Image Title

Search Results for Teff:

Lars Toomre, Brass Rat Capital | MIT CDOIQ 2019


 

>> from Cambridge, Massachusetts. It's the Cube covering M I T. Chief data officer and information quality Symposium 2019. Brought to you by Silicon Angle Media. >> Welcome back to M I. T. Everybody. This is the Cube. The leader in live coverage. My name is David wanted. I'm here with my co host, Paul Gill, in this day to coverage of the M I t cdo I Q conference. A lot of acronym stands for M I. T. Of course, the great institution. But Chief Data officer information quality event is his 13th annual event. Lars to Maria's here is the managing partner of Brass Rat Capital. Cool name Lars. Welcome to the Cube. Great. Very much. Glad I start with a name brass around Capitol was That's >> rat is reference to the M I t school. Okay, Beaver? Well, he is, but the students call it a brass rat, and I'm third generation M i t. So it's just seen absolutely appropriate. That is a brass rods and capital is not a reference to money, but is actually referenced to the intellectual capital. They if you have five or six brass rats in the same company, you know, we Sometimes engineers arrive and they could do some things. >> And it Boy, if you put in some data data capital in there, you really explosions. We cause a few problems. So we're gonna talk about some new regulations that are coming down. New legislation that's coming down that you exposed me to yesterday, which is gonna have downstream implications. You get ahead of this stuff and understand it. You can really first of all, prepare, make sure you're in compliance, but then potentially take advantage for your business. So explain to us this notion of open government act. >> Um, in the last five years, six years or so, there's been an effort going on to increase the transparency across all levels of government. Okay, State, local and federal government. The first of federal government laws was called the the Open Data Act of 2014 and that was an act. They was acted unanimously by Congress and signed by Obama. They was taking the departments of the various agencies of the United States government and trying to roll up all the expenses into one kind of expense. This is where we spent our money and who got the money and doing that. That's what they were trying to do. >> Big picture type of thing. >> Yeah, big picture type thing. But unfortunately, it didn't work, okay? Because they forgot to include this odd word called mentalities. So the same departments meant the same thing. Data problem. They have a really big data problem. They still have it. So they're to G et o reports out criticizing how was done, and the government's gonna try and correct it. Then in earlier this year, there was another open government date act which said in it was signed by Trump. Now, this time you had, like, maybe 25 negative votes, but essentially otherwise passed Congress completely. I was called the Open as all capital O >> P E >> n Government Data act. Okay, and that's not been implemented yet. But there's live talking around this conference today in various Chief date officers are talking about this requirement that every single non intelligence defense, you know, vital protection of the people type stuff all the like, um, interior, treasury, transportation, those type of systems. If you produce a report these days, which is machine, I mean human readable. You must now in two years or three years. I forget the exact invitation date. Have it also be machine readable. Now, some people think machine riddle mil means like pdf formats, but no, >> In fact, what the government did is it >> said it must be machine readable. So you must be able to get into the reports, and you have to be able to extract out the information and attach it to the tree of knowledge. Okay, so we're all of sudden having context like they're currently machine readable, Quote unquote, easy reports. But you can get into those SEC reports. You pull out the net net income information and says its net income, but you don't know what it attaches to on the tree of knowledge. So, um, we are helping the government in some sense able, machine readable type reporting that weaken, do machine to machine without people being involved. >> Would you say the tree of knowledge You're talking about the constant >> man tick semantic tree of knowledge so that, you know, we all come from one concept like the human is example of a living thing living beast, a living Beeston example Living thing. So it also goes back, and they're serving as you get farther and farther out the tree, there's more distance or semantic distance, but you can attach it back to concept so you can attach context to the various data. Is this essentially metadata? That's what people call it. But if I would go over see sale here at M I t, they would turn around. They call it the Tree of Knowledge or semantic data. Okay, it's referred to his semantic dated, So you are passing not only the data itself, but the context that >> goes along with the data. Okay, how does this relate to the financial transparency? >> Well, Financial Transparency Act was introduced by representative Issa, who's a Republican out of California. He's run the government Affairs Committee in the House. He retired from Congress this past November, but in 2017 he introduced what's got referred to his H R 15 30 Um, and the 15 30 is going to dramatically change the way, um, financial regulators work in the United States. Um, it is about it was about to be introduced two weeks ago when the labor of digital currency stuff came up. So it's been delayed a little bit because they're trying to add some of the digital currency legislation to that law. >> A front run that Well, >> I don't know exactly what the remember soul coming out of Maxine Waters Committee. So the staff is working on a bunch of different things at once. But, um, we own g was asked to consult with them on looking at the 15 30 act and saying, How would we improve quote unquote, given our technical, you know, not doing policy. We just don't have the technical aspects of the act. How would we want to see it improved? So one of the things we have advised is that for the first time in the United States codes history, they're gonna include interesting term called ontology. You know what intelligence? Well, everyone gets scared by the word. And when I read run into people, they say, Are you a doctor? I said, no, no, no. I'm just a date. A guy. Um, but an intolerant tea is like a taxonomy, but it had order has important, and an ontology allows you to do it is ah, kinda, you know, giving some context of linking something to something else. And so you're able Thio give Maur information with an intolerant that you're able to you with a tax on it. >> Okay, so it's a taxonomy on steroids? >> Yes, exactly what? More flexible, >> Yes, but it's critically important for artificial intelligence machine warning because if I can give them until ology of sort of how it goes up and down the semantics, I can turn around, do a I and machine learning problems on the >> order of 100 >> 1000 even 10,000 times faster. And it has context. It has contacts in just having a little bit of context speeds up these problems so dramatically so and it is that what enables the machine to machine? New notion? No, the machine to machine is coming in with son called SP R M just standard business report model. It's a OMG sophistication of way of allowing the computers or machines, as we call them these days to get into a standard business report. Okay, so let's say you're ah drug company. You have thio certify you >> drugged you manufactured in India, get United States safely. Okay, you have various >> reporting requirements on the way. You've got to give extra easy the FDA et cetera that will always be a standard format. The SEC has a different format. FERC has a different format. Okay, so what s p r m does it allows it to describe in an intolerant he what's in the report? And then it also allows one to attach an ontology to the cells in the report. So if you like at a sec 10 Q 10 k report, you can attach a US gap taxonomy or ontology to it and say, OK, net income annual. That's part of the income statement. You should never see that in a balance sheet type item. You know his example? Okay. Or you can for the first time by having that context you can say are solid problem, which suggested that you can file these machine readable reports that air wrong. So they believe or not, There were about 50 cases in the last 10 years where SEC reports have been filed where the assets don't equal total liabilities, plus cheryl equity, you know, just they didn't add >> up. So this to, >> you know, to entry accounting doesn't work. >> Okay, so so you could have the machines go and check scale. Hey, we got a problem We've >> got a problem here, and you don't have to get humans evolved. So we're gonna, um uh, Holland in Australia or two leaders ahead of the United States. In this area, they seem dramatic pickups. I mean, Holland's reporting something on the order of 90%. Pick up Australia's reporting 60% pickup. >> We say pick up. You're talking about pickup of errors. No efficiency, productivity, productivity. Okay, >> you're taking people out of the whole cycle. It's dramatic. >> Okay, now what's the OMG is rolling on the hoof. Explain the OMG >> Object Management Group. I'm not speaking on behalf of them. It's a membership run organization. You remember? I am a >> member of cold. >> I'm a khalid of it. But I don't represent omg. It's the membership has to collectively vote that this is what we think. Okay, so I can't speak on them, right? I have a pretty significant role with them. I run on behalf of OMG something called the Federated Enterprise Risk Management Group. That's the group which is focusing on risk management for large entities like the federal government's Veterans Affairs or Department offense upstairs. I think talking right now is the Chief date Officer for transportation. OK, that's a large organization, which they, they're instructed by own be at the, um, chief financial officer level. The one number one thing to do for the government is to get an effective enterprise worst management model going in the government agencies. And so they come to own G let just like NIST or just like DARPA does from the defense or intelligence side, saying we need to have standards in this area. So not only can we talk thio you effectively, but we can talk with our industry partners effectively on space. Programs are on retail, on medical programs, on finance programs, and so they're at OMG. There are two significant financial programs, or Sanders, that exist once called figgy financial instrument global identifier, which is a way of identifying a swap. Its way of identifying a security does not have to be used for a que ce it, but a worldwide. You can identify that you know, IBM stock did trade in Tokyo, so it's a different identifier has different, you know, the liberals against the one trading New York. Okay, so those air called figgy identifiers them. There are attributes associated with that security or that beast the being identified, which is generally comes out of 50 which is the financial industry business ontology. So you know, it says for a corporate bond, it has coupon maturity, semi annual payment, bullets. You know, it is an example. So that gives you all the information that you would need to go through to the calculation, assuming you could have a calculation routine to do it, then you need thio. Then turn around and set up your well. Call your environment. You know where Ford Yield Curves are with mortgage backed securities or any portable call. Will bond sort of probabilistic lee run their numbers many times and come up with effective duration? Um, And then you do your Vader's analytics. No aggregating the portfolio and looking at Shortfalls versus your funding. Or however you're doing risk management and then finally do reporting, which is where the standardized business reporting model comes in. So that kind of the five parts of doing a full enterprise risk model and Alex So what >> does >> this mean for first? Well, who does his impact on? What does it mean for organizations? >> Well, it's gonna change the world for basically everyone because it's like doing a clue ends of a software upgrade. Conversion one's version two point. Oh, and you know how software upgrades Everyone hates and it hurts because everyone's gonna have to now start using the same standard ontology. And, of course, that Sarah Ontology No one completely agrees with the regulators have agreed to it. The and the ultimate controlling authority in this thing is going to be F sock, which is the Dodd frank mandated response to not ever having another chart. So the secretary of Treasury heads it. It's Ah, I forget it's the, uh, federal systemic oversight committee or something like that. All eight regulators report into it. And, oh, if our stands is being the adviser Teff sock for all the analytics, what these laws were doing, you're getting over farm or more power to turn around and look at how we're going to find data across the three so we can come up consistent analytics and we can therefore hopefully take one day. Like Goldman, Sachs is pre payment model on mortgages. Apply it to Citibank Portfolio so we can look at consistency of analytics as well. It is only apply to regulated businesses. It's gonna apply to regulated financial businesses. Okay, so it's gonna capture all your mutual funds, is gonna capture all your investment adviser is gonna catch her. Most of your insurance companies through the medical air side, it's gonna capture all your commercial banks is gonna capture most of you community banks. Okay, Not all of them, because some of they're so small, they're not regularly on a federal basis. The one regulator which is being skipped at this point, is the National Association Insurance Commissioners. But they're apparently coming along as well. Independent federal legislation. Remember, they're regulated on the state level, not regularly on the federal level. But they've kind of realized where the ball's going and, >> well, let's make life better or simply more complex. >> It's going to make life horrible at first, but we're gonna take out incredible efficiency gains, probably after the first time you get it done. Okay, is gonna be the problem of getting it done to everyone agreeing. We use the same definitions >> of the same data. Who gets the efficiency gains? The regulators, The companies are both >> all everyone. Can you imagine that? You know Ah, Goldman Sachs earnings report comes out. You're an analyst. Looking at How do I know what Goldman? Good or bad? You have your own equity model. You just give the model to the semantic worksheet and all turn around. Say, Oh, those numbers are all good. This is what expected. Did it? Did it? Didn't you? Haven't. You could do that. There are examples of companies here in the United States where they used to have, um, competitive analysis. Okay. They would be taking somewhere on the order of 600 to 7. How 100 man hours to do the competitive analysis by having an available electronically, they cut those 600 hours down to five to do a competitive analysis. Okay, that's an example of the type of productivity you're gonna see both on the investment side when you're doing analysis, but also on the regulatory site. Can you now imagine you get a regulatory reports say, Oh, there's they're out of their way out of whack. I can tell you this fraud going on here because their numbers are too much in X y z. You know, you had to fudge numbers today, >> and so the securities analyst can spend Mme. Or his or her time looking forward, doing forecasts exactly analysis than having a look back and reconcile all this >> right? And you know, you hear it through this conference, for instance, something like 80 to 85% of the time of analysts to spend getting the data ready. >> You hear the same thing with data scientists, >> right? And so it's extent that we can helped define the data. We're going thio speed things up dramatically. But then what's really instinct to me, being an M I t engineer is that we have great possibilities. An A I I mean, really great possibilities. Right now, most of the A miles or pattern matching like you know, this idea using face shield technology that's just really doing patterns. You can do wonderful predictive analytics of a I and but we just need to give ah lot of the a m a. I am a I models the contact so they can run more quickly. OK, so we're going to see a world which is gonna found funny, But we're going to see a world. We talk about semantic analytics. Okay. Semantic analytics means I'm getting all the inputs for the analysis with context to each one of the variables. And when I and what comes out of it will be a variable results. But you also have semantics with it. So one in the future not too distant future. Where are we? We're in some of the national labs. Where are you doing it? You're doing pipelines of one model goes to next model goes the next mile. On it goes Next model. So you're gonna software pipelines, Believe or not, you get them running out of an Excel spreadsheet. You know, our modern Enhanced Excel spreadsheet, and that's where the future is gonna be. So you really? If you're gonna be really good in this business, you're gonna have to be able to use your brain. You have to understand what data means You're going to figure out what your modeling really means. What happens if we were, You know, normally for a lot of the stuff we do bell curves. Okay, well, that doesn't have to be the only distribution you could do fat tail. So if you did fat tail descriptions that a bell curve gets you much different results. Now, which one's better? I don't know, but, you know, and just using example >> to another cut in the data. So our view now talk about more about the tech behind this. He's mentioned a I What about math? Machine learning? Deep learning. Yeah, that's a color to that. >> Well, the tech behind it is, believe or not, some relatively old tech. There is a technology called rd F, which is kind of turned around for a long time. It's a science kind of, ah, machine learning, not machine wearing. I'm sorry. Machine code type. Fairly simplistic definitions. Lots of angle brackets and all this stuff there is a higher level. That was your distracted, I think put into standard in, like, 2000 for 2005. Called out. Well, two point. Oh, and it does a lot at a higher level. The same stuff that already f does. Okay, you could also create, um, believer, not your own special ways of a communicating and ontology just using XML. Okay, So, uh, x b r l is an enhanced version of XML, okay? And so some of these older technologies, quote unquote old 20 years old, are essentially gonna be driving a lot of this stuff. So you know you know Corbett, right? Corba? Is that what a maid omg you know, on the communication and press thing, do you realize that basically every single device in the world has a corpus standard at okay? Yeah, omg Standard isn't all your smartphones and all your computers. And and that's how they communicate. It turns out that a lot of this old stuff quote unquote, is so rigidly well defined. Well done that you can build modern stuff that takes us to the Mars based on these old standards. >> All right, we got to go. But I gotta give you the award for the most acronyms >> HR 15 30 fi G o m g s b r >> m fsoc tarp. Oh, fr already halfway. We knew that Owl XML ex brl corba, Which of course >> I do. But that's well done. Like thanks so much for coming. Everyone tried to have you. All right, keep it right there, everybody, We'll be back with our next guest from M i t cdo I Q right after this short, brief short message. Thank you

Published Date : Aug 1 2019

SUMMARY :

Brought to you by A lot of acronym stands for M I. T. Of course, the great institution. in the same company, you know, we Sometimes engineers arrive and they could do some things. And it Boy, if you put in some data data capital in there, you really explosions. of the United States government and trying to roll up all the expenses into one kind So they're to G et o reports out criticizing how was done, and the government's I forget the exact invitation You pull out the net net income information and says its net income, but you don't know what it attaches So it also goes back, and they're serving as you get farther and farther out the tree, Okay, how does this relate to the financial and the 15 30 is going to dramatically change the way, So one of the things we have advised is that No, the machine to machine is coming in with son Okay, you have various So if you like at a sec Okay, so so you could have the machines go and check scale. I mean, Holland's reporting something on the order of 90%. We say pick up. you're taking people out of the whole cycle. Explain the OMG You remember? go through to the calculation, assuming you could have a calculation routine to of you community banks. gains, probably after the first time you get it done. of the same data. You just give the model to the semantic worksheet and all turn around. and so the securities analyst can spend Mme. And you know, you hear it through this conference, for instance, something like 80 to 85% of the time You have to understand what data means You're going to figure out what your modeling really means. to another cut in the data. on the communication and press thing, do you realize that basically every single device But I gotta give you the award for the most acronyms We knew that Owl Thank you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Paul GillPERSON

0.99+

ObamaPERSON

0.99+

TrumpPERSON

0.99+

IBMORGANIZATION

0.99+

LarsPERSON

0.99+

IndiaLOCATION

0.99+

2017DATE

0.99+

DavidPERSON

0.99+

fiveQUANTITY

0.99+

GoldmanORGANIZATION

0.99+

IssaPERSON

0.99+

Federated Enterprise Risk Management GroupORGANIZATION

0.99+

80QUANTITY

0.99+

600 hoursQUANTITY

0.99+

Financial Transparency ActTITLE

0.99+

CongressORGANIZATION

0.99+

60%QUANTITY

0.99+

Maxine Waters CommitteeORGANIZATION

0.99+

Silicon Angle MediaORGANIZATION

0.99+

TokyoLOCATION

0.99+

90%QUANTITY

0.99+

20 yearsQUANTITY

0.99+

United StatesLOCATION

0.99+

MariaPERSON

0.99+

600QUANTITY

0.99+

National Association Insurance CommissionersORGANIZATION

0.99+

Brass Rat CapitalORGANIZATION

0.99+

CaliforniaLOCATION

0.99+

CitibankORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

ExcelTITLE

0.99+

FERCORGANIZATION

0.99+

Lars ToomrePERSON

0.99+

15 30TITLE

0.99+

2005DATE

0.99+

two leadersQUANTITY

0.99+

Cambridge, MassachusettsLOCATION

0.99+

SECORGANIZATION

0.99+

AustraliaLOCATION

0.99+

three yearsQUANTITY

0.99+

threeQUANTITY

0.99+

7QUANTITY

0.99+

NISTORGANIZATION

0.99+

Open Data Act of 2014TITLE

0.99+

25 negative votesQUANTITY

0.99+

85%QUANTITY

0.99+

todayDATE

0.99+

50QUANTITY

0.99+

two yearsQUANTITY

0.99+

SarahPERSON

0.99+

yesterdayDATE

0.99+

Veterans AffairsORGANIZATION

0.99+

five partsQUANTITY

0.99+

bothQUANTITY

0.98+

first timeQUANTITY

0.98+

RepublicanORGANIZATION

0.98+

oneQUANTITY

0.98+

two weeks agoDATE

0.98+

one conceptQUANTITY

0.98+

DARPAORGANIZATION

0.98+

10,000 timesQUANTITY

0.98+

firstQUANTITY

0.98+

New YorkLOCATION

0.98+

AlexPERSON

0.98+

United States governmentORGANIZATION

0.98+

VaderPERSON

0.98+

one dayQUANTITY

0.98+

about 50 casesQUANTITY

0.98+

TreasuryORGANIZATION

0.97+

government Affairs CommitteeORGANIZATION

0.97+

MarsLOCATION

0.97+

Object Management GroupORGANIZATION

0.97+

Government Data actTITLE

0.96+

earlier this yearDATE

0.96+

OMGORGANIZATION

0.96+

TeffPERSON

0.96+

100QUANTITY

0.96+

six yearsQUANTITY

0.96+

BeaverPERSON

0.95+

two significant financial programsQUANTITY

0.94+

two pointQUANTITY

0.94+

third generationQUANTITY

0.94+