Image Title

Search Results for TRICS:

Alan Jacobson, Alteryx | Democratizing Analytics Across the Enterprise


 

>>Hey, everyone. Welcome back to accelerating analytics, maturity. I'm your host. Lisa Martin, Alan Jacobson joins me next. The chief data and analytics officer at Altrix Ellen. It's great to have you on the program. >>Thanks Lisa. >>So Ellen, as we know, everyone knows that being data driven is very important. It's a household term these days, but 93% of organizations are not utilizing the analytics skills of their employees, which is creating a widening analytics gap. What's your advice, your recommendations for organizations who are just starting out with analytics >>And you're spot on many organizations really aren't leveraging the, the full capability of their knowledge workers. And really the first step is probably assessing where you are on the journey, whether that's you personally, or your organization as a whole, we just launched an assessment tool on our website that we built with the international Institute of analytics, that in a very short period of time, in about 15 minutes, you can go on and answer some questions and understand where you sit versus your peer set versus competitors and kind of where you are on the journey. >>So when people talk about data analytics, they often think, ah, this is for data science experts like people like you. So why should people in the lines of business like the finance folks, the marketing folks, why should they learn analytics? >>So domain experts are really in the best position. They, they know where the gold is buried in their companies. They know where the inefficiencies are, and it is so much easier and faster to teach a domain expert a bit about how to automate a process or how to use analytics than it is to take a data scientist and try to teach them to have the knowledge of a 20 year accounting professional or a, or a logistics expert of your company. It much harder to do that. And really, if you think about it, the world has changed dramatically in a very short period of time. If, if you were a marketing professional 30 years ago, you likely didn't need to know anything about the internet, but today, do you know what you would call that marketing professional? If they didn't know anything about the internet, probably unemployed or retired. And so knowledge workers are having to learn more and more skills to really keep up with their professions. And analytics is really no exception. Pretty much in every profession, people are needing to learn analytics, to stay current and, and be capable for their companies. And companies need people who can do that. >>Absolutely. It seems like it's table stakes. These days, let's look at different industries. Now, are there differences in how you see analytics in automation being employed in different industries? I know Altrix is being used across a lot of different types of organizations from government to retail. I also see you're now with some of the leading sports teams, any differences in industries. >>Yeah. There's an incredible actually commonality between domains industry to industry. So if you look at what an HR professional is doing, maybe attrition analysis, it's probably quite similar, whether they're in oil and gas or in a high tech software company. And so really the similarities are, are much larger than you might think. And even on the, on, on the, on the sports front, we see many of the analytics that sports teams perform are very similar. So McLaren is one of the great partners that we work with and they use TRICS across many areas of their business from finance to production, extreme sports, logistics, wind tunnel engineering, the marketing team analyzes social media data, all using Altrics. And if I take as an example, the finance team, the finance team is trying to optimize the budget to make sure that they can hit the very stringent targets that F1 sports has. And I don't see a ton of difference between the optimization that they're doing to hit their budget numbers and what I see fortune 500 finance departments doing to optimize their budget. And so really the, the commonality is very high. Even across industries. >>I bet every F fortune 500 or even every company would love to be compared to the same department within McLaren F1, just to know that wow, what they're doing is so in incre incredibly important as is what we are doing. Absolutely. So talk about lessons learned, what lessons can business leaders take from those organizations like McLaren, who are the most analytically mature >>Probably first and foremost, is that the ROI with analytics and automation is incredibly high. Companies are having a ton of success. It's becoming an existential threat to some degree, if, if your company isn't going on this journey and your competition is it, it can be a, a huge problem. IDC just did a recent study about how companies are unlocking the ROI using analytics. And the data was really clear organizations that have a higher percentage of their workforce using analytics are enjoying a much higher return from their analytic investment. And so it's not about hiring two double PhD statisticians from Oxford. It really is how widely you can bring your workforce on this journey. Can they all get 10% more capable? And that's having incredible results at businesses all over the world. An another key finding that they had is that the majority of them said that when they had many folks using analytics, they were going on the journey faster than companies they didn't. And so picking technologies, that'll help everyone do this and, and do this fast and do it easily. Having an approachable piece of software that everyone can use is really a key, >>So faster able to move faster, higher ROI. I also imagine analytics across the organization is a big competitive advantage for organizations in any industry. >>Absolutely the IDC or not. The IDC, the international Institute of analytics showed huge correlation between companies that were more analytically mature versus ones that were not. They showed correlation to growth of the company. They showed correlation to revenue and they showed correlation to shareholder values. So across really all of the, the, the key measures of business, the more analytically mature companies simply outperformed their competition. >>And that's key these days is to be able to outperform your competition. You know, one of the things that we hear so often, Alan, is people talking about democratizing data and analytics. You talked about the line of business workers, but I gotta ask you, is it really that easy for the line of business workers who aren't trained in data science, to be able to jump in, look at data, uncover and extract business insights to make decisions. >>So in, in many ways, it really is that easy. I have a 14 and 16 year old kid. Both of them have learned Altrics they're, Altrics certified. And, and it was quite easy. It took 'em about 20 hours and they were, they, they were off to the races, but there can be some hard parts. The hard parts have more to do with change management. I mean, if you're an accountant, that's been doing the best accounting work in your company for the last 20 years. And all you happen to know is a spreadsheet for those 20 years. Are you ready to learn some new skills? And, and I would suggest you probably need to, if you want, keep up with your profession. The, the big four accounting firms have trained over a hundred thousand people in Altrix just one firm has trained over a hundred thousand. >>You, you can't be an accountant or an auditor at some of these places with, without knowing Altrix. And so the hard part, really in the end, isn't the technology and learning analytics and data science. The harder part is this change management change is hard. I should probably eat better and exercise more, but it's, it's hard to always do that. And so companies are finding that that's the hard part. They need to help people go on the journey, help people with the change management to, to help them become the digitally enabled accountant of the future. The, the logistics professional that is E enabled that that's the challenge. >>That's a huge challenge. Cultural, cultural shift is a challenge. As you said, change management. How, how do you advise customers? If you might be talking with someone who might be early in their analytics journey, but really need to get up to speed and mature to be competitive, how do you guide them or give them recommendations on being able to facilitate that change management? >>Yeah, that's a great question. So, so people entering into the workforce today, many of them are starting to have these skills Altrics is used in over 800 universities around the globe to teach finance and to teach marketing and to teach logistics. And so some of this is happening naturally as new workers are entering the workforce, but for all of those who are already in the workforce have already started their careers, learning in place becomes really important. And so we work with companies to put on programmatic approaches to help their workers do this. And so it's, again, not simply putting a box of tools in the corner and saying free, take one. We put on hackathons and analytic days, and it can, it can be great fun. We, we have a great time with, with many of the customers that we work with helping them, you know, do this, helping them go on the journey and the ROI, as I said, you know, is fantastic. And not only does it sometimes affect the bottom line, it can really make societal changes. We've seen companies have breakthroughs that really make great impact to society as a whole. >>Isn't that so fantastic to see the, the difference that that can make. It sounds like you're, you guys are doing a great job of democratizing access to alter X to everybody. We talked about the line of business folks and the incredible importance of enabling them and the, the ROI, the speed, the competitive advantage. Can you share some specific examples that you think of Alter's customers that really show data breakthroughs by the lines of business using the technology? >>Yeah, absolutely. So, so many to choose from I'll I'll, I'll give you two examples. Quickly. One is armor express. They manufacture life saving equipment, defensive equipments, like armor plated vests, and they were needing to optimize their supply chain, like many companies through the pandemic. We, we see how important the supply chain is. And so adjusting supply to, to match demand is, is really vital. And so they've used all tricks to model some of their supply and demand signals and built a predictive model to optimize the supply chain. And it certainly helped out from a, a dollar standpoint, they cut over a half a million dollars of inventory in the first year, but more importantly, by matching that demand and supply signal, you're able to better meet customer customer demand. And so when people have orders and are, are looking to pick up a vest, they don't wanna wait. >>And, and it becomes really important to, to get that right. Another great example is British telecom. They're, they're a company that services the public sector. They have very strict reporting regulations that they have to meet and they had, and, and this is crazy to think about over 140 legacy spreadsheet models that they had to run to comply with these regulatory processes and, and report, and obviously running 140 legacy models that had to be done in a certain order and linked incredibly challenging. It took them over four weeks, each time that they had to go through that process. And so to, to save time and have more efficiency in doing that, they trained 50 employees over just a two week period to start using Altrix and, and, and learn Altrix. And they implemented an all new reporting process that saw a 75% reduction in the number of man hours. >>It took to run in a 60% runtime performance. And so, again, a huge improvement. I can imagine it probably had better quality as well, because now that it was automated, you don't have people copying and past data into a spreadsheet. And that was just one project that this group of, of folks were able to accomplish that had huge ROI, but now those people are moving on and automating other processes and performing analytics in, in other areas, you can imagine the impact by the end of the year that they will have on their business, you know, potentially millions upon millions of dollars. This is what we see again. And again, company after company government agency, after government agency is how analytics are really transforming the way work is being done. >>That was the word that came to mind when you were describing the all three customer examples, the transformation, this is transformative. The ability to leverage alters to, to truly democratize data and analytics, give access to the lines of business is transformative for every organization. And, and also the business outcomes. You mentioned, those are substantial metrics based business outcomes. So the ROI and leveraging a technology like alri seems to be right there, sitting in front of you. >>That's right. And, and to be honest, it's not only important for these businesses. It's important for, for the knowledge workers themselves. I mean, we, we hear it from people that they discover Alrich, they automate a process. They finally get to get home for dinner with their families, which is fantastic, but, but it leads to new career paths. And so, you know, knowledge workers that have these added skills have so much larger opportunity. And I think it's great when the needs of businesses to become more analytics and analytic and automate processes actually matches the needs of the employees. And, you know, they too wanna learn these skills and become more advanced in their capabilities, >>Huge value there for the business, for the employees themselves to expand their skillset, to, to really open up so many opportunities for not only the business to meet the demands of the demanding customer, but the employees to be able to really have that breadth and depth in their field of service. Great opportunities there. Alan, is there anywhere that you wanna point the audience to go, to learn more about how they can get started? >>Yeah. So one of the things that we're really excited about is how fast and easy it is to learn these tools. So any of the listeners who wanna experience Altrix, they can go to the website, there's a free download on the website. You can take our analytic maturity assessment, as we talked about at the beginning and, and see where you are on the journey and just reach out. You know, we'd love to work with you and your organization to see how we can help you accelerate your journey on, on analytics and automation, >>Alan, it was a pleasure talking to you about democratizing data and analytics, the power in it for organizations across every industry. We appreciate your insights and your time. >>Thank you so much >>In a moment, Paula Hanson, who is the president and chief revenue officer of ultras and Jackie Vander lay graying. Who's the global head of tax technology at eBay will join me. You're watching the cube, the leader in high tech enterprise coverage.

Published Date : Sep 13 2022

SUMMARY :

It's great to have you on the program. the analytics skills of their employees, which is creating a widening analytics gap. And really the first step is probably assessing finance folks, the marketing folks, why should they learn analytics? about the internet, but today, do you know what you would call that marketing professional? government to retail. And so really the similarities are, are much larger than you might think. to the same department within McLaren F1, just to know that wow, what they're doing is so And the data was really I also imagine analytics across the organization is a big competitive advantage for They showed correlation to revenue and they showed correlation to shareholder values. And that's key these days is to be able to outperform your competition. And all you happen to know is a spreadsheet for those 20 years. And so companies are finding that that's the hard part. their analytics journey, but really need to get up to speed and mature to be competitive, the globe to teach finance and to teach marketing and to teach logistics. job of democratizing access to alter X to everybody. So, so many to choose from I'll I'll, I'll give you two examples. models that they had to run to comply with these regulatory processes and, the end of the year that they will have on their business, you know, potentially millions upon millions So the ROI and leveraging a technology like alri seems to be right there, And so, you know, knowledge workers that have these added skills have so much larger opportunity. of the demanding customer, but the employees to be able to really have that breadth and depth in So any of the listeners who wanna experience Altrix, Alan, it was a pleasure talking to you about democratizing data and analytics, the power in it for Who's the global head of tax technology at eBay will

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

Paula HansonPERSON

0.99+

AlanPERSON

0.99+

LisaPERSON

0.99+

Alan JacobsonPERSON

0.99+

60%QUANTITY

0.99+

AltrixORGANIZATION

0.99+

14QUANTITY

0.99+

75%QUANTITY

0.99+

BothQUANTITY

0.99+

20 yearQUANTITY

0.99+

EllenPERSON

0.99+

10%QUANTITY

0.99+

50 employeesQUANTITY

0.99+

eBayORGANIZATION

0.99+

16 yearQUANTITY

0.99+

93%QUANTITY

0.99+

Jackie VanderPERSON

0.99+

McLarenORGANIZATION

0.99+

millionsQUANTITY

0.99+

20 yearsQUANTITY

0.99+

Altrix EllenORGANIZATION

0.99+

IDCORGANIZATION

0.99+

two examplesQUANTITY

0.99+

first stepQUANTITY

0.99+

over a hundred thousandQUANTITY

0.99+

over a hundred thousand peopleQUANTITY

0.98+

over 800 universitiesQUANTITY

0.98+

first yearQUANTITY

0.98+

one firmQUANTITY

0.98+

two weekQUANTITY

0.98+

AltricsORGANIZATION

0.98+

todayDATE

0.98+

each timeQUANTITY

0.98+

Institute of analyticsORGANIZATION

0.98+

AlteryxORGANIZATION

0.98+

about 20 hoursQUANTITY

0.98+

OneQUANTITY

0.97+

oneQUANTITY

0.97+

one projectQUANTITY

0.97+

over a half a million dollarsQUANTITY

0.96+

about 15 minutesQUANTITY

0.96+

over four weeksQUANTITY

0.96+

AlrichORGANIZATION

0.93+

140 legacy modelsQUANTITY

0.91+

pandemicEVENT

0.91+

fortune 500ORGANIZATION

0.9+

30 years agoDATE

0.9+

F1EVENT

0.89+

threeQUANTITY

0.87+

over 140 legacy spreadsheet modelsQUANTITY

0.84+

AlterORGANIZATION

0.84+

firsQUANTITY

0.83+

two double PhD statisticiansQUANTITY

0.83+

endDATE

0.82+

four accounting firmsQUANTITY

0.82+

OxfordORGANIZATION

0.8+

TRICSORGANIZATION

0.73+

last 20 yearsDATE

0.66+

BritishLOCATION

0.66+

F fortune 500ORGANIZATION

0.57+

ultrasORGANIZATION

0.51+

dollarsQUANTITY

0.42+