Barb Huelskamp and Tarik Dwiek, Alteryx
>>Okay. We're back here in the cube, focusing on the business promise of the cloud democratizing data, making it accessible and enabling everyone to get value from analytics, insights, and data. We're now moving into the eco systems segment the power of many versus the resources of one. And we're pleased to welcome. Barb Hills camp was the senior vice president partners and alliances at Ultrix and a special guest terror do week head of technology alliances at snowflake folks. Welcome. Good to see you. >>Thank you. Thanks for having me. Good to >>See Dave. Great to see you guys. So cloud migration, it's one of the hottest topics. It's the top one of the top initiatives of senior technology leaders. We have survey data with our partner ETR it's number two behind security and just ahead of analytics. So we're hovering around all the hot topics here. Barb, what are you seeing with respect to customer know cloud migration momentum and how does the Ultrix partner strategy fit? >>Yeah, sure. Partners are central, our company's strategy. They always have been, we recognize that our partners have deep customer relationships. And when you connect that with their domain expertise, they're really helping customers on their cloud and business transformation journey. We've been helping customers achieve their desired outcomes with our partner community for quite some time. And our partner base has been growing an average of 30% year over year, that partner, community and strategy now addresses several kinds of partners, spanning solution providers to global size and technology partners, such as snowflake and together, we help our customers realize that business promise of their journey to the cloud. Snowflake provides a scalable storage system altereds provides the business user friendly front end. So for example, it departments depend on snowflake to consolidate data across systems into one data cloud with Altryx business users can easily unlock that data in snowflake solving real business outcomes. Our GSI and solution provider partners are instrumental in providing that end to end benefit of a modern analytic stack in the cloud providing platform guidance, deployment, support, and other professional services. Okay, >>Great. Let's get a little bit more into the relationship between Altrix and in snowflake the partnership, maybe a little bit about the history, you know, what are the critical aspects that we should really focus on? Barb? Maybe you could start an Interra kindly way in as well. >>Yeah, so the relationship started in 2020 and all shirts made a big bag deep with snowflake co-innovating and optimizing cloud use cases together. We are supporting customers who are looking for that modern analytic stack to replace an old one or to implement their first analytic strategy. And our joint customers want to self-serve with data-driven analytics, leveraging all the benefits of the cloud, scalability, accessibility, governance, and optimizing our costs. Altrix proudly achieves highest elite tier and their partner program last year. And to do that, we completed a rigorous third party testing process, which also helped us make some recommended improvements to our joint stack. We wanted customers to have confidence. They would benefit from high quality and performance in their investment with us then to help customers get the most value out of the strength solution. We developed two great assets. One is the Altrix starter kit for snowflake, and we coauthored a joint best practices guide. >>The starter kit contains documentation, business workflows and videos, helping customers to get going more easily with an Alteryx and snowflake solution. And the best practices guide is more of a technical document, bringing together experiences and guidance on how Ultrix and snowflake can be deployed together. Internally. We also built a full enablement catalog resources, right? We wanted to provide our account executives more about the value of the snowflake relationship. How do we engage and some best practices. And now we have hundreds of joint customers such as Juniper and Sainsbury who are actively using our joint solution, solving big business problems, much faster. Cool. >>Tara, can you give us your perspective on the >>Yeah, definitely. Dave. So as Bart mentioned, we've got this standing very successful partnership going back, whereas with hundreds of happy joint customers. And when I look at the beginning, Ultrix has helped pioneer the concept of self-service analytics actually with use cases that we've worked on with, for, for data prep for BI users like Tableau and as Altrix has evolved to now becoming from data prep to now becoming a full end to end data science platform, it's really opened up a lot more opportunities for our partnership. Ultrix has invested heavily over the last two years in areas of deep integration for customers to fully be able to expand their investment, both technologies. And those investments include things like in database pushed down, right? So customers can, can leverage that elastic platform, that being the snowflake data cloud with Alteryx orchestrating the end to end machine learning workflows, Altryx also invested heavily in snow park, a feature we released last year around this concept of data programmability. So all users were regardless of their business analysts, regardless of their data, scientists can use their tools of choice in order to consume and get at data. And now with Altryx cloud, we think it's going to open up even more opportunities. It's going to be a big year for the partnership. >>Yeah. So, you know, Terike, we we've covered snowflake pretty extensively and you initially solve what I used to call the, I still call the snake swallowing the basketball problem and cloud data warehouse changed all that because you had virtually infinite resources. But so that's obviously one of the problems that you guys solved early on, but what are some of the common challenges or patterns or trends that you see with snowflake customers and where does Altryx come in? >>Sure. Dave there's there's handful that I can come up with today. The big challenges or trends for us, and Altrix really helps us across all of them. There are three particular ones I'm going to talk about the first one being self service analytics. If we think about it, every organization is trying to democratize data. Every organization wants to empower all their users, business users, you know, the, the technology users, but the business users, right? I think every, every organization has realized that if everyone has access to data and everyone can do something with data, it's going to make them competitively, give them a competitive advantage with all traits is something we share that vision of putting that power in the hands of everyday users, regardless of the skillsets. So with self-service analytics, with Ultrix designer, they've they started out with self-service analytics as the forefront, and we're just scratching the surface. >>I think there was an analyst report that shows that less than 20% of organizations are truly getting self-service analytics to their end users. Now with Altryx going to Ultrix cloud, we think that's going to be a huge opportunity for us. And then that opens up the second challenge, which is machine learning and AI, every organization is trying to get predictive analytics into every application that they have in order to be competitive in order to be competitive. And with Altryx creating this platform. So they can cater to both the everyday business user, the quote, unquote, citizen data scientists, and making it code friendly for data scientists, to be able to get at their notebooks and all the different tools that they want to use. They fully integrated in our snow park platform, which I talked about before, so that now we get an end to end solution catering to all, all lines of business. >>And then finally this concept of data marketplaces, right? We, we created snowflake from the ground up to be able to solve the data sharing problem, the big data problem, the data sharing problem. And Altryx, if we look at mobilizing your data, getting access to third-party data sets to enrich with your own data sets to enrich with, with your suppliers and with your partners, data sets, that's what all customers are trying to do in order to get a more comprehensive 360 view within their, their data applications. And so with Altryx is we're working on third-party data sets and marketplaces for quite some time. Now we're working on how do we integrate what Altrix is providing with, with the snowflake data marketplace so that we can enrich these workflows, these great rate workflows that Ultrix rating provides. Now we can add third party data into that workflow. So that opens up a ton of opportunities date. So those are three. I see easily that we're going to be able to solve a lot of customer challenges with. >>Excellent. Thank you for that. Terrick so let's stay on cloud a little bit. I mean, Altrix is undergoing a major transformation, big focus on the cloud. How does this cloud launch impact the partnership Terike from snowflakes perspective and then Barb, maybe, please add some color. >>Yeah, sure. Dave snowflake started as a cloud data platform. We saw our founders really saw the challenges that customers are having with becoming data-driven. And the biggest challenge was the complexity of having a managed infrastructure to even be able to, to get applications off the ground. And so we created something to be Claudia. We created to be a SAS managed service. So now that that Altrix is moving into the same model, right? A cloud platform, a SAS managed service, we're just, we're just removing more of the friction. So we're going to be able to start to package these end to end solutions that are SAS based that are fully managed. So customers can, can go faster. They don't have to worry about all of the underlying complexities of, of, of stitching things together. Right? So, so that's, what's exciting from my viewpoint >>And I'll follow up. So as you said, we're investing heavily in the cloud a year ago, we had to pray desktop products. And today we have four cloud products with cloud. We can provide our users with more flexibility. We want to make it easier for the users to leverage their snowflake data in the Alteryx platform, whether they're using our beloved on-premise solution or the new cloud products, we're committed to that continued investment in the cloud, enabling our joint partner solutions to meet customer requirements, wherever they store their data. And we're working with snowflake, we're doing just that. So as customers look for a modern analytic stack, they expect that data to be easily accessible, right within a fast, secure and scalable platform. And the launch of our cloud strategy is a huge leap forward in making Altrix more widely accessible to all users in all types of roles, our GSI and our solution provider partners have asked for these cloud capabilities at scale, and they're excited to better support our customers cloud and analytic ambitions. >>How about you go to market strategy? How would you describe your joint go to market strategy with snowflake? >>Sure. It's simple. We've got to work backwards from our customer's challenges, right? Driving transformation to solve problems, games agencies, or help them save money. So whether it's with snowflake or other GSI, other partner types, we've outlined a joint journey together from recruit solution development, activation enablement, and then strengthening our go to market strategies to optimize our results together. We launched an updated partner program and within that framework, we've created new benefits for our partners around opportunity registration, new role based enablement and training, basically extending everything we do internally for our own go-to-market teams to our partners. We're offering partner, marketing resources and funding to reach new customers together. And as a matter of fact, we recently launched a fantastic video with snowflake. I love this video that very simply describes the path to insights starting with your snowflake data. Right? We do joint customer webinars. We're working on joint hands-on labs and have a wonderful landing page with a lot of assets for our customers. Once we have an interested customer, we engage our respective account managers, collaborating through questions, proof of concepts really showcasing the desired outcome. And when you combine that with our partners technology or domain expertise, it's quite powerful, >>Tara, how do you see it? You'd go to market strategy. >>Yeah. Dave we've. So we initially started selling, we initially sold snowflake as technology, right? Looking at positioning the diff the architectural differentiators and the scale and concurrency. And we noticed as we got up into the larger enterprise customers, we were starting to see how do they solve their business problems using the technology, as well as them coming to us and saying, look, we want to also know how do you, how do you continue to map back to the specific prescriptive business problems we're having? And so we shifted to an industry focus last year, and this is an area where Ultrix has been mature for probably since their inception selling to the line of business, right? Having prescriptive use cases that are particular to an industry like financial services, like retail, like healthcare and life sciences. And so mark talked about these, these starter kits where it's prescriptive, you've got a demo and a way that customers can get off the ground and running, right? >>Because we want to be able to shrink that time to market, the time to value that customers can watch these applications. And we want to be able to, to, to tell them specifically how we can map back to their business initiatives. So I see a huge opportunity to align on these industry solutions. As BARR mentioned, we're already doing that where we've released a few around financial services working on healthcare and retail as well. So that is going to be a way for us to allow customers to go even faster and start to map to lines of business with Altryx >>Great. Thanks Derek, Bob, what can we expect if we're observing this relationship? What should we look for in the coming year? >>A lot specifically with snowflake, we'll continue to invest in the partnership. We're co innovators in this journey, including snow park extensibility efforts, which Derek will tell you more about shortly. We're also launching these great news strategic solution blueprints, and extending that at no charge to our partners with snowflake, we're already collaborating with their retail and CPG team for industry blueprints. We're working with their data marketplace team to highlight solutions, working with that data in their marketplace. More broadly, as I mentioned, we're relaunching the alternative partner program designed to really better support the unique partner types in our global ecosystem, introducing new benefits so that with every partner, achievement or investment with ultra we're providing our partners with earlier access to benefits, I could talk about our program for 30 minutes. I know we don't have time, but the key message here Alteryx is investing in our partner community across the business, recognizing the incredible value that they bring to our customers every day. >>Great Tarik. We'll give you the last word. What should we be looking for from, >>Yeah. Thanks. Thanks, Dave. As BARR mentioned, Ultrix has been the forefront of innovating with us. They've been integrating into making sure again, that customers get the full investment out of snowflake things like in database push down that I talked about before, but extensibility is really what we're excited about. The ability for Altrix to plug into this extensibility framework that we call snow park and to be able to extend out ways that the end users can consume snowflake through, through sequel, which has traditionally been the way that you consume snowflake as well as Java and Scala now Python. So we're excited about those, those capabilities. And then we're also excited about the ability to plug into the data marketplace to provide third party data sets, right? If they're PI day sets and in financial services, third party, data sets and retail. So now customers can build their data applications from end to end using ultrasound snowflake when the comprehensive 360 view of their customers, of their partners, of even their employees. Right. I think it's exciting to see what we're going to be able to do together with these upcoming innovations. >>Great stuff, Bob, Derek, thanks so much for coming on the program. Got to leave it right there in a moment. I'll be back with some closing thoughts in summary, don't go away.
SUMMARY :
We're now moving into the eco systems segment the power of many Good to So cloud migration, it's one of the hottest topics. on snowflake to consolidate data across systems into one data cloud with Altryx business the partnership, maybe a little bit about the history, you know, what are the critical aspects that we should really focus And to do that, we completed a rigorous third party helping customers to get going more easily with an Alteryx and snowflake solution. So customers can, can leverage that elastic platform, that being the snowflake data cloud with one of the problems that you guys solved early on, but what are some of the common challenges or patterns or trends to data and everyone can do something with data, it's going to make them competitively, give them a competitive advantage So they can cater to both the everyday business user, And so with Altryx is we're working on third-party big focus on the cloud. So now that that Altrix is moving into the same model, And today we have four cloud products with cloud. the path to insights starting with your snowflake data. You'd go to market strategy. And so we shifted to an industry focus customers to go even faster and start to map to lines of business with Altryx What should we look for in the coming year? blueprints, and extending that at no charge to our partners with snowflake, we're already collaborating with What should we be looking for from, excited about the ability to plug into the data marketplace to provide third party data sets, Got to leave it right there in a moment.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Derek | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Altrix | ORGANIZATION | 0.99+ |
Tara | PERSON | 0.99+ |
Bart | PERSON | 0.99+ |
Altryx | ORGANIZATION | 0.99+ |
30 minutes | QUANTITY | 0.99+ |
Terike | PERSON | 0.99+ |
Tarik Dwiek | PERSON | 0.99+ |
Ultrix | ORGANIZATION | 0.99+ |
Barb | PERSON | 0.99+ |
Barb Huelskamp | PERSON | 0.99+ |
Juniper | ORGANIZATION | 0.99+ |
2020 | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
Terrick | PERSON | 0.99+ |
Java | TITLE | 0.99+ |
last year | DATE | 0.99+ |
second challenge | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
less than 20% | QUANTITY | 0.99+ |
Alteryx | ORGANIZATION | 0.99+ |
Claudia | PERSON | 0.99+ |
today | DATE | 0.99+ |
Python | TITLE | 0.99+ |
Scala | TITLE | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
a year ago | DATE | 0.98+ |
30% | QUANTITY | 0.98+ |
first one | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
both technologies | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
first analytic | QUANTITY | 0.97+ |
360 view | QUANTITY | 0.97+ |
two great assets | QUANTITY | 0.96+ |
GSI | ORGANIZATION | 0.96+ |
Tarik | PERSON | 0.96+ |
Tableau | TITLE | 0.93+ |
Alteryx | PERSON | 0.92+ |
SAS | ORGANIZATION | 0.91+ |
BARR | ORGANIZATION | 0.87+ |
three particular ones | QUANTITY | 0.85+ |
last two years | DATE | 0.85+ |
Sainsbury | ORGANIZATION | 0.84+ |
BARR | PERSON | 0.8+ |
hundreds of joint customers | QUANTITY | 0.74+ |
hundreds of happy joint customers | QUANTITY | 0.7+ |
mark | PERSON | 0.66+ |
Rik Tamm-Daniels, Informatica & Tarik Dwiek, Snowflake | Informatica World 2019
>> Live from Las Vegas, it's theCUBE. Covering Informatica World 2019. Brought to you by Informatica. >> Hey welcome back everyone, you're here live in Las Vegas for theCUBE, for Informatica World 2019. I'm John Furrier, co-host of theCUBE. We've got two great guests here from Snowflake. We've got Tarik Dwiek who's the Director of Technology Alliances at Snowflake, and Rik Tamm-Daniels, Vice President of Strategic Ecosystems and Technology at Informatica. Welcome back to theCUBE, good to see you guys. >> Good to see you as well. >> Thanks for coming on Snowflake. Congratulations, you guys are doing really well. >> Thank you. >> Big growth, new CEO, Frank Slootman, Informatica, The Data, Zar, Neutral Third Party, Switzerland, cloud, you've got Switzerland, what's the relationship, explain. >> Well, I think you know, it's funny that comment comes up a fair amount and yeah, I look at this way. It's not so much that you know, with Switzerland what we're focused on though is where customers are choosing to go in their journey, we want to provide them the best experience possible, right. So we end up going very deep in our strategic ecosystems, and Snowflakes is one of those partners that we've seen tremendous growth with, and customers are adopting, So, very excited about the partnership. >> How about your relationship with Informatica, Why are you here? What's the story? >> Yeah definitely, so at Snowflake, we put customers first, right? And as Rick mentioned, it's all about having a diverse ecosystem in the enterprise. Informatica is a leader. When you look at where customers are going with data, right? Obviously data integration is key. Data quality is key, data governance. All the areas that Informatica has been the best to breed in, it just makes sense for continued to make traction in these enterprise customers. >> Take a bit to explain the business model of Snowflake, what you guys do, quick one minute. >> Sure, so Snowflake's a data warehouse solution built from the ground up for the cloud. Why the distinction is important is because we're the only data warehouse born in the cloud. If you look at how the other solutions are doing it today, they're taking an architecture, an architecture created a decade ago for an on-premise world and they're just shifting into cloud. And the challenge that you have there is that you can't take full advantage of things like instant and infinite resources, both compute and storage, right? Independent scaling of computing storage. Elasticity right, the ability to scale up and down and out with a click of a button. And then even being able to support massive incurrence. Things like loading data at the same time that you're querying data. This is what Snowflake was built for. >> How about datasets from other people. That's one of the benefits of having data in the cloud. >> Correct, so our architecture is key. That's the key to our business and our product and what we've done is we separated compute from storage and we become a centralized database. And what we found by creating additional views, you can actually share your data with yourself and you can share with other customers. We've created this concept of data sharing. Data sharing has been around for decades, but it's been very painful. What we've done is created an online performant, secure way for customers to share the data. >> Rik this really highlights the value proposition for Informatica. I always say, you know, data is always, beauty of the data is in the eye of the beholder. Depending on where you're sitting in from. You could be on-premises, you have legacy, you could be born in the cloud and taking advantage of all that cloud stuff. Graham Thompson was on earlier he said, "Hey if you've got data in the cloud "why move it on premise?" So you know, there should be a choice of what's best. And that's what you guys come in. What specifically are you guys tying together with data warehouse in the cloud and and maybe a customer may want to choose to have for compliance reasons, or a viariety of other reasons on prem or another location. >> I think one of the big things about cloud data warehouses in particular, it's not all things being equal at the on-premise world, right? The level of agility you get with the Snowflake where it's infinite scale out, up in a few minutes. That empowers so much transformation in the organization. That's why it's so compelling, and so many folks are adopting it. And so what we're doing is we're helping customers on that journey though. Because they've got a very complex data environment and they got to first of all understand how's this all put together to be able to start modernizing moving to the cloud. >> I'm sorry if I asked the question where should a customer store their data; on the cloud or on-premise. I know where you'll come in on that. It's cloud all the way, because that's what you do. But this is something that architects in the enterprise have been dealing with because they do have legacy stuff. So and we've seen with the SAS business models, data has been really key for their success because it gives them risk-taking or, actually risk taking meaning they can do things, maybe testing to whatever. Test certain features on certain users. Basically use the data basically to create value. And then the upside of taking that risk is reward. You have more revenue, hockey stick growth and the numbers are pretty clear. Enterprises want that. >> They do. >> But they're not really set up for it. How do they get there? >> The best part with a SAS model is customers can de-risk by putting some of their data, for instance Snowflake, right? We work across AWS and Azure. So customers that maybe aren't all in yet on either cloud provider can start using Snowflake and put data in Snowflake and test it out. Test out the performance and the security of cloud. And if for whatever reason it doesn't work out they haven't risked very much if anything. And if it does work out then they've got a great proving ground for that. So the SAS opens up a lot of possibilities for enterprise customers. >> I brought this up with Graeme Connelly. You know, he's from Scotland so I understand his perspective. I'm from Silicon Valley so I took my perspective. I said you know, when I hear regulation I see you know, anti innovation, right? Like when I hear governments coming involved putting you know, regulation on things. We're seeing a very active regulatory environment on tech companies around data. GDPR one-year anniversary. This is a real issue. How do you turn that regulatory constraints around data, because what it means is more complexity around how to deal with the data. How do you turn that into an advantage. Obviously software abstraction certainly helps in tech, but customers are trying to move move faster with cloud. They can do that for all those reasons talked earlier. But now you got complexity around regulation. >> I think first off from a from a data warehouse perspective we were built with security and compliance in mind from day one, right? So you build in things like encryption, always-on encryption. You build things like role based access controls. Things like key management, right? And then when you think of Informatica within the data pipeline getting data from sources in and out of Snowflake, then you build additional data quality, data governance tools on top of that. Things like data catalog, right? Where you can, now just go discover what data you have out there, what data are you moving into the cloud, and what is the lineage of that data. >> Talk about this migration and movement because that becomes, people are generally skeptical when they hear migration like, oh my god migration. If they know it's going to cost some money or potentially technical risk. What's, how do you guys handle the migration in a way that's risk-free. >> I'll take that one. I'd say one of the things that we really put in front of all of our migration approaches for customers is the enterprise data catalog. And using the machine learning capabilities in the catalog to take what is a very complex landscape and make it very understandable accessible to the business. But then also understand how it's all put together. Where data's coming from, where it's going, who's consuming it. And once you have that view and that clarity of how things are put together it actually means you can take a use case based approach to adoption of the cloud and moving data. So you're actually realizing business value incrementally as you're moving. Which i think is really key right? if you do these massive multi-year projects and it takes a year to get any results it's not going to fly anymore, right? This is a much more agile world and so we're really empowering of that with the intelligence around data. >> Digital transformation has got three kind of categories we find when we poll people and do the research. You got the early adopters who have a full team they're cloud native, their jammin and their DevOps rockstars. They're kicking ass taking names. Then on the other end of spectrum you got you know, fear, oh my god, like I don't really have the talent. I'm going to do some, study it, spec it out, we got to figure it out. then you have people who are kind of like, you know, the fast followers, influenced kind of like focused. They tend to break down in the middle of projects. This seems to be the pattern. They get going and they get stuck in the mud. This is a real issue around culture and people. So I got to ask you, you know, a lot of these challenges around people and culture is huge skills gap. What is the biggest hiring skills gap that's needed to be filled so that people can be successful whether they're got a really rockstar team or smart team that just got to re-skill up. Or how do you take a project that's stuck in the mud and reboot it? These are challenges. >> I think when the nice things about Informatica is that you know, there's 100,000 folks out there who are familiar with Informatica's approach of implementations. So, by, you know, us bringing our technologies and embracing these journeys we're actually empowering customers to not have to get coders and data scientists. They're using some of those same data engineers but now they're bringing data to the cloud. >> And I think along the same lines we think of practitioners usually right? I need data scientists, I need more data engineers. I think a valuable asset that's that's becoming more clear now, is to have a new breed of data analyst, right? That understand how to put AI and machine learning together. How to start to grab all of the data that's out there for customers, right? Structured data, semi-structured data and make sure that they've got a single strategy along how to become data-driven. >> Give an example of some customers that you guys are working together with using Snowflake and Informatica. What are they, what are they doing? What's some of the use cases? What's some of the applications? >> Yeah so I think one of the biggest use cases is a data warehouse modernization, right? So you have the existing on-premise data warehouses. And I always like when I talk to customers think about, well realistically when you have a new use case on your on-premise warehouse. How long is it going to take you to actually see your first piece of data? I don't know a lot of people have extra capacity that's kind of hanging around in their warehouse right? We think about they have to make business cases, they have to get new Hardware, new licenses. It could take six months to see their first piece of data. So, you know I think it's a tremendous accelerator for them to go to the cloud. >> So the main thing there's agility. >> Yes, absolutely. >> Fast time to value. How's business with Snowflake? What's going on with you guys? What other use case you seeing besides the data warehouse. Modern data warehouse. >> Sure John, I can start with business in general. It's very exciting times at Snowflake right now. Late last year we got a funding round of $450 million for growth funding. Brings our total funding to just over $920 million. Our valuation doubled to 3.9 billion. That puts us in the top 25 highest valued private U.S. tech firms. Like I mentioned before we tripled the number of employees to over a thousand, across nine countries globally. We're going to expand to 20 or more in the next 12 months. And then in terms of my favorite part-- >> What's been the traction of that? Why this success? What's been the ah ha moment for customers with Snowflake? >> Yeah I think about what customers try and do in their data journey, there are probably three key things. Number one, they want to get access to all their data, right? And they want to do that in a very fast and economic way. They want to be able to get all the different variety of data that's out there. All the modern data types, right? Both the structured data, right? Their ERP is CRM systems, things about customers and product, and sales transactions, and then all this modern data, from web and social, from behavior data, from machine generate data in IOT. But they want to put all together. They don't want to have different, disparate systems to go and process this and try to bring back together today. That's been the challenge, is the complexity and the cost. And what we've done is start to remove those barriers. >> You know, I love the term now because I've hated it when it came out. Data Lake, during the Hadoop days we heard Data Lake. And then it turned into a data swamp. You start to see that get fixed a little bit. Because what people are afraid of is they're afraid of throwing all those data into a data swamp. They really want to get value out of it. This has been a hard thing the early days of Hadoop, but it was cool technically to be you know, putting Hadoop clusters together, and standing them up, but then it's like where's the value? >> I think the Data Lake concept in essence makes a lot of sense. Because you want to get all your data in one central place so you can ask these questions across all the different data types, and all different data sources. The challenge we had was you had the traditional data warehouse which couldn't support the new data types, and the diversity, just pure volume. And then you had newer no SQL like systems like Hadoop that could start to address just the sheer mass of data. But they were so complex that you needed an army, and you still do need an army, and then there's some limitations around performance, and other issues, and so no data projects we're making it into production. I think we still have a very small success rate when you think about data projects that actually make it to production. This is where with Snowflake, because we had the luxury to build it from the ground up, we saw the needs of both using a relational SQL database because SQL is still an amazing expressive language. People have invested skill sets and tools. And then be able to support the new semi-structured data types. All within the same system, right. All within SaaS model so you can start to remove complexity. it's self-managed. We have a self-managed SaaS offering, so customers don't have to worry about all the operational lifting. They can go and get inside to the data. And then because of the cloud they can take advantage of the elasticity in the scale and pay for what they use. >> What was the big bet on Snowflake that paid off. You had to kind of hone it down. >> But the biggest bet John was, we are architecting a database from scratch. Because if you look all the other solutions out there that get the fastest time to market is you can take an architecture that's been existing for a decade or so, and wrap it on a cloud. And that gets you some benefits of the cloud. For instance no need for upfront costs and implementing Hardware in the data center. You can offload some of the management and some of the maintenance to the cloud providers. But like I mentioned before you can't scale automatically. You can't take advantage of infinite scale, right? Because these systems were designed and on-premise role that had a thinking of finite resources. So I think our big bet was, do you create a new architecture. That's a big risk, but luckily it's paid off well. >> Big risk pay offs. Rik talk about the ecosystem. You guys have a big partner strategy. You have to. >> Yep. >> You guys are integrating integration points as comparing to you guys, not the sound like it's in a bad way but, Slack is going public so I'll use them as example. Slack is a software that's cloud-based but what made them really big besides, copying the message board kind of IRC chat, is that they have a huge integration points with all the key players that really fed that in. This is kind of something that in, as a metaphor is not directly directed to you guys but, you guys are very integration partner oriented. >> Yeah >> How is that playing out? Again, I'm sure this, I didn't see any strategy change still continuing. Give us the update, how's that going? It's a great example Snowflake here on theCUBE. This is core of Informatica. Take a minute to explain that strategy. >> Well I think the beginning of the journey of any of our ecosystem partners does start with the connectivity layer. But honestly you know, moving data from point A to point B. That's kind of, that's the tip of the iceberg, right? And so we've really focused on bringing really addressing all the challenges in the entire data journey. So it's one thing about first of all how do I even find the data to bring there. Now once I found it can I connect to it? Do I have the access to the data? Can I bring it to the right targets the customer wants consumed. But then once the data is there, is it usable, is it consumed, is it clean? If I'm doing customer 360, do I need to get my golden records? Or you mentioned GDPR, our whole data protection focus on, you know trying to create a perimeter between different parts of the enterprise, we're automatically applying masking encryption, those sorts of things. So we're really focused on integrating that as tightly as we can and making it seamless for customers to be able to tap into those capabilities when they need them. >> I mean feeding data to machine learning and then powering AI is a great example. If you don't have the right data at the right time for the machine learning, the AI doesn't work well. And then applications that are going to be using machine learning need to have access to data as fast as possible. Lag really hurts everything. This is a huge issue. >> Yeah I mean and we're looking at complete acceleration. You know that whole data discovery phase to build your models and train them. But to your point, garbage in garbage out, right? The old adage is still applicable today, and I think even but you've got security issues. What happens if your training data includes some sensitive code names that show up in your models all of a sudden, right? There's all these issues. But then you take it those models and operationalize them as well. Again, the inputs need to be clean, so. >> Cloud or on-premise, final word. Get your both take on it. Obviously your data warehouse in the cloud. For the customers that have an On-premise dynamic, whether it's legacy or whatever. I got to move to the cloud. I'm eventually going to have some cloud, and how it's going to look. What do they do? What's the State of the Union for dealing with data that's not just in the cloud. >> Yeah. >> Yeah >> You were first, go ahead. >> Yeah sure, I think again going back to having a SAS model, customers can pick specific project specific data sets to go and try out, right? Snowflake gives them a perfect example of, not even having to directly engage the cloud partner yet, right? They want to see if data can be ingested in the cloud in a very fast performant way. They want to see if security meets their needs, right? They want to test out all of the different things around management and ease of use. They can do that with Snowflake. Again, at a very low risk way. Because we are a SaaS platform. We've got a great model on elasticity. The customers can pay as they go just to try it out. So for me, when I think of these customers that are stuck there and trying to make a decision, I say look try Snowflake. It's a very risk-free way to start to analyze some data sets, and if it works for you then you've got a proof point of starting to move more and more workloads into the cloud. >> Rik, digital transformation. What are customers doing? What's the playbook? >> Yeah I think the recipe is, you know, one, the laser focus on value, right? Have you have your eyes on how am I going to get value as quickly as I can this transformation. Second thing is, understand what you have. Understand your existing landscape. That third piece is go. I get started, because I think the case for the cloud is so compelling for customers. I don't know a single customer that I talk with who is not already on the cloud journey. So it's really about making sure you get business value as you proceed down that journey. >> Get the proof points up front. >> Absolutely >> Think smaller steps >> Yep, incremental and casual >> Show the value. Sounds like agility DevOps. Guys thanks for coming on. Good to see you. It's Cube coverage here in Las Vegas, I'm John Furrier. Your host for theCube is Rebeca Night. Two days of wall-to-wall coverage. We'll back with more after this short break. (dramatic music)
SUMMARY :
Brought to you by Informatica. Welcome back to theCUBE, good to see you guys. Congratulations, you guys are doing really well. Switzerland, cloud, you've got Switzerland, It's not so much that you know, with Switzerland When you look at where customers are going with data, right? what you guys do, quick one minute. And the challenge that you have there is That's one of the benefits of having data in the cloud. That's the key to our business and our product And that's what you guys come in. and they got to first of all understand It's cloud all the way, because that's what you do. How do they get there? So the SAS opens up a lot of possibilities I said you know, when I hear regulation I see And then when you think of Informatica What's, how do you guys handle the migration in the catalog to take what is a very complex landscape Then on the other end of spectrum you got you know, but now they're bringing data to the cloud. is to have a new breed of data analyst, right? that you guys are working together with How long is it going to take you What's going on with you guys? the number of employees to over a thousand, is the complexity and the cost. but it was cool technically to be you know, And then you had newer no SQL like systems like Hadoop You had to kind of hone it down. and some of the maintenance to the cloud providers. Rik talk about the ecosystem. as a metaphor is not directly directed to you guys Take a minute to explain that strategy. Do I have the access to the data? And then applications that are going to be Again, the inputs need to be clean, so. and how it's going to look. and if it works for you What's the playbook? Yeah I think the recipe is, you know, Good to see you.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Rick | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Informatica | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Tarik Dwiek | PERSON | 0.99+ |
Snowflakes | ORGANIZATION | 0.99+ |
Rik Tamm-Daniels | PERSON | 0.99+ |
Scotland | LOCATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
20 | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
six months | QUANTITY | 0.99+ |
Graham Thompson | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
3.9 billion | QUANTITY | 0.99+ |
third piece | QUANTITY | 0.99+ |
100,000 folks | QUANTITY | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
over $920 million | QUANTITY | 0.99+ |
Two days | QUANTITY | 0.99+ |
first piece | QUANTITY | 0.99+ |
SQL | TITLE | 0.99+ |
Zar | ORGANIZATION | 0.99+ |
$450 million | QUANTITY | 0.99+ |
nine countries | QUANTITY | 0.99+ |
The Data | ORGANIZATION | 0.99+ |
SAS | ORGANIZATION | 0.99+ |
Graeme Connelly | PERSON | 0.98+ |
both | QUANTITY | 0.98+ |
Both | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
over a thousand | QUANTITY | 0.98+ |
today | DATE | 0.97+ |
Snowflake | TITLE | 0.97+ |
a year | QUANTITY | 0.97+ |
GDPR | TITLE | 0.97+ |
one minute | QUANTITY | 0.97+ |
Second thing | QUANTITY | 0.97+ |
two great guests | QUANTITY | 0.97+ |
Hadoop | TITLE | 0.96+ |
three key things | QUANTITY | 0.96+ |
single customer | QUANTITY | 0.95+ |
one thing | QUANTITY | 0.94+ |
jammin | PERSON | 0.94+ |
U.S. | LOCATION | 0.94+ |
Late last year | DATE | 0.94+ |
Slack | TITLE | 0.94+ |
a decade ago | DATE | 0.93+ |
Neutral Third Party | ORGANIZATION | 0.93+ |
one-year anniversary | QUANTITY | 0.92+ |
a decade | QUANTITY | 0.92+ |
one central place | QUANTITY | 0.9+ |
Snowflake | EVENT | 0.89+ |
Strategic Ecosystems and Technology | ORGANIZATION | 0.89+ |
Vice President | PERSON | 0.88+ |
Informatica World 2019 | EVENT | 0.88+ |