs. A swell Asare collective National security Earlier today, during Session three high, along with my colleague Chris Hansen discussed space, cyber Security and how the space domain is changing the landscape of future conflicts. I discussed the rapid emergence of commercial space with the proliferations of hundreds, if not thousands, of satellites providing a variety of services, including communications allowing for global Internet connectivity. S one example within the O. D. We continue to look at how we can leverage this opportunity. I'll tell you one of the enabling technologies eyes the use of small satellites, which are inherently cheaper and perhaps more flexible than the traditional bigger systems that we have historically used unemployed for the U. D. Certainly not lost on Me is the fact that Cal Poly Pioneer Cube SATs 2020 some years ago, and they set the standard for the use of these systems today. So they saw the valiant benefit gained way ahead of everybody else, it seems, and Cal Poly's focus on training and education is commendable. I especially impressed by the efforts of another of Steve's I colleague, current CEO Mr Bill Britain, with his high energy push to attract the next generation of innovators. Uh, earlier this year, I had planned on participating in this year's Cyber Innovation Challenge. In June works Cal Poly host California Mill and high school students and challenge them with situations to test their cyber knowledge. I tell you, I wish I had that kind of opportunity when I was a kid. Unfortunately, the pandemic change the plan. Why I truly look forward. Thio feature events such as these Thio participating. Now I want to recognize my good friend Steve Jakes, whom I've known for perhaps too long of a time here over two decades or so, who was in acknowledge space expert and personally, I truly applaud him for having the foresight of years back to form the National Security Space Association to help the entire space enterprise navigate through not only technology but Polly policy issues and challenges and paved the way for operational izing space. Space is our newest horrifying domain. That's not a secret anymore. Uh, and while it is a unique area, it shares a lot of common traits with the other domains such as land, air and sea, obviously all of strategically important to the defense of the United States. In conflict they will need to be. They will all be contested and therefore they all need to be defended. One domain alone will not win future conflicts in a joint operation. We must succeed. All to defending space is critical as critical is defending our other operational domains. Funny space is no longer the sanctuary available only to the government. Increasingly, as I discussed in the previous session, commercial space is taking the lead a lot of different areas, including R and D, A so called new space, so cyber security threat is even more demanding and even more challenging. Three US considers and federal access to and freedom to operate in space vital to advancing security, economic prosperity, prosperity and scientific knowledge of the country. That's making cyberspace an inseparable component. America's financial, social government and political life. We stood up US Space force ah, year ago or so as the newest military service is like the other services. Its mission is to organize, train and equip space forces in order to protect us and allied interest in space and to provide space capabilities to the joint force. Imagine combining that US space force with the U. S. Cyber Command to unify the direction of space and cyberspace operation strengthened U D capabilities and integrate and bolster d o d cyber experience. Now, of course, to enable all of this requires had trained and professional cadre of cyber security experts, combining a good mix of policy as well as high technical skill set much like we're seeing in stem, we need to attract more people to this growing field. Now the D. O. D. Is recognized the importance of the cybersecurity workforce, and we have implemented policies to encourage his growth Back in 2013 the deputy secretary of defense signed the D. O d cyberspace workforce strategy to create a comprehensive, well equipped cyber security team to respond to national security concerns. Now this strategy also created a program that encourages collaboration between the D. O. D and private sector employees. We call this the Cyber Information Technology Exchange program or site up. It's an exchange programs, which is very interesting, in which a private sector employees can naturally work for the D. O. D. In a cyber security position that spans across multiple mission critical areas are important to the d. O. D. A key responsibility of cybersecurity community is military leaders on the related threats and cyber security actions we need to have to defeat these threats. We talk about rapid that position, agile business processes and practices to speed up innovation. Likewise, cybersecurity must keep up with this challenge to cyber security. Needs to be right there with the challenges and changes, and this requires exceptional personnel. We need to attract talent investing the people now to grow a robust cybersecurity, workforce, streets, future. I look forward to the panel discussion, John. Thank you. >>Thank you so much bomb for those comments and you know, new challenges and new opportunities and new possibilities and free freedom Operating space. Critical. Thank you for those comments. Looking forward. Toa chatting further. Steve Jakes, executive director of N. S. S. A Europe opening statement. >>Thank you, John. And echoing bangs thanks to Cal Poly for pulling these this important event together and frankly, for allowing the National Security Space Association be a part of it. Likewise, we on behalf the association delighted and honored Thio be on this panel with President Armstrong along with my friend and colleague Bonneau Glue Mahad Something for you all to know about Bomb. He spent the 1st 20 years of his career in the Air Force doing space programs. He then went into industry for several years and then came back into government to serve. Very few people do that. So bang on behalf of the space community, we thank you for your long life long devotion to service to our nation. We really appreciate that and I also echo a bang shot out to that guy Bill Britain, who has been a long time co conspirator of ours for a long time and you're doing great work there in the cyber program at Cal Poly Bill, keep it up. But professor arms trying to keep a close eye on him. Uh, I would like to offer a little extra context to the great comments made by by President Armstrong and bahng. Uh, in our view, the timing of this conference really could not be any better. Um, we all recently reflected again on that tragic 9 11 surprise attack on our homeland. And it's an appropriate time, we think, to take pause while the percentage of you in the audience here weren't even born or babies then For the most of us, it still feels like yesterday. And moreover, a tragedy like 9 11 has taught us a lot to include to be more vigilant, always keep our collective eyes and ears open to include those quote eyes and ears from space, making sure nothing like this ever happens again. So this conference is a key aspect. Protecting our nation requires we work in a cybersecurity environment at all times. But, you know, the fascinating thing about space systems is we can't see him. No, sir, We see Space launches man there's nothing more invigorating than that. But after launch, they become invisible. So what are they really doing up there? What are they doing to enable our quality of life in the United States and in the world? Well, to illustrate, I'd like to paraphrase elements of an article in Forbes magazine by Bonds and my good friend Chuck Beans. Chuck. It's a space guy, actually had Bonds job a fuse in the Pentagon. He is now chairman and chief strategy officer at York Space Systems, and in his spare time he's chairman of the small satellites. Chuck speaks in words that everyone can understand. So I'd like to give you some of his words out of his article. Uh, they're afraid somewhat. So these are Chuck's words. Let's talk about average Joe and playing Jane. Before heading to the airport for a business trip to New York City, Joe checks the weather forecast informed by Noah's weather satellites to see what pack for the trip. He then calls an uber that space app. Everybody uses it matches riders with drivers via GPS to take into the airport, So Joe has lunch of the airport. Unbeknownst to him, his organic lunch is made with the help of precision farming made possible through optimized irrigation and fertilization, with remote spectral sensing coming from space and GPS on the plane, the pilot navigates around weather, aided by GPS and nose weather satellites. And Joe makes his meeting on time to join his New York colleagues in a video call with a key customer in Singapore made possible by telecommunication satellites. Around to his next meeting, Joe receives notice changing the location of the meeting to another to the other side of town. So he calmly tells Syria to adjust the destination, and his satellite guided Google maps redirects him to the new location. That evening, Joe watches the news broadcast via satellite. The report details a meeting among world leaders discussing the developing crisis in Syria. As it turns out, various forms of quote remotely sensed. Information collected from satellites indicate that yet another band, chemical weapon, may have been used on its own people. Before going to bed, Joe decides to call his parents and congratulate them for their wedding anniversary as they cruise across the Atlantic, made possible again by communications satellites and Joe's parents can enjoy the call without even wondering how it happened the next morning. Back home, Joe's wife, Jane, is involved in a car accident. Her vehicle skids off the road. She's knocked unconscious, but because of her satellite equipped on star system, the crash is detected immediately and first responders show up on the scene. In time, Joe receives the news books. An early trip home sends flowers to his wife as he orders another uber to the airport. Over that 24 hours, Joe and Jane used space system applications for nearly every part of their day. Imagine the consequences if at any point they were somehow denied these services, whether they be by natural causes or a foreign hostility. And each of these satellite applications used in this case were initially developed for military purposes and continue to be, but also have remarkable application on our way of life. Just many people just don't know that. So, ladies and gentlemen, now you know, thanks to chuck beans, well, the United States has a proud heritage being the world's leading space faring nation, dating back to the Eisenhower and Kennedy years. Today we have mature and robust systems operating from space, providing overhead reconnaissance to quote, wash and listen, provide missile warning, communications, positioning, navigation and timing from our GPS system. Much of what you heard in Lieutenant General J. T. Thompson earlier speech. These systems are not only integral to our national security, but also our also to our quality of life is Chuck told us. We simply no longer could live without these systems as a nation and for that matter, as a world. But over the years, adversary like adversaries like China, Russia and other countries have come to realize the value of space systems and are aggressively playing ketchup while also pursuing capabilities that will challenge our systems. As many of you know, in 2000 and seven, China demonstrated it's a set system by actually shooting down is one of its own satellites and has been aggressively developing counter space systems to disrupt hours. So in a heavily congested space environment, our systems are now being contested like never before and will continue to bay well as Bond mentioned, the United States has responded to these changing threats. In addition to adding ways to protect our system, the administration and in Congress recently created the United States Space Force and the operational you United States Space Command, the latter of which you heard President Armstrong and other Californians hope is going to be located. Vandenberg Air Force Base Combined with our intelligence community today, we have focused military and civilian leadership now in space. And that's a very, very good thing. Commence, really. On the industry side, we did create the National Security Space Association devoted solely to supporting the national security Space Enterprise. We're based here in the D C area, but we have arms and legs across the country, and we are loaded with extraordinary talent. In scores of Forman, former government executives, So S s a is joined at the hip with our government customers to serve and to support. We're busy with a multitude of activities underway ranging from a number of thought provoking policy. Papers are recurring space time Webcast supporting Congress's Space Power Caucus and other main serious efforts. Check us out at NSS. A space dot org's One of our strategic priorities in central to today's events is to actively promote and nurture the workforce development. Just like cow calling. We will work with our U. S. Government customers, industry leaders and academia to attract and recruit students to join the space world, whether in government or industry and two assistant mentoring and training as their careers. Progress on that point, we're delighted. Be delighted to be working with Cal Poly as we hopefully will undertake a new pilot program with him very soon. So students stay tuned something I can tell you Space is really cool. While our nation's satellite systems are technical and complex, our nation's government and industry work force is highly diverse, with a combination of engineers, physicists, method and mathematicians, but also with a large non technical expertise as well. Think about how government gets things thes systems designed, manufactured, launching into orbit and operating. They do this via contracts with our aerospace industry, requiring talents across the board from cost estimating cost analysis, budgeting, procurement, legal and many other support. Tasker Integral to the mission. Many thousands of people work in the space workforce tens of billions of dollars every year. This is really cool stuff, no matter what your education background, a great career to be part of. When summary as bang had mentioned Aziz, well, there is a great deal of exciting challenges ahead we will see a new renaissance in space in the years ahead, and in some cases it's already begun. Billionaires like Jeff Bezos, Elon Musk, Sir Richard Richard Branson are in the game, stimulating new ideas in business models, other private investors and start up companies. Space companies are now coming in from all angles. The exponential advancement of technology and microelectronics now allows the potential for a plethora of small SAT systems to possibly replace older satellites the size of a Greyhound bus. It's getting better by the day and central to this conference, cybersecurity is paramount to our nation's critical infrastructure in space. So once again, thanks very much, and I look forward to the further conversation. >>Steve, thank you very much. Space is cool. It's relevant. But it's important, as you pointed out, and you're awesome story about how it impacts our life every day. So I really appreciate that great story. I'm glad you took the time Thio share that you forgot the part about the drone coming over in the crime scene and, you know, mapping it out for you. But that would add that to the story later. Great stuff. My first question is let's get into the conversations because I think this is super important. President Armstrong like you to talk about some of the points that was teased out by Bang and Steve. One in particular is the comment around how military research was important in developing all these capabilities, which is impacting all of our lives. Through that story. It was the military research that has enabled a generation and generation of value for consumers. This is kind of this workforce conversation. There are opportunities now with with research and grants, and this is, ah, funding of innovation that it's highly accelerate. It's happening very quickly. Can you comment on how research and the partnerships to get that funding into the universities is critical? >>Yeah, I really appreciate that And appreciate the comments of my colleagues on it really boils down to me to partnerships, public private partnerships. You mentioned Northrop Grumman, but we have partnerships with Lockie Martin, Boeing, Raytheon Space six JPL, also member of organization called Business Higher Education Forum, which brings together university presidents and CEOs of companies. There's been focused on cybersecurity and data science, and I hope that we can spill into cybersecurity in space but those partnerships in the past have really brought a lot forward at Cal Poly Aziz mentioned we've been involved with Cube set. Uh, we've have some secure work and we want to plan to do more of that in the future. Uh, those partnerships are essential not only for getting the r and d done, but also the students, the faculty, whether masters or undergraduate, can be involved with that work. Uh, they get that real life experience, whether it's on campus or virtually now during Covic or at the location with the partner, whether it may be governmental or our industry. Uh, and then they're even better equipped, uh, to hit the ground running. And of course, we'd love to see even more of our students graduate with clearance so that they could do some of that a secure work as well. So these partnerships are absolutely critical, and it's also in the context of trying to bring the best and the brightest and all demographics of California and the US into this field, uh, to really be successful. So these partnerships are essential, and our goal is to grow them just like I know other colleagues and C. S u and the U C are planning to dio, >>you know, just as my age I've seen I grew up in the eighties, in college and during that systems generation and that the generation before me, they really kind of pioneered the space that spawned the computer revolution. I mean, you look at these key inflection points in our lives. They were really funded through these kinds of real deep research. Bond talk about that because, you know, we're living in an age of cloud. And Bezos was mentioned. Elon Musk. Sir Richard Branson. You got new ideas coming in from the outside. You have an accelerated clock now on terms of the innovation cycles, and so you got to react differently. You guys have programs to go outside >>of >>the Defense Department. How important is this? Because the workforce that air in schools and our folks re skilling are out there and you've been on both sides of the table. So share your thoughts. >>No, thanks, John. Thanks for the opportunity responded. And that's what you hit on the notes back in the eighties, R and D in space especially, was dominated by my government funding. Uh, contracts and so on. But things have changed. As Steve pointed out, A lot of these commercial entities funded by billionaires are coming out of the woodwork funding R and D. So they're taking the lead. So what we can do within the deal, the in government is truly take advantage of the work they've done on. Uh, since they're they're, you know, paving the way to new new approaches and new way of doing things. And I think we can We could certainly learn from that. And leverage off of that saves us money from an R and D standpoint while benefiting from from the product that they deliver, you know, within the O D Talking about workforce development Way have prioritized we have policies now to attract and retain talent. We need I I had the folks do some research and and looks like from a cybersecurity workforce standpoint. A recent study done, I think, last year in 2019 found that the cybersecurity workforce gap in the U. S. Is nearing half a million people, even though it is a growing industry. So the pipeline needs to be strengthened off getting people through, you know, starting young and through college, like assess a professor Armstrong indicated, because we're gonna need them to be in place. Uh, you know, in a period of about maybe a decade or so, Uh, on top of that, of course, is the continuing issue we have with the gap with with stamps students, we can't afford not to have expertise in place to support all the things we're doing within the with the not only deal with the but the commercial side as well. Thank you. >>How's the gap? Get? Get filled. I mean, this is the this is again. You got cybersecurity. I mean, with space. It's a whole another kind of surface area, if you will, in early surface area. But it is. It is an I o t. Device if you think about it. But it does have the same challenges. That's kind of current and and progressive with cybersecurity. Where's the gap Get filled, Steve Or President Armstrong? I mean, how do you solve the problem and address this gap in the workforce? What is some solutions and what approaches do we need to put in place? >>Steve, go ahead. I'll follow up. >>Okay. Thanks. I'll let you correct. May, uh, it's a really good question, and it's the way I would. The way I would approach it is to focus on it holistically and to acknowledge it up front. And it comes with our teaching, etcetera across the board and from from an industry perspective, I mean, we see it. We've gotta have secure systems with everything we do and promoting this and getting students at early ages and mentoring them and throwing internships at them. Eyes is so paramount to the whole the whole cycle, and and that's kind of and it really takes focused attention. And we continue to use the word focus from an NSS, a perspective. We know the challenges that are out there. There are such talented people in the workforce on the government side, but not nearly enough of them. And likewise on industry side. We could use Maura's well, but when you get down to it, you know we can connect dots. You know that the the aspect That's a Professor Armstrong talked about earlier toe where you continue to work partnerships as much as you possibly can. We hope to be a part of that. That network at that ecosystem the will of taking common objectives and working together to kind of make these things happen and to bring the power not just of one or two companies, but our our entire membership to help out >>President >>Trump. Yeah, I would. I would also add it again. It's back to partnerships that I talked about earlier. One of our partners is high schools and schools fortune Margaret Fortune, who worked in a couple of, uh, administrations in California across party lines and education. Their fifth graders all visit Cal Poly and visit our learned by doing lab and you, you've got to get students interested in stem at a early age. We also need the partnerships, the scholarships, the financial aid so the students can graduate with minimal to no debt to really hit the ground running. And that's exacerbated and really stress. Now, with this covert induced recession, California supports higher education at a higher rate than most states in the nation. But that is that has dropped this year or reasons. We all understand, uh, due to Kobe, and so our partnerships, our creativity on making sure that we help those that need the most help financially uh, that's really key, because the gaps air huge eyes. My colleagues indicated, you know, half of half a million jobs and you need to look at the the students that are in the pipeline. We've got to enhance that. Uh, it's the in the placement rates are amazing. Once the students get to a place like Cal Poly or some of our other amazing CSU and UC campuses, uh, placement rates are like 94%. >>Many of our >>engineers, they have jobs lined up a year before they graduate. So it's just gonna take key partnerships working together. Uh, and that continued partnership with government, local, of course, our state of CSU on partners like we have here today, both Stephen Bang So partnerships the thing >>e could add, you know, the collaboration with universities one that we, uh, put a lot of emphasis, and it may not be well known fact, but as an example of national security agencies, uh, National Centers of Academic Excellence in Cyber, the Fast works with over 270 colleges and universities across the United States to educate its 45 future cyber first responders as an example, so that Zatz vibrant and healthy and something that we ought Teoh Teik, banjo >>off. Well, I got the brain trust here on this topic. I want to get your thoughts on this one point. I'd like to define what is a public private partnership because the theme that's coming out of the symposium is the script has been flipped. It's a modern error. Things air accelerated get you got security. So you get all these things kind of happen is a modern approach and you're seeing a digital transformation play out all over the world in business. Andi in the public sector. So >>what is what >>is a modern public private partnership? What does it look like today? Because people are learning differently, Covert has pointed out, which was that we're seeing right now. How people the progressions of knowledge and learning truth. It's all changing. How do you guys view the modern version of public private partnership and some some examples and improve points? Can you can you guys share that? We'll start with the Professor Armstrong. >>Yeah. A zai indicated earlier. We've had on guy could give other examples, but Northup Grumman, uh, they helped us with cyber lab. Many years ago. That is maintained, uh, directly the software, the connection outside its its own unit so that students can learn the hack, they can learn to penetrate defenses, and I know that that has already had some considerations of space. But that's a benefit to both parties. So a good public private partnership has benefits to both entities. Uh, in the common factor for universities with a lot of these partnerships is the is the talent, the talent that is, that is needed, what we've been working on for years of the, you know, that undergraduate or master's or PhD programs. But now it's also spilling into Skilling and re Skilling. As you know, Jobs. Uh, you know, folks were in jobs today that didn't exist two years, three years, five years ago. But it also spills into other aspects that can expand even mawr. We're very fortunate. We have land, there's opportunities. We have one tech part project. We're expanding our tech park. I think we'll see opportunities for that, and it'll it'll be adjusted thio, due to the virtual world that we're all learning more and more about it, which we were in before Cove it. But I also think that that person to person is going to be important. Um, I wanna make sure that I'm driving across the bridge. Or or that that satellites being launched by the engineer that's had at least some in person training, uh, to do that and that experience, especially as a first time freshman coming on a campus, getting that experience expanding and as adult. And we're gonna need those public private partnerships in order to continue to fund those at a level that is at the excellence we need for these stem and engineering fields. >>It's interesting People in technology can work together in these partnerships in a new way. Bank Steve Reaction Thio the modern version of what a public, successful private partnership looks like. >>If I could jump in John, I think, you know, historically, Dodi's has have had, ah, high bar thio, uh, to overcome, if you will, in terms of getting rapid pulling in your company. This is the fault, if you will and not rely heavily in are the usual suspects of vendors and like and I think the deal is done a good job over the last couple of years off trying to reduce the burden on working with us. You know, the Air Force. I think they're pioneering this idea around pitch days where companies come in, do a two hour pitch and immediately notified of a wooden award without having to wait a long time. Thio get feedback on on the quality of the product and so on. So I think we're trying to do our best. Thio strengthen that partnership with companies outside the main group of people that we typically use. >>Steve, any reaction? Comment to add? >>Yeah, I would add a couple of these air. Very excellent thoughts. Uh, it zits about taking a little gamble by coming out of your comfort zone. You know, the world that Bond and Bond lives in and I used to live in in the past has been quite structured. It's really about we know what the threat is. We need to go fix it, will design it says we go make it happen, we'll fly it. Um, life is so much more complicated than that. And so it's it's really to me. I mean, you take you take an example of the pitch days of bond talks about I think I think taking a gamble by attempting to just do a lot of pilot programs, uh, work the trust factor between government folks and the industry folks in academia. Because we are all in this together in a lot of ways, for example. I mean, we just sent the paper to the White House of their requests about, you know, what would we do from a workforce development perspective? And we hope Thio embellish on this over time once the the initiative matures. But we have a piece of it, for example, is the thing we call clear for success getting back Thio Uh, President Armstrong's comments at the collegiate level. You know, high, high, high quality folks are in high demand. So why don't we put together a program they grabbed kids in their their underclass years identifies folks that are interested in doing something like this. Get them scholarships. Um, um, I have a job waiting for them that their contract ID for before they graduate, and when they graduate, they walk with S C I clearance. We believe that could be done so, and that's an example of ways in which the public private partnerships can happen to where you now have a talented kid ready to go on Day one. We think those kind of things can happen. It just gets back down to being focused on specific initiatives, give them giving them a chance and run as many pilot programs as you can like these days. >>That's a great point, E. President. >>I just want to jump in and echo both the bank and Steve's comments. But Steve, that you know your point of, you know, our graduates. We consider them ready Day one. Well, they need to be ready Day one and ready to go secure. We totally support that and and love to follow up offline with you on that. That's that's exciting, uh, and needed very much needed mawr of it. Some of it's happening, but way certainly have been thinking a lot about that and making some plans, >>and that's a great example of good Segway. My next question. This kind of reimagining sees work flows, eyes kind of breaking down the old the old way and bringing in kind of a new way accelerated all kind of new things. There are creative ways to address this workforce issue, and this is the next topic. How can we employ new creative solutions? Because, let's face it, you know, it's not the days of get your engineering degree and and go interview for a job and then get slotted in and get the intern. You know the programs you get you particularly through the system. This is this is multiple disciplines. Cybersecurity points at that. You could be smart and math and have, ah, degree in anthropology and even the best cyber talents on the planet. So this is a new new world. What are some creative approaches that >>you know, we're >>in the workforce >>is quite good, John. One of the things I think that za challenge to us is you know, we got somehow we got me working for with the government, sexy, right? The part of the challenge we have is attracting the right right level of skill sets and personnel. But, you know, we're competing oftentimes with the commercial side, the gaming industry as examples of a big deal. And those are the same talents. We need to support a lot of programs we have in the U. D. So somehow we have to do a better job to Steve's point off, making the work within the U. D within the government something that they would be interested early on. So I tracked him early. I kind of talked about Cal Poly's, uh, challenge program that they were gonna have in June inviting high school kid. We're excited about the whole idea of space and cyber security, and so on those air something. So I think we have to do it. Continue to do what were the course the next several years. >>Awesome. Any other creative approaches that you guys see working or might be on idea, or just a kind of stoked the ideation out their internship. So obviously internships are known, but like there's gotta be new ways. >>I think you can take what Steve was talking about earlier getting students in high school, uh, and aligning them sometimes. Uh, that intern first internship, not just between the freshman sophomore year, but before they inter cal poly per se. And they're they're involved s So I think that's, uh, absolutely key. Getting them involved many other ways. Um, we have an example of of up Skilling a redeveloped work redevelopment here in the Central Coast. PG and e Diablo nuclear plant as going to decommission in around 2020 24. And so we have a ongoing partnership toe work on reposition those employees for for the future. So that's, you know, engineering and beyond. Uh, but think about that just in the manner that you were talking about. So the up skilling and re Skilling uh, on I think that's where you know, we were talking about that Purdue University. Other California universities have been dealing with online programs before cove it and now with co vid uh, so many more faculty or were pushed into that area. There's going to be much more going and talk about workforce development and up Skilling and Re Skilling The amount of training and education of our faculty across the country, uh, in in virtual, uh, and delivery has been huge. So there's always a silver linings in the cloud. >>I want to get your guys thoughts on one final question as we in the in the segment. And we've seen on the commercial side with cloud computing on these highly accelerated environments where you know, SAS business model subscription. That's on the business side. But >>one of The >>things that's clear in this trend is technology, and people work together and technology augments the people components. So I'd love to get your thoughts as we look at the world now we're living in co vid um, Cal Poly. You guys have remote learning Right now. It's a infancy. It's a whole new disruption, if you will, but also an opportunity to enable new ways to collaborate, Right? So if you look at people and technology, can you guys share your view and vision on how communities can be developed? How these digital technologies and people can work together faster to get to the truth or make a discovery higher to build the workforce? These air opportunities? How do you guys view this new digital transformation? >>Well, I think there's there's a huge opportunities and just what we're doing with this symposium. We're filming this on one day, and it's going to stream live, and then the three of us, the four of us, can participate and chat with participants while it's going on. That's amazing. And I appreciate you, John, you bringing that to this this symposium, I think there's more and more that we can do from a Cal poly perspective with our pedagogy. So you know, linked to learn by doing in person will always be important to us. But we see virtual. We see partnerships like this can expand and enhance our ability and minimize the in person time, decrease the time to degree enhanced graduation rate, eliminate opportunity gaps or students that don't have the same advantages. S so I think the technological aspect of this is tremendous. Then on the up Skilling and Re Skilling, where employees air all over, they can be reached virtually then maybe they come to a location or really advanced technology allows them to get hands on virtually, or they come to that location and get it in a hybrid format. Eso I'm I'm very excited about the future and what we can do, and it's gonna be different with every university with every partnership. It's one. Size does not fit all. >>It's so many possibilities. Bond. I could almost imagine a social network that has a verified, you know, secure clearance. I can jump in, have a little cloak of secrecy and collaborate with the d o. D. Possibly in the future. But >>these are the >>kind of kind of crazy ideas that are needed. Are your thoughts on this whole digital transformation cross policy? >>I think technology is gonna be revolutionary here, John. You know, we're focusing lately on what we call digital engineering to quicken the pace off, delivering capability to warfighter. As an example, I think a I machine language all that's gonna have a major play and how we operate in the future. We're embracing five G technologies writing ability Thio zero latency or I o t More automation off the supply chain. That sort of thing, I think, uh, the future ahead of us is is very encouraging. Thing is gonna do a lot for for national defense on certainly the security of the country. >>Steve, your final thoughts. Space systems are systems, and they're connected to other systems that are connected to people. Your thoughts on this digital transformation opportunity >>Such a great question in such a fun, great challenge ahead of us. Um echoing are my colleague's sentiments. I would add to it. You know, a lot of this has I think we should do some focusing on campaigning so that people can feel comfortable to include the Congress to do things a little bit differently. Um, you know, we're not attuned to doing things fast. Uh, but the dramatic You know, the way technology is just going like crazy right now. I think it ties back Thio hoping Thio, convince some of our senior leaders on what I call both sides of the Potomac River that it's worth taking these gamble. We do need to take some of these things very way. And I'm very confident, confident and excited and comfortable. They're just gonna be a great time ahead and all for the better. >>You know, e talk about D. C. Because I'm not a lawyer, and I'm not a political person, but I always say less lawyers, more techies in Congress and Senate. So I was getting job when I say that. Sorry. Presidential. Go ahead. >>Yeah, I know. Just one other point. Uh, and and Steve's alluded to this in bonded as well. I mean, we've got to be less risk averse in these partnerships. That doesn't mean reckless, but we have to be less risk averse. And I would also I have a zoo. You talk about technology. I have to reflect on something that happened in, uh, you both talked a bit about Bill Britton and his impact on Cal Poly and what we're doing. But we were faced a few years ago of replacing a traditional data a data warehouse, data storage data center, and we partner with a W S. And thank goodness we had that in progress on it enhanced our bandwidth on our campus before Cove. It hit on with this partnership with the digital transformation hub. So there is a great example where, uh, we we had that going. That's not something we could have started. Oh, covitz hit. Let's flip that switch. And so we have to be proactive on. We also have thio not be risk averse and do some things differently. Eyes that that is really salvage the experience for for students. Right now, as things are flowing, well, we only have about 12% of our courses in person. Uh, those essential courses, uh, and just grateful for those partnerships that have talked about today. >>Yeah, and it's a shining example of how being agile, continuous operations, these air themes that expand into space and the next workforce needs to be built. Gentlemen, thank you. very much for sharing your insights. I know. Bang, You're gonna go into the defense side of space and your other sessions. Thank you, gentlemen, for your time for great session. Appreciate it. >>Thank you. Thank you. >>Thank you. >>Thank you. Thank you. Thank you all. >>I'm John Furry with the Cube here in Palo Alto, California Covering and hosting with Cal Poly The Space and Cybersecurity Symposium 2020. Thanks for watching.
SUMMARY :
It's the Cube space and cybersecurity. We have Jeff Armstrong's the president of California Polytechnic in space, Jeff will start with you. We know that the best work is done by balanced teams that include multiple and diverse perspectives. speaking to bang, we learned that Rachel sins, one of our liberal arts arts majors, on the forefront of innovation and really taking a unique progressive. of the National Security Space Association, to discuss a very important topic of Thank you so much bomb for those comments and you know, new challenges and new opportunities and new possibilities of the space community, we thank you for your long life long devotion to service to the drone coming over in the crime scene and, you know, mapping it out for you. Yeah, I really appreciate that And appreciate the comments of my colleagues on clock now on terms of the innovation cycles, and so you got to react differently. Because the workforce that air in schools and our folks re So the pipeline needs to be strengthened But it does have the same challenges. Steve, go ahead. the aspect That's a Professor Armstrong talked about earlier toe where you continue to work Once the students get to a place like Cal Poly or some of our other amazing Uh, and that continued partnership is the script has been flipped. How people the progressions of knowledge and learning truth. that is needed, what we've been working on for years of the, you know, Thio the modern version of what a public, successful private partnership looks like. This is the fault, if you will and not rely heavily in are the usual suspects for example, is the thing we call clear for success getting back Thio Uh, that and and love to follow up offline with you on that. You know the programs you get you particularly through We need to support a lot of programs we have in the U. D. So somehow we have to do a better idea, or just a kind of stoked the ideation out their internship. in the manner that you were talking about. And we've seen on the commercial side with cloud computing on these highly accelerated environments where you know, So I'd love to get your thoughts as we look at the world now we're living in co vid um, decrease the time to degree enhanced graduation rate, eliminate opportunity you know, secure clearance. kind of kind of crazy ideas that are needed. certainly the security of the country. and they're connected to other systems that are connected to people. that people can feel comfortable to include the Congress to do things a little bit differently. So I Eyes that that is really salvage the experience for Bang, You're gonna go into the defense side of Thank you. Thank you all. I'm John Furry with the Cube here in Palo Alto, California Covering and hosting with Cal
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chuck | PERSON | 0.99+ |
Steve | PERSON | 0.99+ |
Steve Jakes | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Joe | PERSON | 0.99+ |
Steve Jake | PERSON | 0.99+ |
Rachel | PERSON | 0.99+ |
Cal Poly | ORGANIZATION | 0.99+ |
National Security Space Association | ORGANIZATION | 0.99+ |
Jeff Armstrong | PERSON | 0.99+ |
Northrop Grumman | ORGANIZATION | 0.99+ |
PG | ORGANIZATION | 0.99+ |
Chris Hansen | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Jeff | PERSON | 0.99+ |
Jane | PERSON | 0.99+ |
National Security Space Association | ORGANIZATION | 0.99+ |
Jeff Bezos | PERSON | 0.99+ |
Chuck Beans | PERSON | 0.99+ |
California National Guard | ORGANIZATION | 0.99+ |
New York City | LOCATION | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
National Security Space Association | ORGANIZATION | 0.99+ |
Cal Poly | ORGANIZATION | 0.99+ |
Bond | PERSON | 0.99+ |
United States Space Force | ORGANIZATION | 0.99+ |
2013 | DATE | 0.99+ |
Singapore | LOCATION | 0.99+ |
94% | QUANTITY | 0.99+ |
Trump | PERSON | 0.99+ |
Richard Branson | PERSON | 0.99+ |
California Cybersecurity Institute | ORGANIZATION | 0.99+ |
United States Space Command | ORGANIZATION | 0.99+ |
June | DATE | 0.99+ |
Thio | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Congress | ORGANIZATION | 0.99+ |
Armstrong | PERSON | 0.99+ |
hundreds | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
N S. A | ORGANIZATION | 0.99+ |
four | QUANTITY | 0.99+ |
Cal poly | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
Elon Musk | PERSON | 0.99+ |
York Space Systems | ORGANIZATION | 0.99+ |
National Centers of Academic Excellence in Cyber | ORGANIZATION | 0.99+ |
Bezos | PERSON | 0.99+ |
Purdue University | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
Armstrong and Guhamad and Jacques V1
>> Announcer: From around the globe, it's The Cube, covering Space and Cybersecurity Symposium 2020, hosted by Cal Poly. >> Everyone, welcome to this special virtual conference, the Space and Cybersecurity Symposium 2020 put on by Cal Poly with support from The Cube. I'm John Furey, your host and master of ceremony's got a great topic today, and this session is really the intersection of space and cybersecurity. This topic, and this conversation is a cybersecurity workforce development through public and private partnerships. And we've got a great lineup, we've Jeff Armstrong is the president of California Polytechnic State University, also known as Cal Poly. Jeffrey, thanks for jumping on and Bong Gumahad. The second, Director of C4ISR Division, and he's joining us from the Office of the Under Secretary of Defense for the acquisition and sustainment of Department of Defense, DOD, and of course Steve Jacques is Executive Director, founder National Security Space Association, and managing partner at Velos. Gentlemen, thank you for joining me for this session, we've got an hour of conversation, thanks for coming on. >> Thank you. >> So we've got a virtual event here, we've got an hour to have a great conversation, I'd love for you guys to do an opening statement on how you see the development through public and private partnerships around cybersecurity and space, Jeff, we'll start with you. >> Well, thanks very much, John, it's great to be on with all of you. On behalf of Cal Poly, welcome everyone. Educating the workforce of tomorrow is our mission at Cal Poly, whether that means traditional undergraduates, masters students, or increasingly, mid-career professionals looking to upskill or re-skill. Our signature pedagogy is learn by doing, which means that our graduates arrive at employers, ready day one with practical skills and experience. We have long thought of ourselves as lucky to be on California's beautiful central coast, but in recent years, as we've developed closer relationships with Vandenberg Air Force Base, hopefully the future permanent headquarters of the United States Space Command with Vandenberg and other regional partners, We have discovered that our location is even more advantageous than we thought. We're just 50 miles away from Vandenberg, a little closer than UC Santa Barbara and the base represents the Southern border of what we have come to think of as the central coast region. Cal Poly and Vandenberg Air Force Base have partnered to support regional economic development, to encourage the development of a commercial space port, to advocate for the space command headquarters coming to Vandenberg and other ventures. These partnerships have been possible because both parties stand to benefit. Vandenberg, by securing new streams of revenue, workforce, and local supply chain and Cal Poly by helping to grow local jobs for graduates, internship opportunities for students and research and entrepreneurship opportunities for faculty and staff. Crucially, what's good for Vandenberg Air Force Base and for Cal Poly is also good for the central coast and the U.S., creating new head of household jobs, infrastructure, and opportunity. Our goal is that these new jobs bring more diversity and sustainability for the region. This regional economic development has taken on a life of its own, spawning a new nonprofit called REACH which coordinates development efforts from Vandenberg Air Force Base in the South to Camp Roberts in the North. Another factor that has facilitated our relationship with Vandenberg Air Force Base is that we have some of the same friends. For example, Northrop Grumman has as long been an important defense contractor and an important partner to Cal Poly, funding scholarships in facilities that have allowed us to stay current with technology in it to attract highly qualified students for whom Cal Poly's costs would otherwise be prohibitive. For almost 20 years, Northrop Grumman has funded scholarships for Cal Poly students. This year, they're funding 64 scholarships, some directly in our College of Engineering and most through our Cal Poly Scholars Program. Cal Poly scholars support both incoming freshmen and transfer students. These are especially important, 'cause it allows us to provide additional support and opportunities to a group of students who are mostly first generation, low income and underrepresented, and who otherwise might not choose to attend Cal Poly. They also allow us to recruit from partner high schools with large populations of underrepresented minority students, including the Fortune High School in Elk Grove, which we developed a deep and lasting connection. We know that the best work is done by balanced teams that include multiple and diverse perspectives. These scholarships help us achieve that goal and I'm sure you know Northrop Grumman was recently awarded a very large contract to modernize the U.S. ICBM armory with some of the work being done at Vandenberg Air Force Base, thus supporting the local economy and protecting... Protecting our efforts in space requires partnerships in the digital realm. Cal Poly has partnered with many private companies such as AWS. Our partnerships with Amazon Web Services has enabled us to train our students with next generation cloud engineering skills, in part, through our jointly created digital transformation hub. Another partnership example is among Cal Poly's California Cyber Security Institute College of Engineering and the California National Guard. This partnership is focused on preparing a cyber-ready workforce, by providing faculty and students with a hands on research and learning environment side by side with military law enforcement professionals and cyber experts. We also have a long standing partnership with PG&E most recently focused on workforce development and redevelopment. Many of our graduates do indeed go on to careers in aerospace and defense industry. As a rough approximation, more than 4,500 Cal Poly graduates list aerospace or defense as their employment sector on LinkedIn. And it's not just our engineers in computer sciences. When I was speaking to our fellow panelists not too long ago, speaking to Bong, we learned that Rachel Sims, one of our liberal arts majors is working in his office, so shout out to you, Rachel. And then finally, of course, some of our graduates soar to extraordinary heights, such as Commander Victor Glover, who will be heading to the International Space Station later this year. As I close, all of which is to say that we're deeply committed to workforce development and redevelopment, that we understand the value of public-private partnerships, and that we're eager to find new ways in which to benefit everyone from this further cooperation. So we're committed to the region, the state and the nation, in our past efforts in space, cyber security and links to our partners at, as I indicated, aerospace industry and governmental partners provides a unique position for us to move forward in the interface of space and cyber security. Thank you so much, John. >> President Armstrong, thank you very much for the comments and congratulations to Cal Poly for being on the forefront of innovation and really taking a unique, progressive view and want to tip a hat to you guys over there, thank you very much for those comments, appreciate it. Bong, Department of Defense. Exciting, you've got to defend the nation, space is global, your opening statement. >> Yes, sir, thanks John, appreciate that. Thank you everybody, I'm honored to be in this panel along with Preston Armstrong of Cal Poly and my longtime friend and colleague Steve Jacques of the National Security Space Association to discuss a very important topic of a cybersecurity workforce development as President Armstrong alluded to. I'll tell you, both of these organizations, Cal Poly and the NSSA have done and continue to do an exceptional job at finding talent, recruiting them and training current and future leaders and technical professionals that we vitally need for our nation's growing space programs, as well as our collective national security. Earlier today, during session three, I, along with my colleague, Chris Samson discussed space cyber security and how the space domain is changing the landscape of future conflicts. I discussed the rapid emergence of commercial space with the proliferation of hundreds, if not thousands of satellites, providing a variety of services including communications, allowing for global internet connectivity, as one example. Within DOD, we continued to look at how we can leverage this opportunity. I'll tell you, one of the enabling technologies, is the use of small satellites, which are inherently cheaper and perhaps more flexible than the traditional bigger systems that we have historically used and employed for DOD. Certainly not lost on me is the fact that Cal Poly pioneered CubeSats 28, 27 years ago, and they set a standard for the use of these systems today. So they saw the value and benefit gained way ahead of everybody else it seems. And Cal Poly's focus on training and education is commendable. I'm especially impressed by the efforts of another of Steven's colleague, the current CIO, Mr. Bill Britton, with his high energy push to attract the next generation of innovators. Earlier this year, I had planned on participating in this year's cyber innovation challenge in June, Oops, Cal Poly hosts California middle, and high school students, and challenge them with situations to test their cyber knowledge. I tell you, I wish I had that kind of opportunity when I was a kid, unfortunately, the pandemic changed the plan, but I truly look forward to future events such as these, to participate in. Now, I want to recognize my good friend, Steve Jacques, whom I've known for perhaps too long of a time here, over two decades or so, who was an acknowledged space expert and personally I've truly applaud him for having the foresight a few years back to form the National Security Space Association to help the entire space enterprise navigate through not only technology, but policy issues and challenges and paved the way for operationalizing space. Space, it certainly was fortifying domain, it's not a secret anymore, and while it is a unique area, it shares a lot of common traits with the other domains, such as land, air, and sea, obviously all are strategically important to the defense of the United States. In conflict, they will all be contested and therefore they all need to be defended. One domain alone will not win future conflicts, and in a joint operation, we must succeed in all. So defending space is critical, as critical as to defending our other operational domains. Funny, space is the only sanctuary available only to the government. Increasingly as I discussed in a previous session, commercial space is taking the lead in a lot of different areas, including R&D, the so-called new space. So cybersecurity threat is even more demanding and even more challenging. The U.S. considers and futhered access to and freedom to operate in space, vital to advancing security, economic prosperity and scientific knowledge of the country, thus making cyberspace an inseparable component of America's financial, social government and political life. We stood up US Space Force a year ago or so as the newest military service. Like the other services, its mission is to organize, train and equip space forces in order to protect U.S. and allied interest in space and to provide spacecape builders who joined force. Imagine combining that U.S. Space Force with the U.S. Cyber Command to unify the direction of the space and cyberspace operation, strengthen DOD capabilities and integrate and bolster a DOD cyber experience. Now, of course, to enable all of this requires a trained and professional cadre of cyber security experts, combining a good mix of policy, as well as a high technical skill set. Much like we're seeing in STEM, we need to attract more people to this growing field. Now, the DOD has recognized the importance to the cybersecurity workforce, and we have implemented policies to encourage its growth. Back in 2013, the Deputy Secretary of Defense signed a DOD Cyberspace Workforce Strategy, to create a comprehensive, well-equipped cyber security team to respond to national security concerns. Now, this strategy also created a program that encourages collaboration between the DOD and private sector employees. We call this the Cyber Information Technology Exchange program, or CITE that it's an exchange program, which is very interesting in which a private sector employee can naturally work for the DOD in a cyber security position that spans across multiple mission critical areas, important to the DOD. A key responsibility of the cyber security community is military leaders, unrelated threats, and the cyber security actions we need to have to defeat these threats. We talked about rapid acquisition, agile business processes and practices to speed up innovation, likewise, cyber security must keep up with this challenge. So cyber security needs to be right there with the challenges and changes, and this requires exceptional personnel. We need to attract talent, invest in the people now to grow a robust cybersecurity workforce for the future. I look forward to the panel discussion, John, thank you. >> Thank you so much, Bob for those comments and, you know, new challenges or new opportunities and new possibilities and freedom to operate in space is critical, thank you for those comments, looking forward to chatting further. Steve Jacques, Executive Director of NSSA, you're up, opening statement. >> Thank you, John and echoing Bongs, thanks to Cal Poly for pulling this important event together and frankly, for allowing the National Security Space Association be a part of it. Likewise, on behalf of the association, I'm delighted and honored to be on this panel of President Armstrong, along with my friend and colleague, Bong Gumahad. Something for you all to know about Bong, he spent the first 20 years of his career in the Air Force doing space programs. He then went into industry for several years and then came back into government to serve, very few people do that. So Bong, on behalf of the space community, we thank you for your lifelong devotion to service to our nation, we really appreciate that. And I also echo a Bong shout out to that guy, Bill Britton. who's been a long time co-conspirator of ours for a long time, and you're doing great work there in the cyber program at Cal Poly, Bill, keep it up. But Professor Armstrong, keep a close eye on him. (laughter) I would like to offer a little extra context to the great comments made by President Armstrong and Bong. And in our view, the timing of this conference really could not be any better. We all recently reflected again on that tragic 9/11 surprise attack on our homeland and it's an appropriate time we think to take pause. While a percentage of you in the audience here weren't even born or were babies then, for the most of us, it still feels like yesterday. And moreover, a tragedy like 9/11 has taught us a lot to include, to be more vigilant, always keep our collective eyes and ears open, to include those "eyes and ears from space," making sure nothing like this ever happens again. So this conference is a key aspect, protecting our nation requires we work in a cyber secure environment at all times. But you know, the fascinating thing about space systems is we can't see 'em. Now sure, we see space launches, man, there's nothing more invigorating than that. But after launch they become invisible, so what are they really doing up there? What are they doing to enable our quality of life in the United States and in the world? Well to illustrate, I'd like to paraphrase elements of an article in Forbes magazine, by Bongs and my good friend, Chuck Beames, Chuck is a space guy, actually had Bongs job a few years in the Pentagon. He's now Chairman and Chief Strategy Officer at York Space Systems and in his spare time, he's Chairman of the Small Satellites. Chuck speaks in words that everyone can understand, so I'd like to give you some of his words out of his article, paraphrase somewhat, so these are Chuck's words. "Let's talk about average Joe and plain Jane. "Before heading to the airport for a business trip "to New York city, Joe checks the weather forecast, "informed by NOAA's weather satellites, "to see what to pack for the trip. "He then calls an Uber, that space app everybody uses, "it matches riders with drivers via GPS, "to take him to the airport. "So Joe has launched in the airport, "unbeknownst to him, his organic lunch is made "with the help of precision farming "made possible to optimize the irrigation and fertilization "with remote spectral sensing coming from space and GPS. "On the plane, the pilot navigates around weather, "aided by GPS and NOAA's weather satellites "and Joe makes his meeting on time "to join his New York colleagues in a video call "with a key customer in Singapore, "made possible by telecommunication satellites. "En route to his next meeting, "Joe receives notice changing the location of the meeting "to the other side of town. "So he calmly tells Siri to adjust the destination "and his satellite-guided Google maps redirect him "to the new location. "That evening, Joe watches the news broadcast via satellite, "report details of meeting among world leaders, "discussing the developing crisis in Syria. "As it turns out various forms of "'remotely sensed information' collected from satellites "indicate that yet another banned chemical weapon "may have been used on its own people. "Before going to bed, Joe decides to call his parents "and congratulate them for their wedding anniversary "as they cruise across the Atlantic, "made possible again by communication satellites "and Joe's parents can enjoy the call "without even wondering how it happened. "The next morning back home, "Joe's wife, Jane is involved in a car accident. "Her vehicle skids off the road, she's knocked unconscious, "but because of her satellite equipped OnStar system, "the crash is detected immediately, "and first responders show up on the scene in time. "Joe receives the news, books an early trip home, "sends flowers to his wife "as he orders another Uber to the airport. "Over that 24 hours, "Joe and Jane used space system applications "for nearly every part of their day. "Imagine the consequences if at any point "they were somehow denied these services, "whether they be by natural causes or a foreign hostility. "In each of these satellite applications used in this case, "were initially developed for military purposes "and continued to be, but also have remarkable application "on our way of life, just many people just don't know that." So ladies and gentlemen, now you know, thanks to Chuck Beames. Well, the United States has a proud heritage of being the world's leading space-faring nation. Dating back to the Eisenhower and Kennedy years, today, we have mature and robust systems operating from space, providing overhead reconnaissance to "watch and listen," provide missile warning, communications, positioning, navigation, and timing from our GPS system, much of which you heard in Lieutenant General JT Thomson's earlier speech. These systems are not only integral to our national security, but also to our quality of life. As Chuck told us, we simply no longer can live without these systems as a nation and for that matter, as a world. But over the years, adversaries like China, Russia and other countries have come to realize the value of space systems and are aggressively playing catch up while also pursuing capabilities that will challenge our systems. As many of you know, in 2007, China demonstrated its ASAT system by actually shooting down one of its own satellites and has been aggressively developing counterspace systems to disrupt ours. So in a heavily congested space environment, our systems are now being contested like never before and will continue to be. Well, as a Bong mentioned, the United States have responded to these changing threats. In addition to adding ways to protect our system, the administration and the Congress recently created the United States Space Force and the operational United States Space Command, the latter of which you heard President Armstrong and other Californians hope is going to be located at Vandenberg Air Force Base. Combined with our intelligence community, today we have focused military and civilian leadership now in space, and that's a very, very good thing. Commensurately on the industry side, we did create the National Security Space Association, devoted solely to supporting the National Security Space Enterprise. We're based here in the DC area, but we have arms and legs across the country and we are loaded with extraordinary talent in scores of former government executives. So NSSA is joined at the hip with our government customers to serve and to support. We're busy with a multitude of activities underway, ranging from a number of thought-provoking policy papers, our recurring spacetime webcasts, supporting Congress's space power caucus, and other main serious efforts. Check us out at nssaspace.org. One of our strategic priorities and central to today's events is to actively promote and nurture the workforce development, just like Cal-Poly. We will work with our U.S. government customers, industry leaders, and academia to attract and recruit students to join the space world, whether in government or industry, and to assist in mentoring and training as their careers progress. On that point, we're delighted to be working with Cal Poly as we hopefully will undertake a new pilot program with them very soon. So students stay tuned, something I can tell you, space is really cool. While our nation's satellite systems are technical and complex, our nation's government and industry workforce is highly diverse, with a combination of engineers, physicists and mathematicians, but also with a large non-technical expertise as well. Think about how government gets these systems designed, manufactured, launching into orbit and operating. They do this via contracts with our aerospace industry, requiring talents across the board, from cost estimating, cost analysis, budgeting, procurement, legal, and many other support tasks that are integral to the mission. Many thousands of people work in the space workforce, tens of billions of dollars every year. This is really cool stuff and no matter what your education background, a great career to be part of. In summary, as Bong had mentioned as well, there's a great deal of exciting challenges ahead. We will see a new renaissance in space in the years ahead and in some cases it's already begun. Billionaires like Jeff Bezos, Elon Musk, Sir Richard Branson, are in the game, stimulating new ideas and business models. Other private investors and startup companies, space companies are now coming in from all angles. The exponential advancement of technology and micro electronics now allows a potential for a plethora of small sat systems to possibly replace older satellites, the size of a Greyhound bus. It's getting better by the day and central to this conference, cybersecurity is paramount to our nation's critical infrastructure in space. So once again, thanks very much and I look forward to the further conversation. >> Steve, thank you very much. Space is cool, it's relevant, but it's important as you pointed out in your awesome story about how it impacts our life every day so I really appreciate that great story I'm glad you took the time to share that. You forgot the part about the drone coming over in the crime scene and, you know, mapping it out for you, but we'll add that to the story later, great stuff. My first question is, let's get into the conversations, because I think this is super important. President Armstrong, I'd like you to talk about some of the points that was teased out by Bong and Steve. One in particular is the comment around how military research was important in developing all these capabilities, which is impacting all of our lives through that story. It was the military research that has enabled a generation and generation of value for consumers. This is kind of this workforce conversation, there are opportunities now with research and grants, and this is a funding of innovation that is highly accelerated, it's happening very quickly. Can you comment on how research and the partnerships to get that funding into the universities is critical? >> Yeah, I really appreciate that and appreciate the comments of my colleagues. And it really boils down to me to partnerships, public-private partnerships, you have mentioned Northrop Grumman, but we have partnerships with Lockheed Martin, Boeing, Raytheon, Space X, JPL, also member of an organization called Business Higher Education Forum, which brings together university presidents and CEOs of companies. There's been focused on cybersecurity and data science and I hope that we can spill into cybersecurity and space. But those partnerships in the past have really brought a lot forward. At Cal Poly, as mentioned, we've been involved with CubeSat, we've have some secure work, and we want to plan to do more of that in the future. Those partnerships are essential, not only for getting the R&D done, but also the students, the faculty, whether they're master's or undergraduate can be involved with that work, they get that real life experience, whether it's on campus or virtually now during COVID or at the location with the partner, whether it may be governmental or industry, and then they're even better equipped to hit the ground running. And of course we'd love to see more of our students graduate with clearance so that they could do some of that secure work as well. So these partnerships are absolutely critical and it's also in the context of trying to bring the best and the brightest in all demographics of California and the U.S. into this field, to really be successful. So these partnerships are essential and our goal is to grow them just like I know our other colleagues in the CSU and the UC are planning to do. >> You know, just as my age I've seen, I grew up in the eighties and in college and they're in that system's generation and the generation before me, they really kind of pioneered the space that spawned the computer revolution. I mean, you look at these key inflection points in our lives, they were really funded through these kinds of real deep research. Bong, talk about that because, you know, we're living in an age of cloud and Bezos was mentioned, Elon Musk, Sir Richard Branson, you got new ideas coming in from the outside, you have an accelerated clock now in terms of the innovation cycles and so you got to react differently, you guys have programs to go outside of the defense department, how important is this because the workforce that are in schools and/or folks re-skilling are out there and you've been on both sides of the table, so share your thoughts. >> No, thanks Johnny, thanks for the opportunity to respond to, and that's what, you know, you hit on the nose back in the 80's, R&D and space especially was dominated by government funding, contracts and so on, but things have changed as Steve pointed out, allow these commercial entities funded by billionaires are coming out of the woodwork, funding R&D so they're taking the lead, so what we can do within the DOD in government is truly take advantage of the work they've done. And since they're, you know, paving the way to new approaches and new way of doing things and I think we can certainly learn from that and leverage off of that, saves us money from an R&D standpoint, while benefiting from the product that they deliver. You know, within DOD, talking about workforce development, you know, we have prioritized and we have policies now to attract and retain the talent we need. I had the folks do some research and it looks like from a cybersecurity or workforce standpoint, a recent study done, I think last year in 2019, found that the cyber security workforce gap in U.S. is nearing half a million people, even though it is a growing industry. So the pipeline needs to be strengthened, getting people through, you know, starting young and through college, like Professor Armstrong indicated because we're going to need them to be in place, you know, in a period of about maybe a decade or so. On top of that, of course, is the continuing issue we have with the gap with STEM students. We can't afford not have expertise in place to support all the things we're doing within DoD, not only DoD but the commercial side as well, thank you. >> How's the gap get filled, I mean, this is, again, you've got cybersecurity, I mean, with space it's a whole other kind of surface area if you will, it's not really surface area, but it is an IOT device if you think about it, but it does have the same challenges, that's kind of current and progressive with cybersecurity. Where's the gap get filled, Steve or President Armstrong, I mean, how do you solve the problem and address this gap in the workforce? What are some solutions and what approaches do we need to put in place? >> Steve, go ahead., I'll follow up. >> Okay, thanks, I'll let you correct me. (laughter) It's a really good question, and the way I would approach it is to focus on it holistically and to acknowledge it upfront and it comes with our teaching, et cetera, across the board. And from an industry perspective, I mean, we see it, we've got to have secure systems in everything we do, and promoting this and getting students at early ages and mentoring them and throwing internships at them is so paramount to the whole cycle. And that's kind of, it really takes a focused attention and we continue to use the word focus from an NSSA perspective. We know the challenges that are out there. There are such talented people in the workforce, on the government side, but not nearly enough of them and likewise on the industry side, we could use more as well, but when you get down to it, you know, we can connect dots, you know, the aspects that Professor Armstrong talked about earlier to where you continue to work partnerships as much as you possibly can. We hope to be a part of that network, that ecosystem if you will, of taking common objectives and working together to kind of make these things happen and to bring the power, not just of one or two companies, but of our entire membership thereabout. >> President Armstrong-- >> Yeah, I would also add it again, it's back to the partnerships that I talked about earlier, one of our partners is high schools and schools Fortune, Margaret Fortune, who worked in a couple of administrations in California across party lines and education, their fifth graders all visit Cal Poly, and visit our learned-by-doing lab. And you've got to get students interested in STEM at an early age. We also need the partnerships, the scholarships, the financial aid, so the students can graduate with minimal to no debt to really hit the ground running and that's exacerbated and really stress now with this COVID induced recession. California supports higher education at a higher rate than most states in the nation, but that has brought this year for reasons all understand due to COVID. And so our partnerships, our creativity, and making sure that we help those that need the most help financially, that's really key because the gaps are huge. As my colleagues indicated, you know, half a million jobs and I need you to look at the students that are in the pipeline, we've got to enhance that. And the placement rates are amazing once the students get to a place like Cal Poly or some of our other amazing CSU and UC campuses, placement rates are like 94%. Many of our engineers, they have jobs lined up a year before they graduate. So it's just going to take a key partnerships working together and that continued partnership with government local, of course, our state, the CSU, and partners like we have here today, both Steve and Bong so partnerships is the thing. >> You know, that's a great point-- >> I could add, >> Okay go ahead. >> All right, you know, the collaboration with universities is one that we put on lot of emphasis here, and it may not be well known fact, but just an example of national security, the AUC is a national centers of academic excellence in cyber defense works with over 270 colleges and universities across the United States to educate and certify future cyber first responders as an example. So that's vibrant and healthy and something that we ought to take advantage of. >> Well, I got the brain trust here on this topic. I want to get your thoughts on this one point, 'cause I'd like to define, you know, what is a public-private partnership because the theme that's coming out of the symposium is the script has been flipped, it's a modern era, things are accelerated, you've got security, so you've got all of these things kind of happenning it's a modern approach and you're seeing a digital transformation play out all over the world in business and in the public sector. So what is a modern public-private partnership and what does it look like today because people are learning differently. COVID has pointed out, which is that we're seeing right now, how people, the progressions of knowledge and learning, truth, it's all changing. How do you guys view the modern version of public-private partnership and some examples and some proof points, can you guys share that? We'll start with you, Professor Armstrong. >> Yeah, as I indicated earlier, we've had, and I could give other examples, but Northrop Grumman, they helped us with a cyber lab many years ago that is maintained directly, the software, the connection outside it's its own unit so the students can learn to hack, they can learn to penetrate defenses and I know that that has already had some considerations of space, but that's a benefit to both parties. So a good public-private partnership has benefits to both entities and the common factor for universities with a lot of these partnerships is the talent. The talent that is needed, what we've been working on for years of, you know, the undergraduate or master's or PhD programs, but now it's also spilling into upskilling and reskilling, as jobs, you know, folks who are in jobs today that didn't exist two years, three years, five years ago, but it also spills into other aspects that can expand even more. We're very fortunate we have land, there's opportunities, we have ONE Tech project. We are expanding our tech park, I think we'll see opportunities for that and it'll be adjusted due to the virtual world that we're all learning more and more about it, which we were in before COVID. But I also think that that person to person is going to be important, I want to make sure that I'm driving across a bridge or that satellite's being launched by the engineer that's had at least some in person training to do that in that experience, especially as a first time freshman coming on campus, getting that experience, expanding it as an adult, and we're going to need those public-private partnerships in order to continue to fund those at a level that is at the excellence we need for these STEM and engineering fields. >> It's interesting people and technology can work together and these partnerships are the new way. Bongs too with reaction to the modern version of what a public successful private partnership looks like. >> If I could jump in John, I think, you know, historically DOD's had a high bar to overcome if you will, in terms of getting rapid... pulling in new companies, miss the fall if you will, and not rely heavily on the usual suspects, of vendors and the like, and I think the DOD has done a good job over the last couple of years of trying to reduce that burden and working with us, you know, the Air Force, I think they're pioneering this idea around pitch days, where companies come in, do a two-hour pitch and immediately notified of, you know, of an a award, without having to wait a long time to get feedback on the quality of the product and so on. So I think we're trying to do our best to strengthen that partnership with companies outside of the main group of people that we typically use. >> Steve, any reaction, any comment to add? >> Yeah, I would add a couple and these are very excellent thoughts. It's about taking a little gamble by coming out of your comfort zone, you know, the world that Bong and I, Bong lives in and I used to live in the past, has been quite structured. It's really about, we know what the threat is, we need to go fix it, we'll design as if as we go make it happen, we'll fly it. Life is so much more complicated than that and so it's really, to me, I mean, you take an example of the pitch days of Bong talks about, I think taking a gamble by attempting to just do a lot of pilot programs, work the trust factor between government folks and the industry folks and academia, because we are all in this together in a lot of ways. For example, I mean, we just sent a paper to the white house at their request about, you know, what would we do from a workforce development perspective and we hope to embellish on this over time once the initiative matures, but we have a piece of it for example, is a thing we call "clear for success," getting back to president Armstrong's comments so at a collegiate level, you know, high, high, high quality folks are in high demand. So why don't we put together a program that grabs kids in their underclass years, identifies folks that are interested in doing something like this, get them scholarships, have a job waiting for them that they're contracted for before they graduate, and when they graduate, they walk with an SCI clearance. We believe that can be done, so that's an example of ways in which public-private partnerships can happen to where you now have a talented kid ready to go on day one. We think those kinds of things can happen, it just gets back down to being focused on specific initiatives, giving them a chance and run as many pilot programs as you can, like pitch days. >> That's a great point, it's a good segue. Go ahead, President Armstrong. >> I just want to jump in and echo both the Bong and Steve's comments, but Steve that, you know, your point of, you know our graduates, we consider them ready day one, well they need to be ready day one and ready to go secure. We totally support that and love to follow up offline with you on that. That's exciting and needed, very much needed more of it, some of it's happening, but we certainly have been thinking a lot about that and making some plans. >> And that's a great example, a good segue. My next question is kind of re-imagining these workflows is kind of breaking down the old way and bringing in kind of the new way, accelerate all kinds of new things. There are creative ways to address this workforce issue and this is the next topic, how can we employ new creative solutions because let's face it, you know, it's not the days of get your engineering degree and go interview for a job and then get slotted in and get the intern, you know, the programs and you'd matriculate through the system. This is multiple disciplines, cybersecurity points at that. You could be smart in math and have a degree in anthropology and be one of the best cyber talents on the planet. So this is a new, new world, what are some creative approaches that's going to work for you? >> Alright, good job, one of the things, I think that's a challenge to us is, you know, somehow we got me working for, with the government, sexy right? You know, part of the challenge we have is attracting the right level of skill sets and personnel but, you know, we're competing, oftentimes, with the commercial side, the gaming industry as examples is a big deal. And those are the same talents we need to support a lot of the programs that we have in DOD. So somehow we have do a better job to Steve's point about making the work within DOD, within the government, something that they would be interested early on. So attract them early, you know, I could not talk about Cal Poly's challenge program that they were going to have in June inviting high school kids really excited about the whole idea of space and cyber security and so on. Those are some of the things that I think we have to do and continue to do over the course of the next several years. >> Awesome, any other creative approaches that you guys see working or might be an idea, or just to kind of stoke the ideation out there? Internships, obviously internships are known, but like, there's got to be new ways. >> Alright, I think you can take what Steve was talking about earlier, getting students in high school and aligning them sometimes at first internship, not just between the freshman and sophomore year, but before they enter Cal Poly per se and they're involved. So I think that's absolutely key, getting them involved in many other ways. We have an example of upskilling or work redevelopment here in the central coast, PG&E Diablo nuclear plant that is going to decommission in around 2024. And so we have a ongoing partnership to work and reposition those employees for the future. So that's, you know, engineering and beyond but think about that just in the manner that you were talking about. So the upskilling and reskilling, and I think that's where, you know, we were talking about that Purdue University, other California universities have been dealing with online programs before COVID, and now with COVID so many more Faculty were pushed into that area, there's going to be a much more going and talk about workforce development in upskilling and reskilling, the amount of training and education of our faculty across the country in virtual and delivery has been huge. So there's always a silver linings in the cloud. >> I want to get your guys' thoughts on one final question as we end the segment, and we've seen on the commercial side with cloud computing on these highly accelerated environments where, you know, SAS business model subscription, and that's on the business side, but one of the things that's clear in this trend is technology and people work together and technology augments the people components. So I'd love to get your thoughts as we look at a world now, we're living in COVID, and Cal Poly, you guys have remote learning right now, it's at the infancy, it's a whole new disruption, if you will, but also an opportunity enable new ways to encollaborate, So if you look at people and technology, can you guys share your view and vision on how communities can be developed, how these digital technologies and people can work together faster to get to the truth or make a discovery, hire, develop the workforce, these are opportunities, how do you guys view this new digital transformation? >> Well, I think there's huge opportunities and just what we're doing with this symposium, we're filming this on Monday and it's going to stream live and then the three of us, the four of us can participate and chat with participants while it's going on. That's amazing and I appreciate you, John, you bringing that to this symposium. I think there's more and more that we can do. From a Cal Poly perspective, with our pedagogy so, you know, linked to learn by doing in-person will always be important to us, but we see virtual, we see partnerships like this, can expand and enhance our ability and minimize the in-person time, decrease the time to degree, enhance graduation rate, eliminate opportunity gaps for students that don't have the same advantages. So I think the technological aspect of this is tremendous. Then on the upskilling and reskilling, where employees are all over, they can re be reached virtually, and then maybe they come to a location or really advanced technology allows them to get hands on virtually, or they come to that location and get it in a hybrid format. So I'm very excited about the future and what we can do, and it's going to be different with every university, with every partnership. It's one size does not fit all, There's so many possibilities, Bong, I can almost imagine that social network that has a verified, you know, secure clearance. I can jump in, and have a little cloak of secrecy and collaborate with the DOD possibly in the future. But these are the kind of crazy ideas that are needed, your thoughts on this whole digital transformation cross-pollination. >> I think technology is going to be revolutionary here, John, you know, we're focusing lately on what we call visual engineering to quicken the pace of the delivery capability to warfighter as an example, I think AI, Machine Language, all that's going to have a major play in how we operate in the future. We're embracing 5G technologies, and the ability for zero latency, more IOT, more automation of the supply chain, that sort of thing, I think the future ahead of us is very encouraging, I think it's going to do a lot for national defense, and certainly the security of the country. >> Steve, your final thoughts, space systems are systems, and they're connected to other systems that are connected to people, your thoughts on this digital transformation opportunity. >> Such a great question and such a fun, great challenge ahead of us. Echoing my colleagues sentiments, I would add to it, you know, a lot of this has, I think we should do some focusing on campaigning so that people can feel comfortable to include the Congress to do things a little bit differently. You know, we're not attuned to doing things fast, but the dramatic, you know, the way technology is just going like crazy right now, I think it ties back to, hoping to convince some of our senior leaders and what I call both sides of the Potomac river, that it's worth taking this gamble, we do need to take some of these things you know, in a very proactive way. And I'm very confident and excited and comfortable that this is going to be a great time ahead and all for the better. >> You know, I always think of myself when I talk about DC 'cause I'm not a lawyer and I'm not a political person, but I always say less lawyers, more techies than in Congress and Senate, so (laughter)I always get in trouble when I say that. Sorry, President Armstrong, go ahead. >> Yeah, no, just one other point and Steve's alluded to this and Bong did as well, I mean, we've got to be less risk averse in these partnerships, that doesn't mean reckless, but we have to be less risk averse. And also, as you talk about technology, I have to reflect on something that happened and you both talked a bit about Bill Britton and his impact on Cal Poly and what we're doing. But we were faced a few years ago of replacing traditional data, a data warehouse, data storage, data center and we partnered with AWS and thank goodness, we had that in progress and it enhanced our bandwidth on our campus before COVID hit, and with this partnership with the digital transformation hub, so there's a great example where we had that going. That's not something we could have started, "Oh COVID hit, let's flip that switch." And so we have to be proactive and we also have to not be risk-averse and do some things differently. That has really salvaged the experience for our students right now, as things are flowing well. We only have about 12% of our courses in person, those essential courses and I'm just grateful for those partnerships that I have talked about today. >> And it's a shining example of how being agile, continuous operations, these are themes that expand the space and the next workforce needs to be built. Gentlemen, thank you very much for sharing your insights, I know Bong, you're going to go into the defense side of space in your other sessions. Thank you gentlemen, for your time, for a great session, I appreciate it. >> Thank you. >> Thank you gentlemen. >> Thank you. >> Thank you. >> Thank you, thank you all. I'm John Furey with The Cube here in Palo Alto, California covering and hosting with Cal Poly, the Space and Cybersecurity Symposium 2020, thanks for watching. (bright atmospheric music)
SUMMARY :
the globe, it's The Cube, and of course Steve Jacques on how you see the development and the California National Guard. to you guys over there, Cal Poly and the NSSA have and freedom to operate and nurture the workforce in the crime scene and, you and it's also in the context and the generation before me, So the pipeline needs to be strengthened, does have the same challenges, and likewise on the industry side, and I need you to look at the students and something that we in business and in the public sector. so the students can learn to hack, to the modern version miss the fall if you will, and the industry folks and academia, That's a great point, and echo both the Bong and bringing in kind of the new way, and continue to do over the course but like, there's got to be new ways. and I think that's where, you and that's on the business side, and it's going to be different and certainly the security of the country. and they're connected to other systems and all for the better. of myself when I talk about DC and Steve's alluded to and the next workforce needs to be built. the Space and Cybersecurity
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Steve | PERSON | 0.99+ |
Chuck | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Joe | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Chris Samson | PERSON | 0.99+ |
NSSA | ORGANIZATION | 0.99+ |
Jeff Bezos | PERSON | 0.99+ |
Cal Poly | ORGANIZATION | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
Steve Jacques | PERSON | 0.99+ |
Bill Britton | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Rachel | PERSON | 0.99+ |
NOAA | ORGANIZATION | 0.99+ |
Jeff Armstrong | PERSON | 0.99+ |
Northrop Grumman | ORGANIZATION | 0.99+ |
PG&E | ORGANIZATION | 0.99+ |
2007 | DATE | 0.99+ |
Chuck Beames | PERSON | 0.99+ |
National Security Space Association | ORGANIZATION | 0.99+ |
National Security Space Enterprise | ORGANIZATION | 0.99+ |
United States Space Command | ORGANIZATION | 0.99+ |
Department of Defense | ORGANIZATION | 0.99+ |
California | LOCATION | 0.99+ |
Lockheed Martin | ORGANIZATION | 0.99+ |
California National Guard | ORGANIZATION | 0.99+ |
United States Space Force | ORGANIZATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Rachel Sims | PERSON | 0.99+ |
JPL | ORGANIZATION | 0.99+ |
Steven | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
DOD | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
Space X | ORGANIZATION | 0.99+ |
Jeffrey | PERSON | 0.99+ |
Jane | PERSON | 0.99+ |
Johnny | PERSON | 0.99+ |
John Furey | PERSON | 0.99+ |
Cal Poly | ORGANIZATION | 0.99+ |
National Security Space Association | ORGANIZATION | 0.99+ |
Armstrong | PERSON | 0.99+ |
June | DATE | 0.99+ |
2013 | DATE | 0.99+ |
Singapore | LOCATION | 0.99+ |
United States | LOCATION | 0.99+ |
New York | LOCATION | 0.99+ |
U.S. Space Force | ORGANIZATION | 0.99+ |
Bong | PERSON | 0.99+ |
Elon Musk | PERSON | 0.99+ |
Siri | TITLE | 0.99+ |
Latanya Sweeney, Harvard University | Women in Data Science (WiDS) 2018
>> Narrator: Live from Stanford University in Palo Alto, California. It's theCUBE. Covering Women in Data Science Conference 2018. Brought to you by Stanford. (upbeat music) >> Welcome back to theCUBE. We are live at Stanford University for the Third Annual Women in Data Science WiDS Conference. I'm Lisa Marten and we've had a great morning so far talking with a lot the speakers and participants at this event here at Stanford, which of course is going on globally as well. Very excited to be joined by one of the Keynotes this morning at WiDS, Latanya Sweeney, the Professor of Government and Technology from Harvard. Latanya, thank you so much for stopping by theCUBE. >> Well thank you for having me. >> Absolutely. So you are a computer scientist by training. WiDS as a mentioned is in its third year, they're expecting a 100,000 people to engage. There's a 177 I think, Margot said, regional WiDS events going on right now. In 53 countries. >> Isn't that amazing? >> It is! >> It's so exciting. >> Incredible in such a short period of time. What is it about WiDS that was attraction to you saying, "Yes, I want to participate in this event." >> Well one of the issues is just simply the idea the data science represents this sort of wave of change, of how do I analyze data? How do I make it different? And the conference itself celebrating the fact that women are taking the step, is hugely important. I mean, when I was a graduate student at MIT, I was the first black woman to get a PhD in Computer Science from MIT. And sort of, no women you really just didn't see women in this area at all. So when I come to a conference like WiDS, it's huge. It's just huge to see all these walls broken down. >> I love that walls breaking down, barriers kind of evaporating. In your time though at MIT, I'd love to understand a little bit more. Were you very conscience, "Hey I'm one of the very "few females here?" (Latanya laughs) Did it bother you or were you just, "You know what, "this is my passion, and I don't care. "I'm going to keep going forward." What was that experience like? >> Well, at first I was very naive, in a belief that you know all that really mattered was the work I did. And, I never had problems with the students, but I did have lots of problems with the professors, with this idea that you had to be like them in ways that was beyond your brain or your work, in order to really be exalted by them. And so, so whether I wanted to admit it, or whether I just wanted to ignore it, it just sort of came crashing down. >> Did you have mentors at that time, or did you think, "You know what, I'm not finding anybody "that I can really follow. "I've got to by my own mentor right now." >> Right, I mean I don't think my experience is really that uncommon for women in my generation. Very difficult to find mentors who would be complete mentors, complete see themselves in you and really try to exalt you and navigate you. What women often have found is that they can find a partial person here, and a partial person there. One who can help them in this regard, or that regard, but not the same kind of idea that you would be the superstar of one of these mentors. And it's not to take away from the fact that there have been these angels in my life, who made a big difference, and so I don't want to take away from that that somehow I did this all by myself. That's not true. >> So with the conference today, one of the things that Maria Klawe said in her welcome remarks was encouraging this generation, "Don't be worried if there's something "that you're not good at." So I loved how she was sort of encouraging people to sort of, women sort of, let go of maybe some of those preconceived notions that, "I can't do this. "I'm not good at that." I think that it's very liberating and still in 2018 with the fact there is such a diversity gap, it's still so needed. What were maybe some of the three takeaways, if you will, of your Keynote this morning that you imparted on the audience? >> Was that technology design is the new policy maker. That they're making policy, the design itself is making policy, but nobody's like monitoring it. But we could in fact use data science to monitor, to show the unforeseen consequences, and in the examples that we've done that, we've had big impact on the world. >> So share some of that with us, because that's your focus. You're in... What department in Harvard? You said government? >> So I sit in the government department. >> Unforeseen consequences of technology? >> Yes. >> Tell us about that. >> Well, you know, so in the Keynote, I talked about examples where technology is basically challenging every democratic value that we have. And sort of like no one's really aware, we kind of think about it here and there, but by doing simple data science experiments, we can quantify that. We can demonstrate it, and by doing that we shore up sort of those who can help us the most; the advocates, the regulators, and journalists. And so I gave examples from my own work and from the work of my students. >> Tell me a little bit about your students actually. Are they undergrads? Do you also have graduate students as well? >> I have both. >> You have both. >> Both. The talk was about, I teach a class called Data Science to Save the World, and we tackle three to four real world problems within the semester, that we solve. And then the students love to do their own independent projects, and at the end many of those go on to be published papers. >> Wow! I feel like you need to have a cape or some sort of superhero emblem. We can work on that later. But tell me about the diversity within the student body at Harvard in your classes. Are you finding, what's maybe the ratio of men to women, for example? >> Well you know many of the universities from my time have really changed. So when I was an undergraduate the typical classroom of Harvard undergrads would be all white men, or mostly all white men. >> Lisa: Sounds like a lot of STEM's still. (Latanya laughs) >> Yeah, but now if you walk into Harvard we see a lot more diversity within the university. I'm also a faculty dean at one of the residential houses, and so the diversity is huge. However, when you start getting into computer science, you start seeing, you don't see as much diversity. But in the Data Sciences of the World course, we get students from all over. They come from different backgrounds. They come in different colors, shapes, and sizes. Each with a skillset and a desire to learn how to have impact. >> I think that desire is key. How do you help them sort of build their own confidence in terms of, regardless of what color, flavor, you know my peer group is, I like this. I want to be in this. How do you help ignite that confidence within someone that's quite new into this? >> So if you're 20 something or almost 20, and you do something that a regulator changes their laws, or a newspaper article picks up, or you're on the Today Show, that pretty much changes the course of your life, and that's what we found with the students. That some of them have done just some remarkable work that's really been picked up and exalted, and it's stayed with them. It would change the direction in which they've gone. So what we do in the course, is we teach them that there's just so many problems that are low hanging, and how to spot a problem, an issue that they can solve, and how to solve it in a way that can be have impact. And that's really what the course focus is on. >> That impact is so important to just continue to fuel someones fire, and for that person to then be empowered to be able to ignite a fire under somebody else. I think one of the things that you mentioned sort of speaks to some of the things that we're seeing in these boundaries and lines are blurring. Not just so much even on from a gender perspective, but even career path A, B, C, D, now it's data is fueling the world. Every company is becoming a company because they have to be, right, to make consumer demands and just grow and be profitable as a business. But I also I like the parallel there that these rigid maybe, more rigid lines of careers are now opening up, because like you're saying, you can make impact being a data scientist. In every sector you can influence policy and wow, what a huge opportunity. It's almost like it's infinite, right? >> Yeah. I mean if you look at even the range of talks in the conference today, you get a great sense of not only new tools in different areas, but just the sheer spectrum of areas in which data science is playing. And that these women are already working it, already have the impact. >> So, speaking of the conference today, one of the things that I think is that we're hearing, is it's not just about inspiring, I think, Maria Klawe had said in theCUBE previous to today, that she found that young women in their first semester of university college courses, are probably like the right age and time in their lives to really ignite a spark, but I think there's also sort of a reinvigoration of the women that have been in technology and STEM fields for a while. Are you feeling and hearing kind of some of the same things from your peers and colleagues here? >> Definitely. We see it at the two levels. It's really important to try to get them in freshman year before they have a discipline defined for themselves, or how they see themselves. So that you can sort of ignite that spark and keep that spark alive. But then later women who, women or others, who are already in a field and looking for a way to sort of release and redefine themselves, data science is definitely giving them that opportunity. >> It really is. So what are some of the things that you're looking forward to for your career at Harvard as 2018 moves forward? >> Well, we, you know, the students we try to tackle the big problems. Election vulnerabilities has been a big one for us, on our agenda. The privacy of publicly available data is another big one that we've been working on. Well I think that's enough for awhile. (laughs) >> Lisa: That's pretty big. >> Yeah. >> I think so. >> Yeah, we'll get those done! >> Well that and you know, designing the logo for the t-shirt cause you definitely need to have a superpower t-shirt. So last question for you, if you could give young Latanya advice, when you were just starting out college, not knowing any of this was going to happen in terms of this movement that is WiDS and 2018, what would some of those key advice points for you, for your younger self be? >> To believe in yourself. To believe in yourself and that it's going to work out. One of the things that I grew to learn was how to turn lemons into lemonade, and that turns out to be very, very powerful, because it's a way to bounce back when you're faced with things that you can't control, that people are trying to put obstacles in your way, you just sort of find another way to keep going. And the world sort of bended towards me, so that was really cool. >> And also that failure is not a bad F word, right? (Latanya laughs) >> That's absolutely correct. >> It's part of a natural course and I think any leader and whatever and just you're in whatever, country whatever ethnicity, gender, everybody has I wouldn't even say missteps, it's just part of life, but I think... >> Yeah it's just part of the what... And Harvard like I said, I am the dean in one of the faculty houses, and one of the main things that we do each, throughout the year, is invite speakers and who're accomplished in whatever area they're in, but the one thing that they all have in common is they took this really roundabout way to get where they are. And a lot of that was because failures and blocks came in the way, and that's really important I think for young adults to really understand. >> I agree. Well, Latanya, thank you so much for carving out some time to stop by and chat with us on theCUBE. We are excited to have your wisdom shared to our audience and we wish you a great rest of the conference. >> Alright, thank you very much. >> We'll see you next time on theCUBE. >> Okay. >> We want to thank you for watching theCUBE. I'm Lisa Marten. We are live from the Third Annual Women in Data Science Conference at Stanford University. Stick around after this short break, I'll be back with my next guest. (upbeat music)
SUMMARY :
Brought to you by Stanford. Latanya, thank you so much for stopping by theCUBE. So you are a computer scientist by training. What is it about WiDS that was attraction to you saying, And sort of, no women you really just didn't Did it bother you or were you just, "You know what, in order to really be exalted by them. Did you have mentors at that time, or did you but not the same kind of idea that you would be the What were maybe some of the three takeaways, if you will, Was that technology design is the new policy maker. So share some of that with us, because that's your focus. and from the work of my students. Do you also have graduate students as well? And then the students love to do their own I feel like you need to have a cape Well you know many of the universities from my time Lisa: Sounds like a lot of STEM's still. But in the Data Sciences of the World course, How do you help ignite that confidence within someone that pretty much changes the course of your life, But I also I like the parallel there that these rigid in the conference today, you get a great sense sort of a reinvigoration of the women that have been So that you can sort of ignite that spark to for your career at Harvard as 2018 moves forward? Well, we, you know, the students Well that and you know, One of the things that I grew to learn was how to It's part of a natural course and I think And a lot of that was because failures and blocks We are excited to have your wisdom shared to our We want to thank you for watching theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Marten | PERSON | 0.99+ |
Latanya | PERSON | 0.99+ |
Margot | PERSON | 0.99+ |
Latanya Sweeney | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Maria Klawe | PERSON | 0.99+ |
2018 | DATE | 0.99+ |
20 | QUANTITY | 0.99+ |
Both | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
three takeaways | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
first semester | QUANTITY | 0.99+ |
100,000 people | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
one | QUANTITY | 0.98+ |
Harvard University | ORGANIZATION | 0.98+ |
WiDS | EVENT | 0.98+ |
two levels | QUANTITY | 0.98+ |
53 countries | QUANTITY | 0.98+ |
Each | QUANTITY | 0.98+ |
third year | QUANTITY | 0.98+ |
MIT | ORGANIZATION | 0.97+ |
four | QUANTITY | 0.97+ |
Stanford | LOCATION | 0.97+ |
Third Annual Women in Data Science WiDS Conference | EVENT | 0.97+ |
Today Show | TITLE | 0.97+ |
Stanford | ORGANIZATION | 0.97+ |
Harvard | ORGANIZATION | 0.96+ |
Third Annual Women in Data Science Conference | EVENT | 0.96+ |
One | QUANTITY | 0.95+ |
one thing | QUANTITY | 0.95+ |
each | QUANTITY | 0.94+ |
Stanford University | ORGANIZATION | 0.93+ |
Covering Women in Data Science Conference 2018 | EVENT | 0.92+ |
theCUBE | ORGANIZATION | 0.91+ |
177 | QUANTITY | 0.89+ |
Women in Data Science | ORGANIZATION | 0.89+ |
this morning | DATE | 0.89+ |
Data Science to Save the World | TITLE | 0.87+ |
Narrator | TITLE | 0.81+ |
Harvard | LOCATION | 0.77+ |
one of | QUANTITY | 0.74+ |
Professor of Government and Technology | PERSON | 0.69+ |
almost | QUANTITY | 0.66+ |
black | OTHER | 0.63+ |
Stanford University | LOCATION | 0.6+ |
Keynote | TITLE | 0.57+ |
world | QUANTITY | 0.5+ |
WiDS | ORGANIZATION | 0.49+ |
theCUBE | TITLE | 0.46+ |