Image Title

Search Results for trifacta:

Adam Wilson & Joe Hellerstein, Trifacta - Big Data SV 17 - #BigDataSV - #theCUBE


 

>> Commentator: Live from San Jose, California. It's theCUBE covering Big Data Silicon Valley 2017. >> Okay, welcome back everyone. We are here live in Silicon Valley for Big Data SV (mumbles) event in conjunction with Strata + Hadoop. Our companion event, the Big Data NYC and we're here breaking down the Big Data world as it evolves and goes to the next level up on the step function, AI machine learning, IOT really forcing people to really focus on a clear line of the side of the data. I'm John Furrier with our announcer from Wikibon, George Gilbert and our next guest, our two executives from Trifacta. The founder and Chief Strategy Officer, Joe Hellerstein and Adam Wilson, the CEO. Guys, welcome to theCUBE. Welcome back. >> Great to be here. >> Good to be here. >> Founder, co-founder? >> Co-founder. >> Co-founder. He's a multiple co-founders. I remember it 'cause you guys were one of the first sites that have the (mumbles) in the about section on all the management team. Just to show you how technical you guys are. Welcome back. >> And if you're Trifacta, you have to have three founders, right? So that's part of the tri, right? >> The triple threat, so to speak. Okay, so a big year for you guys. Give us the update. I mean, also we had Alation announce this partnering going on and some product movement. >> Yup. >> But there's a turbulent time right now. You have a lot of things happening in multiple theaters to technical theater to business theater. And also within the customer base. It's a land grand, it seems to be on the metadata and who's going to control what. What's happening? What's going on in the market place and what's the update from you guys? >> Yeah, yeah. Last year was an absolutely spectacular year for Trifacta. It was four times growth in bookings, three times growth in customers. You know, it's been really exciting for us to see the technology get in the hands of some of the largest companies on the planet and to see what they're able to do with it. From the very beginning, we really believed in this idea of self service and democratization. We recognize that the wrangling of the data is often where a lot of the time and the effort goes. In fact, up to 80% of the time and effort goes in a lot of these analytic projects and to the extent that we can help take the data from (mumbles) in a more productive way and to allow more people in an organization to do that. That's going to create information agility that that we feel really good about and there are customers and they are telling us is having an impact on their use of Big Data and Hadoop. And I think you're seeing that transition where, you know, in the very beginning there was a lot of offloading, a lot of like, hey we're going to grab some cost savings but then in some point, people scratch their heads and said, well, wait a minute. What about the strategic asset that we were building? That was going to change the way people work with the data. Where is that piece of it? And I think as people started figuring out in order to get our (mumbles), we got to have users and use cases on these clusters and the data like itself is not a used case. Tools like Trifacta have been absolutely instrumental and really fueling that maturity in the market and we feel great about what's happening there. >> I want to get some more drilled out before we get to some of these questions for Joe too because I think you mentioned, you got some quotes. I just want to double up a click on that. It always comes up in the business model question for people. What's your business model? >> Sure. >> And doing democratization is really hard. Sometimes democratization doesn't appear until years later so it's one of those elusive things. You see it and you believe it but then making it happen are two different things. >> Yeah, sure. >> So. And appreciate that the vision they-- (mumbles) But ultimately, at the end of the day, that business model comes down to how you organized. Prove points. >> Yup. >> Customers, partnerships. >> Yeah. >> We had Alation on Stephanie (mumbles). Can you share just and connect the dots on the business model? >> Sure. >> With respect to the product, customers, partners. How was that specifically evolving? >> Adam: Sure. >> Give some examples. >> Sure, yeah. And I would say kind of-- we felt from the beginning that, you know, we wanted to turn what was traditionally a very complex messy problem dealing with data, you know, in the user experience problem that was powered by machine learning and so, a lot of it was down to, you know, how we were going to build and architect the technology needed (mumbles) for really getting the power in the hands of the people who know the data best. But it's important, and I think this is often lost in Silicon Valley where the focus on innovation is all around technology to recognize that the business model also has to support democritization so one of the first things we did coming in was to release a free version of the product. So Trifacta Wrangler that is now being used by over 4500 companies, ten of thousands of users and the power of that in terms of getting people something of value that they could start using right away on spreadsheets and files and small data and allowing them to get value but then also for us, the exchange is that we're actually getting a chance to curate at scale usage data across all of these-- >> Is this a (mumbles) product? >> It's a hybrid product. >> Okay. >> So the data stays local. It never leaves their local laptop. The metadata is hashed and put into the cloud and now we're-- >> (mumbles) to that. >> Absolutely. And so now we can use that as training data that actually has more people wrangle, the product itself gets smarter based on that. >> That's good. >> So that's creating real tangible value for customers and for us is a source of very strategic advantage and so we think that combination of the technology innovation but also making sure that we can get this in the hands of users and they can get going and as their problem grows up to be bigger and more complicated, not just spreadsheets and files on the desktop but something more complicated, then we're right there along with them for products that would have been modified. >> How about partnerships with Alation? How they (mumbles)? What are all the deals you got going on there? >> So Alation has been a great partner for us for a while and we've really deepened the integration with the announcements today. We think that cataloging and data wrangling are very complimentary and they're a natural fit. We've got customers like Munich Re, like eBay as well as MarketShare that are using both solutions in concert with one another and so, we really felt that it was natural to tighten that coupling and to help people go from inventorying what's going on in their data legs and their clusters to then cleansing, standardizing. Essentially making it fit for purpose and then ensuring that metadata can roundtrip back into the catalog. And so that's really been an extension of what we're doing also at the technical level with technologies like Cloudera Navigator with Atlas and with the project that Joe's involved with at Berkeley called Ground. So I don't know if you want to talk-- >> Yeah, tell him about Ground. >> Sure. So part of our outlook on this and this speaks to the kind of way that the landscape in the industry's shaping out is that we're not going to see customers buying until it's sort of lock in on the key components of the area for (mumbles). So for example, storage, HD (mumbles). This is open and that's key, I think, for all the players in this base at HTFS. It's not a product from a storage vendor. It's an open platform and you can change vendors along the way and you could role your own and so on. So metadata, to my mind, is going to move in the same direction. That the storage of metadata, the basic component tree that keeps the metadata, that's got to be open to give people the confidence that they're going to pour the basic descriptions of what's in their business and what their people are doing into a place that they know they can count on and it will be vendor neutral. So the catalog vendors are, in my mind, providing a functionality above that basic storage that relates to how do you search the catalog, what does the catalog do for you to suggest things, to suggest data sets that you should be looking at. So that's a value we have on top but below that what we're seeing is, we're seeing Horton and Cloudera coming out with either products re opensource and it's sort of the metadata space and what would be a shame is if the two vendors ended up kind of pointing guns inward and kind of killing the metadata storage. So one of the things that I got interested in as my dual role as a professor at Berkeley and also as a founder of a company in this space was we want to ensure that there's a free open vendor neutral metadata solution. So we began building out a project called Ground which is both a platform for metadata storage that can be sitting underneath catalog vendors and other metadata value adds. And it's also a platform for research much as we did with Spark previously at Berkeley. So Ground is a project in our new lab at Berkeley. The RISELab which is the successor to the AMPLab that gave us Spark. And Ground has now got, you know, collaboratives from Cloudera, from LinkedIn. Capital One has significantly invested in Ground and is putting engineers behind it and contributors are coming also from some startups to build out an open-sourced platform for metadata. >> How old has Ground been around? >> Joe: Ground's been around for about 12 months. It's very-- >> So it's brand new. How do people get involved? >> Brand new. >> Just standard similar to the way the AMPLab was? Just jump in and-- >> Yeah, you know-- >> Go away and-- >> It comes up on GitHub. There's (mumbles) to go download and play with. It's in alpha. And you know, we hope we (mumbles) and the usual opensource still. >> This is interesting. I like this idea because one thing you've been riffing on the cue ball of time is how do you make data addressable? Because ultimately, you know, real time you need to have access to data really really low (mumbles) to see the inside to make it work. Hence the data swamp problem right? So, how do you guys see that? 'Cause now I can just pop in. I can hear the objections. Oh, security! You know. How do you guys see the protections? I'd love to help get my data in there and get something back in return in a community model. Security? Is it the hashing? What's the-- How do you get any security (mumbles)? Or what are the issues? >> Yeah, so I mean the straightforward issues are the traditional issues of authorization and encryption and those are issues that are reasonably well-plumed out in the industry and you can go out and you can take the solutions from people like Clutter or from Horton and those solutions have plugin quite nicely actually to a variety of platforms. And I feel like that level of enterprise security is understood. It's work for vendors to work with that technology so when we went out, we make sure we were carburized in all the right ways at Trifacta to work with these vendors and that we integrated well with Navigator, we integrated with Atlas. That was, you know, there was some labor there but it's understood. There's also-- >> It's solvable basically. >> It's solvable basically and pluggable. There are research questions there which, you know, on another day we could talk about but for instance if you don't trust your cloud hosting service what do you do? And that's like an open area that we're working on at Berkeley. Intel SGX is a really interesting technology and that's based probably a topic for another day. >> But you know, I think it's important-- >> The sooner we get you out of the studio, Paolo Alto would love to drill on that. >> I think it's important though that, you know, when we talk about self service, the first question that comes up is I'm only going to let you self service as far as I can govern what's going on, right? And so I think those things-- >> Restrictions, guard rails-- >> Really going hand in here. >> About handcuffs. >> Yeah so, right. Because that's always a first thing that kind of comes out where people say, okay wait minute now is this-- if I've now got, you know-- you've got an increasing number of knowledge workers who think that is their-- and believe that it is their unalienable right to have access to data. >> Well that's the (mumbles) democratization. That's the top down, you know, governance control point. >> So how do you balance that? And I think you can't solve for one side of that equation without the other, right? And that's really really critical. >> Democratization is anarchization, right? >> Right, exactly. >> Yes, exactly. But it's hard though. I mean, and you look at all the big trends where there was, you know, web one data, web (mumbles), all had those democratization trends but they took six years to play out and I think there might be a more auxiliary with cloud when you point about this new stop. Okay George, go ahead. You might get in there. >> I wanted to ask you about, you know, what we were talking about earlier and what customers are faced with which is, you know, a lot of choice and specialization because building something end to end and having it fully functional is really difficult. So... What are the functional points where you start driving the guard rails in that Ikee cares about and then what are the user experience points where you have critical mass so that the end users then draw other compliant tools in. You with me? On sort of the IT side and the user side and then which tools start pulling those standards? >> Well, I would say at the highest level, to me what's been very interesting especially would be with that's happened in opensource is that people have now gotten accustomed to the idea that like I don't have to go buy a big monolithic stacks where the innovation moves only as fast as the slowest product in the stack or the portfolio. I can grab onto things and I can download them today and be using them tomorrow. And that has, I think, changed the entire approach that companies like Trifacta are taking to how we how we build and release product to market, how we inter operate with partners like Alation and Waterline and how we integrate with the platform vendors like Cloudera, MapR, and Horton because we recognize that we are going to have to be meniacal focused on one piece of this puzzle and to go very very deep but then play incredibly well both, you know, with all the rest of the ecosystem and so I think that is really colored our entire product strategy and how we go to market and I think customers, you know, they want the flexibility to change their minds and the subscription model is all about that, right? You got to earn it every single year. >> So what's the future of (mumbles)? 'Cause that brings up a good point we were kind of critical of Google and you mentioned you guys had-- I saw in some news that you guys were involved with Google. >> Yup. >> Being enterprise ready is not just, hey we have the great tech and you buy from us, damn it we're Google. >> Right. >> I mean, you have to have sales people. You have to have automation mechanism to create great product. Will the future of wrangling and data prep go into-- where does it end up? Because enterprises want, they want certain things. They're finicky of things. >> Right, right. >> As you guys know. So how does the future of data prep deal with the, I won't say the slowness of the enterprise, but they're more conservative, more SLA driven than they are price performance. >> But they're also more fragmented than ever before and you know, while that may not be a great thing for the customers for a company that's all about harmonizing data that's actually a phenomenal opportunity, right? Because we want to be the decision that customers make that guarantee that all their other decisions are changeable, right? And I go and-- >> Well they have legacy systems of record. This is the challenge, right? So I got the old oracle monolithic-- >> That's fine. And that's good-- >> So how do you-- >> The more the merrier, right? >> Does that impact you guys at all? How did you guys handle that situation? >> To me, to us that is more fragmentation which creates more need for wrangling because that introduces more complexity, right? >> You guys do well in that environment. >> Absolutely. And that, you know, is only getting bigger, worse, and more complicated. And especially as people go from (mumbles) to cloud as people start thinking about moving from just looking at transactions to interactions to now looking at behavior data and the IOT-- >> You're welcome in that environment. >> So we welcome that. In fact, that's where-- we went to solve this problem for Hadoop and Big Data first because we wanted to solve the problems at scale that were the most complicated and over time we can always move downstream to sort of more structured and smaller data and that's kind of what's happened with our business. >> I guess I want to circle back to this issue of which part of this value chain of refining data is-- if I'm understanding you right, the data wrangling is the anchor and once a company has made that choice then all the other tool choices have to revolve around it? Is that a-- >> Well think about this way, I mean, the bulk of the time when you talk to the analysts and also the bulk of the labor cost and these things isn't getting the data from its raw form into usage. That whole process of wrangling which is not really just data prep. It's all the things you do all day long to kind of massage these data sets and get 'em from here to there and make 'em work. That space is where the labor cost is. That also means that's spaces were the value add is because that's where your people power or your business context is really getting poured in to understand what do I have, what am I doing with it and what do I want to get out of it. As we move from bottom line IT to top line value generation with data, it becomes all the more so, right? Because now it's not just the matter of getting the reports out every month. It's also what did that brilliant in sales do to that dataset to get that much left? I need to learn from her and do a similar thing. Alright? So, that whole space is where the value is. What that means is that, you know, you don't want that space to be tied to a particular BI tool or a particular execution edge. So when we say that we want to make a decision in the middle of that enables all the other decisions, what you really want to make sure is that that work process in there is not tightly bound to the rest of the stack. Okay? And so you want to particularly pick technologies in that space that will play nicely with different storage, that play nicely with different execution environments. Today it's a dupe, tomorrow it's Amazon, the next day it's Google and they have different engines back there potentially. And you want it certainly makes your place with all the analytic and visualizations-- >> So decouple from all that? >> You want to decouple that and you want to not lock yourself in 'cause that's where the creativity's happening on the consumption side and that's where the mess that you talked about is just growing on the production side so data production is just getting more complicated. Data consumption's getting more interesting. >> That's actually a really really cool good point. >> Elaborating on that, does that mean that you have to open up interfaces with either the UI layer or at the sort of data definition layer? Or does that just mean other companies have to do the work to tie in to the styles? The styles and structures that you have already written? >> In fact it's sort of the opposite. We do the work to tie in to a lot of this, these other decisions in this infrastructure, you know. We don't pretend for a minute that people are going to sort of pick a solution like Trifacta and then build their organization around it. As your point, there's tons of legacy, technology out there. There is all kinds of things moving. Absolutely. So we, a big part of being the decoder ring for data for Trifacta and saying it's like listen, we are going to inter operate with your existing investments and we're going to make sure that you can always get at your data, you can always take it from whatever state its in to whatever state you need to be in, you can change your mind along the way. And that puts a lot of owners on us and that's the reason why we have to be so focused on this space and not jump into visualization and analytics and not jump in to its storage and processing and not try to do the other things to the right or left. Right? >> So final question. I'd like you guys both to take a stab at it. You know, just going to pivot off at what Joe was saying. Some of the most interesting things are happening in the data exploration kind of discovery area from creativity to insights to game changing stuff. >> Yup. >> Ventures potentially. >> Joe: Yup. >> The problem of the complexity, that's conflict. >> Yeah. >> So how does we resolve this? I mean, besides the Trifacta solution which you guys are taming, creating a platform for that, how do people in industry work together to solve that problem? What's the approach? >> So I think actually there's a couple sort of heartening trends on this front that make me pretty optimistic. One of these is that the inside of structures are in the enterprises we work with becoming quite aligned between IT and the line of business. It's no longer the case that the line of business that are these annoying people that they're distracting IT from their bottom line function. IT's bottom line function is being translated into a what's your value for the business question? And the answer for a savvy IT management person is, I will try to empower the people around me to be rabid fans and I will also try to make sure that they do their own works so I don't have to learn how to do it for them. Right? And so, that I think is happening-- >> Guys to this (mumbles) business guys, a bunch of annoying guys who don't get what I need, right? So it works both ways, right? >> It does, it does. And I see that that's improving sort of in the industry as the corporate missions around data change, right? So it's no longer that the IT guys really only need to take care of executives and everyone else doesn't matter. Their function really is to serve the business and I see that alignment. The other thing that I think is a huge opportunity and the part of who I-- we're excited to be so tightly coupled with Google and also have our stuff running in Amazon and at Microsoft. It's as people read platform to the cloud, a lot of legacy becomes a shed or at least become deprecated. And so there is a real-- >> Or containerized or some sort of microservice. >> Yeah. >> Right, right. >> And so, people are peeling off business function and as part of that cost savings to migrate it to the cloud, they're also simplified. And you know, things will get complicated again. >> What's (mumbles) solution architects out there that kind of re-boot their careers because the old way was, hey I got networks, I got apps and stacks and so that gives the guys who could be the new heroes coming in. >> Right. >> And thinking differently about enabling that creativity. >> In the midst of all that, everything you said is true. IT is a massive place and it always will be. And tools that can come in and help are absolutely going to be (mumbles). >> This is obvious now. The tension's obviously eased a bit in the sense that there's clear line of sight that top line and bottom line are working together now on. You mentioned that earlier. Okay. Adam, take a stab at it. (mumbling) >> I was just going to-- hey, I know it's great. I was just going to give an example, I think, that illustrates that point so you know, one of our customers is Pepsi. And Pepsi came to us and they said, listen we work with retailers all over the world and their reality is that, when they place orders with us, they often get it wrong. And sometimes they order too much and then they return it, it spoils and that's bad for us. Or they order too little and they stock out and we miss revenue opportunities. So they said, we actually have to be better at demand planning and forecasting than the orders that are literally coming in the door. So how do we do that? Well, we're getting all of the customers to give us their point of sale data. We're combining that with geospatial data, with weather data. We're like looking at historical data and industry averages but as you can see, they were like-- we're stitching together data across a whole variety of sources and they said the best people to do this are actually the category managers and the people responsible for the brands 'cause they literally live inside those businesses and they understand it. And so what happened was they-- the IT organization was saying, look listen, we don't want to be the people doing the janitorial work on the data. We're going to give that work over to people who understand it and they're going to be more productive and get to better outcomes with that information and that brings us up to go find new and interesting sources and I think that collaborative model that you're starting to see emerge where they can now be the data heroes in a different way by not being the ones beating the bottleneck on provisioning but rather can go out and figure out how do we share the best stuff across the organization? How do we find new sources of information to bring in that people can leverage to make better decisions? That's in incredibly powerful place to be and you know, I think that that model is really what's going to be driving a lot of the thinking at Trifacta and in the industry over the next couple of years. >> Great. Adam Wilson, CEO of Trifacta. Joe Hellestein, CTO-- Chief Strategy Officer of Trifacta and also a professor at Berkeley. Great story. Getting the (mumbles) right is hard but under the hood stuff's complicated and again, congratulations about sharing the Ground project. Ground open source. Open source lab kind of thing at-- in Berkeley. Exciting new stuff. Thanks so much for coming on theCUBE. I appreciate great conversation. I'm John Furrier, George Gilbert. You're watching theCUBE here at Big Data SV in conjunction with Strata and Hadoop. Thanks for watching. >> Great. >> Thanks guys.

Published Date : Mar 16 2017

SUMMARY :

It's theCUBE covering Big Data Silicon Valley 2017. and Adam Wilson, the CEO. that have the (mumbles) in the about section Okay, so a big year for you guys. and what's the update from you guys? and really fueling that maturity in the market in the business model question for people. You see it and you believe it but then that business model comes down to how you organized. on the business model? With respect to the product, customers, partners. that the business model also has to support democritization So the data stays local. the product itself gets smarter and files on the desktop but something more complicated, and to help people go from inventorying that relates to how do you search the catalog, It's very-- So it's brand new. and the usual opensource still. I can hear the objections. and that we integrated well with Navigator, There are research questions there which, you know, The sooner we get you out and believe that it is their unalienable right That's the top down, you know, governance control point. And I think you can't solve for one side of that equation and I think there might be a more auxiliary with cloud so that the end users then draw other compliant tools in. and how we go to market and I think customers, you know, I saw in some news that you guys hey we have the great tech and you buy from us, I mean, you have to have sales people. So how does the future of data prep deal with the, So I got the old oracle monolithic-- And that's good-- in that environment. and the IOT-- You're welcome in that and that's kind of what's happened with our business. the bulk of the time when you talk to the analysts and you want to not lock yourself in and that's the reason why we have to be in the data exploration kind of discovery area The problem of the complexity, in the enterprises we work with becoming quite aligned And I see that that's improving sort of in the industry as or some sort of microservice. and as part of that cost savings to migrate it to the cloud, so that gives the guys who could be In the midst of all that, everything you said is true. in the sense that there's clear line of sight and in the industry over the next couple of years. and again, congratulations about sharing the Ground project.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Joe HellersteinPERSON

0.99+

GeorgePERSON

0.99+

JoePERSON

0.99+

George GilbertPERSON

0.99+

Joe HellesteinPERSON

0.99+

John FurrierPERSON

0.99+

TrifactaORGANIZATION

0.99+

PepsiORGANIZATION

0.99+

Adam WilsonPERSON

0.99+

AdamPERSON

0.99+

MicrosoftORGANIZATION

0.99+

WaterlineORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

BerkeleyLOCATION

0.99+

Silicon ValleyLOCATION

0.99+

San Jose, CaliforniaLOCATION

0.99+

AlationORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

StephaniePERSON

0.99+

HortonORGANIZATION

0.99+

LinkedInORGANIZATION

0.99+

six yearsQUANTITY

0.99+

oneQUANTITY

0.99+

MapRORGANIZATION

0.99+

tomorrowDATE

0.99+

Capital OneORGANIZATION

0.99+

first questionQUANTITY

0.99+

TodayDATE

0.99+

OneQUANTITY

0.99+

Last yearDATE

0.99+

two executivesQUANTITY

0.99+

TrifactaPERSON

0.99+

ClouderaORGANIZATION

0.99+

one pieceQUANTITY

0.98+

both solutionsQUANTITY

0.98+

todayDATE

0.98+

over 4500 companiesQUANTITY

0.98+

IntelORGANIZATION

0.98+

both waysQUANTITY

0.98+

bothQUANTITY

0.98+

three foundersQUANTITY

0.97+

two vendorsQUANTITY

0.97+

first sitesQUANTITY

0.97+

GroundORGANIZATION

0.97+

Munich ReORGANIZATION

0.97+

about 12 monthsQUANTITY

0.97+

NYCLOCATION

0.96+

first thingQUANTITY

0.96+

four timesQUANTITY

0.96+

eBayORGANIZATION

0.95+

WikibonORGANIZATION

0.95+

Paolo AltoPERSON

0.95+

next dayDATE

0.95+

three timesQUANTITY

0.94+

ten of thousands of usersQUANTITY

0.93+

one sideQUANTITY

0.93+

years laterDATE

0.92+

Adam Wilson and Suresh Vittal, Alteryx


 

>>Okay. We're here with the rest of the child who was the chief product officer at Altryx and Adam Wilson, the CEO of Trifacta. Now of course, part of Altryx just closed this quarter. Gentlemen. Welcome. >>Great to be here. >>Okay. So rest, let me start with you. In my opening remarks, I talked about Altrix is traditional position serving business analysts and how the hyper Anna acquisition brought you deeper into the business user space. What does Trifacta bring to your portfolio? Why'd you buy the company? >>Yeah. Thank you. Thank you for the question. Um, you know, we see, uh, we see a massive opportunity of helping, um, brands, um, democratize the use of analytics across their business. Um, every knowledge worker, every individual in the company should have access to analytics. It's no longer optional, um, as they navigate, uh, their businesses with that in mind, you know, we know designer and are the products that Ultrix has been selling the past decade or so do a really great job, um, addressing the business analysts, uh, with, um, hyperaware, um, now kind of renamed, um, Altrix auto insights. Uh, we even speak with the, uh, business owner of the line of business owner. Who's looking for insights that aren't real in traditional dashboards and so on. Um, but we see this opportunity of really helping the data engineering teams and it organizations, um, to also make better use of analytics. Um, and that's where the drive factor comes in for us. Um, drive factor has the best data engineering cloud in the planet. Um, they have an established track record of working across multiple cloud platforms and helping data engineers, um, do better data pipelining and work better with, uh, this massive kind of cloud transformation that's happening in every business. Um, and so Trifacta made so much sense for us. >>Yeah. Thank you for that. I mean, look, you could have built it yourself. Would've taken, you know, who knows how long, but, uh, so definitely a great time to market move, Adam. I wonder if we could dig into Trifacta some more, I mean, I remember interviewing Joe Hellerstein in the early days. You've talked about this as well, uh, on the cube coming at the problem of taking data from raw refined to an experience point of view. And Joe in the early days, talked about flipping the model and starting with data visualization, something Jeff, her was expert at. So maybe explain how we got here. We used to have this cumbersome process of ETL and you may be in some others changed that model with ELL and then T explain how Trifacta really changed the data engineering game. >>Yeah, that's exactly right. Uh, David, it's been a really interesting journey for us because I think the original hypothesis coming out of the campus research, uh, at Berkeley and Stanford that really birthed Trifacta was, you know, why is it that the people who know the data best can't do the work? You know, why is this become the exclusive purview of the highly technical and, you know, can we rethink this and make this a user experience, problem powered by machine learning that will take some of the more complicated things that people want to do with data and really helped to automate those. So, so a, a broader set of users can, um, can really see for themselves and help themselves. And, and I think that, um, there was a lot of pent up frustration out there because people have been told for, you know, for a decade now to be more data-driven and then the whole time they're saying, well, then give me the data, you know, in the shape that I can use it with the right level of quality and I'm happy to be, but don't tell me to be more data driven and then, and, and not empower me, um, to, to get in there and to actually start to work with the data in meaningful ways. >>And so, um, that was really, you know, what, you know, the origin story of the company. And I think as, as we, um, you know, saw over the course of the last 5, 6, 7 years that, um, you know, a real, uh, excitement to embrace this idea of, of trying to think about data engineering differently, trying to democratize the, the ETL process and to also leverage all of these exciting new, uh, engines and platforms that are out there that allow for processing, you know, ever more diverse data sets, ever larger data sets and new and interesting ways. And that's where a lot of the push down or the ELT approaches that, you know, I think it could really won the day. Um, and that, and that for us was a hallmark of the solution from the very beginning. >>Yeah, this is a huge point that you're making. This is first of all, there's a large business, it's probably about a hundred billion dollar Tam. Uh, and the, the point you're making is we've looked, we've contextualized most of our operational systems, but the big data pipelines hasn't gotten there. And maybe we could talk about that a little bit because democratizing data is Nirvana, but it's been historically very difficult. You've got a number of companies it's very fragmented and they're all trying to attack their little piece of the problem to achieve an outcome, but it's been hard. And so what's going to be different about Altryx as you bring these puzzle pieces together, how is this going to impact your customers who would like to take that one? >>Yeah, maybe, maybe I'll take a crack at it. And Adam will, um, add on, um, you know, there hasn't been a single platform, uh, for analytics automation in the enterprise, right? People have relied on, uh, different products, um, to solve kind of, uh, smaller problems, um, across this analytics, automation, data transformation domain. Um, and, um, I think uniquely altereds has that opportunity. Uh, we've got 7,000 plus customers who rely on analytics for, um, data management, for analytics or AI and ML, uh, for transformations, uh, for reporting and visualization for automated insights and so on. And so by bringing drive factor, we have the opportunity to scale this even further and solve for more use cases, expand the scenarios where it's gets applied and so multiple personas. Um, and now we just talked about the data engineers. They are really a growing stakeholder in this transformation of data and analytics. >>Yeah, good. Maybe we can stay on this for a minute cause you, you you're right. You bring it together. Now that at least 3% is the business analyst, the end user slash business user. And now the data engineer, which is really out of an it role in a lot of companies, and you've used this term, the data engineering cloud, what is that, how is it going to integrate in with, or support these other personas? And, and how's it going to integrate into the broader ecosystem of clouds and cloud data warehouses or any other data stores? >>Yeah, no, that's great. Uh, yeah, I think for us, we really looked at this and said, you know, we want to build an open and interactive cloud platform for data engineers, you know, to collaboratively profile pipeline, um, and prepare data for analysis. And that really meant collaborating with the analysts that were in the line of business. And so this is why a big reason why this combination is so magic because ultimately if we can get the data engineers that are creating the data products together with the analysts that are, uh, in the line of business that are driving a lot of the decision-making and allow for that, what I would describe as collaborative curation of the data together, so that you're starting to see, um, uh, you know, increasing returns to scale as this, uh, as this rolls out. I just think that is an incredibly powerful combination and, and frankly, something that the market has not cracked the code on yet. And so, um, I think when we, when I sat down with Suresh and with mark and the team at Ultrix, that was really part of the, the, the big idea, the big vision that that was painted and, and got us really energized about the acquisition and about the potential of the combination. >>Yeah. And you're really, you're obviously riding the cloud and the cloud native wave. Um, and, but specifically we're seeing, you know, I almost don't even want to call it a data warehouse anyway, because when you look at what's, for instance, snowflake is doing, of course their marketing is around the data cloud, but I actually think there's real justification for that because it's not like the traditional data warehouse, right. It's, it's simplified get there fast, don't necessarily have to go through the central organization to share data. Uh, and, and, and, but it's really all about simplification, right? Isn't that really what the democratization comes down to. >>Yeah. It's simplification and collaboration. Right. I don't want to, I want to kind of just, um, what Adam said resonates with me deeply, um, analytics is one of those, um, massive disciplines, an enterprise that's really had the weakest of tools. Um, and we just have interfaces to collaborate with, and I think truly this was Alteryx's and a superpower was helping the analysts get more out of their data, get more out of the analytics, like imagine a world where these people are collaborating and sharing insights in real time and sharing workflows and getting access to new data sources, um, understanding data models better, I think, um, uh, curating those insights. I boring Adam's phrase again. Um, I think that creates a real value inside the organization, uh, because frankly in scaling analytics and democratizing analytics and data, we're still in such early phases of this journey. >>So how should we think about designer cloud, which is from Altryx it's really been the on-prem and the server desktop offering. And of course Trifacta is with cloud cloud data warehouses. Right. Uh, how, how should we think about those two products? >>Yeah, I think, I think you should think about them and, uh, um, as, as very complimentary right design a cloud really shares a lot of DNA and heritage with, uh, designer desktop, um, the low code tooling and that interface, uh, that really appeals to the business analysts, um, and gets a lot of the things that they do well, we've also built it with interoperability in mind, right. So if you started building your workflows in designer desktop, you want to share that with design and cloud, we want to make it super easy for you to do that. Um, and I think over time now we're only a week into, um, this Alliance with, um, with Trifacta. Um, I think we have to get deeper inside to think about what does the data engineer really need what's business analysts really need and how to design a cloud, and Trifacta really support both of those requirements, uh, while kind of continue to build on the tri-factor on the amazing tri-factor cloud platform. >>You know, >>I was just going to say, I think that's one of the things that, um, you know, creates a lot of, uh, opportunity as we go forward, because ultimately, you know, Trifacta took a platform, uh, first mentality to everything that we built. So thinking about openness and extensibility and, um, and how over time people could build things on top of, by factor that are a variety of analytic tool chain, or analytic applications. And so, uh, when you think about, um, Ultrix now starting to, uh, to move some of its capabilities or to provide additional capabilities, uh, in the cloud, um, you know, Trifacta becomes a platform that can accelerate, you know, all of that work and create, uh, uh, a cohesive set of, of cloud-based services that, um, share a common platform. And that maintains independence because both companies, um, have been, uh, you know, fiercely independent, uh, and really giving people choice. >>Um, so making sure that whether you're, uh, you know, picking one cloud platform and other, whether you're running things on the desktop, uh, whether you're running in hybrid environments, that, um, no matter what your decision, um, you're always in a position to be able to get out your data. You're always in a position to be able to cleanse transform shape structure, that data, and ultimately to deliver, uh, the analytics that you need. And so I think in that sense, um, uh, you know, this, this again is another reason why the combination, you know, fits so well together, giving people, um, the choice. Um, and as they, as they think about their analytics strategy and their platform strategy going forward, >>Yeah. I make a chuckle, but I, one of the reasons I always liked Altryx is cause you kinda did the little end run on it. It can be a blocker sometimes, but that created problems, right? Because the current organization said, wow, there's big data stuff is taken off, but we need security. We need governance. And, and it was interesting because he got, you know, ETTL has been complex, whereas the visualization tools, they really, you know, really weren't great at governance and security. It took some time there. So that's not, not their heritage. You're bringing those worlds together. And I'm interested, you guys just had your sales kickoff, you know, what was their reaction like, uh, maybe Suresh, you could start off and maybe Adam, you could bring us home. >>Yeah. Um, thanks for asking about our sales kickoff. So we met for the first time and kind of two years, right. For, as, as it is for many of us, um, in person, uh, um, which I think was, uh, was a real breakthrough as Qualtrics has been on its transformation journey. Uh, we had a Trifacta to, um, the, the party such as the tour, um, and getting all of our sales teams and product organizations, um, to meet in person in one location. I thought that was very powerful for us, the company. Uh, but then I tell you, um, um, the reception for Trifacta was beyond anything I could have imagined. Uh, we were working Adam and I were working so hard on, on the deal and the core hypothesis and so on. And then you step back and you kind of share the vision, uh, with the field organization and it blows you away, the energy that it creates among our sellers, our partners, and I'm sure Adam will, and his team were mocked every single day with questions and opportunities to bring them in. >>But Adam, maybe he's chair. Yeah, I know it was, uh, it was through the roof. I mean, uh, uh, the, uh, the amount of energy, the, uh, certainly how welcoming everybody was, uh, uh, you know, just, I think the story makes so much sense together. I think culturally, the company is, are very aligned. Um, and, uh, it was a real, uh, real capstone moment, uh, to be able to complete the acquisition and to, and to close and announced, you know, at the kickoff event. And, um, I think, you know, for us, when we really thought about it, you know, when we ended the story, that we was just, you have this opportunity to really cater to what the end-users, you know, care about, which is a lot about interactivity and self-service, and at the same time. And that's, and that's a lot of the goodness that, um, that Ultrix has brought, you know, through, you know, you know, years and years of, of building a very vibrant community of, you know, thousands, hundreds of thousands of users. >>And on the other side, you know, Trifacta bringing in this data engineering focus, that's really about, uh, the governance things that you mentioned and the openness, um, that, that it cares deeply about. And all of a sudden, now you have a chance to put that together into a complete story where the data engineering cloud and analytics, automation, you know, coming together. And, um, and I just think, you know, the lights went on, um, you know, for people instantaneously and, you know, this is a story that, um, that I think the market is really hungry for. And certainly the reception we got from, uh, from the broader team at kickoff was, uh, was a great indication of that. >>Well, I think the story hangs together really well, you know, one of the better ones I've seen in, in this space, um, and, and you guys coming off a really, really strong quarter. So congratulations on that Jensen. We have to leave it there. I really appreciate your time today. Yeah. Take a look at this short video. And when we come back, we're going to dig into the ecosystem and the integration into cloud data warehouses and how leading organizations are creating modern data teams and accelerating their digital businesses. You're watching the cube, your leader in enterprise tech coverage.

Published Date : Mar 1 2022

SUMMARY :

the CEO of Trifacta. serving business analysts and how the hyper Anna acquisition brought you deeper into the Um, you know, we see, uh, we see a massive opportunity Would've taken, you know, who knows how long, um, there was a lot of pent up frustration out there because people have been told for, you know, And so, um, that was really, you know, what, you know, the origin story of the company. about Altryx as you bring these puzzle pieces together, how is this going to impact your customers who um, you know, there hasn't been a single platform, And now the data engineer, which is really Uh, yeah, I think for us, we really looked at this and said, you know, and, but specifically we're seeing, you know, I almost don't even want to call it a data warehouse Um, and we just have interfaces to collaborate And of course Trifacta is with cloud cloud data warehouses. Yeah, I think, I think you should think about them and, uh, um, as, as very complimentary in the cloud, um, you know, Trifacta becomes a platform that can you know, this, this again is another reason why the combination, you know, fits so well together, and it was interesting because he got, you know, ETTL has been complex, And then you step back and you kind of share the vision, uh, And, um, I think, you know, for us, when we really thought about it, you know, when we ended the story, And on the other side, you know, Trifacta bringing in this data engineering focus, Well, I think the story hangs together really well, you know, one of the better ones I've seen in, in this space,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AdamPERSON

0.99+

Suresh VittalPERSON

0.99+

AltryxORGANIZATION

0.99+

Joe HellersteinPERSON

0.99+

DavidPERSON

0.99+

AltrixORGANIZATION

0.99+

JeffPERSON

0.99+

TrifactaORGANIZATION

0.99+

JoePERSON

0.99+

UltrixORGANIZATION

0.99+

Adam WilsonPERSON

0.99+

thousandsQUANTITY

0.99+

SureshPERSON

0.99+

QualtricsORGANIZATION

0.99+

two yearsQUANTITY

0.99+

two productsQUANTITY

0.99+

todayDATE

0.99+

markPERSON

0.98+

a weekQUANTITY

0.98+

bothQUANTITY

0.97+

JensenPERSON

0.97+

TrifactaPERSON

0.97+

both companiesQUANTITY

0.97+

firstQUANTITY

0.96+

BerkeleyORGANIZATION

0.95+

7,000 plus customersQUANTITY

0.95+

7 yearsQUANTITY

0.95+

first timeQUANTITY

0.95+

about a hundred billion dollarQUANTITY

0.94+

oneQUANTITY

0.92+

6QUANTITY

0.92+

single platformQUANTITY

0.9+

5QUANTITY

0.9+

at least 3%QUANTITY

0.89+

StanfordORGANIZATION

0.87+

past decadeDATE

0.86+

this quarterDATE

0.85+

AlteryxORGANIZATION

0.83+

one locationQUANTITY

0.82+

one cloudQUANTITY

0.77+

ELLORGANIZATION

0.74+

hundreds of thousands of usersQUANTITY

0.73+

ETTLORGANIZATION

0.73+

minuteQUANTITY

0.72+

single dayQUANTITY

0.66+

NirvanaORGANIZATION

0.63+

a decadeQUANTITY

0.62+

Jay Henderson, Alteryx


 

(upbeat music) >> Okay, we're kicking off the program with our first segment. Jay Henderson is the vice president of product management at Alteryx. And we're going to talk about the trends and data where we came from, how we got here, where we're going. We got some launch news. Hello, Jay, welcome to theCUBE. >> Great to be here. Really excited to share some of the things we're working on. >> Yeah, thank you. So look, you have a deep product background, product management, product marketing. You've done strategy work. You've been around software and data your entire career, and we're seeing the collision of software, data, cloud, machine intelligence. Let's start with the customer and maybe we can work back from there. So if you're an analytics or a data executive at an organization, Jay, what's your north star? Where are you trying to take your company from a data and analytics point of view? >> Yeah, I mean, look, I think all organizations are really struggling to get insights out of their data. I think one of the things that we see is you've got digital exhaust creating large volumes of data. Storage is really cheap, so it doesn't cost them much to keep it. And that results in a situation where the organization's drowning in data, but somehow still starving for insights. And so I think, you know, when I talk to customers, they're really excited to figure out how they can put analytics in the hands of every single person in their organization, and really start to democratize the analytics and you know, let the business users and the whole organization get value out of all that data they have. >> And we're going to dig into that throughout this program. And data, I like to say is plentiful. Insights, not always so much. Tell us about your launch today, Jay. And thinking about the trends that just highlighted, the direction that your customers want to go, and the problems that you're solving. What role does the cloud play, and what is what you're launching, how does that fit in? >> Yeah, we're really excited today we're launching the Alteryx analytics cloud. That's really a portfolio of cloud-based solutions that have all been built from the ground up to be cloud native, and to take advantage of things like browser based access. So that it's really easy to give anyone access including folks on a Mac. It also lets you take advantage of elastic compute, so that you can do, you know, in database processing and cloud native solutions that are going to scale to solve the most complex problems. So we've got a portfolio of solutions, things like designer cloud, which is our flagship designer product in a browser and on the cloud. We've got Alteryx machine learning which helps up-skill, regular, old analyst, with advanced machine learning capabilities. We've got auto insights, which brings business users into the fold and automatically unearths insights using AI and machine learning. And we've got our latest edition which is Trifacta, that helps data engineers do data pipelining, and really, you know, create a lot of the underlying data sets that are used in some of this downstream analytics. >> So let's dig into some of those roles, if we could a little bit. I mean, traditionally Alteryx has served the the business analysts, and that's what designer cloud is fit for, I believe. And you've explained kind of the scope. Sorry, you've expanded that scope into the to the business user with Hyper Anna. And in a moment, we're going to talk to Adam Wilson and Suresh, about Trifacta. And that recent acquisition takes you as you said into the data engineering space and IT, but in thinking about the business analyst role, what's unique about designer cloud and how does it help these individuals? >> Yeah, I mean, really I go back to some of the feedback we've had from our customers which is, you know, they oftentimes have dozens or hundreds of seats of our designer desktop product. Really as they look to take the next step, they're trying to figure out, how do I give access to that, those types of analytics to thousands of people within the organization. And designer cloud is really great for that. You've got the browser based interface. So if folks are on a Mac, they can really easily just pop open the browser and get access to all of those prep and blend capabilities to a lot of the analysis we're doing. It's a great way to scale up access to the analytics and start to put it in the hands of really anyone in the organization, not just those highly skilled power users. >> Okay, great. So now then you add in the Hyper Anna acquisition. So now you're targeting the business user, Trifacta comes into the mix, that deeper IT angle that we talked about. How does this all fit together? How should we be thinking about the new Alteryx portfolio? >> Yeah, I mean, I think it's pretty exciting. When you think about democratizing analytics and providing access to all these different groups of people, you've not been able to do it through one platform before. It's not going to be one interface that meets the needs of all these different groups within the organization, you really do need purpose built specialized capabilities for each group. And finally today with the announcement of the Alteryx analytics cloud, we brought together all of those different capabilities, all of those different interfaces into a single end to end application. So, really finally delivering on the promise of providing analytics to all. >> How much of this have you been able to share with your customers and maybe your partners? I mean, I know all this is fairly new but have you been able to get any feedback from them? What are they saying about it? >> Yeah, I mean, it's pretty amazing. We ran early access and limited availability program, that let us put a lot of this technology in the hands of over 600 customers. >> Oh, wow. >> Over the last few months. So we have gotten a lot of feedback. I tell you, it's been overwhelmingly positive. I think organizations are really excited to unlock the insights that have been hidden in all this data they've got. They're excited to be able to use analytics in every decision that they're making so that the decisions they have are more informed and produce better business outcomes. And this idea that they're going to move from, you know, dozens to hundreds or thousands of people who have access to these kinds of capabilities, I think has been a really exciting thing that is going to accelerate the transformation that these customers are on. >> That's good. Those are good numbers for a preview mode. Let's talk a little bit about vision. So if democratizing data is the ultimate goal, which frankly has been elusive for most organizations. Over time, how's your cloud going to address the challenges of putting data to work across the entire enterprise? >> Yeah, I mean, I tend to think about the future and some of the investments we're making in our products and our roadmap across four big themes. And these are really kind of enduring themes that you're going to see us making investments in over the next few years. The first is having cloud centricity. The data gravity has been moving to the cloud. We need to be able to provide access, to be able to ingest and manipulate that data, to be able to write back to it to provide cloud solutions. So, the first one is really around cloud centricity. The second is around big data fluency. Once you have all of that data you need to be able to manipulate it in a performant manner. So, having the elastic cloud infrastructure and in-database processing is so important. The third is around making AI a strategic advantage. So, you know, getting everyone involved in accessing AI and machine learning to unlock those insights, getting it out of the hands of the small group of data scientists, putting it in the hands of analysts and business users. And then the fourth thing is really providing access across the entire organization, IT and data engineers, as well as business owners and analysts. So, cloud centricity, big data fluency, AI as a strategic advantage, and personas across the organization, are really the the four big themes you're going to see us working on over the next few months and coming years. >> That's good, thank you for that. So on a related question, how do you see the data organizations evolving? I mean, traditionally you've had, you know monolithic organizations, very specialized, or I might even say hyper specialized roles. And your mission, of course, as the customer, you and your customers, they want to democratize the data. And so, it seems logical that domain leaders are going to take more responsibility for data life cycles, for data ownerships, low code becomes more important. And perhaps there's kind of challenges the historically highly centralized and really specialized roles that I just talked about. How do you see that evolving, and what role will Alteryx play? >> Yeah, I think we'll see sort of a more federated system start to emerge. Those centralized groups are going to continue to exist, but they're going to start to empower in a much more decentralized way, the people who are closer to the business problems and have better business understanding. I think that's going to let the centralized highly skilled teams work on problems that are of higher value to the organization. The kinds of problems where one or 2% lift in the model result in millions of dollars a day for the business. And then by pushing some of the analytics out closer to the edge and closer to the business, you'll be able to, you know, apply those analytics in every single decision. So I think you're going to see both the decentralized and centralized model start to work in harmony in a little bit more of a, almost a federated sort of way. And I think the exciting thing for us at Alteryx is, you know, we want to facilitate that. We want to give analytic capabilities and solutions to both groups and types of people. We want to help them collaborate better, and drive business outcomes with the analytics they're using. >> Yeah, I mean, I think my take on it, I wonder if you could comment is, to me the technology should be an operational detail. And it has been the dog that wags the tail or maybe the other way around. You mentioned digital exhaust before. I mean, essentially it's digital exhaust coming out of operational systems that then it somehow eventually end up in the hand of the domain users. And I wonder if increasingly we're going to see those domain users, those line of business experts get more access, that's your goal. And then even go beyond analytics, start to build data products that could be monitized. And that maybe it's going to take a decade to play out, but that is sort of a new era of data. Do you see it that way? >> Absolutely. We're actually making big investments in our products and capabilities to be able to create analytic applications, and to enable somebody who's an analyst or a business user to create an application on top of the data and analytics layers that they have, really to help democratize the analytics, to help pre-package some of the analytics that can drive more insights. So I think that's definitely a trend we're going to see more of. >> Yeah, and to your point, if you confederate the governance and automate that... >> Yep. Absolutely. >> Then that can happen. I mean, that's a key part of it, obviously, so... >> Yep. >> All right, Jay, we have to leave it there. Up next, we take a deep dive into the Alteryx recent acquisition of Trifacta with Adam Wilson, who led Trifacta for more than seven years, and Suresh Vittal, who is the chief product officer at Alteryx, to explain the rationale behind the acquisition, and how it's going to impact customers. Keep it right there. You're watching theCUBE, your leader in enterprise tech coverage. (upbeat music)

Published Date : Mar 1 2022

SUMMARY :

the program with our first segment. some of the things we're working on. and data your entire career, and really start to and the problems that you're solving. that are going to scale to into the to the business and start to put it Trifacta comes into the mix, that meets the needs of all these in the hands of over 600 customers. so that the decisions they cloud going to address and machine learning to are going to take more responsibility I think that's going to let And that maybe it's going to and to enable somebody who's Yeah, and to your point, Yep. Then that can happen. and how it's going to impact customers.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JayPERSON

0.99+

AlteryxORGANIZATION

0.99+

Suresh VittalPERSON

0.99+

Jay HendersonPERSON

0.99+

Adam WilsonPERSON

0.99+

TrifactaORGANIZATION

0.99+

dozensQUANTITY

0.99+

MacCOMMERCIAL_ITEM

0.99+

first segmentQUANTITY

0.99+

more than seven yearsQUANTITY

0.99+

SureshPERSON

0.99+

over 600 customersQUANTITY

0.99+

thirdQUANTITY

0.99+

firstQUANTITY

0.99+

AlteryxPERSON

0.99+

bothQUANTITY

0.99+

each groupQUANTITY

0.99+

one platformQUANTITY

0.99+

hundredsQUANTITY

0.99+

secondQUANTITY

0.98+

thousandsQUANTITY

0.98+

todayDATE

0.98+

one interfaceQUANTITY

0.98+

oneQUANTITY

0.98+

2%QUANTITY

0.97+

hundreds of seatsQUANTITY

0.96+

first oneQUANTITY

0.96+

singleQUANTITY

0.96+

fourth thingQUANTITY

0.94+

Hyper AnnaORGANIZATION

0.93+

both groupsQUANTITY

0.88+

millions of dollars a dayQUANTITY

0.84+

four big themesQUANTITY

0.81+

thousands of peopleQUANTITY

0.79+

yearsDATE

0.74+

theCUBEORGANIZATION

0.7+

lastDATE

0.68+

single decisionQUANTITY

0.66+

single personQUANTITY

0.66+

monthsDATE

0.56+

themesQUANTITY

0.55+

few monthsDATE

0.51+

Accelerating Automated Analytics in the Cloud with Alteryx


 

>>Alteryx is a company with a long history that goes all the way back to the late 1990s. Now the one consistent theme over 20 plus years has been that Ultrix has always been a data company early in the big data and Hadoop cycle. It saw the need to combine and prep different data types so that organizations could analyze data and take action Altrix and similar companies played a critical role in helping companies become data-driven. The problem was the decade of big data, brought a lot of complexities and required immense skills just to get the technology to work as advertised this in turn limited, the pace of adoption and the number of companies that could really lean in and take advantage of the cloud began to change all that and set the foundation for today's theme to Zuora of digital transformation. We hear that phrase a ton digital transformation. >>People used to think it was a buzzword, but of course we learned from the pandemic that if you're not a digital business, you're out of business and a key tenant of digital transformation is democratizing data, meaning enabling, not just hypo hyper specialized experts, but anyone business users to put data to work. Now back to Ultrix, the company has embarked on a major transformation of its own. Over the past couple of years, brought in new management, they've changed the way in which it engaged with customers with the new subscription model and it's topgraded its talent pool. 2021 was even more significant because of two acquisitions that Altrix made hyper Ana and trifecta. Why are these acquisitions important? Well, traditionally Altryx sold to business analysts that were part of the data pipeline. These were fairly technical people who had certain skills and were trained in things like writing Python code with hyper Ana Altryx has added a new persona, the business user, anyone in the business who wanted to gain insights from data and, or let's say use AI without having to be a deep technical expert. >>And then Trifacta a company started in the early days of big data by cube alum, Joe Hellerstein and his colleagues at Berkeley. They knocked down the data engineering persona, and this gives Altryx a complimentary extension into it where things like governance and security are paramount. So as we enter 2022, the post isolation economy is here and we do so with a digital foundation built on the confluence of cloud native technologies, data democratization and machine intelligence or AI, if you prefer. And Altryx is entering that new era with an expanded portfolio, new go-to market vectors, a recurring revenue business model, and a brand new outlook on how to solve customer problems and scale a company. My name is Dave Vellante with the cube and I'll be your host today. And the next hour, we're going to explore the opportunities in this new data market. And we have three segments where we dig into these trends and themes. First we'll talk to Jay Henderson, vice president of product management at Ultrix about cloud acceleration and simplifying complex data operations. Then we'll bring in Suresh Vetol who's the chief product officer at Altrix and Adam Wilson, the CEO of Trifacta, which of course is now part of Altrix. And finally, we'll hear about how Altryx is partnering with snowflake and the ecosystem and how they're integrating with data platforms like snowflake and what this means for customers. And we may have a few surprises sprinkled in as well into the conversation let's get started. >>We're kicking off the program with our first segment. Jay Henderson is the vice president of product management Altryx and we're going to talk about the trends and data, where we came from, how we got here, where we're going. We get some launch news. Well, Jay, welcome to the cube. >>Great to be here, really excited to share some of the things we're working on. >>Yeah. Thank you. So look, you have a deep product background, product management, product marketing, you've done strategy work. You've been around software and data, your entire career, and we're seeing the collision of software data cloud machine intelligence. Let's start with the customer and maybe we can work back from there. So if you're an analytics or data executive in an organization, w J what's your north star, where are you trying to take your company from a data and analytics point of view? >>Yeah, I mean, you know, look, I think all organizations are really struggling to get insights out of their data. I think one of the things that we see is you've got digital exhaust, creating large volumes of data storage is really cheap, so it doesn't cost them much to keep it. And that results in a situation where the organization's, you know, drowning in data, but somehow still starving for insights. And so I think, uh, you know, when I talk to customers, they're really excited to figure out how they can put analytics in the hands of every single person in their organization, and really start to democratize the analytics, um, and, you know, let the, the business users and the whole organization get value out of all that data they have. >>And we're going to dig into that throughout this program data, I like to say is plentiful insights, not always so much. Tell us about your launch today, Jay, and thinking about the trends that you just highlighted, the direction that your customers want to go and the problems that you're solving, what role does the cloud play in? What is what you're launching? How does that fit in? >>Yeah, we're, we're really excited today. We're launching the Altryx analytics cloud. That's really a portfolio of cloud-based solutions that have all been built from the ground up to be cloud native, um, and to take advantage of things like based access. So that it's really easy to give anyone access, including folks on a Mac. Um, it, you know, it also lets you take advantage of elastic compute so that you can do, you know, in database processing and cloud native, um, solutions that are gonna scale to solve the most complex problems. So we've got a portfolio of solutions, things like designer cloud, which is our flagship designer product in a browser and on the cloud, but we've got ultra to machine learning, which helps up-skill regular old analysts with advanced machine learning capabilities. We've got auto insights, which brings a business users into the fold and automatically unearths insights using AI and machine learning. And we've got our latest edition, which is Trifacta that helps data engineers do data pipelining and really, um, you know, create a lot of the underlying data sets that are used in some of this, uh, downstream analytics. >>Let's dig into some of those roles if we could a little bit, I mean, you've traditionally Altryx has served the business analysts and that's what designer cloud is fit for, I believe. And you've explained, you know, kind of the scope, sorry, you've expanded that scope into the, to the business user with hyper Anna. And we're in a moment we're going to talk to Adam Wilson and Suresh, uh, about Trifacta and that recent acquisition takes you, as you said, into the data engineering space in it. But in thinking about the business analyst role, what's unique about designer cloud cloud, and how does it help these individuals? >>Yeah, I mean, you know, really, I go back to some of the feedback we've had from our customers, which is, um, you know, they oftentimes have dozens or hundreds of seats of our designer desktop product, you know, really, as they look to take the next step, they're trying to figure out how do I give access to that? Those types of analytics to thousands of people within the organization and designer cloud is, is really great for that. You've got the browser-based interface. So if folks are on a Mac, they can really easily just pop, open the browser and get access to all of those, uh, prep and blend capabilities to a lot of the analysis we're doing. Um, it's a great way to scale up access to the analytics and then start to put it in the hands of really anyone in the organization, not just those highly skilled power users. >>Okay, great. So now then you add in the hyper Anna acquisition. So now you're targeting the business user Trifacta comes into the mix that deeper it angle that we talked about, how does this all fit together? How should we be thinking about the new Altryx portfolio? >>Yeah, I mean, I think it's pretty exciting. Um, you know, when you think about democratizing analytics and providing access to all these different groups of people, um, you've not been able to do it through one platform before. Um, you know, it's not going to be one interface that meets the, of all these different groups within the organization. You really do need purpose built specialized capabilities for each group. And finally, today with the announcement of the alternates analytics cloud, we brought together all of those different capabilities, all of those different interfaces into a single in the end application. So really finally delivering on the promise of providing analytics to all, >>How much of this you've been able to share with your customers and maybe your partners. I mean, I know OD is fairly new, but if you've been able to get any feedback from them, what are they saying about it? >>Uh, I mean, it's, it's pretty amazing. Um, we ran a early access, limited availability program that led us put a lot of this technology in the hands of over 600 customers, um, over the last few months. So we have gotten a lot of feedback. I tell you, um, it's been overwhelmingly positive. I think organizations are really excited to unlock the insights that have been hidden in all this data. They've got, they're excited to be able to use analytics in every decision that they're making so that the decisions they have or more informed and produce better business outcomes. Um, and, and this idea that they're going to move from, you know, dozens to hundreds or thousands of people who have access to these kinds of capabilities, I think has been a really exciting thing that is going to accelerate the transformation that these customers are on. >>Yeah, those are good. Good, good numbers for, for preview mode. Let's, let's talk a little bit about vision. So it's democratizing data is the ultimate goal, which frankly has been elusive for most organizations over time. How's your cloud going to address the challenges of putting data to work across the entire enterprise? >>Yeah, I mean, I tend to think about the future and some of the investments we're making in our products and our roadmap across four big themes, you know, in the, and these are really kind of enduring themes that you're going to see us making investments in over the next few years, the first is having cloud centricity. You know, the data gravity has been moving to the cloud. We need to be able to provide access, to be able to ingest and manipulate that data, to be able to write back to it, to provide cloud solution. So the first one is really around cloud centricity. The second is around big data fluency. Once you have all of the data, you need to be able to manipulate it in a performant manner. So having the elastic cloud infrastructure and in database processing is so important, the third is around making AI a strategic advantage. >>So, uh, you know, getting everyone involved and accessing AI and machine learning to unlock those insights, getting it out of the hands of the small group of data scientists, putting it in the hands of analysts and business users. Um, and then the fourth thing is really providing access across the entire organization. You know, it and data engineers, uh, as well as business owners and analysts. So, um, cloud centricity, big data fluency, um, AI is a strategic advantage and, uh, personas across the organization are really the four big themes you're going to see us, uh, working on over the next few months and, uh, coming coming year. >>That's good. Thank you for that. So, so on a related question, how do you see the data organizations evolving? I mean, traditionally you've had, you know, monolithic organizations, uh, very specialized or I might even say hyper specialized roles and, and your, your mission of course is the customer. You, you, you, you and your customers, they want to democratize the data. And so it seems logical that domain leaders are going to take more responsibility for data, life cycles, data ownerships, low code becomes more important. And perhaps this kind of challenges, the historically highly centralized and really specialized roles that I just talked about. How do you see that evolving and, and, and what role will Altryx play? >>Yeah. Um, you know, I think we'll see sort of a more federated systems start to emerge. Those centralized groups are going to continue to exist. Um, but they're going to start to empower, you know, in a much more de-centralized way, the people who are closer to the business problems and have better business understanding. I think that's going to let the centralized highly skilled teams work on, uh, problems that are of higher value to the organization. The kinds of problems where one or 2% lift in the model results in millions of dollars a day for the business. And then by pushing some of the analytics out to, uh, closer to the edge and closer to the business, you'll be able to apply those analytics in every single decision. So I think you're going to see, you know, both the decentralized and centralized models start to work in harmony and a little bit more about almost a federated sort of a way. And I think, you know, the exciting thing for us at Altryx is, you know, we want to facilitate that. We want to give analytic capabilities and solutions to both groups and types of people. We want to help them collaborate better, um, and drive business outcomes with the analytics they're using. >>Yeah. I mean, I think my take on another one, if you could comment is to me, the technology should be an operational detail and it has been the, the, the dog that wags the tail, or maybe the other way around, you mentioned digital exhaust before. I mean, essentially it's digital exhaust coming out of operationals systems that then somehow, eventually end up in the hand of the domain users. And I wonder if increasingly we're going to see those domain users, users, those, those line of business experts get more access. That's your goal. And then even go beyond analytics, start to build data products that could be monetized, and that maybe it's going to take a decade to play out, but that is sort of a new era of data. Do you see it that way? >>Absolutely. We're actually making big investments in our products and capabilities to be able to create analytic applications and to enable somebody who's an analyst or business user to create an application on top of the data and analytics layers that they have, um, really to help democratize the analytics, to help prepackage some of the analytics that can drive more insights. So I think that's definitely a trend we're going to see more. >>Yeah. And to your point, if you can federate the governance and automate that, then that can happen. I mean, that's a key part of it, obviously. So, all right, Jay, we have to leave it there up next. We take a deep dive into the Altryx recent acquisition of Trifacta with Adam Wilson who led Trifacta for more than seven years. It's the recipe. Tyler is the chief product officer at Altryx to explain the rationale behind the acquisition and how it's going to impact customers. Keep it right there. You're watching the cube. You're a leader in enterprise tech coverage. >>It's go time, get ready to accelerate your data analytics journey with a unified cloud native platform. That's accessible for everyone on the go from home to office and everywhere in between effortless analytics to help you go from ideas to outcomes and no time. It's your time to shine. It's Altryx analytics cloud time. >>Okay. We're here with. Who's the chief product officer at Altryx and Adam Wilson, the CEO of Trifacta. Now of course, part of Altryx just closed this quarter. Gentlemen. Welcome. >>Great to be here. >>Okay. So let me start with you. In my opening remarks, I talked about Altrix is traditional position serving business analysts and how the hyper Anna acquisition brought you deeper into the business user space. What does Trifacta bring to your portfolio? Why'd you buy the company? >>Yeah. Thank you. Thank you for the question. Um, you know, we see, uh, we see a massive opportunity of helping, um, brands, um, democratize the use of analytics across their business. Um, every knowledge worker, every individual in the company should have access to analytics. It's no longer optional, um, as they navigate their businesses with that in mind, you know, we know designer and are the products that Altrix has been selling the past decade or so do a really great job, um, addressing the business analysts, uh, with, um, hyper Rana now kind of renamed, um, Altrix auto. We even speak with the business owner and the line of business owner. Who's looking for insights that aren't real in traditional dashboards and so on. Um, but we see this opportunity of really helping the data engineering teams and it organizations, um, to also make better use of analytics. Um, and that's where the drive factor comes in for us. Um, drive factor has the best data engineering cloud in the planet. Um, they have an established track record of working across multiple cloud platforms and helping data engineers, um, do better data pipelining and work better with, uh, this massive kind of cloud transformation that's happening in every business. Um, and so fact made so much sense for us. >>Yeah. Thank you for that. I mean, you, look, you could have built it yourself would have taken, you know, who knows how long, you know, but, uh, so definitely a great time to market move, Adam. I wonder if we could dig into Trifacta some more, I mean, I remember interviewing Joe Hellerstein in the early days. You've talked about this as well, uh, on the cube coming at the problem of taking data from raw refined to an experience point of view. And Joe in the early days, talked about flipping the model and starting with data visualization, something Jeff, her was expert at. So maybe explain how we got here. We used to have this cumbersome process of ETL and you may be in some others changed that model with ELL and then T explain how Trifacta really changed the data engineering game. >>Yeah, that's exactly right. Uh, David, it's been a really interesting journey for us because I think the original hypothesis coming out of the campus research, uh, at Berkeley and Stanford that really birth Trifacta was, you know, why is it that the people who know the data best can't do the work? You know, why is this become the exclusive purview of the highly technical? And, you know, can we rethink this and make this a user experience, problem powered by machine learning that will take some of the more complicated things that people want to do with data and really help to automate those. So, so a broader set of, of users can, um, can really see for themselves and help themselves. And, and I think that, um, there was a lot of pent up frustration out there because people have been told for, you know, for a decade now to be more data-driven and then the whole time they're saying, well, then give me the data, you know, in the shape that I could use it with the right level of quality and I'm happy to be, but don't tell me to be more data-driven and then, and, and not empower me, um, to, to get in there and to actually start to work with the data in meaningful ways. >>And so, um, that was really, you know, what, you know, the origin story of the company and I think is, as we, um, saw over the course of the last 5, 6, 7 years that, um, you know, uh, real, uh, excitement to embrace this idea of, of trying to think about data engineering differently, trying to democratize the, the ETL process and to also leverage all these exciting new, uh, engines and platforms that are out there that allow for processing, you know, ever more diverse data sets, ever larger data sets and new and interesting ways. And that's where a lot of the push-down or the ELT approaches that, you know, I think it could really won the day. Um, and that, and that for us was a hallmark of the solution from the very beginning. >>Yeah, this is a huge point that you're making is, is first of all, there's a large business, it's probably about a hundred billion dollar Tam. Uh, and the, the point you're making, because we've looked, we've contextualized most of our operational systems, but the big data pipeline is hasn't gotten there. But, and maybe we could talk about that a little bit because democratizing data is Nirvana, but it's been historically very difficult. You've got a number of companies it's very fragmented and they're all trying to attack their little piece of the problem to achieve an outcome, but it's been hard. And so what's going to be different about Altryx as you bring these puzzle pieces together, how is this going to impact your customers who would like to take that one? >>Yeah, maybe, maybe I'll take a crack at it. And Adam will, um, add on, um, you know, there hasn't been a single platform for analytics, automation in the enterprise, right? People have relied on, uh, different products, um, to solve kind of, uh, smaller problems, um, across this analytics, automation, data transformation domain. Um, and, um, I think uniquely Alcon's has that opportunity. Uh, we've got 7,000 plus customers who rely on analytics for, um, data management, for analytics, for AI and ML, uh, for transformations, uh, for reporting and visualization for automated insights and so on. Um, and so by bringing drive factor, we have the opportunity to scale this even further and solve for more use cases, expand the scenarios where it's applied and so multiple personas. Um, and we just talked about the data engineers. They are really a growing stakeholder in this transformation of data and analytics. >>Yeah, good. Maybe we can stay on this for a minute cause you, you you're right. You bring it together. Now at least three personas the business analyst, the end user slash business user. And now the data engineer, which is really out of an it role in a lot of companies, and you've used this term, the data engineering cloud, what is that? How is it going to integrate in with, or support these other personas? And, and how's it going to integrate into the broader ecosystem of clouds and cloud data warehouses or any other data stores? >>Yeah, no, that's great. Uh, yeah, I think for us, we really looked at this and said, you know, we want to build an open and interactive cloud platform for data engineers, you know, to collaboratively profile pipeline, um, and prepare data for analysis. And that really meant collaborating with the analysts that were in the line of business. And so this is why a big reason why this combination is so magic because ultimately if we can get the data engineers that are creating the data products together with the analysts that are in the line of business that are driving a lot of the decision making and allow for that, what I would describe as collaborative curation of the data together, so that you're starting to see, um, uh, you know, increasing returns to scale as this, uh, as this rolls out. I just think that is an incredibly powerful combination and, and frankly, something that the market is not crack the code on yet. And so, um, I think when we, when I sat down with Suresh and with mark and the team at Ultrix, that was really part of the, the, the big idea, the big vision that was painted and got us really energized about the acquisition and about the potential of the combination. >>And you're really, you're obviously writing the cloud and the cloud native wave. Um, and, but specifically we're seeing, you know, I almost don't even want to call it a data warehouse anyway, because when you look at what's, for instance, Snowflake's doing, of course their marketing is around the data cloud, but I actually think there's real justification for that because it's not like the traditional data warehouse, right. It's, it's simplified get there fast, don't necessarily have to go through the central organization to share data. Uh, and, and, and, but it's really all about simplification, right? Isn't that really what the democratization comes down to. >>Yeah. It's simplification and collaboration. Right. I don't want to, I want to kind of just what Adam said resonates with me deeply. Um, analytics is one of those, um, massive disciplines inside an enterprise that's really had the weakest of tools. Um, and we just have interfaces to collaborate with, and I think truly this was all drinks and a superpower was helping the analysts get more out of their data, get more out of the analytics, like imagine a world where these people are collaborating and sharing insights in real time and sharing workflows and getting access to new data sources, um, understanding data models better, I think, um, uh, curating those insights. I boring Adam's phrase again. Um, I think that creates a real value inside the organization because frankly in scaling analytics and democratizing analytics and data, we're still in such early phases of this journey. >>So how should we think about designer cloud, which is from Altrix it's really been the on-prem and the server desktop offering. And of course Trifacta is with cloud cloud data warehouses. Right. Uh, how, how should we think about those two products? Yeah, >>I think, I think you should think about them. And, uh, um, as, as very complimentary right designer cloud really shares a lot of DNA and heritage with, uh, designer desktop, um, the low code tooling and that interface, uh, the really appeals to the business analysts, um, and gets a lot of the things that they do well, we've also built it with interoperability in mind, right. So if you started building your workflows in designer desktop, you want to share that with design and cloud, we want to make it super easy for you to do that. Um, and I think over time now we're only a week into, um, this Alliance with, um, with, um, Trifacta, um, I think we have to get deeper inside to think about what does the data engineer really need? What's the business analysts really need and how to design a cloud, and Trifacta really support both of those requirements, uh, while kind of continue to build on the trifecta on the amazing Trifacta cloud platform. >>You know, >>I think we're just going to say, I think that's one of the things that, um, you know, creates a lot of, uh, opportunity as we go forward, because ultimately, you know, Trifacta took a platform, uh, first mentality to everything that we built. So thinking about openness and extensibility and, um, and how over time people could build things on top of factor that are a variety of analytic tool chain, or analytic applications. And so, uh, when you think about, um, Ultrix now starting to, uh, to move some of its capabilities or to provide additional capabilities, uh, in the cloud, um, you know, Trifacta becomes a platform that can accelerate, you know, all of that work and create, uh, uh, a cohesive set of, of cloud-based services that, um, share a common platform. And that maintains independence because both companies, um, have been, uh, you know, fiercely independent, uh, and, and really giving people choice. >>Um, so making sure that whether you're, uh, you know, picking one cloud platform and other, whether you're running things on the desktop, uh, whether you're running in hybrid environments, that, um, no matter what your decision, um, you're always in a position to be able to get out your data. You're always in a position to be able to cleanse transform shape structure, that data, and ultimately to deliver, uh, the analytics that you need. And so I think in that sense, um, uh, you know, this, this again is another reason why the combination, you know, fits so well together, giving people, um, the choice. Um, and as they, as they think about their analytics strategy and their platform strategy going forward, >>Yeah. I make a chuckle, but one of the reasons I always liked Altrix is cause you kinda did the little end run on it. It can be a blocker sometimes, but that created problems, right? Because the organization said, wow, this big data stuff has taken off, but we need security. We need governance. And it's interesting because you've got, you know, ETL has been complex, whereas the visualization tools, they really, you know, really weren't great at governance and security. It took some time there. So that's not, not their heritage. You're bringing those worlds together. And I'm interested, you guys just had your sales kickoff, you know, what was their reaction like? Uh, maybe Suresh, you could start off and maybe Adam, you could bring us home. >>Um, thanks for asking about our sales kickoff. So we met for the first time and you've got a two years, right. For, as, as it is for many of us, um, in person, uh, um, which I think was a, was a real breakthrough as Qualtrics has been on its transformation journey. Uh, we added a Trifacta to, um, the, the potty such as the tour, um, and getting all of our sales teams and product organizations, um, to meet in person in one location. I thought that was very powerful for other the company. Uh, but then I tell you, um, um, the reception for Trifacta was beyond anything I could have imagined. Uh, we were working out him and I will, when he's so hot on, on the deal and the core hypotheses and so on. And then you step back and you're going to share the vision with the field organization, and it blows you away, the energy that it creates among our sellers out of partners. >>And I'm sure Madam will and his team were mocked, um, every single day, uh, with questions and opportunities to bring them in. But Adam, maybe you should share. Yeah, no, it was, uh, it was through the roof. I mean, uh, uh, the, uh, the amount of energy, the, uh, certainly how welcoming everybody was, uh, uh, you know, just, I think the story makes so much sense together. I think culturally, the company is, are very aligned. Um, and, uh, it was a real, uh, real capstone moment, uh, to be able to complete the acquisition and to, and to close and announced, you know, at the kickoff event. And, um, I think, you know, for us, when we really thought about it, you know, when we ended, the story that we told was just, you have this opportunity to really cater to what the end users care about, which is a lot about interactivity and self-service, and at the same time. >>And that's, and that's a lot of the goodness that, um, that Altryx is, has brought, you know, through, you know, you know, years and years of, of building a very vibrant community of, you know, thousands, hundreds of thousands of users. And on the other side, you know, Trifacta bringing in this data engineering focus, that's really about, uh, the governance things that you mentioned and the openness, um, that, that it cares deeply about. And all of a sudden, now you have a chance to put that together into a complete story where the data engineering cloud and analytics, automation, you know, coming together. And, um, and I just think, you know, the lights went on, um, you know, for people instantaneously and, you know, this is a story that, um, that I think the market is really hungry for. And certainly the reception we got from, uh, from the broader team at kickoff was, uh, was a great indication. >>Well, I think the story hangs together really well, you know, one of the better ones I've seen in, in this space, um, and, and you guys coming off a really, really strong quarter. So congratulations on that jets. We have to leave it there. I really appreciate your time today. Yeah. Take a look at this short video. And when we come back, we're going to dig into the ecosystem and the integration into cloud data warehouses and how leading organizations are creating modern data teams and accelerating their digital businesses. You're watching the cube you're leader in enterprise tech coverage. >>This is your data housed neatly insecurely in the snowflake data cloud. And all of it has potential the potential to solve complex business problems, deliver personalized financial offerings, protect supply chains from disruption, cut costs, forecast, grow and innovate. All you need to do is put your data in the hands of the right people and give it an opportunity. Luckily for you. That's the easy part because snowflake works with Alteryx and Alteryx turns data into breakthroughs with just a click. Your organization can automate analytics with drag and drop building blocks, easily access snowflake data with both sequel and no SQL options, share insights, powered by Alteryx data science and push processing to snowflake for lightning, fast performance, you get answers you can put to work in your teams, get repeatable processes they can share in that's exciting because not only is your data no longer sitting around in silos, it's also mobilized for the next opportunity. Turn your data into a breakthrough Alteryx and snowflake >>Okay. We're back here in the queue, focusing on the business promise of the cloud democratizing data, making it accessible and enabling everyone to get value from analytics, insights, and data. We're now moving into the eco systems segment the power of many versus the resources of one. And we're pleased to welcome. Barb Hills camp was the senior vice president partners and alliances at Ultrix and a special guest Terek do week head of technology alliances at snowflake folks. Welcome. Good to see you. >>Thank you. Thanks for having me. Good to see >>Dave. Great to see you guys. So cloud migration, it's one of the hottest topics. It's the top one of the top initiatives of senior technology leaders. We have survey data with our partner ETR it's number two behind security, and just ahead of analytics. So we're hovering around all the hot topics here. Barb, what are you seeing with respect to customer, you know, cloud migration momentum, and how does the Ultrix partner strategy fit? >>Yeah, sure. Partners are central company's strategy. They always have been. We recognize that our partners have deep customer relationships. And when you connect that with their domain expertise, they're really helping customers on their cloud and business transformation journey. We've been helping customers achieve their desired outcomes with our partner community for quite some time. And our partner base has been growing an average of 30% year over year, that partner community and strategy now addresses several kinds of partners, spanning solution providers to global SIS and technology partners, such as snowflake and together, we help our customers realize the business promise of their journey to the cloud. Snowflake provides a scalable storage system altereds provides the business user friendly front end. So for example, it departments depend on snowflake to consolidate data across systems into one data cloud with Altryx business users can easily unlock that data in snowflake solving real business outcomes. Our GSI and solution provider partners are instrumental in providing that end to end benefit of a modern analytic stack in the cloud providing platform, guidance, deployment, support, and other professional services. >>Great. Let's get a little bit more into the relationship between Altrix and S in snowflake, the partnership, maybe a little bit about the history, you know, what are the critical aspects that we should really focus on? Barb? Maybe you could start an Interra kindly way in as well. >>Yeah, so the relationship started in 2020 and all shirts made a big bag deep with snowflake co-innovating and optimizing cloud use cases together. We are supporting customers who are looking for that modern analytic stack to replace an old one or to implement their first analytic strategy. And our joint customers want to self-serve with data-driven analytics, leveraging all the benefits of the cloud, scalability, accessibility, governance, and optimizing their costs. Um, Altrix proudly achieved. Snowflake's highest elite tier in their partner program last year. And to do that, we completed a rigorous third party testing process, which also helped us make some recommended improvements to our joint stack. We wanted customers to have confidence. They would benefit from high quality and performance in their investment with us then to help customers get the most value out of the destroyed solution. We developed two great assets. One is the officer starter kit for snowflake, and we coauthored a joint best practices guide. >>The starter kit contains documentation, business workflows, and videos, helping customers to get going more easily with an altered since snowflake solution. And the best practices guide is more of a technical document, bringing together experiences and guidance on how Altryx and snowflake can be deployed together. Internally. We also built a full enablement catalog resources, right? We wanted to provide our account executives more about the value of the snowflake relationship. How do we engage and some best practices. And now we have hundreds of joint customers such as Juniper and Sainsbury who are actively using our joint solution, solving big business problems much faster. >>Cool. Kara, can you give us your perspective on the partnership? >>Yeah, definitely. Dave, so as Barb mentioned, we've got this standing very successful partnership going back years with hundreds of happy joint customers. And when I look at the beginning, Altrix has helped pioneer the concept of self-service analytics, especially with use cases that we worked on with for, for data prep for BI users like Tableau and as Altryx has evolved to now becoming from data prep to now becoming a full end to end data science platform. It's really opened up a lot more opportunities for our partnership. Altryx has invested heavily over the last two years in areas of deep integration for customers to fully be able to expand their investment, both technologies. And those investments include things like in database pushed down, right? So customers can, can leverage that elastic platform, that being the snowflake data cloud, uh, with Alteryx orchestrating the end to end machine learning workflows Alteryx also invested heavily in snow park, a feature we released last year around this concept of data programmability. So all users were regardless of their business analysts, regardless of their data, scientists can use their tools of choice in order to consume and get at data. And now with Altryx cloud, we think it's going to open up even more opportunities. It's going to be a big year for the partnership. >>Yeah. So, you know, Terike, we we've covered snowflake pretty extensively and you initially solve what I used to call the, I still call the snake swallowing the basketball problem and cloud data warehouse changed all that because you had virtually infinite resources, but so that's obviously one of the problems that you guys solved early on, but what are some of the common challenges or patterns or trends that you see with snowflake customers and where does Altryx come in? >>Sure. Dave there's there's handful, um, that I can come up with today, the big challenges or trends for us, and Altrix really helps us across all of them. Um, there are three particular ones I'm going to talk about the first one being self-service analytics. If we think about it, every organization is trying to democratize data. Every organization wants to empower all their users, business users, um, you know, the, the technology users, but the business users, right? I think every organization has realized that if everyone has access to data and everyone can do something with data, it's going to make them competitively, give them a competitive advantage with Altrix is something we share that vision of putting that power in the hands of everyday users, regardless of the skillsets. So, um, with self-service analytics, with Ultrix designer they've they started out with self-service analytics as the forefront, and we're just scratching the surface. >>I think there was an analyst, um, report that shows that less than 20% of organizations are truly getting self-service analytics to their end users. Now, with Altryx going to Ultrix cloud, we think that's going to be a huge opportunity for us. Um, and then that opens up the second challenge, which is machine learning and AI, every organization is trying to get predictive analytics into every application that they have in order to be competitive in order to be competitive. Um, and with Altryx creating this platform so they can cater to both the everyday business user, the quote unquote, citizen data scientists, and making a code friendly for data scientists to be able to get at their notebooks and all the different tools that they want to use. Um, they fully integrated in our snow park platform, which I talked about before, so that now we get an end to end solution caring to all, all lines of business. >>And then finally this concept of data marketplaces, right? We, we created snowflake from the ground up to be able to solve the data sharing problem, the big data problem, the data sharing problem. And Altryx um, if we look at mobilizing your data, getting access to third-party datasets, to enrich with your own data sets, to enrich with, um, with your suppliers and with your partners, data sets, that's what all customers are trying to do in order to get a more comprehensive 360 view, um, within their, their data applications. And so with Altryx alterations, we're working on third-party data sets and marketplaces for quite some time. Now we're working on how do we integrate what Altrix is providing with the snowflake data marketplace so that we can enrich these workflows, these great, great workflows that Altrix writing provides. Now we can add third party data into that workflow. So that opens up a ton of opportunities, Dave. So those are three I see, uh, easily that we're going to be able to solve a lot of customer challenges with. >>So thank you for that. Terrick so let's stay on cloud a little bit. I mean, Altrix is undergoing a major transformation, big focus on the cloud. How does this cloud launch impact the partnership Terike from snowflakes perspective and then Barb, maybe, please add some color. >>Yeah, sure. Dave snowflake started as a cloud data platform. We saw our founders really saw the challenges that customers are having with becoming data-driven. And the biggest challenge was the complexity of having imagine infrastructure to even be able to do it, to get applications off the ground. And so we created something to be cloud-native. We created to be a SAS managed service. So now that that Altrix is moving to the same model, right? A cloud platform, a SAS managed service, we're just, we're just removing more of the friction. So we're going to be able to start to package these end to end solutions that are SAS based that are fully managed. So customers can, can go faster and they don't have to worry about all of the underlying complexities of, of, of stitching things together. Right? So, um, so that's, what's exciting from my viewpoint >>And I'll follow up. So as you said, we're investing heavily in the cloud a year ago, we had two pre desktop products, and today we have four cloud products with cloud. We can provide our users with more flexibility. We want to make it easier for the users to leverage their snowflake data in the Alteryx platform, whether they're using our beloved on-premise solution or the new cloud products were committed to that continued investment in the cloud, enabling our joint partner solutions to meet customer requirements, wherever they store their data. And we're working with snowflake, we're doing just that. So as customers look for a modern analytic stack, they expect that data to be easily accessible, right within a fast, secure and scalable platform. And the launch of our cloud strategy is a huge leap forward in making Altrix more widely accessible to all users in all types of roles, our GSI and our solution provider partners have asked for these cloud capabilities at scale, and they're excited to better support our customers, cloud and analytic >>Are. How about you go to market strategy? How would you describe your joint go to market strategy with snowflake? >>Sure. It's simple. We've got to work backwards from our customer's challenges, right? Driving transformation to solve problems, gain efficiencies, or help them save money. So whether it's with snowflake or other GSI, other partner types, we've outlined a joint journey together from recruit solution development, activation enablement, and then strengthening our go to market strategies to optimize our results together. We launched an updated partner program and within that framework, we've created new benefits for our partners around opportunity registration, new role based enablement and training, basically extending everything we do internally for our own go-to-market teams to our partners. We're offering partner, marketing resources and funding to reach new customers together. And as a matter of fact, we recently launched a fantastic video with snowflake. I love this video that very simply describes the path to insights starting with your snowflake data. Right? We do joint customer webinars. We're working on joint hands-on labs and have a wonderful landing page with a lot of assets for our customers. Once we have an interested customer, we engage our respective account managers, collaborating through discovery questions, proof of concepts really showcasing the desired outcome. And when you combine that with our partners technology or domain expertise, it's quite powerful, >>Dark. How do you see it? You'll go to market strategy. >>Yeah. Dave we've. Um, so we initially started selling, we initially sold snowflake as technology, right? Uh, looking at positioning the diff the architectural differentiators and the scale and concurrency. And we noticed as we got up into the larger enterprise customers, we're starting to see how do they solve their business problems using the technology, as well as them coming to us and saying, look, we want to also know how do you, how do you continue to map back to the specific prescriptive business problems we're having? And so we shifted to an industry focus last year, and this is an area where Altrix has been mature for probably since their inception selling to the line of business, right? Having prescriptive use cases that are particular to an industry like financial services, like retail, like healthcare and life sciences. And so, um, Barb talked about these, these starter kits where it's prescriptive, you've got a demo and, um, a way that customers can get off the ground and running, right? >>Cause we want to be able to shrink that time to market, the time to value that customers can watch these applications. And we want to be able to, to tell them specifically how we can map back to their business initiatives. So I see a huge opportunity to align on these industry solutions. As BARR mentioned, we're already doing that where we've released a few around financial services working in healthcare and retail as well. So that is going to be a way for us to allow customers to go even faster and start to map two lines of business with Alteryx. >>Great. Thanks Derek. Bob, what can we expect if we're observing this relationship? What should we look for in the coming year? >>A lot specifically with snowflake, we'll continue to invest in the partnership. Uh, we're co innovators in this journey, including snow park extensibility efforts, which Derek will tell you more about shortly. We're also launching these great news strategic solution blueprints, and extending that at no charge to our partners with snowflake, we're already collaborating with their retail and CPG team for industry blueprints. We're working with their data marketplace team to highlight solutions, working with that data in their marketplace. More broadly, as I mentioned, we're relaunching the ultra partner program designed to really better support the unique partner types in our global ecosystem, introducing new benefits so that with every partner, achievement or investment with ultra score, providing our partners with earlier access to benefits, um, I could talk about our program for 30 minutes. I know we don't have time. The key message here Alteryx is investing in our partner community across the business, recognizing the incredible value that they bring to our customers every day. >>Tarik will give you the last word. What should we be looking for from, >>Yeah, thanks. Thanks, Dave. As BARR mentioned, Altrix has been the forefront of innovating with us. They've been integrating into, uh, making sure again, that customers get the full investment out of snowflake things like in database push down that I talked about before that extensibility is really what we're excited about. Um, the ability for Ultrix to plug into this extensibility framework that we call snow park and to be able to extend out, um, ways that the end users can consume snowflake through, through sequel, which has traditionally been the way that you consume snowflake as well as Java and Scala, not Python. So we're excited about those, those capabilities. And then we're also excited about the ability to plug into the data marketplace to provide third party data sets, right there probably day sets in, in financial services, third party, data sets and retail. So now customers can build their data applications from end to end using ultrasound snowflake when the comprehensive 360 view of their customers, of their partners, of even their employees. Right? I think it's exciting to see what we're going to be able to do together with these upcoming innovations. Great >>Barb Tara, thanks so much for coming on the program, got to leave it right there in a moment, I'll be back with some closing thoughts in a summary, don't go away. >>1200 hours of wind tunnel testing, 30 million race simulations, 2.4 second pit stops make that 2.3. The sector times out the wazoo, whites are much of this velocity's pressures, temperatures, 80,000 components generating 11.8 billion data points and one analytics platform to make sense of it all. When McLaren needs to turn complex data into insights, they turn to Altryx Qualtrics analytics, automation, >>Okay, let's summarize and wrap up the session. We can pretty much agree the data is plentiful, but organizations continue to struggle to get maximum value out of their data investments. The ROI has been elusive. There are many reasons for that complexity data, trust silos, lack of talent and the like, but the opportunity to transform data operations and drive tangible value is immense collaboration across various roles. And disciplines is part of the answer as is democratizing data. This means putting data in the hands of those domain experts that are closest to the customer and really understand where the opportunity exists and how to best address them. We heard from Jay Henderson that we have all this data exhaust and cheap storage. It allows us to keep it for a long time. It's true, but as he pointed out that doesn't solve the fundamental problem. Data is spewing out from our operational systems, but much of it lacks business context for the data teams chartered with analyzing that data. >>So we heard about the trend toward low code development and federating data access. The reason this is important is because the business lines have the context and the more responsibility they take for data, the more quickly and effectively organizations are going to be able to put data to work. We also talked about the harmonization between centralized teams and enabling decentralized data flows. I mean, after all data by its very nature is distributed. And importantly, as we heard from Adam Wilson and Suresh Vittol to support this model, you have to have strong governance and service the needs of it and engineering teams. And that's where the trifecta acquisition fits into the equation. Finally, we heard about a key partnership between Altrix and snowflake and how the migration to cloud data warehouses is evolving into a global data cloud. This enables data sharing across teams and ecosystems and vertical markets at massive scale all while maintaining the governance required to protect the organizations and individuals alike. >>This is a new and emerging business model that is very exciting and points the way to the next generation of data innovation in the coming decade. We're decentralized domain teams get more facile access to data. Self-service take more responsibility for quality value and data innovation. While at the same time, the governance security and privacy edicts of an organization are centralized in programmatically enforced throughout an enterprise and an external ecosystem. This is Dave Volante. All these videos are available on demand@theqm.net altrix.com. Thanks for watching accelerating automated analytics in the cloud made possible by Altryx. And thanks for watching the queue, your leader in enterprise tech coverage. We'll see you next time.

Published Date : Mar 1 2022

SUMMARY :

It saw the need to combine and prep different data types so that organizations anyone in the business who wanted to gain insights from data and, or let's say use AI without the post isolation economy is here and we do so with a digital We're kicking off the program with our first segment. So look, you have a deep product background, product management, product marketing, And that results in a situation where the organization's, you know, the direction that your customers want to go and the problems that you're solving, what role does the cloud and really, um, you know, create a lot of the underlying data sets that are used in some of this, into the, to the business user with hyper Anna. of our designer desktop product, you know, really, as they look to take the next step, comes into the mix that deeper it angle that we talked about, how does this all fit together? analytics and providing access to all these different groups of people, um, How much of this you've been able to share with your customers and maybe your partners. Um, and, and this idea that they're going to move from, you know, So it's democratizing data is the ultimate goal, which frankly has been elusive for most You know, the data gravity has been moving to the cloud. So, uh, you know, getting everyone involved and accessing AI and machine learning to unlock seems logical that domain leaders are going to take more responsibility for data, And I think, you know, the exciting thing for us at Altryx is, you know, we want to facilitate that. the tail, or maybe the other way around, you mentioned digital exhaust before. the data and analytics layers that they have, um, really to help democratize the We take a deep dive into the Altryx recent acquisition of Trifacta with Adam Wilson It's go time, get ready to accelerate your data analytics journey the CEO of Trifacta. serving business analysts and how the hyper Anna acquisition brought you deeper into the with that in mind, you know, we know designer and are the products And Joe in the early days, talked about flipping the model that really birth Trifacta was, you know, why is it that the people who know the data best can't And so, um, that was really, you know, what, you know, the origin story of the company but the big data pipeline is hasn't gotten there. um, you know, there hasn't been a single platform for And now the data engineer, which is really And so, um, I think when we, when I sat down with Suresh and with mark and the team and, but specifically we're seeing, you know, I almost don't even want to call it a data warehouse anyway, Um, and we just have interfaces to collaborate And of course Trifacta is with cloud cloud data warehouses. What's the business analysts really need and how to design a cloud, and Trifacta really support both in the cloud, um, you know, Trifacta becomes a platform that can You're always in a position to be able to cleanse transform shape structure, that data, and ultimately to deliver, And I'm interested, you guys just had your sales kickoff, you know, what was their reaction like? And then you step back and you're going to share the vision with the field organization, and to close and announced, you know, at the kickoff event. And certainly the reception we got from, Well, I think the story hangs together really well, you know, one of the better ones I've seen in, in this space, And all of it has potential the potential to solve complex business problems, We're now moving into the eco systems segment the power of many Good to see So cloud migration, it's one of the hottest topics. on snowflake to consolidate data across systems into one data cloud with Altryx business the partnership, maybe a little bit about the history, you know, what are the critical aspects that we should really focus Yeah, so the relationship started in 2020 and all shirts made a big bag deep with snowflake And the best practices guide is more of a technical document, bringing together experiences and guidance So customers can, can leverage that elastic platform, that being the snowflake data cloud, one of the problems that you guys solved early on, but what are some of the common challenges or patterns or trends everyone has access to data and everyone can do something with data, it's going to make them competitively, application that they have in order to be competitive in order to be competitive. to enrich with your own data sets, to enrich with, um, with your suppliers and with your partners, So thank you for that. So now that that Altrix is moving to the same model, And the launch of our cloud strategy How would you describe your joint go to market strategy the path to insights starting with your snowflake data. You'll go to market strategy. And so we shifted to an industry focus So that is going to be a way for us to allow What should we look for in the coming year? blueprints, and extending that at no charge to our partners with snowflake, we're already collaborating with Tarik will give you the last word. Um, the ability for Ultrix to plug into this extensibility framework that we call Barb Tara, thanks so much for coming on the program, got to leave it right there in a moment, I'll be back with 11.8 billion data points and one analytics platform to make sense of it all. This means putting data in the hands of those domain experts that are closest to the customer are going to be able to put data to work. While at the same time, the governance security and privacy edicts

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DerekPERSON

0.99+

Dave VellantePERSON

0.99+

Suresh VetolPERSON

0.99+

AltryxORGANIZATION

0.99+

JayPERSON

0.99+

Joe HellersteinPERSON

0.99+

DavePERSON

0.99+

Dave VolantePERSON

0.99+

AltrixORGANIZATION

0.99+

Jay HendersonPERSON

0.99+

DavidPERSON

0.99+

AdamPERSON

0.99+

BarbPERSON

0.99+

JeffPERSON

0.99+

2020DATE

0.99+

BobPERSON

0.99+

TrifactaORGANIZATION

0.99+

Suresh VittolPERSON

0.99+

TylerPERSON

0.99+

JuniperORGANIZATION

0.99+

AlteryxORGANIZATION

0.99+

UltrixORGANIZATION

0.99+

30 minutesQUANTITY

0.99+

TerikePERSON

0.99+

Adam WilsonPERSON

0.99+

JoePERSON

0.99+

SureshPERSON

0.99+

TerrickPERSON

0.99+

demand@theqm.netOTHER

0.99+

thousandsQUANTITY

0.99+

AlconORGANIZATION

0.99+

KaraPERSON

0.99+

last yearDATE

0.99+

threeQUANTITY

0.99+

QualtricsORGANIZATION

0.99+

less than 20%QUANTITY

0.99+

hundredsQUANTITY

0.99+

oneQUANTITY

0.99+

OneQUANTITY

0.99+

JavaTITLE

0.99+

more than seven yearsQUANTITY

0.99+

two acquisitionsQUANTITY

0.99+

2022 008 Adam Wilson and Suresh Vittal


 

[Music] okay we're here with ceres vitale who's the chief product officer at alteryx and adam wilson the ceo of trifacta now of course part of alteryx just closed this quarter gentlemen welcome great to be here okay so rush let me start with you in my opening remarks i talked about alteryx's traditional position serving business analysts and how the hyperanna acquisition brought you deeper into the business user space what does trifacta bring to your portfolio why'd you buy the company yeah thank you thank you for the question um you know we see a we see a massive opportunity of helping brands democratize the use of analytics across their business every knowledge worker every individual in the company should have access to analytics it's no longer optional as they navigate their businesses with that in mind you know we know designer and our the products that alteryx has been selling the past decade or so do a really great job addressing the business analysts with hyper rana now kind of renamed alteryx auto insights we even speak with the business owner the line of business owner who's looking for insights that aren't revealed in traditional dashboards and so on um but we see this opportunity of really helping the data engineering teams and i.t organizations to also make better use of analytics and that's where trifacta comes in for us trifacta has the best data engineering cloud in the planet they have an established track record of working across multiple cloud platforms and helping data engineers um do better data pipelining and work better with this massive kind of cloud transformation that's happening in every business um and so trifecta made so much sense for us yeah thank you for that i mean look you could have built it yourself would have taken you know who knows how long you know but uh so definitely a great time to market move adam i wonder if we could dig into trifacta some more i mean i remember interviewing joe hellerstein in the early days you've talked about this as well on thecube coming at the problem of taking data from raw refined to an experience point of view and joe in the early days talked about flipping the model and starting with data visualization something jeff herr was expert at so maybe explain how we got here we used to have this cumbersome process of etl and you maybe and some others change that model with you know el and then t explain how trifacta really changed the data engineering game yeah that's exactly right uh dave and it's been a really interesting journey for us because i think the original hypothesis coming out of the campus research at berkeley and stanford that really birthed trifacta was you know why is it that the people who know the data best can't do the work you know why is this become the exclusive purview the highly technical and you know can we rethink this and make this a user experience problem powered by machine learning that will take some of the more complicated things that people want to do with data and really help to automate those so so a broader set of users can can really see for themselves and help themselves and and i think that um there was a lot of pent up frustration out there because people have been told for you know for a decade now to be more data driven and then the whole time they're saying well then give me the data you know in the shape that i can use it with the right level of quality and i'm happy to be but don't tell me to be more data driven and they'll don't then and and not empower me um to to get in there and to actually start to work with the data in meaningful ways and so um that was really you know what you know the origin story of the company and i think as as we saw over the course of the last five six seven years that um you know a real uh excitement to embrace this idea of of trying to think about data engineering differently trying to democratize the the etl process and to also leverage all these exciting new uh engines and platforms that are out there that allow for you know processing you know ever more diverse data sets ever larger data sets and new and interesting ways and that's where a lot of the push down or the elt approaches uh you know i think it really won the day um and that and that for us was a hallmark of the solution from the very beginning yeah this is a huge point that you're making this is first of all there's a large business probably about a hundred billion dollar tam uh and and the the point you're making is we look we've contextualized most of our operational systems but the big data pipelines hasn't gotten there but and maybe we could talk about that a little bit because democratizing data is nirvana but it's been historically very difficult you've got a number of companies it's very fragmented and they're all trying to attack their little piece of the problem to achieve an outcome but it's been hard and so what's going to be different about alteryx as you bring these puzzle pieces together how is this going to impact your customers who would like to take that one yeah maybe maybe i'll take a crack at it and adam will add on um you know there hasn't been a single platform [Music] for analytics automation in the enterprise right people have relied on different products to solve kind of smaller problems across this analytics automation data transformation domain and i think uniquely alteryx has that opportunity we've got 7000 plus customers who rely on analytics for data management for analytics for ai and ml for transformations for reporting and visualization for automated insights and so on and so by bringing trifecta we have the opportunity to scale this even further and solve for more use cases expand the scenarios where angles gets applied and serve multiple personas um and now we just talked about the data engineers they are really a growing stakeholder in this transformation of data analytics yeah good maybe we can stay on this for a minute because you're right you bring it together now at least three personas the business analyst the end user size business user and now the data engineer which is really out of an i.t role in a lot of companies and you've used this term the data engineering cloud what is that how is it going to integrate in with or support these other personas and and how's it going to integrate into the broader ecosystem of clouds and cloud data warehouses or any other data stores yeah you know that's great uh you know i think for us we really looked at this and said you know we want to build an open and interactive you know cloud platform for data engineers you know to collaboratively profile pipeline um and prepare data for analysis and and that really meant collaborating with the analysts that were in the line of business and so this is why a big reason why this combination is so magic because ultimately if we can get the data engineers that are creating the data products together with the analysts that are in the line of business that are driving a lot of the decision making and allow for that what i would describe as collaborative curation you know of the data together so that you're starting to see um uh you know increasing returns to scale as this uh as this rolls out i just think that is an incredibly uh powerful combination and frankly something that the market has not cracked the code on yet and so um i think when we when i sat down with surash and with mark and and the team at ultrix that was really part of the the big idea the big vision that that was painted and and got us really energized um about the acquisition and about the the potential of the combination yeah and you're really you're obviously riding the cloud and the cloud native wave um and but specifically we're seeing you know i almost don't even want to call it a data warehouse anyway because when you look at what princeton snowflake is doing of course their marketing is around the data cloud but i i actually think there's real justification for that because it's not like the traditional data warehouse right it's it's simplified get there fast don't necessarily have to go through this central organization to share data uh and and but it's really all about simplification right isn't that really what the democratization comes down to yeah it's simplification and collaboration right i don't want to i want to kind of just uh what what adam said resonates with me deeply um analytics is one of those massive disciplines inside an enterprise that's really had the weakest of tools um and weakest of interfaces to collaborate with and i think truly this was alteryx's end of superpower was helping the analysts get more out of their data get more out of the analytics like imagine a world where these people are collaborating and sharing insights in real time and sharing workflows and getting access to new data sources understanding data models better i think curating those insights i borrowing adam's phrase again i think that creates a real value inside the organization because frankly in scaling analytics and democratizing analytics and data we're still in such early phases of this journey so how should we think about designer cloud which is from alteryx it's really been the on-prem the server or desktop you know offering and of course trifecta is about cloud cloud data warehouses right um how should we think about those two products yeah i think i think you should think about them and as very complementary right designer cloud really shares a lot of dna and heritage with designer desktop the low code tooling and the interface that really appeals to the business analysts and gets a lot of the things that they do well we've also built it with interoperability in mind right so if you started building your workflows in designer desktop you want to share that with designer cloud we want to make it super easy for you to do that and i think over time now we're only a week into this alliance with uh with trifacta i think we have to get deeper and start to think about what does the data engineer really need what business analysts really need and how to design a cloud and try factor really support both of those requirements uh while kind of continue to build on the trifecta on the amazing trifecta cloud platform you know and i think let's go ahead i'm just to say i think that's one of the things that um you know creates a lot of opportunity as we go forward because ultimately you know trifacta took a platform uh first mentality to everything that we built so thinking about openness and extensibility and um and how over time people could build things on top of trifacta that are a variety of analytic tool chain or analytic applications and so when you think about um alteryx now starting to uh to move some of its capabilities or to provide additional capabilities uh in the cloud um you know trifacta becomes uh a a platform that can accelerate you know all of that work and create a cohesive set of of cloud-based services that share a common platform and that maintains independence because both companies um have been uh you know fiercely independent uh in really giving people choice um so making sure that whether you're uh you know picking one cloud platform another whether you're running things on the desktop uh whether you're running in hybrid environments that no matter what your decision you're always in a position to be able to get out your data you're always in a position to be able to cleanse transform shape structure that data and ultimately to deliver uh the analytics that you need and so i think in in that sense um uh you know this this again is another reason why the combination you know fits so well together giving people um the choice um and as they as they think about their analytics strategy and and their platform strategy going forward you know i make a chuckle but one of the reasons i always liked alteryx is because you kind of did did a little end run on i.t i.t can be a blocker sometimes but that created problems right because the organization said wow this big data stuff is taken off but we need security we need governance and and it's interesting because you got you know etl has been complex whereas the visualization tools they really you know really weren't great at governance and security it took some time there so that's not not their heritage you're bringing those worlds together and i'm interested you guys just had your sales kickoff you know what was the reaction like uh maybe suresh you could start off and maybe adam you could bring us home yeah um thanks for asking about our sales kickoff so we met uh for the first time in kind of two years right for as it is for many of us um in person uh um which i think was a was a real breakthrough as alteryx has been on its transformation journey uh we had a try factor to um the the party such as it were um and getting all of our sales teams and product organizations um to meet in person in one location i thought that was very powerful for us as a company but then i tell you um the reception for trifecta was beyond anything i could have imagined uh we were working adam and i were working so hard on on the the deal and the core hypotheses and so on and then you step back and kind of share the vision with the field organization and it blows you away the energy that it creates among our sellers our partners and i'm sure adam and his team were mobbed every single day with questions and opportunities to bring them in but adam maybe you should share yeah no it was uh it was through the roof i mean uh the uh the amount of energy the uh when so certainly how welcoming everybody was uh you know just i think the story makes so much sense together i think culturally the companies are very aligned um and uh it was a real uh real capstone moment uh to be able to complete the acquisition and to and to close and announce you know at the kickoff event and um i think you know for us when we really thought about it you know when we and the story that we told was just you have this opportunity to really cater to what the end users you know care about which is a lot about interactivity and self-service and at the same time and that's and that's a lot of the goodness that um that alteryx is has brought you know through you know you know years and years of of building a very vibrant community of you know thousands hundreds of thousands of users and on the other side you know trifecta bringing in this data engineering focus that's really about uh the governance things that you mentioned and the openness that that it cares deeply about and all of a sudden now you have a chance to put that together into a complete story where the data engineering cloud and analytics automation you know come together and um and i just think you know the lights went on um you know for people instantaneously and you know this is a story that um that i think the market is really hungry for and and certainly the reception we got from from the broader team at kickoff was uh was a great indication of that well i think the story hangs together really well you know one of the better ones i've seen in this space um and and you guys coming off a really really strong quarter so congratulations on that gents we have to leave it there really appreciate your time today yeah take a look at this short video and when we come back we're going to dig into the ecosystem and the integration into cloud data warehouses and how leading organizations are creating modern data teams and accelerating their digital businesses you're watching the cube your leader in enterprise tech coverage [Music]

Published Date : Feb 16 2022

SUMMARY :

and on the other side you know trifecta

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
jeff herrPERSON

0.99+

alteryxORGANIZATION

0.99+

Suresh VittalPERSON

0.99+

joe hellersteinPERSON

0.99+

thousandsQUANTITY

0.99+

adamPERSON

0.99+

adam wilsonPERSON

0.99+

two yearsQUANTITY

0.99+

Adam WilsonPERSON

0.99+

ultrixORGANIZATION

0.98+

ceres vitalePERSON

0.98+

todayDATE

0.98+

2022 008OTHER

0.98+

oneQUANTITY

0.98+

first timeQUANTITY

0.98+

two productsQUANTITY

0.98+

7000 plus customersQUANTITY

0.97+

trifactaORGANIZATION

0.97+

bothQUANTITY

0.96+

both companiesQUANTITY

0.96+

about a hundred billion dollarQUANTITY

0.94+

firstQUANTITY

0.94+

a weekQUANTITY

0.93+

trifectaORGANIZATION

0.93+

one locationQUANTITY

0.93+

single platformQUANTITY

0.89+

hyperannaORGANIZATION

0.89+

a minuteQUANTITY

0.89+

hundreds of thousands of usersQUANTITY

0.88+

a decadeQUANTITY

0.87+

berkeleyORGANIZATION

0.86+

single dayQUANTITY

0.84+

past decadeDATE

0.84+

hyper ranaORGANIZATION

0.81+

this quarterDATE

0.81+

seven yearsQUANTITY

0.75+

every individualQUANTITY

0.74+

stanfordORGANIZATION

0.68+

least three personasQUANTITY

0.65+

davePERSON

0.64+

markPERSON

0.64+

companiesQUANTITY

0.63+

thingsQUANTITY

0.63+

lotQUANTITY

0.61+

surashPERSON

0.57+

last five sixDATE

0.5+

kickoffEVENT

0.48+

princeton snowflakeORGANIZATION

0.45+

trifactaPERSON

0.31+

Nenshad Bardoliwalla & Stephanie McReynolds | BigData NYC 2017


 

>> Live from midtown Manhattan, it's theCUBE covering Big Data New York City 2017. Brought to you by Silicon Angle Media and its ecosystem sponsors. (upbeat techno music) >> Welcome back, everyone. Live here in New York, Day Three coverage, winding down for three days of wall to wall coverage theCUBE covering Big Data NYC in conjunction with Strata Data, formerly Strata Hadoop and Hadoop World, all part of the Big Data ecosystem. Our next guest is Nenshad Bardoliwalla Co-Founder and Chief Product Officer of Paxata, hot start up in the space. A lot of kudos. Of course, they launched on theCUBE in 2013 three years ago when we started theCUBE as a separate event from O'Reilly. So, great to see the success. And Stephanie McReynolds, you've been on multiple times, VP of Marketing at Alation. Welcome back, good to see you guys. >> Thank you. >> Happy to be here. >> So, winding down, so great kind of wrap-up segment here in addition to the partnership that you guys have. So, let's first talk about before we get to the wrap-up of the show and kind of bring together the week here and kind of summarize everything. Tell about your partnership you guys have. Paxata, you guys have been doing extremely well. Congratulations. Prakash was talking on theCUBE. Great success. You guys worked hard for it. I'm happy for you. But partnering is everything. Ecosystem is everything. Alation, their collaboration with data. That's there ethos. They're very user-centric. >> Nenshad: Yes. >> From the founders. Seemed like a good fit. What's the deal? >> It's a very natural fit between the two companies. When we started down the path of building new information management capabilities it became very clear that the market had strong need for both finding data, right? What do I actually have? I need an inventory, especially if my data's in Amazon S3, my data is in Azure Blob storage, my data is on-premise in HDFS, my data is in databases, it's all over the place. And I need to be able to find it. And then once I find it, I want to be able to prepare it. And so, one of the things that really drove this partnership was the very common interests that both companies have. And number one, pushing user experience. I love the Alation product. It's very easy to use, it's very intuitive, really it's a delightful thing to work with. And at the same time they also share our interests in working in these hybrid multicloud environments. So, what we've done and what we announced here at Strata is actually this bi-directional integration between the products. You can start in Alation and find a data set that you want to work with, see what collaboration or notes or business metadata people have created and then say, I want to go see this in Paxata. And in a single click you can then actually open it up in Paxata and profile that data. Vice versa you can also be in Paxata and prepare data, and then with a single click push it back, and then everybody who works with Alation actually now has knowledge of where that data is. So, it's a really nice synergy. >> So, you pushed the user data back to Alation, cause that's what they care a lot about, the cataloging and making the user-centric view work. So, you provide, it's almost a flow back and forth. It's a handshake if you will to data. Am I getting that right? >> Yeah, I mean, the idea's to keep the analyst or the user of that data, data scientist, even in some cases a business user, keep them in the flow of their work as much as possible. But give them the advantage of understanding what others in the organization have done with that data prior and allow them to transform it, and then share that knowledge back with the rest of the community that might be working with that data. >> John: So, give me an example. I like your Excel spreadsheet concept cause that's obvious. People know what Excel spreadsheet is so. So, it's Excel-like. That's an easy TAM to go after. All Microsoft users might not get that Azure thing. But this one, just take me through a usecase. >> So, I've got a good example. >> Okay, take me through. >> It's very common in a data lake for your data to be compressed. And when data's compressed, to a user it looks like a black box. So, if the data is compressed in Avro or Parquet or it's even like JSON format. A business user has no idea what's in that file. >> John: Yeah. >> So, what we do is we find the file for them. It may have some comments on that file of how that data's been used in past projects that we infer from looking at how others have used that data in Alation. >> John: So, you put metadata around it. >> We put a whole bunch of metadata around it. It might be comments that people have made. It might be >> Annotations, yeah. >> actual observations, annotations. And the great thing that we can do with Paxata is open that Avro file or Parquet file, open it up so that you can actually see the data elements themselves. So, all of a sudden, the business user has access without having to use a command line utility or understand anything about compression, and how you open that file up-- >> John: So, as Paxata spitting out there nuggets of value back to you, you're kind of understanding it, translating it to the user. And they get to do their thing, you get to do your thing, right? >> It's making a Avro or a Parquet file as easy to use as Excel, basically. Which is great, right? >> It's awesome. >> Now, you've enabled >> a whole new class of people who can use that. >> Well, and people just >> Get turned off when it's anything like jargon, or like, "What is that? I'm afraid it's phishing. Click on that and oh!" >> Well, the scary thing is that in a data lake environment, in a lot of cases people don't even label the files with extensions. They're just files. (Stephanie laughs) So, what started-- >> It's like getting your pictures like DS, JPEG. It's like what? >> Exactly. >> Right. >> So, you're talking about unlabeled-- >> If you looked on your laptop, and if you didn't have JPEG or DOC or PPT. Okay, I don't know that this file is. Well, what you have in the data lake environment is that you have thousands of these files that people don't really know what they are. And so, with Alation we have the ability to get all the value around the curation of the metadata, and how people are using that data. But then somebody says, "Okay, but I understand that this file exists. What's in it?" And then with Click to Profile from Alation you're immediately taken into Paxata. And now you're actually looking at what's in that file. So, you can very quickly go from this looks interesting to let me understand what's inside of it. And that's very powerful. >> Talk about Alation. Cause I had the CEO on, also their lead investor Greg Sands from Costanoa Ventures. They're a pretty amazing team but it's kind of out there. No offense, it's kind of a compliment actually. (Stephanie laughs) >> They got a symbolic >> Stephanie: Keep going. system Stanford guy, who's like super-smart. >> Nenshad: Yeah. >> They're on something that's really unique but it's almost too simple to be. Like, wait a minute! Google for the data, it's an awesome opportunity. How do you describe Alation to people who say, "Hey, what's this Alation thing?" >> Yeah, so I think that the best way to describe it is it's the browser for all of the distributed data in the enterprise. Sorry, so it's both the catalog, and the browser that sits on top of it. It sounds very simple. Conceptually it's very simple but they have a lot of richness in what they're able to do behind the scenes in terms of introspecting what type of work people are doing with data, and then taking that knowledge and actually surfacing it to the end user. So, for example, they have very powerful scenarios where they can watch what people are doing in different data sources, and then based on that information actually bubble up how queries are being used or the different patterns that people are doing to consume data with. So, what we find really exciting is that this is something that is very complex under the covers. Which Paxata is as well being built upon Spark. But they have put in the hard engineering work so that it looks simple to the end user. And that's the exact same thing that we've tried to do. >> And that's the hard problem. Okay, Stephanie back ... That was a great example by the way. Can't wait to have our little analyst breakdown of the event. But back to Alation for you. So, how do you talk about, you've been VP of Marketing of Alation. But you've been around the block. You know B2B, tech, big data. So, you've seen a bunch of different, you've worked at Trifacta, you worked at other companies, and you've seen a lot of waves of innovation come. What's different about Alation that people might not know about? How do you describe the difference? Because it sounds easy, "Oh, it's a browser! It's a catalog!" But it's really hard. Is it the tech that's the secret? Is it the approach? How do you describe the value of Alation? I think what's interesting about Alation is that we're solving a problem that since the dawn of the data warehouse has not been solved. And that is how to help end users really find and understand the data that they need to do their jobs. A lot of our customers talk about this-- >> John: Hold on. Repeat that. Cause that's like a key thing. What problem hasn't been solved since the data warehouse? >> To be able to actually find and fully understand, understand to the point of trust the data that you want to use for your analysis. And so, in the world of-- >> John: That sounds so simple. >> Stephanie: In the world of data warehousing-- >> John: Why is it so hard? >> Well, because in the world of data warehousing business people were told what data they should use. Someone in IT decided how to model the data, came up with a KPR calculation, and told you as a business person, you as a CEO, this is how you're going to monitor you business. >> John: Yeah. >> What business person >> Wants to be told that by an IT guy, right? >> Well, it was bounded by IT. >> Right. >> Expression and discovery >> Should be unbounded. Machine learning can take care of a lot of bounded stuff. I get that. But like, when you start to get into the discovery side of it, it should be free. >> Well, no offense to the IT team, but they were doing their best to try to figure out how to make this technology work. >> Well, just look at the cost of goods sold for storage. I mean, how many EMC drives? Expensive! IT was not cheap. >> Right. >> Not even 10, 15, 20 years ago. >> So, now when we have more self-service access to data, and we can have more exploratory analysis. What data science really introduced and Hadoop introduced was this ability on-demand to be able to create these structures, you have this more iterative world of how you can discover and explore datasets to come to an insight. The only challenge is, without simplifying that process, a business person is still lost, right? >> John: Yeah. >> Still lost in the data. >> So, we simply call that a catalog. But a catalog is much more-- >> Index, catalog, anthology, there's other words for it, right? >> Yeah, but I think it's interesting because like a concept of a catalog is an inventory has been around forever in this space. But the concept of a catalog that learns from other's behavior with that data, this concept of Behavior I/O that Aaron talked about earlier today. The fact that behavior of how people query data as an input and that input then informs a recommendation as an output is very powerful. And that's where all the machine learning and A.I. comes to work. It's hidden underneath that concept of Behavior I/O but that's there real innovation that drives this rich catalog is how can we make active recommendations to a business person who doesn't have to understand the technology but they know how to apply that data to making a decision. >> Yeah, that's key. Behavior and textual information has always been the two fly wheels in analysis whether you're talking search engine or data in general. And I think what I like about the trends here at Big Data NYC this weekend. We've certainly been seeing it at the hundreds of CUBE events we've gone to over the past 12 months and more is that people are using data differently. Not only say differently, there's baselining, foundational things you got to do. But the real innovators have a twist on it that give them an advantage. They see how they can use data. And the trend is collective intelligence of the customer seems to be big. You guys are doing it. You're seeing patterns. You're automating the data. So, it seems to be this fly wheel of some data, get some collective data. What's your thoughts and reactions. Are people getting it? Is this by people doing it by accident on purpose kind of thing? Did people just fell on their head? Or you see, "Oh, I just backed into this?" >> I think that the companies that have emerged as the leaders in the last 15 or 20 years, Google being a great example, Amazon being a great example. These are companies whose entire business models were based on data. They've generated out-sized returns. They are the leaders on the stock market. And I think that many companies have awoken to the fact that data as a monetizable asset to be turned into information either for analysis, to be turned into information for generating new products that can then be resold on the market. The leading edge companies have figured that out, and our adopting technologies like Alation, like Paxata, to get a competitive advantage in the business processes where they know they can make a difference inside of the enterprise. So, I don't think it's a fluke at all. I think that most of these companies are being forced to go down that path because they have been shown the way in terms of the digital giants that are currently ruling the enterprise tech world. >> All right, what's your thoughts on the week this week so far on the big trends? What are obvious, obviously A.I., don't need to talk about A.I., but what were the big things that came out of it? And what surprised you that didn't come out from a trends standpoint buzz here at Strata Data and Big Data NYC? What were the big themes that you saw emerge and didn't emerge what was the surprise? Any surprises? >> Basically, we're seeing in general the maturation of the market finally. People are finally realizing that, hey, it's not just about cool technology. It's not about what distribution or package. It's about can you actually drive return on investment? Can you actually drive insights and results from the stack? And so, even the technologists that we were talking with today throughout the course of the show are starting to talk about it's that last mile of making the humans more intelligent about navigating this data, where all the breakthroughs are going to happen. Even in places like IOT, where you think about a lot of automation, and you think about a lot of capability to use deep learning to maybe make some decisions. There's still a lot of human training that goes into that decision-making process and having agency at the edge. And so I think this acknowledgement that there should be balance between human input and what the technology can do is a nice breakthrough that's going to help us get to the next level. >> What's missing? What do you see that people missed that is super-important, that wasn't talked much about? Is there anything that jumps out at you? I'll let you think about it. Nenshad, you have something now. >> Yeah, I would say I completely agree with what Stephanie said which we are seeing the market mature. >> John: Yeah. >> And there is a compelling force to now justify business value for all the investments people have made. The science experiment phase of the big data world is over. People now have to show a return on that investment. I think that being said though, this is my sort of way of being a little more provocative. I still think there's way too much emphasis on data science and not enough emphasis on the average business analyst who's doing work in the Fortune 500. >> It should be kind of the same thing. I mean, with data science you're just more of an advanced analyst maybe. >> Right. But the idea that every person who works with data is suddenly going to understand different types of machine learning models, and what's the right way to do hyper parameter tuning, and other words that I could throw at you to show that I'm smart. (laughter) >> You guys have a vision with the Excel thing. I could see how you see that perspective because you see a future. I just think we're not there yet because I think the data scientists are still handcuffed and hamstrung by the fact that they're doing too much provisioning work, right? >> Yeah. >> To you're point about >> surfacing the insights, it's like the data scientists, "Oh, you own it now!" They become the sysadmin, if you will, for their department. And it's like it's not their job. >> Well, we need to get them out of data preparation, right? >> Yeah, get out of that. >> You shouldn't be a data scientist-- >> Right now, you have two values. You've got the use interface value, which I love, but you guys do the automation. So, I think we're getting there. I see where you're coming from, but still those data sciences have to set the tone for the generation, right? So, it's kind of like you got to get those guys productive. >> And it's not a .. Please go ahead. >> I mean, it's somewhat interesting if you look at can the data scientist start to collaborate a little bit more with the common business person? You start to think about it as a little bit of scientific inquiry process. >> John: Yeah. >> Right? >> If you can have more innovators around the table in a common place to discuss what are the insights in this data, and people are bringing business perspective together with machine learning perspective, or the knowledge of the higher algorithms, then maybe you can bring those next leaps forward. >> Great insight. If you want my observations, I use the crazy analogy. Here's my crazy analogy. Years it's been about the engine Model T, the car, the horse and buggy, you know? Now, "We got an engine in the car!" And they got wheels, it's got a chassis. And so, it's about the apparatus of the car. And then it evolved to, "Hey, this thing actually drives. It's transportation." You can actually go from A to B faster than the other guys, and people still think there's a horse and buggy market out there. So, they got to go to that. But now people are crashing. Now, there's an art to driving the car. >> Right. >> So, whether you're a sports car or whatever, this is where the value piece I think hits home is that, people are driving the data now. They're driving the value proposition. So, I think that, to me, the big surprise here is how people aren't getting into the hype cycle. They like the hype in terms of lead gen, and A.I., but they're too busy for the hype. It's like, drive the value. This is not just B.S. either, outcomes. It's like, "I'm busy. I got security. I got app development." >> And I think they're getting smarter about how their valuing data. We're starting to see some economic models, and some ways of putting actual numbers on what impact is this data having today. We do a lot of usage analysis with our customers, and looking at they have a goal to distribute data across more of the organization, and really get people using it in a self-service manner. And from that, you're being able to calculate what actually is the impact. We're not just storing this for insurance policy reasons. >> Yeah, yeah. >> And this cheap-- >> John: It's not some POC. Don't do a POC. All right, so we're going to end the day and the segment on you guys having the last word. I want to phrase it this way. Share an anecdotal story you've heard from a customer, or a prospective customer, that looked at your product, not the joint product but your products each, that blew you away, and that would be a good thing to leave people with. What was the coolest or nicest thing you've heard someone say about Alation and Paxata? >> For me, the coolest thing they said, "This was a social network for nerds. I finally feel like I've found my home." (laughter) >> Data nerds, okay. >> Data nerds. So, if you're a data nerd, you want to network, Alation is the place you want to be. >> So, there is like profiles? And like, you guys have a profile for everybody who comes in? >> Yeah, so the interesting thing is part of our automation, when we go and we index the data sources we also index the people that are accessing those sources. So, you kind of have a leaderboard now of data users, that contract one another in system. >> John: Ooh. >> And at eBay leader was this guy, Caleb, who was their data scientist. And Caleb was famous because everyone in the organization would ask Caleb to prepare data for them. And Caleb was like well known if you were around eBay for awhile. >> John: Yeah, he was the master of the domain. >> And then when we turned on, you know, we were indexing tables on teradata as well as their Hadoop implementation. And all of a sudden, there are table structures that are Caleb underscore cussed. Caleb underscore revenue. Caleb underscore ... We're like, "Wow!" Caleb drove a lot of teradata revenue. (Laughs) >> Awesome. >> Paxata, what was the coolest thing someone said about you in terms of being the nicest or coolest most relevant thing? >> So, something that a prospect said earlier this week is that, "I've been hearing in our personal lives about self-driving cars. But seeing your product and where you're going with it I see the path towards self-driving data." And that's really what we need to aspire towards. It's not about spending hours doing prep. It's not about spending hours doing manual inventories. It's about getting to the point that you can automate the usage to get to the outcomes that people are looking for. So, I'm looking forward to self-driving information. Nenshad, thanks so much. Stephanie from Alation. Thanks so much. Congratulations both on your success. And great to see you guys partnering. Big, big community here. And just the beginning. We see the big waves coming, so thanks for sharing perspective. >> Thank you very much. >> And your color commentary on our wrap up segment here for Big Data NYC. This is theCUBE live from New York, wrapping up great three days of coverage here in Manhattan. I'm John Furrier. Thanks for watching. See you next time. (upbeat techo music)

Published Date : Oct 3 2017

SUMMARY :

Brought to you by Silicon Angle Media and Hadoop World, all part of the Big Data ecosystem. in addition to the partnership that you guys have. What's the deal? And so, one of the things that really drove this partnership So, you pushed the user data back to Alation, Yeah, I mean, the idea's to keep the analyst That's an easy TAM to go after. So, if the data is compressed in Avro or Parquet of how that data's been used in past projects It might be comments that people have made. And the great thing that we can do with Paxata And they get to do their thing, as easy to use as Excel, basically. a whole new class of people Click on that and oh!" the files with extensions. It's like getting your pictures like DS, JPEG. is that you have thousands of these files Cause I had the CEO on, also their lead investor Stephanie: Keep going. Google for the data, it's an awesome opportunity. And that's the exact same thing that we've tried to do. And that's the hard problem. What problem hasn't been solved since the data warehouse? the data that you want to use for your analysis. Well, because in the world of data warehousing But like, when you start to get into to the IT team, but they were doing Well, just look at the cost of goods sold for storage. of how you can discover and explore datasets So, we simply call that a catalog. But the concept of a catalog that learns of the customer seems to be big. And I think that many companies have awoken to the fact And what surprised you that didn't come out And so, even the technologists What do you see that people missed the market mature. in the Fortune 500. It should be kind of the same thing. But the idea that every person and hamstrung by the fact that they're doing They become the sysadmin, if you will, So, it's kind of like you got to get those guys productive. And it's not a .. can the data scientist start to collaborate or the knowledge of the higher algorithms, the car, the horse and buggy, you know? So, I think that, to me, the big surprise here is across more of the organization, and the segment on you guys having the last word. For me, the coolest thing they said, Alation is the place you want to be. Yeah, so the interesting thing is if you were around eBay for awhile. And all of a sudden, there are table structures And great to see you guys partnering. See you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
StephaniePERSON

0.99+

Stephanie McReynoldsPERSON

0.99+

Greg SandsPERSON

0.99+

JohnPERSON

0.99+

CalebPERSON

0.99+

John FurrierPERSON

0.99+

NenshadPERSON

0.99+

New YorkLOCATION

0.99+

PrakashPERSON

0.99+

AmazonORGANIZATION

0.99+

AaronPERSON

0.99+

Silicon Angle MediaORGANIZATION

0.99+

2013DATE

0.99+

thousandsQUANTITY

0.99+

Costanoa VenturesORGANIZATION

0.99+

ManhattanLOCATION

0.99+

two companiesQUANTITY

0.99+

both companiesQUANTITY

0.99+

ExcelTITLE

0.99+

TrifactaORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Strata DataORGANIZATION

0.99+

AlationORGANIZATION

0.99+

PaxataORGANIZATION

0.99+

Nenshad BardoliwallaPERSON

0.99+

eBayORGANIZATION

0.99+

three daysQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

two valuesQUANTITY

0.99+

NYCLOCATION

0.99+

hundredsQUANTITY

0.99+

Big DataORGANIZATION

0.99+

firstQUANTITY

0.99+

oneQUANTITY

0.99+

bothQUANTITY

0.99+

Strata HadoopORGANIZATION

0.99+

Hadoop WorldORGANIZATION

0.99+

earlier this weekDATE

0.98+

PaxataPERSON

0.98+

todayDATE

0.98+

Day ThreeQUANTITY

0.98+

ParquetTITLE

0.96+

three years agoDATE

0.96+

Aaron Kalb, Alation | BigData NYC 2017


 

>> Announcer: Live from midtown Manhattan, it's the Cube. Covering Big Data New York City 2017. Brought to you by SiliconANGLE Media and its ecosystem sponsors. >> Welcome back everyone, we are here live in New York City, in Manhattan for BigData NYC, our event we've been doing for five years in conjunction with Strata Data which is formerly Strata Hadoop, which was formerly Strata Conference, formerly Hadoop World. We've been covering the big data space going on ten years now. This is the Cube. I'm here with Aaron Kalb, whose Head of Product and co-founder at Alation. Welcome to the cube. >> Aaron Kalb: Thank you so much for having me. >> Great to have you on, so co-founder head of product, love these conversations because you're also co-founder, so it's your company, you got a lot of equity interest in that, but also head of product you get to have the 20 mile stare, on what the future looks, while inventing it today, bringing it to market. So you guys have an interesting take on the collaboration of data. Talk about what the means, what's the motivation behind that positioning, what's the core thesis around Alation? >> Totally so the thing we've observed is a lot of people working in the data space, are concerned about the data itself. How can we make it cheaper to store, faster to process. And we're really concerned with the human side of it. Data's only valuable if it's used by people, how do we help people find the data, understand the data, trust in the data, and that involves a mix of algorithmic approaches and also human collaboration, both human to human and human to computer to get that all organized. >> John Furrier: It's interesting you have a symbolics background from Stanford, worked at Apple, involved in Siri, all this kind of futuristic stuff. You can't go a day without hearing about Alexia is going to have voice-activated, you've got Siri. AI is taking a really big part of this. Obviously all of the hype right now, but what it means is the software is going to play a key role as an interface. And this symbolic systems almost brings on this neural network kind of vibe, where objects, data, plays a critical role. >> Oh, absolutely, yeah, and in the early days when we were co-founding the company, we talked about what is Siri for the enterprise? Right, I was you know very excited to work on Siri, and it's really a kind of fun gimmick, and it's really useful when you're in the car, your hands are covered in cookie dough, but if you could answer questions like what was revenue last quarter in the UK and get the right answer fast, and have that dialogue, oh do you mean fiscal quarter or calendar quarter. Do you mean UK including Ireland, or whatever it is. That would really enable better decisions and a better outcome. >> I was worried that Siri might do something here. Hey Siri, oh there it is, okay be careful, I don't want it to answer and take over my job. >> (laughs) >> Automation will take away the job, maybe Siri will be doing interviews. Okay let's take a step back. You guys are doing well as a start up, you've got some great funding, great investors. How are you guys doing on the product? Give us a quick highlight on where you guys are, obviously this is BigData NYC a lot going on, it's Manhattan, you've got financial services, big industry here. You've got the Strata Data event which is the classic Hadoop industry that's morphed into data. Which really is overlapping with cloud, IoTs application developments all kind of coming together. How do you guys fit into that world? >> Yeah, absolutely, so the idea of the data lake is kind of interesting. Psychologically it's sort of a hoarder mentality, oh everything I've ever had I want to keep in the attic, because I might need it one day. Great opportunity to evolve these new streams of data, with IoT and what not, but just cause you can get to it physically doesn't mean it's easy to find the thing you want, the needle in all that big haystack and to distinguish from among all the different assets that are available, which is the one that is actually trustworthy for your need. So we find that all these trends make the need for a catalog to kind of organize that information and get what you want all the more valuable. >> This has come up a lot, I want to get into the integration piece and how you're dealing with your partnerships, but the data lake integration has been huge, and having the catalog has come up with, has been the buzz. Foundationally if you will saying catalog is important. Why is it important to do the catalog work up front, with a lot of the data strategies? >> It's a great question, so, we see data cataloging as step zero. Before you can prep the data in a tool like Trifacta, PACSAT, or Kylo. Before you can visualize it in a tool like Tableau, or MicroStrategy. Before you can do some sort of cool prediction of what's going to happen in the future, with a data science engine, before any of that. These are all garbage in garbage out processes. The step zero is find the relevant data. Understand it so you can get it in the right format. Trust that it's good and then you can do whatever comes next >> And governance has become a key thing here, we've heard of the regulations, GDPR outside of the United States, but also that's going to have an arms length reach over into the United States impact. So these little decisions, and there's going to be an Equifax someday out there. Another one's probably going to come around the corner. How does the policy injection change the catalog equation? A lot of people are building machine learning algorithms on top of catalogs, and they're worried they might have to rewrite everything. How do you balance the trade off between good catalog design and flexibility on the algorithm side? >> Totally yes it's a complicated thing with governance and consumption right. There's people who are concerned with keeping the data safe, and there are people concerned with turning that data into real value, and these can seem to be at odds. What we find is actually a catalog as a foundation for both, and they are not as opposed as they seem. What Alation fundamentally does is we make a map of where the data is, who's using what data, when, how. And that can actually be helpful if your goal is to say let's follow in the footsteps of the best analyst and make more insights generated or if you want to say, hey this data is being used a lot, let's make sure it's being used correctly. >> And by the right people. >> And by the right people exactly >> Equifax they were fishing that pond dry months, months before it actually happened. With good tools like this they might have seen this right? Am I getting it right? >> That's exactly right, how can you observe what's going on to make sure it's compliant and that the answers are correct and that it's happening quickly and driving results. >> So in a way you're taking the collective intelligence of the user behavior and using that into understanding what to do with the data modeling? >> That's exactly right. We want to make each person in your organization as knowledgeable as all of their peers combined. >> So the benefit then for the customer would be if you see something that's developing you can double down on it. And if the users are using a lot of data, then you can provision more technology, more software. >> Absolutely, absolutely. It's sort of like when I was going to Stanford, there was a place where the grass was all dead, because people were riding their bikes diagonally across it. And then somebody smart was like, we're going to put a real gravel path there. So the infrastructure should follow the usage, instead of being something you try to enforce on people. >> It's a classic design meme that goes around. Good design is here, the more effective design is the path. >> Exactly. >> So let's get into the integration. So one of the hot topics here this year obviously besides cloud and AI, with cloud really being more the driver, the tailwind for the growth, AI being more the futuristic head room, is integration. You guys have some partnerships that you announced with integration, what are some of the key ones, and why are they important? >> Absolutely, so, there have been attempts in the past to centralize all the data in one place have one warehouse or one lake have one BI tool. And those generally fail, for different reasons, different teams pick different stacks that work for them. What we think is important is the single source of reference One hub with spokes out to all those different points. If you think about it it's like Google, it's one index of the whole web even though the web is distributed all over the place. To make that happen it's very important that we have partnerships to get data in from various sources. So we have partnerships with database vendors, with Cloudera and Hortonworks, with different BI tools. What's new are a few things. One is with Cloudera Navigator, they have great technical metadata around security and lineage over HGFS, and that's a way to bolster our catalog to go even deeper into what's happening in the files before things get surfaced and higher for places where we have a deeper offering today. >> So it's almost a connector to them in a way, you kind of share data. >> That's exactly right, we've a lot of different connectors, this is one new one that we have. Another, go ahead. >> I was going to go ahead continue. >> I was just going to say another place that is exciting is data prep tools, so Trifacta and Paxata are both places where you can find and understand an alation and then begin to manipulate in those tools. We announced with Paxata yesterday, the ability to click to profile, so if you want to actually see what's in some raw compressed avro file, you can see that in one click. >> It's interesting, Paxata has really been almost lapping, Trifacta because they were the leader in my mind, but now you've got like a Nascar race going on between the two firms, because data wrangling is a huge issue. Data prep is where everyone is stuck right now, they just want to do the data science, it's interesting. >> They are both amazing companies and I'm happy to partner with both. And actually Trifacta and Alation have a lot of joint customers we're psyched to work with as well. I think what's interesting is that data prep, and this is beginning to happen with analyst definitions of that field. It isn't just preparing the data to be used, getting it cleaned and shaped, it's also preparing the humans to use the data giving them the confidence, the tools, the knowledge to know how to manipulate it. >> And it's great progress. So the question I wanted to ask is now the other big trend here is, I mean it's kind of a subtext in this show, it's not really front and center but we've been seeing it kind of emerge as a concept, we see in the cloud world, on premise vs cloud. On premise a lot of people bring in the dev ops model in, and saying I may move to the cloud for bursting and some native applications, but at the end of the day there is a lot of work going on on premise. A lot of companies are kind of cleaning house, retooling, replatforming, whatever you want to do resetting. They are kind of getting their house in order to do on prem cloud ops, meaning a business model of cloud operations on site. A lot of people doing that, that will impact the story, it's going to impact some of the server modeling, that's a hot trend. How do you guys deal with the on premise cloud dynamic? >> Totally, so we just want to do what's right for the customer, so we deploy both on prem and in the cloud and then from wherever the Alation server is it will point to usually a mix of sources, some that are in the cloud like vetshifter S3 often with Amazon today, and also sources that are on prem. I do think I'm seeing a trend more and more toward the cloud and we have people that are migrating from HGFS to S3 is one thing we hear a lot about it. Strata with sort of dupe interest. But I think what's happening is people are realizing as each Equifax in turn happens, that this old wild west model of oh you surround your bank with people on horseback and it's physically in one place. With data it isn't like that, most people are saying I'd rather have the A+ teams at Salesforce or Amazon or Google be responsible for my security, then the people I can get over in the midwest. >> And the Paxata guys have loved the term Data Democracy, because that is really democratization, making the data free but also having the governance thing. So tell me about the Data Lake governance, because I've never loved the term Data Lake, I think it's more of a data ocean, but now you see data lake, data lake, data lake. Are they just silos of data lakes happening now? Are people trying to connect them? That's key, so that's been a key trend here. How do you handle the governance across multiple data lakes? >> That's right so the key is to have that single source of reference, so that regardless of which lake or warehouse, or little siloed Sequel server somewhere, that you can search in a single portal and find that thing no matter where it is. >> John: Can you guys do that? >> We can do that, yeah, I think the metaphor for people who haven't seen it really is Google, if you think about it, you don't even know what physical server a webpage is hosted from. >> Data lakes should just be invisible >> Exactly. >> So your interfacing with multiple data lakes, that's a value proposition for you. >> That's right so it could be on prem or in the cloud, multi-cloud. >> Can you share an example of a customer that uses that and kind of how it's laid out? >> Absolutely, so one great example of an interesting data environment is eBay. They have the biggest teradata warehouse in the world. They also have I believe two huge data lakes, they have hive on top of that, and Presto is used to sort of virtualize it across a mixture of teradata, and hive and then direct Presto query It gets very complicated, and they have, they are a very data driven organization, so they have people who are product owners who are in jobs where data isn't in their job title and they know how to look at excel and look at numbers and make choices, but they aren't real data people. Alation provides that accessibility so that they can understand it. >> We used to call the Hadoop world the car show for the data world, where for a long time it was about the engine what was doing what, and then it became, what's the car, and now how's it drive. Seeing that same evolution now where all that stuff has to get done under the hood. >> Aaron: Exactly. >> But there are still people who care about that, right. They are the mechanics, they are the plumbers, whatever you want to call them, but then the data science are the guys really driving things and now end users potentially, and even applications bots or what nots. It seems to evolve, that's where we're kind of seeing the show change a little bit, and that's kind of where you see some of the AI things. I want to get your thoughts on how you or your guys are using AI, how you see AI, if it's AI at all if it's just machine learning as a baby step into AI, we all know what AI could be, but it's really just machine learning now. How do you guys use quote AI and how has it evolved? >> It's a really insightful question and a great metaphor that I love. If you think about it, it used to be how do you build the car, and now I can drive the car even though I couldn't build it or even fix it, and soon I don't even have to drive the car, the car will just drive me, all I have to know is where I want to go. That's sortof the progression that we see as well. There's a lot of talk about deep learning, all these different approaches, and it's super interesting and exciting. But I think even more interesting than the algorithms are the applications. And so for us it's like today how do we get that turn by turn directions where we say turn left at the light if you want to get there And eventually you know maybe the computer can do it for you The thing that is also interesting is to make these algorithms work no matter how good your algorithm is it's all based on the quality of your training data. >> John: Which is a historical data. Historical data in essence the more historical data you have you need that to train the data. >> Exactly right, and we call this behavior IO how do we look at all the prior human behavior to drive better behavior in the future. And I think the key for us is we don't want to have a bunch of unpaid >> John: You can actually get that URL behavioral IO. >> We should do it before it's too late (Both laugh) >> We're live right now, go register that Patrick. >> Yeah so the goal is we don't want to have a bunch of unpaid interns trying to manually attack things, that's error prone and that's slow. I look at things like Luis von Ahn over at CMU, he does a thing where as you're writing in a CAPTCHA to get an email account you're also helping Google recognize a hard to read address or a piece of text from books. >> John: If you shoot the arrow forward, you just take this kind of forward, you almost think augmented reality is a pretext to what we might see for what you're talking about and ultimately VR are you seeing some of the use cases for virtual reality be very enterprise oriented or even end consumer. I mean Tom Brady the best quarterback of all time, he uses virtual reality to play the offense virtually before every game, he's a power user, in pharma you see them using virtual reality to do data mining without being in the lab, so lab tests. So you're seeing augmentation coming in to this turn by turn direction analogy. >> It's exactly, I think it's the other half of it. So we use AI, we use techniques to get great data from people and then we do extra work watching their behavior to learn what's right. And to figure out if there are recommendations, but then you serve those recommendations, either it's Google glasses it appears right there in your field of view. We just have to figure out how do we make sure, that in a moment of you're making a dashboard, or you're making a choice that you have that information right on hand. >> So since you're a technical geek, and a lot of folks would love to talk about this, so I'll ask you a tough question cause this is something everyone is trying to chase for the holy grail. How do you get the right piece of data at the right place at the right time, given that you have all these legacy silos, latencies and network issues as well, so you've got a data warehouse, you've got stuff in cold storage, and I've got an app and I'm doing something, there could be any points of data in the world that could be in milliseconds potentially on my phone or in my device my internet of thing wearable. How do you make that happen? Because that's the struggle, at the same time keep all the compliance and all the overhead involved, is it more compute, is it an architectural challenge how do you view that because this is the big challenge of our time. >> Yeah again I actually think it's the human challenge more than the technology challenge. It is true that there is data all over the place kind of gathering dust, but again if you think about Google, billions of web pages, I only care about the one I'm about to use. So for us it's really about being in that moment of writing a query, building a chart, how do we say in that moment, hey you're using an out of date definition of profit. Or hey the database you chose to use, the one thing you chose out of the millions that is actually is broken and stale. And we have interventions to do that with our partners and through our own first party apps that actually change how decisions get made at companies. >> So to make that happen, if I imagine it, you'd have to need access to the data, and then write software that is contextually aware to then run, compute, in context to the user interaction. >> It's exactly right, back to the turn by turn directions concept you have to know both where you're trying to go and where you are. And so for us that can be the from where I'm writing a Sequel statement after join we can suggest the table most commonly joined with that, but also overlay onto that the fact that the most commonly joined table was deprecated by a data steward data curator. So that's the moment that we can change the behavior from bad to good. >> So a chief data officer out there, we've got to wrap up, but I wanted to ask one final question, There's a chief data officer out there they might be empowered or they might be just a CFO assistant that's managing compliance, either way, someone's going to be empowered in an organization to drive data science and data value forward because there is so much proof that data science works. From military to play you're seeing examples where being data driven actually has benefits. So everyone is trying to get there. How do you explain the vision of Alation to that prospect? Because they have so much to select from, there's so much noise, there's like, we call it the tool shed out there, there's like a zillion tools out there there's like a zillion platforms, some tools are trying to turn into something else, a hammer is trying to be a lawnmower. So they've got to be careful on who the select, so what's the vision of Alation to that chief data officer, or that person in charge of analytics to scale operational analytics. >> Absolutely so we say to the CDO we have a shared vision for this place where your company is making decisions based on data, instead of based on gut, or expensive consultants months too late. And the way we get there, the reason Alation adds value is, we're sort of the last tool you have to buy, because with this lake mentality, you've got your tool shed with all the tools, you've got your library with all the books, but they're just in a pile on the floor, if you had a tool that had everything organized, so you just said hey robot, I need an hammer and this size nail and this text book on this set of information and it could just come to you, and it would be correct and it would be quick, then you could actually get value out of all the expense you've already put in this infrastructure, that's especially true on the lake. >> And also tools describe the way the works done so in that model tools can be in the tool shed no one needs to know it's in there. >> Aaron: Exactly. >> You guys can help scale that. Well congratulations and just how far along are you guys in terms of number of employees, how many customers do you have? If you can share that, I don't know if that's confidential or what not >> Absolutely, so we're small but growing very fast planning to double in the next year, and in terms of customers, we've got 85 customers including some really big names. I mentioned eBay, Pfizer, Safeway Albertsons, Tesco, Meijer. >> And what are they saying to you guys, why are they buying, why are they happy? >> They share that same vision of a more data driven enterprise, where humans are empowered to find out, understand, and trust data to make more informed choices for the business, and that's why they come and come back. >> And that's the product roadmap, ethos, for you guys that's the guiding principle? >> Yeah the ultimate goal is to empower humans with information. >> Alright Aaron thanks for coming on the Cube. Aaron Kalb, co-founder head of product for Alation here in New York City for BigData NYC and also Strata Data I'm John Furrier thanks for watching. We'll be right back with more after this short break.

Published Date : Sep 28 2017

SUMMARY :

Brought to you by This is the Cube. Great to have you on, so co-founder head of product, Totally so the thing we've observed is a lot Obviously all of the hype right now, and get the right answer fast, and have that dialogue, I don't want it to answer and take over my job. How are you guys doing on the product? doesn't mean it's easy to find the thing you want, and having the catalog has come up with, has been the buzz. Understand it so you can get it in the right format. and flexibility on the algorithm side? and make more insights generated or if you want to say, Am I getting it right? That's exactly right, how can you observe what's going on We want to make each person in your organization So the benefit then for the customer would be So the infrastructure should follow the usage, Good design is here, the more effective design is the path. You guys have some partnerships that you announced it's one index of the whole web So it's almost a connector to them in a way, this is one new one that we have. the ability to click to profile, going on between the two firms, It isn't just preparing the data to be used, but at the end of the day there is a lot of work for the customer, so we deploy both on prem and in the cloud because that is really democratization, making the data free That's right so the key is to have that single source really is Google, if you think about it, So your interfacing with multiple data lakes, on prem or in the cloud, multi-cloud. They have the biggest teradata warehouse in the world. the car show for the data world, where for a long time and that's kind of where you see some of the AI things. and now I can drive the car even though I couldn't build it Historical data in essence the more historical data you have to drive better behavior in the future. Yeah so the goal is and ultimately VR are you seeing some of the use cases but then you serve those recommendations, and all the overhead involved, is it more compute, the one thing you chose out of the millions So to make that happen, if I imagine it, back to the turn by turn directions concept you have to know How do you explain the vision of Alation to that prospect? And the way we get there, no one needs to know it's in there. If you can share that, I don't know if that's confidential planning to double in the next year, for the business, and that's why they come and come back. Yeah the ultimate goal is Alright Aaron thanks for coming on the Cube.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Luis von AhnPERSON

0.99+

eBayORGANIZATION

0.99+

Aaron KalbPERSON

0.99+

PfizerORGANIZATION

0.99+

JohnPERSON

0.99+

AaronPERSON

0.99+

TescoORGANIZATION

0.99+

John FurrierPERSON

0.99+

Safeway AlbertsonsORGANIZATION

0.99+

SiriTITLE

0.99+

GoogleORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

New York CityLOCATION

0.99+

UKLOCATION

0.99+

20 mileQUANTITY

0.99+

HortonworksORGANIZATION

0.99+

BigDataORGANIZATION

0.99+

five yearsQUANTITY

0.99+

EquifaxORGANIZATION

0.99+

two firmsQUANTITY

0.99+

AppleORGANIZATION

0.99+

MeijerORGANIZATION

0.99+

ten yearsQUANTITY

0.99+

ClouderaORGANIZATION

0.99+

TrifactaORGANIZATION

0.99+

85 customersQUANTITY

0.99+

AlationORGANIZATION

0.99+

PatrickPERSON

0.99+

bothQUANTITY

0.99+

Strata DataORGANIZATION

0.99+

millionsQUANTITY

0.99+

United StatesLOCATION

0.99+

PaxataORGANIZATION

0.99+

SiliconANGLE MediaORGANIZATION

0.99+

excelTITLE

0.99+

ManhattanLOCATION

0.99+

last quarterDATE

0.99+

IrelandLOCATION

0.99+

GDPRTITLE

0.99+

Tom BradyPERSON

0.99+

each personQUANTITY

0.99+

SalesforceORGANIZATION

0.98+

next yearDATE

0.98+

NYCLOCATION

0.98+

oneQUANTITY

0.98+

this yearDATE

0.98+

yesterdayDATE

0.98+

todayDATE

0.97+

one lakeQUANTITY

0.97+

NascarORGANIZATION

0.97+

one warehouseQUANTITY

0.97+

Strata DataEVENT

0.96+

TableauTITLE

0.96+

OneQUANTITY

0.96+

Both laughQUANTITY

0.96+

billions of web pagesQUANTITY

0.96+

single portalQUANTITY

0.95+