Image Title

Search Results for Tim Burlowski:

Inhi Cho Suh, IBM - IBM Information on Demand 2013 - #IBMIoD #theCUBE


 

okay we're back live here inside the cube rounding out day one of exclusive coverage of IBM information on demand I'm John further the founder SiliconANGLE enjoy my co-host Davey lonte we're here in heat you saw who's the vice president I said that speaks that you know I think you always get promoted you've been on the cube so many times you doing so well it's all your reason tatian was so amazing I always liked SVP the cute good things happen that's exactly why i be MVP is a big deal unlike some of the starters where everyone gets EVP all these other titles but welcome back thank you so the storytelling has been phenomenal here although murs a little bit critical some of the presentations earlier from gardner but the stories higher your IBM just from last year take us through what's changed from iod last year to this year the story has gotten tighter yes comprehensive give us the quick okay quick view um okay here's the point of view here's the point of view first you got to invest in a platform which we've all talked about and i will tell you it's not just us saying it i would say other vendors are now copying what we're saying cuz if you went to strata yes which you were there we were there probably heard some of the messages that's right why everybody wants to be a platform okay one two elevated risk uncertainty governance I think privacy privacy security risk this is what people are talking about they want to invest in a more why because you know what the decisions matter they want to make bigger beds they want to do more things around customer experience they want to improve products they want to improve pricing the third area is really a cultural statement like applying analytics in the organization because the people and the skills I would say the culture conversation is happening a lot more this year than it was a year ago not just at IOD but in the industry so I think what you're seeing here at IOD is actually a reflection of what the conversations are happening so our organizations culturally ready for this I mean you guys are going to say yes and everybody comes on says oh yes we're seeing it all over the place but are they really ready it depends I think some are some are absolutely ready some are not and probably the best examples are and it really depends on the industry so I'll give you a few examples so in the government area I think people see the power of applying things like real-time contextual insight leveraging stream computing why because national security matters a lot of fraudulent activity because that's measurable you can drive revenue or savings healthcare people know that a lot of decision-making is being made without a comprehensive view of the analytics and the data now the other area that's interesting is most people like to talk about text analytics unstructured data a lot of social media data but the bulk of the data that's actually being used currently in terms of big data analytics is really transactional data why because that's what's maintained in most operational systems where health systems so you're going to see a lot more data warehouse augmentation use cases leverage you can do on the front end or the back end you're going to see kind of more in terms of comprehensive view of the customer right augmenting like an existing customer loyalty or segmentation data with additional let's say activity data that they're interacting with and that was the usta kind of demo showing social data cell phone metadata is that considered transactional you know it is well call me to record right CDR call detail records well the real time is important to you mentioned the US open just for folks out there was a demo on stage when you guys open data yeah at all the trend sentiment data the social data but that's people's thoughts right so you can see what people are doing now that's big yeah you know what's amazing about that just one second which is what we were doing was we were predicting it based on the past but then we were modifying it based on real time activity and conversation so let's say something hot happened and all of a sudden it was interesting when Brian told me this he was like oh yeah Serena's average Twitter score was like 2,200 twit tweets a day and then if some activity were to happen let's say I don't know she didn't he wrote she had got into a romance or let's say she decided to launch a new product then all of a sudden you'd see an accused spike rate in activity social activity that would then predict how they wanted to operate that environment that's amazing and you know we you know we love daily seen our our crowd spots be finder we have the new crowd chat one and this idea of connecting consumers is loose data it's ephemeral data it's transient data but it's now capture will so people can have a have fun into tennis tournament and then it's over they go back home to work you still have that metadata we do that's very kind of its transient and ephemeral that's value so you know Merv was saying also that your groups doing a lot of value creation let's talk about that for a second business outcomes what do you what's the top conversation when you walk into a customer that says hey you know here's point a point B B's my outcome mm-hmm one of those conversations like I mean what are they what are some of the outcomes you just talked to use case you tell customers but like what did some of the exact you know what I'll tell you one use case so and this was actually in the healthcare hotel you won healthcare use case in one financial services use case both conversations happened actually in the last two weeks so in the healthcare use case there's already let's say a model that's happening for this particular hospital now they have a workflow process typically in a workflow process you you're applying capabilities where you've modeled out your steps right you do a before be before see and you automate this leveraging BPM type capabilities in a data context you don't actually start necessarily with knowing what the workflow is you kind of let the data determine what the workflow should be so in the this was in an ICU arena historically if you wanted to decide who was the healthiest of the patients in the ICU because you had another trauma coming in there was a workflow that said you had to go check the nurses the patient's profile and say who gets kicked out of what bed or moved because they're most likely to be in a healthy state that's a predefined workflow but if you're applying streams for example all the sudden you could have real-time visibility without necessarily a nurse calling a doctor who that calls the local staff who then calls the cleaning crew rate you could actually have a dashboard that says with eighty percent confidence beds2 and ate those patients because of the following conditions could be the ones that you are proactive in and saying oh you know what not only can they be released but we have this degree of confidence around them being because of the days that it's coming obvious information that changes then potentially you know the way your kind of setting your rules and policies around your workflow another example which was really a government use case was think about in government security so in security scenarios and national security state there is you never quite know exactly what people are intended to do other than you know they're intending something bad right and they're intentionally trying not to be found so human trafficking it's an ugly topic but I want to bring it up for a second here what you're doing is you're actually looking at data compositions and and different patterns and resolving entities and based on that that will dictate kind of potentially a whole new flow or a treatment or remediation or activity or savior which is not the predefined workflow it's you're letting the data actually all of a sudden connect to other data points that then you're arriving at the insight to take the action where is completely different I wanna go back to sleep RFI course not healthcare examples yeah so where are we today is that something that's actually being implemented is that something they sort of a proof of concept well that's actually being done at it's being done in a couple different hospitals one of which is actually in hospital in Canada and then we're also leveraging streams in the emory university intensive Timothy Buckman on you did earlier oh yeah the ICU of the future right absolutely brilliant trafficking example brings up you know Ashley that's the underbelly of the world in society but like data condition to Jeff Jonas been on the queue as you know many times and he talks with his puzzle pieces in a way that the data is traveling on a network a network that's distributed essentially that's network computing I mean estate management so look at network management you can look at patterns right so so that's an interesting example so that begs the next question what is the craziest most interesting use case you seen oh my gosh okay now i got i think about oh yes and you can talk about and i can talk about that creates business value or society value oh you know I okay um for you are putting me on the spot the craziest one so 3 we could be great could be g-rated don't you know they go to 2k yeah you know what I participated three weeks ago tiaa-cref actually hosted a fraud summit where it was all investigators like they were doing crime investigation so more than sixty percent of the guys in the room carried weapons because they were Security Intelligence they were pleased they were DA's they repented I was not packing anyway and there was about so 60-plus percent were those right and then only about thirty percent in the room were what i would consider the data scientists in the room like these are the guys are trying to decide which claims are not true or false so forth there were at least like three or four use cases in that discussion that came out they were unbelievable so one is in the fraud area in particular and in crime they're luring the data there what does luring the data they're taking location-based data for geographic region they're putting crime data on top of that right historical like drug rings and even like datasets in miami-dade county the DA told me they were doing things where rather than looking at people that are doing the drugs they they realize people that had possession of a drug typically purchased within a certain location and they had these abandoned properties and were able to identify entire rings based on that another one this is also semi drug-related is in the energy utility space there was in the middle part of the United States houses in Nice urban areas where they were completely torn apart on the interior and build into marijuana houses and so of course they're utilizing high levels of gas and electricity in order to maintain the water fertilization everything else well what happens is it drives peaks in the way that the energy utility looks on a given day pattern so based on that they're able to detect how inappropriate activities are happening and whether it's a single opportunistic type activity whether it's saying this was doing laundry or irrigating the Erie hey we well you know what's interesting about electricity to is especially someone's using electricity but no one's like using any of the gas you're like home but no one's cooking you know something's a little long but it was fascinating i mean really fascinating there were like several other crime scenarios in terms of speed i actually did not know the US Postal Service is like the longest running federal institution that actually tracked like mail fraud and one of the use cases i'm sure jeff has talked about here on the cube is probably a moneygram use case but we talked about that we talked I mean it the stories were unreal because I was spending time with forensic scientists as well as forensic investigators and that's a completely do we're getting we're getting the few minutes need for a platform to handle all this diversity so that's the security risk the governance everything you gotta go cuz your star for the analyst me I can't watch this conversation one final question one of the best yet as we get drugs in there we got other things packing guns guns and drugs you in traffic you know tobacco if you go / news / tobacco well write the knowledge worker all right final question for I know you gotta go this big data applications were you know the guys in the mailroom the guys work for the post office are now unable to actually do this kind of high-level kind of date basically data science yeah if you will or being an analyst so that what I want you to share the folks your vision of the definition of the knowledge worker overused word that's been kicked around for the PC generates but now with handheld with analytical real-time with streaming all this stuff happening at the edge how is it going to change that the knowledge work or the person in the trenches it could be person the cubicle the person on the go the mobile sales person or anyone you know I some people feel threatened when they hear that you're going to apply data and analytics everywhere because you're it implies that you're automating things but that's actually not the value the real value is the insight so that you can double down on the decisions you want to make so if you're more confident you're going to take bigger bets right and decision-making historically has been I think reserved for a very elite few and what we're talking about now is a democratization of that insight and with that comes a lot of empowerment a lot empowerment for everyone and you don't have to be a data scientist be able to be able to make decisions and inform decisions if anything you know actually Tim Buckman I had a good conversation about them as a professional you know what I if I was a physician I'd want to work at the hospital that has the advanced capabilities why because it allows me as a professional physician to then be able to do what I was trained to do not to detect and have to pay attention to all these alarms going off you know I want to work at the institutions and organizations that are investing appropriately because it pushes the caliber of the work I get to do so I think it just changes the dynamics for everyone tim was like a high-priced logistics manager you want to work with people want to work with leaders and now we're in a modern era this new wave is upon us who care and they want to improve and this is about continuing to improve Dave and I always talk about the open source world that those principles are going mainstream to every aspect of business collaboration openness transparency not controlled absolutely absolutely Indy thanks so much for coming in the queue and know you're busy think of your time we are here live in the cube getting all the signal from the noise and some good commentary at the end a one we have one more guest ray way right up next stay tuned right back the queue

Published Date : Nov 5 2013

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
Jeff JonasPERSON

0.99+

Tim BuckmanPERSON

0.99+

BrianPERSON

0.99+

Timothy BuckmanPERSON

0.99+

CanadaLOCATION

0.99+

US Postal ServiceORGANIZATION

0.99+

DavePERSON

0.99+

SerenaPERSON

0.99+

IBMORGANIZATION

0.99+

more than sixty percentQUANTITY

0.99+

United StatesLOCATION

0.99+

AshleyPERSON

0.99+

jeffPERSON

0.99+

one secondQUANTITY

0.99+

threeQUANTITY

0.99+

last yearDATE

0.99+

Davey lontePERSON

0.99+

about thirty percentQUANTITY

0.98+

this yearDATE

0.98+

three weeks agoDATE

0.98+

a year agoDATE

0.98+

eighty percentQUANTITY

0.98+

both conversationsQUANTITY

0.97+

oneQUANTITY

0.97+

Inhi Cho SuhPERSON

0.97+

four use casesQUANTITY

0.97+

2,200 twit tweets a dayQUANTITY

0.96+

todayDATE

0.96+

third areaQUANTITY

0.95+

JohnPERSON

0.95+

iodTITLE

0.95+

this yearDATE

0.95+

2013DATE

0.93+

2kQUANTITY

0.93+

tatianPERSON

0.92+

last two weeksDATE

0.91+

TwitterORGANIZATION

0.9+

second businessQUANTITY

0.9+

miami-dadeLOCATION

0.89+

day oneQUANTITY

0.88+

60-plus percentQUANTITY

0.88+

MervPERSON

0.87+

firstQUANTITY

0.85+

#IBMIoDTITLE

0.84+

gardnerPERSON

0.82+

aboutQUANTITY

0.82+

EriePERSON

0.78+

single opportunistic typeQUANTITY

0.77+

USLOCATION

0.77+

SiliconANGLEORGANIZATION

0.77+

hospitalsQUANTITY

0.76+

one useQUANTITY

0.75+

twoQUANTITY

0.73+

secondQUANTITY

0.71+

coupleQUANTITY

0.68+

one moreQUANTITY

0.67+

IODORGANIZATION

0.67+

SVPTITLE

0.64+

one final questionQUANTITY

0.63+

IndyPERSON

0.58+

casesQUANTITY

0.56+

IBM InformationORGANIZATION

0.52+

strataLOCATION

0.51+

timPERSON

0.51+

many timesQUANTITY

0.46+

onTITLE

0.34+

DemandORGANIZATION

0.31+