Don DeLoach, Midwest IoT Council | PentahoWorld 2017
>> Announcer: Live, from Orlando, Florida, it's TheCUBE, covering PentahoWorld 2017. Brought to you by Hitachi Vantara. >> Welcome back to sunny Orlando everybody. This is TheCUBE, the leader in live tech coverage. My name is Dave Vellante and this is PentahoWorld, #PWorld17. Don DeLoach here, he's the co-chair of the midwest IoT council. Thanks so much for coming on TheCUBE. >> Good to be here. >> So you've just written a new book. I got it right in my hot off the presses in my hands. The Future of IoT, leveraging the shift to a data-centric world. Can you see that okay? Alright, great, how's that, you got that? Well congratulations on getting the book done. >> Thanks. >> It's like, the closest a male can come to having a baby, I guess. But, so, it's fantastic. Let's start with sort of the premise of the book. What, why'd you write it? >> Sure, I'll give you the short version, 'cause that in and of itself could go on forever. I'm a data guy by background. And for the last five or six years, I've really been passionate about IoT. And the two converged with a focus on data, but it was kind of ahead of where most people in IoT were, because they were mostly focused on sensor technology and communications, and to a limited extent, the workflow. So I kind of developed this thesis around where I thought the market was going to go. And I would have this conversation over and over and over, but it wasn't really sticking and so I decided maybe I should write a book to talk about it and it took me forever to write the book 'cause fundamentally I didn't know what I was doing. Fortunately, I was able to eventually bring on a couple of co-authors and collectively we were able to get the book written and we published it in May of this year. >> And give us the premise, how would you summarize? >> So the central thesis of the book is that the market is going to shift from a focus on IoT enabled products like a smart refrigerator or a low-fat fryer or a turbine in a factory or a power plant or whatever. It's going to shift from the IoT enabled products to the IoT enabled enterprise. If you look at the Harvard Business Review article that Jim Heppelmann and Michael Porter did in 2014, they talked about the progression from products to smart products to smart, connected products, to product systems, to system of systems. We've largely been focused on smart, connected products, or as I would call IoT enabled products. And most of the technology vendors have focused their efforts on helping the lighting vendor or the refrigerator vendor or whatever IoT enable their product. But when that moves to mass adoption of IoT, if you're the CIO or the CEO of SeaLand or Disney or Walmart or whatever, you're not going to want to be a company that has 100,000 IoT enabled products. You're going to want to be an IoT enabled company. And the difference is really all around data primacy and how that data is treated. So, right now, most of the data goes from the IoT enabled product to the product provider. And they tell you what data you can get. But that, if you look at the progression, it's almost mathematically impossible that that is sustainable because company, organizations are going to want to take my, like let's just say we're talking about a fast food restaurant. They're going to want to take the data from the low-fat fryer and the data from the refrigerator or the shake machine or the lighting system or whatever, and they're going to want to look at it in the context of the other data. And they're going to also want to combine it with their point-of-sale or crew scheduling, or inventory and then if they're smart, they'll start to even pull in external data, like pedestrian traffic or street traffic or microweather or whatever, and they'll create a much richer signature. And then, it comes down to governance, where I want to create this enriched data set, and then propagate it to the right constituent in the right time in the right way. So you still give the product provider back the data that they want, and there's nothing that precludes you from doing that. And you give the low-fat fryer provider the data that they want, but you give your regional and corporate offices a different view of the same data, and you give the FDA or your supply chain partner, it's still the same atomic data, but what you're doing is you're separating the creation of the data from the consumption of the data, and that's where you gain maximum leverage, and that's really the thesis of the book. >> It's data, great summary by the way, so it's data in context, and the context of the low-fat fryer is going to be different than the workflow within that retail operation. >> Yeah, that's right and again, this is where, the product providers have initially kind of pushed back because they feel like they have stickiness and loyalty that's bred out of that link. But, first of all, that's going to change. So if you're Walmart or a major concern and you say, "I'm going to do a lighting RFP," and there's 10 vendors that say, "Hey, we want to compete for this," and six of 'em will allow Walmart to control the data, and four say, "No, we have to control the data," their list just went to six. They're just not going to put up with that. >> Dave: Period, the end, absolutely. >> That's right. So if the product providers are smart, they're going to get ahead of this and say, "Look, I get where the market's going. "We're going to need to give you control of the data, "but I'm going to ask for a contract that says "I'm going to get the data I'm already getting, "'cause I need to get that, and you want me to get that. "But number two, I'm going to recognize that "they can give, Walmart can give me my data back, "but enrich it and contextualize it "so I get better data back." So everybody can win, but it's all about the right architecture. >> Well and the product guys going to have the Trojan horse strategy of getting in when nobody was really looking. >> Don: That's right. >> And okay, so they've got there. Do you envision, Don, a point at which the Walmart might say, "No, that's our data "and you don't get it." >> Um, not really- >> or is there going to be a quid pro quo? >> and here's why. The argument that the product providers have made all along is, almost in a condescending way sometimes, although not intentionally condescending, it's been, look, we're selling you this low-fat fryer for your fast food restaurant. And you say you want the data, but you know, we had a team of people who are experts in this. Leave that to us, we'll analyze the data and we'll give you back what you need. Now, there's some truth to the fact that they should know their products better than anybody, and if I'm the fast food chain, I want them to get that data so that they can continually analyze and help me do my job better. They just don't have to get that data at my expense. There are ways to cooperatively work this, but again, it comes back to just the right architecture. So what we call the first receiver is in essence, setting up an abstraction close to the point of the ingestion of all this data. Upon which it's cleansed, enriched, and then propagated again to the right constituent in the right time in the right way. And by the way, I would add, with the right security considerations, and with the right data privacy considerations, 'cause like, if you look around the market now, things like GEP are in Europe and what we've seen in the US just in the wake of the elections and everything around how data is treated, privacy concerns are going to be huge. So if you don't know how to treat the data in the context of how it needs to be leveraged, you're going to lose that leverage of the data. >> Well, plus the widget guys are going to say "Look, we have to do predictive maintenance "on those devices and you want us to do that." You know, they say follow the money. Let's follow the data. So, what's the data flow look like in your mind? You got these edge devices. >> Yep, physical or virtual. Doesn't have to be a physical edge. Although, in a lot of cases, there are good reasons why you'd want a physical edge, but there's nothing technologically that says you have to have a physical edge. >> Elaborate on that, would you? What do you mean by virtual? >> Sure, so let's say I have a server inside a retail outfit. And it's collecting all of my IoT data and consolidating it and persisting it into a data store and then propagating it to a variety of constituents. That would be creating the first receiver in the physical edge. There's nothing that says that that edge device can't grab that data, but then persist it in a distributed Amazon cloud instance, or a Rackspace instance or whatever. It doesn't actually need to be persisted physically on the edge, but there's no reason it can't either. >> Okay, now I understand that now. So the guys at Wikibon, which is a sort of sister company to TheCUBE, have envisioned this three tiered data model where you've got the devices at the edge where real-time activity's going on, real-time analytics, and then you've got this sort of aggregation point, I guess call it a gateway. And then you've got, and that's as I say, aggregation of all these edge devices. And then you've got the cloud where the heavy modeling is done. It could be your private cloud or your public cloud. So does that three tier model make sense to you? >> Yeah, so what you're describing as the first tier is actually the sensor layer. The gateway layer that you're describing, in the book would be characterized as the first receiver. It's basically an edge tier that is augmented to persist and enrich the data and then apply the proper governance to it. But what I would argue is, in reality, I mean, your reference architecture is spot-on. But if you actually take that one step further, it's actually an n-tier architecture. Because there's no reason why the data doesn't go from the ten franchise stores, to the regional headquarters, to the country headquarters, to the corporate headquarters, and every step along the way, including the edge, you're going to see certain types of analytics and computational work done. I'll put a plug for my friends at Hitachi Lumada in on this, you know, there's like 700 horizontal IoT platforms out there. There aren't going to be 700 winners. There's going to be probably eight to 10, and that's only because the different specific verticals will provide for more winners than it would be if it was just one like a search engine. But, the winners are going to have to have an extensible architecture that is, will ultimately allow enterprises to do the very things I'm talking about doing. And so there are a number out there, but one of the things, and Rob Tiffany, who's the CTO of Lumada, I think has a really good handle on his team on an architecture that is really plausible for accomplishing this as the market migrates into the future. >> And that architecture's got to be very flexible, not just elastic, but sometimes we use the word plastic, plasticity, being able to go in any direction. >> Well, sure, up to and including the use of digital twins and avatars and the logic that goes along with that and the ability to spin something up and spin something down gives you that flexibility that you as an enterprise, especially the larger the enterprise, the more important that becomes, need. >> How much of the data, Don, at that edge do you think will be persisted, two part question? It's not all going to be persisted, is it? Isn't that too expensive? Is it necessary to persist all of that data? >> Well, no. So this is where, you'll hear the notion of data exhaust. What that really means is, let's just say I'm instrumenting every room in this hotel and each room has six different sensors in it and I'm taking a reading once a second. The ratio of inconsequential to consequential data is probably going to be over 99 to one. So it doesn't really make sense to persist that data and it sure as hell doesn't make sense to take that data and push it into a cloud where I spend more to reduce the value of the payload. That's just dumb. But what will happen is that, there are two things, one, I think people will see the value in locally persisting the data that has value, the consequential data, and doing that in a way that's stored at least for some period of time so you can run the type of edge analytics that might benefit from having that persisted store. The other thing that I think will happen, and this is, I don't talk much, I talk a little bit about it in the book, but there's this whole notion where when we get to the volumes of data that we really talk about where IoT will go by like 2025, it's going to push the physical limitations of how we can accommodate that. So people will begin to use techniques like developing statistical metadata models that are a highly accurate metadata representation of the entirety of the data set, but probably in about one percent of the space that's queryable and suitable for machine learning where it's going to enable you to do what you just physically couldn't do before. So that's a little bit into the future, but there are people doing some fabulous work on that right now and that'll creep into the overall lexicon over time. >> Is that a lightweight digital twin that gives you substantially the same insight? >> It could augment the digital twin in ways that allow you to stand up digital twins where you might not be able to before. The thing that, the example that most people would know about are, like in the Apache ecosystem, there are toolsets like SnappyData that are basically doing approximation, but they're doing it via sampling. And that is a step in that direction, but what you're looking for is very high value approximation that doesn't lose the outlier. So like in IoT, one of the things you normally are looking for is where am I going to pick up on anomalous behavior? Well if I'm using a sample set, and I'm only taking 15%, I by definition am going to lose a lot of that anomalous behavior. So it has to be a holistic representation of the data, but what happens is that that data is transformed into statistics that can be queryable as if it was the atomic data set, but what you're getting is a very high value approximation in a fraction of the space and time and resources. >> Ok, but that's not sampling. >> No, it's statistical metadata. There are, there's a, my last company had developed a thing that we called approximate query, and it was based on that exact set of patents around the formation of a statistical metadata model. It just so happens it's absolutely suited for where IoT is going. It's kind of, IoT isn't really there yet. People are still trying to figure out the edge in its most basic forms, but the sheer weight of the data and the progression of the market is going to force people to be innovative in how they look at some of these things. Just like, if you look at things like privacy, right now, people think in terms of anonymization. And that's, basically, I'm going to de-link data contextually where I'm going to effectively lose the linkages to the context in order to conform with data privacy. But there are techniques, like if you look at GDCAR, their techniques, within certain safe harbors, that allow you to pseudonymize the data where you can actually relink it under certain conditions. And there are some smart people out there solving these problems. That's where the market's going to go, it's just going to get there over time. And what I would also add to this equation is, at the end of the day, right now, the concepts that are in the book about the first receiver and the create, the abstraction of the creation of the data from the consumption of the data, look, it's a pretty basic thing, but it's the type of shift that is going to be required for enterprises to truly leverage the data. The things about statistical metadata and pseudonymization, pseudonymization will come before the statistical metadata. But the market forces are going to drive more and more into those areas, but you got to walk before you run. Right now, most people still have silos, which is interesting, because when you think about the whole notion of the internet of things, it infers that it's this exploitation of understanding the state of physical assets in a very broad based environment. And yet, the funny thing is, most IoT devices are silos that emulate M2M, sort of peer to peer networks just using the internet as a communication vehicle. But that'll change. >> Right, and that's really again, back to the premise of the book. We're going from these individual products, where all the data is locked into the product silo, to this digital fabric, that is an enterprise context, not a product context. >> That's right and if you go to the toolsets that Pentaho offers, the analytic toolsets. Let's just say, now that I've got this rich data set, assuming I'm following basic architectural principles so that I can leverage the maximum amount of data, that now gives me the ability to use these type of toolsets to do far better operational analytics to know what's going on, far better forensic analysis and investigative analytics to mine through the date and do root cause analysis, far better predictive analytics and prescriptive analytics to figure out what will go on, and ultimately feed the machine learning algorithms ultimately to get to in essence, the living organism, the adaptive systems that are continuously changing and adapting to circumstances. That's kind of the Holy Grail. >> You mentioned Hitachi Vantara before. I'm curious what your thoughts are on the Hitachi, you know, two years ago, we saw the acquisition, said, okay, now what? And you know, on paper it sounded good, and now it starts to come together, it starts to make more sense. You know, storage is going to the cloud. HDS says, alright, well we got this Hitachi relationship. But what do you make of that? How do you assess it, and where do you see it going? >> First of all, I actually think the moves that they've done are good. And I would not say that if I didn't think it. I'd just find a politically correct way not to say that. But I do think it's good. So they created the Hitachi Insight Group about a year and a half ago, and now that's been folded into Hitachin Vantara, alongside HDS and Pentaho and I think that it's a fairly logical set of elements coming together. I think they're going down the right path. In full disclosure, I worked for Hitachi Data Systems from '91 til '94, so it's not like I'm a recent employee of them, it's 25 years ago, but my experience with Hitachi corporate and the way they approach things has been unlike a lot of really super large companies, who may be super large, but may not be the best engineers, or may not always get everything done so well, Hitachi's a really formidable organization. And I think what they're doing with Pentaho and HDS and the Insight Group and specifically Lumada, is well thought out and I'm optimistic about where they're going. And by the way, they won't be the only winner in the equation. There's going to be eight or nine different key players, but they'll, I would not short them whatsoever. I have high hopes for them. >> The TAM is enormous. Normally, Hitachi eventually gets to where it wants to go. It's a very thoughtful company. I've been watching them for 30 years. But to a lot of people, the Pentaho and the Insight's play make a lot of sense, and then HDS, you used to work for HDS, lot of infrastructure still, lot of hardware, but a relationship with Hitachi Limited, that is quite strong, where do you see that fit, that third piece of the stool? >> So, this is where there's a few companies that have unique advantages, with Hitachi being one of them. Because if you think about IoT, IoT is the intersection of information technology and operational technology. So it's one thing to say, "I know how to build a database." or "I can build machine learning algorithms," or whatever. It's another thing to say, "I know how to build trains "or CAT scans or smart city lighting systems." And the domain expertise married with the technology delivers a set of capabilities that you can't match without that domain expertise. And, I mean, if you even just reduce it down to artificial intelligence and machine learning, you get an expert ML or AI guy, and they're only as good as the limits of their domain expertise. So that's why, and again, that's why I go back to the comparison to search engines, where there's going to be like, there's Google and maybe Yahoo. There's probably going to be more platform winners because the vertical expertise is going to be very, very important, but there's not going to be 700 of 'em. But Hitachi has an advantage that they bring to the table, 'cause they have very deep roots in energy, in medical equipment, in transportation. All of that will manifest itself in what they're doing in a big way, I think. >> Okay, so, but a lot of the things that you described, and help me understand this, are Hitachi Limited. Now of course, Hitachi Data Systems started as, National Advance Systems was a distribution arm for Hitachi IT products. >> Don: Right, good for you, not many people remember. >> I'm old. So, like I said, I had a 30 year history with this company. Do you foresee that that, and by the way, interestingly, was often criticized back when you were working for HDS, it was like, it's still a distribution hub, but in the last decade, HDS has become much more of a contributor to the innovation and the product strategy and so forth. Having said that, it seems to me advantageous if some of those things you discussed, the trains, the medical equipment, can start flowing back through HDS. I'm not sure if that's explicitly the plan. I didn't necessarily hear that, but it sort of has to, right? >> Well, I'm not privy to those discussions, so it would be conjecture on my part. >> Let's opine, but right, doesn't that make sense? >> Don: It makes perfect sense. >> Because, I mean HDS for years was just this storage silo. And then storage became a very uninteresting business, and credit to Hitachi for pivoting. But it seems to me that they could really, and they probably have a, I had Brian Householder on earlier I wish I had explored this more with him. But it just seems, the question for them is, okay, how are you going to tap those really diverse businesses. I mean, it's a business like a GE or a Siemens. I mean, it's very broad based. >> Well, again, conjecture on my part, but one way I would do it would be to start using Lumada in the various operations, the domain-specific operations right now with Hitachi. Whether they plan to do that or not, I'm not sure of. I've heard that they probably will. >> That's a data play, obviously, right? >> Well it's a platform play. And it's enabling technology that should augment what's already going on in the various elements of Hitachi. Again, I'm, this is conjecture on my part. But you asked, let's just go with this. I would say that makes a lot of sense. I'd be surprised if they don't do that. And I think in the process of doing that, you start to crosspollinate that expertise that gives you a unique advantage. It goes back to if you have unique advantages, you can choose to exploit them or not. Very few companies have the set of unique advantages that somebody like Hitachi has in terms of their engineering and massive reach into so many, you know, Hitachi, GE, Siemens, these are companies that have big reach to the extent that they exploit them or not. One of the things about Hitachi that's different than almost anybody though is they have all this domain expertise, but they've been in the technology-specific business for a long time as well, making computers. And so, they actually already have the internal expertise to crosspollinate, but you know, whether they do it or not, time will tell. >> Well, but it's interesting to watch the big whales, the horses in the track, if you will. Certainly GE has made a lot of noise, like, okay, we're a software company. And now you're seeing, wow, that's not so easy, and then again, I'm sanguine about GE. I think eventually they'll get there. And then you see IBM's got their sort of IoT division. They're bringing in people. Another company with a lot of IT expertise. Not a lot of OT expertise. And then you see Hitachi, who's actually got both. Siemens I don't know as well, but presumably, they're more OT than IT and so you would think that if you had to evaluate the companies' positions, that Hitachi's in a unique position. Certainly have a lot of software. We'll see if they can leverage that in the data play, obviously Pentaho is a key piece of that. >> One would assume, yeah for sure. No, I mean, I again, I think, I'm very optimistic about their future. I think very highly of the people I know inside that I think are playing a role here. You know, it's not like there aren't people at GE that I think highly of, but listen, you know, San Ramon was something that was spun up recently. Hitachi's been doing this for years and years and years. You know, so different players have different capabilities, but Hitachi seems to have sort of a holistic set of capabilities that they can bring together and to date, I've been very impressed with how they've been going about it. And especially with the architecture that they're bringing to bear with Lumada. >> Okay, the book is The Future of IoT, leveraging the shift to a data-centric world. Don DeLoach, and you had a co-author here as well. >> I had two co-authors. One is Wael Elrifai from Pentaho, Hitachi Vantara and the other is Emil Berthelsen, a Gartner analyst who was with Machina Research and then Gartner acquired them and Emil has stayed on with them. Both of them great guys and we wouldn't have this book if it weren't for the three of us together. I never would have pulled this off on my own, so it's a collective work. >> Don DeLoach, great having you on TheCUBE. Thanks very much for coming on. Alright, keep it right there buddy. We'll be back. This is PentahoWorld 2017, and this is TheCUBE. Be right back.
SUMMARY :
Brought to you by Hitachi Vantara. of the midwest IoT council. The Future of IoT, leveraging the shift the premise of the book. and communications, and to a is that the market is going to shift and the context of the low-fat But, first of all, that's going to change. So if the product providers are smart, Well and the product guys going to the Walmart might say, and if I'm the fast food chain, Well, plus the widget Doesn't have to be a physical edge. and then propagating it to the devices at the edge where and that's only because the got to be very flexible, especially the larger the enterprise, of the entirety of the data set, in a fraction of the space the linkages to the context in order back to the premise of the book. so that I can leverage the and now it starts to come together, and the Insight Group Pentaho and the Insight's play that they bring to the table, Okay, so, but a lot of the not many people remember. and the product strategy and so forth. to those discussions, and credit to Hitachi for pivoting. in the various operations, It goes back to if you the horses in the track, if you will. that they're bringing to bear with Lumada. leveraging the shift to and the other is Emil 2017, and this is TheCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Hitachi | ORGANIZATION | 0.99+ |
GE | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Emil Berthelsen | PERSON | 0.99+ |
2014 | DATE | 0.99+ |
Siemens | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Disney | ORGANIZATION | 0.99+ |
Europe | LOCATION | 0.99+ |
eight | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Don DeLoach | PERSON | 0.99+ |
Hitachi Data Systems | ORGANIZATION | 0.99+ |
Wael Elrifai | PERSON | 0.99+ |
15% | QUANTITY | 0.99+ |
Jim Heppelmann | PERSON | 0.99+ |
six | QUANTITY | 0.99+ |
Yahoo | ORGANIZATION | 0.99+ |
Emil | PERSON | 0.99+ |
30 year | QUANTITY | 0.99+ |
HDS | ORGANIZATION | 0.99+ |
SeaLand | ORGANIZATION | 0.99+ |
National Advance Systems | ORGANIZATION | 0.99+ |
10 vendors | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
30 years | QUANTITY | 0.99+ |
Insight Group | ORGANIZATION | 0.99+ |
Rob Tiffany | PERSON | 0.99+ |
700 | QUANTITY | 0.99+ |
Michael Porter | PERSON | 0.99+ |
One | QUANTITY | 0.99+ |
Hitachi Limited | ORGANIZATION | 0.99+ |
Pentaho | ORGANIZATION | 0.99+ |
Wikibon | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
2025 | DATE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
The Future of IoT | TITLE | 0.99+ |
Brian Householder | PERSON | 0.99+ |
Hitachi Data Systems | ORGANIZATION | 0.99+ |
Machina Research | ORGANIZATION | 0.99+ |
Hitachi Lumada | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
two years ago | DATE | 0.99+ |
Orlando, Florida | LOCATION | 0.99+ |
Lumada | ORGANIZATION | 0.99+ |
Don | PERSON | 0.99+ |
Midwest IoT Council | ORGANIZATION | 0.99+ |
TAM | ORGANIZATION | 0.99+ |
700 winners | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
third piece | QUANTITY | 0.99+ |
first tier | QUANTITY | 0.99+ |
Both | QUANTITY | 0.99+ |
Hitachi Insight Group | ORGANIZATION | 0.99+ |
25 years ago | DATE | 0.99+ |
Hitachi Vantara | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.98+ |
10 | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
each room | QUANTITY | 0.98+ |
US | LOCATION | 0.98+ |
TheCUBE | ORGANIZATION | 0.98+ |