Image Title

Search Results for LDQ:

Collibra Data Citizens 22


 

>>Collibra is a company that was founded in 2008 right before the so-called modern big data era kicked into high gear. The company was one of the first to focus its business on data governance. Now, historically, data governance and data quality initiatives, they were back office functions and they were largely confined to regulatory regulated industries that had to comply with public policy mandates. But as the cloud went mainstream, the tech giants showed us how valuable data could become and the value proposition for data quality and trust. It evolved from primarily a compliance driven issue to becoming a lynchpin of competitive advantage. But data in the decade of the 2010s was largely about getting the technology to work. You had these highly centralized technical teams that were formed and they had hyper specialized skills to develop data architectures and processes to serve the myriad data needs of organizations. >>And it resulted in a lot of frustration with data initiatives for most organizations that didn't have the resources of the cloud guys and the social media giants to really attack their data problems and turn data into gold. This is why today for example, this quite a bit of momentum to rethinking monolithic data architectures. You see, you hear about initiatives like data mesh and the idea of data as a product. They're gaining traction as a way to better serve the the data needs of decentralized business Uni users, you hear a lot about data democratization. So these decentralization efforts around data, they're great, but they create a new set of problems. Specifically, how do you deliver like a self-service infrastructure to business users and domain experts? Now the cloud is definitely helping with that, but also how do you automate governance? This becomes especially tricky as protecting data privacy has become more and more important. >>In other words, while it's enticing to experiment and run fast and loose with data initiatives kinda like the Wild West, to find new veins of gold, it has to be done responsibly. As such, the idea of data governance has had to evolve to become more automated. And intelligence governance and data lineage is still fundamental to ensuring trust as data. It moves like water through an organization. No one is gonna use data that isn't trusted. Metadata has become increasingly important for data discovery and data classification. As data flows through an organization, the continuously ability to check for data flaws and automating that data quality, they become a functional requirement of any modern data management platform. And finally, data privacy has become a critical adjacency to cyber security. So you can see how data governance has evolved into a much richer set of capabilities than it was 10 or 15 years ago. >>Hello and welcome to the Cube's coverage of Data Citizens made possible by Calibra, a leader in so-called Data intelligence and the host of Data Citizens 2022, which is taking place in San Diego. My name is Dave Ante and I'm one of the hosts of our program, which is running in parallel to data citizens. Now at the Cube we like to say we extract the signal from the noise, and over the, the next couple of days, we're gonna feature some of the themes from the keynote speakers at Data Citizens and we'll hear from several of the executives. Felix Von Dala, who is the co-founder and CEO of Collibra, will join us along with one of the other founders of Collibra, Stan Christians, who's gonna join my colleague Lisa Martin. I'm gonna also sit down with Laura Sellers, she's the Chief Product Officer at Collibra. We'll talk about some of the, the announcements and innovations they're making at the event, and then we'll dig in further to data quality with Kirk Hasselbeck. >>He's the vice president of Data quality at Collibra. He's an amazingly smart dude who founded Owl dq, a company that he sold to Col to Collibra last year. Now many companies, they didn't make it through the Hado era, you know, they missed the industry waves and they became Driftwood. Collibra, on the other hand, has evolved its business. They've leveraged the cloud, expanded its product portfolio, and leaned in heavily to some major partnerships with cloud providers, as well as receiving a strategic investment from Snowflake earlier this year. So it's a really interesting story that we're thrilled to be sharing with you. Thanks for watching and I hope you enjoy the program. >>Last year, the Cube Covered Data Citizens Collibra's customer event. And the premise that we put forth prior to that event was that despite all the innovation that's gone on over the last decade or more with data, you know, starting with the Hado movement, we had data lakes, we'd spark the ascendancy of programming languages like Python, the introduction of frameworks like TensorFlow, the rise of ai, low code, no code, et cetera. Businesses still find it's too difficult to get more value from their data initiatives. And we said at the time, you know, maybe it's time to rethink data innovation. While a lot of the effort has been focused on, you know, more efficiently storing and processing data, perhaps more energy needs to go into thinking about the people and the process side of the equation, meaning making it easier for domain experts to both gain insights for data, trust the data, and begin to use that data in new ways, fueling data, products, monetization and insights data citizens 2022 is back and we're pleased to have Felix Van Dema, who is the founder and CEO of Collibra. He's on the cube or excited to have you, Felix. Good to see you again. >>Likewise Dave. Thanks for having me again. >>You bet. All right, we're gonna get the update from Felix on the current data landscape, how he sees it, why data intelligence is more important now than ever and get current on what Collibra has been up to over the past year and what's changed since Data Citizens 2021. And we may even touch on some of the product news. So Felix, we're living in a very different world today with businesses and consumers. They're struggling with things like supply chains, uncertain economic trends, and we're not just snapping back to the 2010s. That's clear, and that's really true as well in the world of data. So what's different in your mind, in the data landscape of the 2020s from the previous decade, and what challenges does that bring for your customers? >>Yeah, absolutely. And, and I think you said it well, Dave, and and the intro that that rising complexity and fragmentation in the broader data landscape, that hasn't gotten any better over the last couple of years. When when we talk to our customers, that level of fragmentation, the complexity, how do we find data that we can trust, that we know we can use has only gotten kinda more, more difficult. So that trend that's continuing, I think what is changing is that trend has become much more acute. Well, the other thing we've seen over the last couple of years is that the level of scrutiny that organizations are under respect to data, as data becomes more mission critical, as data becomes more impactful than important, the level of scrutiny with respect to privacy, security, regulatory compliance, as only increasing as well, which again, is really difficult in this environment of continuous innovation, continuous change, continuous growing complexity and fragmentation. >>So it's become much more acute. And, and to your earlier point, we do live in a different world and and the the past couple of years we could probably just kind of brute for it, right? We could focus on, on the top line. There was enough kind of investments to be, to be had. I think nowadays organizations are focused or are, are, are, are, are, are in a very different environment where there's much more focus on cost control, productivity, efficiency, How do we truly get value from that data? So again, I think it just another incentive for organization to now truly look at data and to scale it data, not just from a a technology and infrastructure perspective, but how do you actually scale data from an organizational perspective, right? You said at the the people and process, how do we do that at scale? And that's only, only only becoming much more important. And we do believe that the, the economic environment that we find ourselves in today is gonna be catalyst for organizations to really dig out more seriously if, if, if, if you will, than they maybe have in the have in the best. >>You know, I don't know when you guys founded Collibra, if, if you had a sense as to how complicated it was gonna get, but you've been on a mission to really address these problems from the beginning. How would you describe your, your, your mission and what are you doing to address these challenges? >>Yeah, absolutely. We, we started Colli in 2008. So in some sense and the, the last kind of financial crisis, and that was really the, the start of Colli where we found product market fit, working with large finance institutions to help them cope with the increasing compliance requirements that they were faced with because of the, of the financial crisis and kind of here we are again in a very different environment, of course 15 years, almost 15 years later. But data only becoming more important. But our mission to deliver trusted data for every user, every use case and across every source, frankly, has only become more important. So what has been an incredible journey over the last 14, 15 years, I think we're still relatively early in our mission to again, be able to provide everyone, and that's why we call it data citizens. We truly believe that everyone in the organization should be able to use trusted data in an easy, easy matter. That mission is is only becoming more important, more relevant. We definitely have a lot more work ahead of us because we are still relatively early in that, in that journey. >>Well, that's interesting because, you know, in my observation it takes seven to 10 years to actually build a company and then the fact that you're still in the early days is kind of interesting. I mean, you, Collibra's had a good 12 months or so since we last spoke at Data Citizens. Give us the latest update on your business. What do people need to know about your, your current momentum? >>Yeah, absolutely. Again, there's, there's a lot of tail organizations that are only maturing the data practices and we've seen it kind of transform or, or, or influence a lot of our business growth that we've seen, broader adoption of the platform. We work at some of the largest organizations in the world where it's Adobe, Heineken, Bank of America, and many more. We have now over 600 enterprise customers, all industry leaders and every single vertical. So it's, it's really exciting to see that and continue to partner with those organizations. On the partnership side, again, a lot of momentum in the org in, in the, in the markets with some of the cloud partners like Google, Amazon, Snowflake, data bricks and, and others, right? As those kind of new modern data infrastructures, modern data architectures that are definitely all moving to the cloud, a great opportunity for us, our partners and of course our customers to help them kind of transition to the cloud even faster. >>And so we see a lot of excitement and momentum there within an acquisition about 18 months ago around data quality, data observability, which we believe is an enormous opportunity. Of course, data quality isn't new, but I think there's a lot of reasons why we're so excited about quality and observability now. One is around leveraging ai, machine learning, again to drive more automation. And the second is that those data pipelines that are now being created in the cloud, in these modern data architecture arch architectures, they've become mission critical. They've become real time. And so monitoring, observing those data pipelines continuously has become absolutely critical so that they're really excited about about that as well. And on the organizational side, I'm sure you've heard a term around kind of data mesh, something that's gaining a lot of momentum, rightfully so. It's really the type of governance that we always believe. Then federated focused on domains, giving a lot of ownership to different teams. I think that's the way to scale data organizations. And so that aligns really well with our vision and, and from a product perspective, we've seen a lot of momentum with our customers there as well. >>Yeah, you know, a couple things there. I mean, the acquisition of i l dq, you know, Kirk Hasselbeck and, and their team, it's interesting, you know, the whole data quality used to be this back office function and, and really confined to highly regulated industries. It's come to the front office, it's top of mind for chief data officers, data mesh. You mentioned you guys are a connective tissue for all these different nodes on the data mesh. That's key. And of course we see you at all the shows. You're, you're a critical part of many ecosystems and you're developing your own ecosystem. So let's chat a little bit about the, the products. We're gonna go deeper in into products later on at, at Data Citizens 22, but we know you're debuting some, some new innovations, you know, whether it's, you know, the, the the under the covers in security, sort of making data more accessible for people just dealing with workflows and processes as you talked about earlier. Tell us a little bit about what you're introducing. >>Yeah, absolutely. We're super excited, a ton of innovation. And if we think about the big theme and like, like I said, we're still relatively early in this, in this journey towards kind of that mission of data intelligence that really bolts and compelling mission, either customers are still start, are just starting on that, on that journey. We wanna make it as easy as possible for the, for our organization to actually get started because we know that's important that they do. And for our organization and customers that have been with us for some time, there's still a tremendous amount of opportunity to kind of expand the platform further. And again, to make it easier for really to, to accomplish that mission and vision around that data citizen that everyone has access to trustworthy data in a very easy, easy way. So that's really the theme of a lot of the innovation that we're driving. >>A lot of kind of ease of adoption, ease of use, but also then how do we make sure that lio becomes this kind of mission critical enterprise platform from a security performance architecture scale supportability that we're truly able to deliver that kind of an enterprise mission critical platform. And so that's the big theme from an innovation perspective, From a product perspective, a lot of new innovation that we're really excited about. A couple of highlights. One is around data marketplace. Again, a lot of our customers have plans in that direction, how to make it easy. How do we make, how do we make available to true kind of shopping experience that anybody in your organization can, in a very easy search first way, find the right data product, find the right dataset, that data can then consume usage analytics. How do you, how do we help organizations drive adoption, tell them where they're working really well and where they have opportunities homepages again to, to make things easy for, for people, for anyone in your organization to kind of get started with ppia, you mentioned workflow designer, again, we have a very powerful enterprise platform. >>One of our key differentiators is the ability to really drive a lot of automation through workflows. And now we provided a new low code, no code kind of workflow designer experience. So, so really customers can take it to the next level. There's a lot more new product around K Bear Protect, which in partnership with Snowflake, which has been a strategic investor in kib, focused on how do we make access governance easier? How do we, how do we, how are we able to make sure that as you move to the cloud, things like access management, masking around sensitive data, PII data is managed as much more effective, effective rate, really excited about that product. There's more around data quality. Again, how do we, how do we get that deployed as easily and quickly and widely as we can? Moving that to the cloud has been a big part of our strategy. >>So we launch more data quality cloud product as well as making use of those, those native compute capabilities in platforms like Snowflake, Data, Bricks, Google, Amazon, and others. And so we are bettering a capability, a capability that we call push down. So actually pushing down the computer and data quality, the monitoring into the underlying platform, which again, from a scale performance and ease of use perspective is gonna make a massive difference. And then more broadly, we, we talked a little bit about the ecosystem. Again, integrations, we talk about being able to connect to every source. Integrations are absolutely critical and we're really excited to deliver new integrations with Snowflake, Azure and Google Cloud storage as well. So there's a lot coming out. The, the team has been work at work really hard and we are really, really excited about what we are coming, what we're bringing to markets. >>Yeah, a lot going on there. I wonder if you could give us your, your closing thoughts. I mean, you, you talked about, you know, the marketplace, you know, you think about data mesh, you think of data as product, one of the key principles you think about monetization. This is really different than what we've been used to in data, which is just getting the technology to work has been been so hard. So how do you see sort of the future and, you know, give us the, your closing thoughts please? >>Yeah, absolutely. And I, and I think we we're really at this pivotal moment, and I think you said it well. We, we all know the constraint and the challenges with data, how to actually do data at scale. And while we've seen a ton of innovation on the infrastructure side, we fundamentally believe that just getting a faster database is important, but it's not gonna fully solve the challenges and truly kind of deliver on the opportunity. And that's why now is really the time to deliver this data intelligence vision, this data intelligence platform. We are still early, making it as easy as we can. It's kind of, of our, it's our mission. And so I'm really, really excited to see what we, what we are gonna, how the marks gonna evolve over the next, next few quarters and years. I think the trend is clearly there when we talk about data mesh, this kind of federated approach folks on data products is just another signal that we believe that a lot of our organization are now at the time. >>The understanding need to go beyond just the technology. I really, really think about how do we actually scale data as a business function, just like we've done with it, with, with hr, with, with sales and marketing, with finance. That's how we need to think about data. I think now is the time given the economic environment that we are in much more focus on control, much more focused on productivity efficiency and now's the time. We need to look beyond just the technology and infrastructure to think of how to scale data, how to manage data at scale. >>Yeah, it's a new era. The next 10 years of data won't be like the last, as I always say. Felix, thanks so much and good luck in, in San Diego. I know you're gonna crush it out there. >>Thank you Dave. >>Yeah, it's a great spot for an in-person event and, and of course the content post event is gonna be available@collibra.com and you can of course catch the cube coverage@thecube.net and all the news@siliconangle.com. This is Dave Valante for the cube, your leader in enterprise and emerging tech coverage. >>Hi, I'm Jay from Collibra's Data Office. Today I want to talk to you about Collibra's data intelligence cloud. We often say Collibra is a single system of engagement for all of your data. Now, when I say data, I mean data in the broadest sense of the word, including reference and metadata. Think of metrics, reports, APIs, systems, policies, and even business processes that produce or consume data. Now, the beauty of this platform is that it ensures all of your users have an easy way to find, understand, trust, and access data. But how do you get started? Well, here are seven steps to help you get going. One, start with the data. What's data intelligence? Without data leverage the Collibra data catalog to automatically profile and classify your enterprise data wherever that data lives, databases, data lakes or data warehouses, whether on the cloud or on premise. >>Two, you'll then wanna organize the data and you'll do that with data communities. This can be by department, find a business or functional team, however your organization organizes work and accountability. And for that you'll establish community owners, communities, make it easy for people to navigate through the platform, find the data and will help create a sense of belonging for users. An important and related side note here, we find it's typical in many organizations that data is thought of is just an asset and IT and data offices are viewed as the owners of it and who are really the central teams performing analytics as a service provider to the enterprise. We believe data is more than an asset, it's a true product that can be converted to value. And that also means establishing business ownership of data where that strategy and ROI come together with subject matter expertise. >>Okay, three. Next, back to those communities there, the data owners should explain and define their data, not just the tables and columns, but also the related business terms, metrics and KPIs. These objects we call these assets are typically organized into business glossaries and data dictionaries. I definitely recommend starting with the topics that are most important to the business. Four, those steps that enable you and your users to have some fun with it. Linking everything together builds your knowledge graph and also known as a metadata graph by linking or relating these assets together. For example, a data set to a KPI to a report now enables your users to see what we call the lineage diagram that visualizes where the data in your dashboards actually came from and what the data means and who's responsible for it. Speaking of which, here's five. Leverage the calibra trusted business reporting solution on the marketplace, which comes with workflows for those owners to certify their reports, KPIs, and data sets. >>This helps them force their trust in their data. Six, easy to navigate dashboards or landing pages right in your platform for your company's business processes are the most effective way for everyone to better understand and take action on data. Here's a pro tip, use the dashboard design kit on the marketplace to help you build compelling dashboards. Finally, seven, promote the value of this to your users and be sure to schedule enablement office hours and new employee onboarding sessions to get folks excited about what you've built and implemented. Better yet, invite all of those community and data owners to these sessions so that they can show off the value that they've created. Those are my seven tips to get going with Collibra. I hope these have been useful. For more information, be sure to visit collibra.com. >>Welcome to the Cube's coverage of Data Citizens 2022 Collibra's customer event. My name is Dave Valante. With us is Kirk Hasselbeck, who's the vice president of Data Quality of Collibra Kirk, good to see you. Welcome. >>Thanks for having me, Dave. Excited to be here. >>You bet. Okay, we're gonna discuss data quality observability. It's a hot trend right now. You founded a data quality company, OWL dq, and it was acquired by Collibra last year. Congratulations. And now you lead data quality at Collibra. So we're hearing a lot about data quality right now. Why is it such a priority? Take us through your thoughts on that. >>Yeah, absolutely. It's, it's definitely exciting times for data quality, which you're right, has been around for a long time. So why now and why is it so much more exciting than it used to be? I think it's a bit stale, but we all know that companies use more data than ever before and the variety has changed and the volume has grown. And, and while I think that remains true, there are a couple other hidden factors at play that everyone's so interested in as, as to why this is becoming so important now. And, and I guess you could kind of break this down simply and think about if Dave, you and I were gonna build, you know, a new healthcare application and monitor the heartbeat of individuals, imagine if we get that wrong, you know, what the ramifications could be, what, what those incidents would look like, or maybe better yet, we try to build a, a new trading algorithm with a crossover strategy where the 50 day crosses the, the 10 day average. >>And imagine if the data underlying the inputs to that is incorrect. We will probably have major financial ramifications in that sense. So, you know, it kind of starts there where everybody's realizing that we're all data companies and if we are using bad data, we're likely making incorrect business decisions. But I think there's kind of two other things at play. You know, I, I bought a car not too long ago and my dad called and said, How many cylinders does it have? And I realized in that moment, you know, I might have failed him because, cause I didn't know. And, and I used to ask those types of questions about any lock brakes and cylinders and, and you know, if it's manual or, or automatic and, and I realized I now just buy a car that I hope works. And it's so complicated with all the computer chips, I, I really don't know that much about it. >>And, and that's what's happening with data. We're just loading so much of it. And it's so complex that the way companies consume them in the IT function is that they bring in a lot of data and then they syndicate it out to the business. And it turns out that the, the individuals loading and consuming all of this data for the company actually may not know that much about the data itself, and that's not even their job anymore. So we'll talk more about that in a minute, but that's really what's setting the foreground for this observability play and why everybody's so interested. It, it's because we're becoming less close to the intricacies of the data and we just expect it to always be there and be correct. >>You know, the other thing too about data quality, and for years we did the MIT CDO IQ event, we didn't do it last year, Covid messed everything up. But the observation I would make there thoughts is, is it data quality? Used to be information quality used to be this back office function, and then it became sort of front office with financial services and government and healthcare, these highly regulated industries. And then the whole chief data officer thing happened and people were realizing, well, they sort of flipped the bit from sort of a data as a, a risk to data as a, as an asset. And now as we say, we're gonna talk about observability. And so it's really become front and center just the whole quality issue because data's so fundamental, hasn't it? >>Yeah, absolutely. I mean, let's imagine we pull up our phones right now and I go to my, my favorite stock ticker app and I check out the NASDAQ market cap. I really have no idea if that's the correct number. I know it's a number, it looks large, it's in a numeric field. And, and that's kind of what's going on. There's, there's so many numbers and they're coming from all of these different sources and data providers and they're getting consumed and passed along. But there isn't really a way to tactically put controls on every number and metric across every field we plan to monitor, but with the scale that we've achieved in early days, even before calibra. And what's been so exciting is we have these types of observation techniques, these data monitors that can actually track past performance of every field at scale. And why that's so interesting and why I think the CDO is, is listening right intently nowadays to this topic is, so maybe we could surface all of these problems with the right solution of data observability and with the right scale and then just be alerted on breaking trends. So we're sort of shifting away from this world of must write a condition and then when that condition breaks, that was always known as a break record. But what about breaking trends and root cause analysis? And is it possible to do that, you know, with less human intervention? And so I think most people are seeing now that it's going to have to be a software tool and a computer system. It's, it's not ever going to be based on one or two domain experts anymore. >>So, So how does data observability relate to data quality? Are they sort of two sides of the same coin? Are they, are they cousins? What's your perspective on that? >>Yeah, it's, it's super interesting. It's an emerging market. So the language is changing a lot of the topic and areas changing the way that I like to say it or break it down because the, the lingo is constantly moving is, you know, as a target on this space is really breaking records versus breaking trends. And I could write a condition when this thing happens, it's wrong and when it doesn't it's correct. Or I could look for a trend and I'll give you a good example. You know, everybody's talking about fresh data and stale data and, and why would that matter? Well, if your data never arrived or only part of it arrived or didn't arrive on time, it's likely stale and there will not be a condition that you could write that would show you all the good in the bads. That was kind of your, your traditional approach of data quality break records. But your modern day approach is you lost a significant portion of your data, or it did not arrive on time to make that decision accurately on time. And that's a hidden concern. Some people call this freshness, we call it stale data, but it all points to the same idea of the thing that you're observing may not be a data quality condition anymore. It may be a breakdown in the data pipeline. And with thousands of data pipelines in play for every company out there there, there's more than a couple of these happening every day. >>So what's the Collibra angle on all this stuff made the acquisition, you got data quality observability coming together, you guys have a lot of expertise in, in this area, but you hear providence of data, you just talked about, you know, stale data, you know, the, the whole trend toward real time. How is Calibra approaching the problem and what's unique about your approach? >>Well, I think where we're fortunate is with our background, myself and team, we sort of lived this problem for a long time, you know, in, in the Wall Street days about a decade ago. And we saw it from many different angles. And what we came up with before it was called data observability or reliability was basically the, the underpinnings of that. So we're a little bit ahead of the curve there when most people evaluate our solution, it's more advanced than some of the observation techniques that that currently exist. But we've also always covered data quality and we believe that people want to know more, they need more insights, and they want to see break records and breaking trends together so they can correlate the root cause. And we hear that all the time. I have so many things going wrong, just show me the big picture, help me find the thing that if I were to fix it today would make the most impact. So we're really focused on root cause analysis, business impact, connecting it with lineage and catalog metadata. And as that grows, you can actually achieve total data governance at this point with the acquisition of what was a Lineage company years ago, and then my company Ldq now Collibra, Data quality Collibra may be the best positioned for total data governance and intelligence in the space. >>Well, you mentioned financial services a couple of times and some examples, remember the flash crash in 2010. Nobody had any idea what that was, you know, they just said, Oh, it's a glitch, you know, so they didn't understand the root cause of it. So this is a really interesting topic to me. So we know at Data Citizens 22 that you're announcing, you gotta announce new products, right? You're yearly event what's, what's new. Give us a sense as to what products are coming out, but specifically around data quality and observability. >>Absolutely. There's this, you know, there's always a next thing on the forefront. And the one right now is these hyperscalers in the cloud. So you have databases like Snowflake and Big Query and Data Bricks is Delta Lake and SQL Pushdown. And ultimately what that means is a lot of people are storing in loading data even faster in a SaaS like model. And we've started to hook in to these databases. And while we've always worked with the the same databases in the past, they're supported today we're doing something called Native Database pushdown, where the entire compute and data activity happens in the database. And why that is so interesting and powerful now is everyone's concerned with something called Egress. Did your, my data that I've spent all this time and money with my security team securing ever leave my hands, did it ever leave my secure VPC as they call it? >>And with these native integrations that we're building and about to unveil, here's kind of a sneak peek for, for next week at Data Citizens. We're now doing all compute and data operations in databases like Snowflake. And what that means is with no install and no configuration, you could log into the Collibra data quality app and have all of your data quality running inside the database that you've probably already picked as your your go forward team selection secured database of choice. So we're really excited about that. And I think if you look at the whole landscape of network cost, egress, cost, data storage and compute, what people are realizing is it's extremely efficient to do it in the way that we're about to release here next week. >>So this is interesting because what you just described, you know, you mentioned Snowflake, you mentioned Google, Oh actually you mentioned yeah, data bricks. You know, Snowflake has the data cloud. If you put everything in the data cloud, okay, you're cool, but then Google's got the open data cloud. If you heard, you know, Google next and now data bricks doesn't call it the data cloud, but they have like the open source data cloud. So you have all these different approaches and there's really no way up until now I'm, I'm hearing to, to really understand the relationships between all those and have confidence across, you know, it's like Jak Dani, you should just be a note on the mesh. And I don't care if it's a data warehouse or a data lake or where it comes from, but it's a point on that mesh and I need tooling to be able to have confidence that my data is governed and has the proper lineage, providence. And, and, and that's what you're bringing to the table, Is that right? Did I get that right? >>Yeah, that's right. And it's, for us, it's, it's not that we haven't been working with those great cloud databases, but it's the fact that we can send them the instructions now, we can send them the, the operating ability to crunch all of the calculations, the governance, the quality, and get the answers. And what that's doing, it's basically zero network costs, zero egress cost, zero latency of time. And so when you were to log into Big Query tomorrow using our tool or like, or say Snowflake for example, you have instant data quality metrics, instant profiling, instant lineage and access privacy controls, things of that nature that just become less onerous. What we're seeing is there's so much technology out there, just like all of the major brands that you mentioned, but how do we make it easier? The future is about less clicks, faster time to value, faster scale, and eventually lower cost. And, and we think that this positions us to be the leader there. >>I love this example because, you know, Barry talks about, wow, the cloud guys are gonna own the world and, and of course now we're seeing that the ecosystem is finding so much white space to add value, connect across cloud. Sometimes we call it super cloud and so, or inter clouding. All right, Kirk, give us your, your final thoughts and on on the trends that we've talked about and Data Citizens 22. >>Absolutely. Well, I think, you know, one big trend is discovery and classification. Seeing that across the board, people used to know it was a zip code and nowadays with the amount of data that's out there, they wanna know where everything is, where their sensitive data is. If it's redundant, tell me everything inside of three to five seconds. And with that comes, they want to know in all of these hyperscale databases how fast they can get controls and insights out of their tools. So I think we're gonna see more one click solutions, more SAS based solutions and solutions that hopefully prove faster time to value on, on all of these modern cloud platforms. >>Excellent. All right, Kurt Hasselbeck, thanks so much for coming on the Cube and previewing Data Citizens 22. Appreciate it. >>Thanks for having me, Dave. >>You're welcome. Right, and thank you for watching. Keep it right there for more coverage from the Cube. Welcome to the Cube's virtual Coverage of Data Citizens 2022. My name is Dave Valante and I'm here with Laura Sellers, who's the Chief Product Officer at Collibra, the host of Data Citizens. Laura, welcome. Good to see you. >>Thank you. Nice to be here. >>Yeah, your keynote at Data Citizens this year focused on, you know, your mission to drive ease of use and scale. Now when I think about historically fast access to the right data at the right time in a form that's really easily consumable, it's been kind of challenging, especially for business users. Can can you explain to our audience why this matters so much and what's actually different today in the data ecosystem to make this a reality? >>Yeah, definitely. So I think what we really need and what I hear from customers every single day is that we need a new approach to data management and our product teams. What inspired me to come to Calibra a little bit a over a year ago was really the fact that they're very focused on bringing trusted data to more users across more sources for more use cases. And so as we look at what we're announcing with these innovations of ease of use and scale, it's really about making teams more productive in getting started with and the ability to manage data across the entire organization. So we've been very focused on richer experiences, a broader ecosystem of partners, as well as a platform that delivers performance, scale and security that our users and teams need and demand. So as we look at, Oh, go ahead. >>I was gonna say, you know, when I look back at like the last 10 years, it was all about getting the technology to work and it was just so complicated. But, but please carry on. I'd love to hear more about this. >>Yeah, I, I really, you know, Collibra is a system of engagement for data and we really are working on bringing that entire system of engagement to life for everyone to leverage here and now. So what we're announcing from our ease of use side of the world is first our data marketplace. This is the ability for all users to discover and access data quickly and easily shop for it, if you will. The next thing that we're also introducing is the new homepage. It's really about the ability to drive adoption and have users find data more quickly. And then the two more areas of the ease of use side of the world is our world of usage analytics. And one of the big pushes and passions we have at Collibra is to help with this data driven culture that all companies are trying to create. And also helping with data literacy, with something like usage analytics, it's really about driving adoption of the CLE platform, understanding what's working, who's accessing it, what's not. And then finally we're also introducing what's called workflow designer. And we love our workflows at Libra, it's a big differentiator to be able to automate business processes. The designer is really about a way for more people to be able to create those workflows, collaborate on those workflow flows, as well as people to be able to easily interact with them. So a lot of exciting things when it comes to ease of use to make it easier for all users to find data. >>Y yes, there's definitely a lot to unpack there. I I, you know, you mentioned this idea of, of of, of shopping for the data. That's interesting to me. Why this analogy, metaphor or analogy, I always get those confused. I let's go with analogy. Why is it so important to data consumers? >>I think when you look at the world of data, and I talked about this system of engagement, it's really about making it more accessible to the masses. And what users are used to is a shopping experience like your Amazon, if you will. And so having a consumer grade experience where users can quickly go in and find the data, trust that data, understand where the data's coming from, and then be able to quickly access it, is the idea of being able to shop for it, just making it as simple as possible and really speeding the time to value for any of the business analysts, data analysts out there. >>Yeah, I think when you, you, you see a lot of discussion about rethinking data architectures, putting data in the hands of the users and business people, decentralized data and of course that's awesome. I love that. But of course then you have to have self-service infrastructure and you have to have governance. And those are really challenging. And I think so many organizations, they're facing adoption challenges, you know, when it comes to enabling teams generally, especially domain experts to adopt new data technologies, you know, like the, the tech comes fast and furious. You got all these open source projects and get really confusing. Of course it risks security, governance and all that good stuff. You got all this jargon. So where do you see, you know, the friction in adopting new data technologies? What's your point of view and how can organizations overcome these challenges? >>You're, you're dead on. There's so much technology and there's so much to stay on top of, which is part of the friction, right? It's just being able to stay ahead of, of and understand all the technologies that are coming. You also look at as there's so many more sources of data and people are migrating data to the cloud and they're migrating to new sources. Where the friction comes is really that ability to understand where the data came from, where it's moving to, and then also to be able to put the access controls on top of it. So people are only getting access to the data that they should be getting access to. So one of the other things we're announcing with, with all of the innovations that are coming is what we're doing around performance and scale. So with all of the data movement, with all of the data that's out there, the first thing we're launching in the world of performance and scale is our world of data quality. >>It's something that Collibra has been working on for the past year and a half, but we're launching the ability to have data quality in the cloud. So it's currently an on-premise offering, but we'll now be able to carry that over into the cloud for us to manage that way. We're also introducing the ability to push down data quality into Snowflake. So this is, again, one of those challenges is making sure that that data that you have is d is is high quality as you move forward. And so really another, we're just reducing friction. You already have Snowflake stood up. It's not another machine for you to manage, it's just push down capabilities into Snowflake to be able to track that quality. Another thing that we're launching with that is what we call Collibra Protect. And this is that ability for users to be able to ingest metadata, understand where the PII data is, and then set policies up on top of it. So very quickly be able to set policies and have them enforced at the data level. So anybody in the organization is only getting access to the data they should have access to. >>Here's Topica data quality is interesting. It's something that I've followed for a number of years. It used to be a back office function, you know, and really confined only to highly regulated industries like financial services and healthcare and government. You know, you look back over a decade ago, you didn't have this worry about personal information, g gdpr, and, you know, California Consumer Privacy Act all becomes, becomes so much important. The cloud is really changed things in terms of performance and scale and of course partnering for, for, with Snowflake it's all about sharing data and monetization, anything but a back office function. So it was kind of smart that you guys were early on and of course attracting them and as a, as an investor as well was very strong validation. What can you tell us about the nature of the relationship with Snowflake and specifically inter interested in sort of joint engineering or, and product innovation efforts, you know, beyond the standard go to market stuff? >>Definitely. So you mentioned there were a strategic investor in Calibra about a year ago. A little less than that I guess. We've been working with them though for over a year really tightly with their product and engineering teams to make sure that Collibra is adding real value. Our unified platform is touching pieces of our unified platform or touching all pieces of Snowflake. And when I say that, what I mean is we're first, you know, able to ingest data with Snowflake, which, which has always existed. We're able to profile and classify that data we're announcing with Calibra Protect this week that you're now able to create those policies on top of Snowflake and have them enforce. So again, people can get more value out of their snowflake more quickly as far as time to value with, with our policies for all business users to be able to create. >>We're also announcing Snowflake Lineage 2.0. So this is the ability to take stored procedures in Snowflake and understand the lineage of where did the data come from, how was it transformed with within Snowflake as well as the data quality. Pushdown, as I mentioned, data quality, you brought it up. It is a new, it is a, a big industry push and you know, one of the things I think Gartner mentioned is people are losing up to $15 million without having great data quality. So this push down capability for Snowflake really is again, a big ease of use push for us at Collibra of that ability to, to push it into snowflake, take advantage of the data, the data source, and the engine that already lives there and get the right and make sure you have the right quality. >>I mean, the nice thing about Snowflake, if you play in the Snowflake sandbox, you, you, you, you can get sort of a, you know, high degree of confidence that the data sharing can be done in a safe way. Bringing, you know, Collibra into the, into the story allows me to have that data quality and, and that governance that I, that I need. You know, we've said many times on the cube that one of the notable differences in cloud this decade versus last decade, I mean ob there are obvious differences just in terms of scale and scope, but it's shaping up to be about the strength of the ecosystems. That's really a hallmark of these big cloud players. I mean they're, it's a key factor for innovating, accelerating product delivery, filling gaps in, in the hyperscale offerings cuz you got more stack, you know, mature stack capabilities and you know, it creates this flywheel momentum as we often say. But, so my question is, how do you work with the hyperscalers? Like whether it's AWS or Google, whomever, and what do you see as your role and what's the Collibra sweet spot? >>Yeah, definitely. So, you know, one of the things I mentioned early on is the broader ecosystem of partners is what it's all about. And so we have that strong partnership with Snowflake. We also are doing more with Google around, you know, GCP and kbra protect there, but also tighter data plex integration. So similar to what you've seen with our strategic moves around Snowflake and, and really covering the broad ecosystem of what Collibra can do on top of that data source. We're extending that to the world of Google as well and the world of data plex. We also have great partners in SI's Infosys is somebody we spoke with at the conference who's done a lot of great work with Levi's as they're really important to help people with their whole data strategy and driving that data driven culture and, and Collibra being the core of it. >>Hi Laura, we're gonna, we're gonna end it there, but I wonder if you could kind of put a bow on, you know, this year, the event your, your perspectives. So just give us your closing thoughts. >>Yeah, definitely. So I, I wanna say this is one of the biggest releases Collibra's ever had. Definitely the biggest one since I've been with the company a little over a year. We have all these great new product innovations coming to really drive the ease of use to make data more valuable for users everywhere and, and companies everywhere. And so it's all about everybody being able to easily find, understand, and trust and get access to that data going forward. >>Well congratulations on all the pro progress. It was great to have you on the cube first time I believe, and really appreciate you, you taking the time with us. >>Yes, thank you for your time. >>You're very welcome. Okay, you're watching the coverage of Data Citizens 2022 on the cube, your leader in enterprise and emerging tech coverage. >>So data modernization oftentimes means moving some of your storage and computer to the cloud where you get the benefit of scale and security and so on. But ultimately it doesn't take away the silos that you have. We have more locations, more tools and more processes with which we try to get value from this data. To do that at scale in an organization, people involved in this process, they have to understand each other. So you need to unite those people across those tools, processes, and systems with a shared language. When I say customer, do you understand the same thing as you hearing customer? Are we counting them in the same way so that shared language unites us and that gives the opportunity for the organization as a whole to get the maximum value out of their data assets and then they can democratize data so everyone can properly use that shared language to find, understand, and trust the data asset that's available. >>And that's where Collibra comes in. We provide a centralized system of engagement that works across all of those locations and combines all of those different user types across the whole business. At Collibra, we say United by data and that also means that we're united by data with our customers. So here is some data about some of our customers. There was the case of an online do it yourself platform who grew their revenue almost three times from a marketing campaign that provided the right product in the right hands of the right people. In other case that comes to mind is from a financial services organization who saved over 800 K every year because they were able to reuse the same data in different kinds of reports and before there was spread out over different tools and processes and silos, and now the platform brought them together so they realized, oh, we're actually using the same data, let's find a way to make this more efficient. And the last example that comes to mind is that of a large home loan, home mortgage, mortgage loan provider where they have a very complex landscape, a very complex architecture legacy in the cloud, et cetera. And they're using our software, they're using our platform to unite all the people and those processes and tools to get a common view of data to manage their compliance at scale. >>Hey everyone, I'm Lisa Martin covering Data Citizens 22, brought to you by Collibra. This next conversation is gonna focus on the importance of data culture. One of our Cube alumni is back, Stan Christians is Collibra's co-founder and it's Chief Data citizens. Stan, it's great to have you back on the cube. >>Hey Lisa, nice to be. >>So we're gonna be talking about the importance of data culture, data intelligence, maturity, all those great things. When we think about the data revolution that every business is going through, you know, it's so much more than technology innovation. It also really re requires cultural transformation, community transformation. Those are challenging for customers to undertake. Talk to us about what you mean by data citizenship and the role that creating a data culture plays in that journey. >>Right. So as you know, our event is called Data Citizens because we believe that in the end, a data citizen is anyone who uses data to do their job. And we believe that today's organizations, you have a lot of people, most of the employees in an organization are somehow gonna to be a data citizen, right? So you need to make sure that these people are aware of it. You need that. People have skills and competencies to do with data what necessary and that's on, all right? So what does it mean to have a good data culture? It means that if you're building a beautiful dashboard to try and convince your boss, we need to make this decision that your boss is also open to and able to interpret, you know, the data presented in dashboard to actually make that decision and take that action. Right? >>And once you have that why to the organization, that's when you have a good data culture. Now that's continuous effort for most organizations because they're always moving, somehow they're hiring new people and it has to be continuous effort because we've seen that on the hand. Organizations continue challenged their data sources and where all the data is flowing, right? Which in itself creates a lot of risk. But also on the other set hand of the equation, you have the benefit. You know, you might look at regulatory drivers like, we have to do this, right? But it's, it's much better right now to consider the competitive drivers, for example, and we did an IDC study earlier this year, quite interesting. I can recommend anyone to it. And one of the conclusions they found as they surveyed over a thousand people across organizations worldwide is that the ones who are higher in maturity. >>So the, the organizations that really look at data as an asset, look at data as a product and actively try to be better at it, don't have three times as good a business outcome as the ones who are lower on the maturity scale, right? So you can say, ok, I'm doing this, you know, data culture for everyone, awakening them up as data citizens. I'm doing this for competitive reasons, I'm doing this re reasons you're trying to bring both of those together and the ones that get data intelligence right, are successful and competitive. That's, and that's what we're seeing out there in the market. >>Absolutely. We know that just generally stand right, the organizations that are, are really creating a, a data culture and enabling everybody within the organization to become data citizens are, We know that in theory they're more competitive, they're more successful. But the IDC study that you just mentioned demonstrates they're three times more successful and competitive than their peers. Talk about how Collibra advises customers to create that community, that culture of data when it might be challenging for an organization to adapt culturally. >>Of course, of course it's difficult for an organization to adapt but it's also necessary, as you just said, imagine that, you know, you're a modern day organization, laptops, what have you, you're not using those, right? Or you know, you're delivering them throughout organization, but not enabling your colleagues to actually do something with that asset. Same thing as through with data today, right? If you're not properly using the data asset and competitors are, they're gonna to get more advantage. So as to how you get this done, establish this. There's angles to look at, Lisa. So one angle is obviously the leadership whereby whoever is the boss of data in the organization, you typically have multiple bosses there, like achieve data officers. Sometimes there's, there's multiple, but they may have a different title, right? So I'm just gonna summarize it as a data leader for a second. >>So whoever that is, they need to make sure that there's a clear vision, a clear strategy for data. And that strategy needs to include the monetization aspect. How are you going to get value from data? Yes. Now that's one part because then you can leadership in the organization and also the business value. And that's important. Cause those people, their job in essence really is to make everyone in the organization think about data as an asset. And I think that's the second part of the equation of getting that right, is it's not enough to just have that leadership out there, but you also have to get the hearts and minds of the data champions across the organization. You, I really have to win them over. And if you have those two combined and obviously a good technology to, you know, connect those people and have them execute on their responsibilities such as a data intelligence platform like s then the in place to really start upgrading that culture inch by inch if you'll, >>Yes, I like that. The recipe for success. So you are the co-founder of Collibra. You've worn many different hats along this journey. Now you're building Collibra's own data office. I like how before we went live, we were talking about Calibra is drinking its own champagne. I always loved to hear stories about that. You're speaking at Data Citizens 2022. Talk to us about how you are building a data culture within Collibra and what maybe some of the specific projects are that Collibra's data office is working on. >>Yes, and it is indeed data citizens. There are a ton of speaks here, are very excited. You know, we have Barb from m MIT speaking about data monetization. We have Dilla at the last minute. So really exciting agen agenda. Can't wait to get back out there essentially. So over the years at, we've doing this since two and eight, so a good years and I think we have another decade of work ahead in the market, just to be very clear. Data is here to stick around as are we. And myself, you know, when you start a company, we were for people in a, if you, so everybody's wearing all sorts of hat at time. But over the years I've run, you know, presales that sales partnerships, product cetera. And as our company got a little bit biggish, we're now thousand two. Something like people in the company. >>I believe systems and processes become a lot important. So we said you CBRA isn't the size our customers we're getting there in of organization structure, process systems, et cetera. So we said it's really time for us to put our money where is and to our own data office, which is what we were seeing customers', organizations worldwide. And they organizations have HR units, they have a finance unit and over time they'll all have a department if you'll, that is responsible somehow for the data. So we said, ok, let's try to set an examples that other people can take away with it, right? Can take away from it. So we set up a data strategy, we started building data products, took care of the data infrastructure. That's sort of good stuff. And in doing all of that, ISA exactly as you said, we said, okay, we need to also use our product and our own practices and from that use, learn how we can make the product better, learn how we make, can make the practice better and share that learning with all the, and on, on the Monday mornings, we sometimes refer to eating our dog foods on Friday evenings. >>We referred to that drinking our own champagne. I like it. So we, we had a, we had the driver to do this. You know, there's a clear business reason. So we involved, we included that in the data strategy and that's a little bit of our origin. Now how, how do we organize this? We have three pillars, and by no means is this a template that everyone should, this is just the organization that works at our company, but it can serve as an inspiration. So we have a pillar, which is data science. The data product builders, if you'll or the people who help the business build data products. We have the data engineers who help keep the lights on for that data platform to make sure that the products, the data products can run, the data can flow and you know, the quality can be checked. >>And then we have a data intelligence or data governance builders where we have those data governance, data intelligence stakeholders who help the business as a sort of data partner to the business stakeholders. So that's how we've organized it. And then we started following the CBRA approach, which is, well, what are the challenges that our business stakeholders have in hr, finance, sales, marketing all over? And how can data help overcome those challenges? And from those use cases, we then just started to build a map and started execution use of the use case. And a important ones are very simple. We them with our, our customers as well, people talking about the cata, right? The catalog for the data scientists to know what's in their data lake, for example, and for the people in and privacy. So they have their process registry and they can see how the data flows. >>So that's a starting place and that turns into a marketplace so that if new analysts and data citizens join kbra, they immediately have a place to go to, to look at, see, ok, what data is out there for me as an analyst or a data scientist or whatever to do my job, right? So they can immediately get access data. And another one that we is around trusted business. We're seeing that since, you know, self-service BI allowed everyone to make beautiful dashboards, you know, pie, pie charts. I always, my pet pee is the pie chart because I love buy and you shouldn't always be using pie charts. But essentially there's become proliferation of those reports. And now executives don't really know, okay, should I trust this report or that report the reporting on the same thing. But the numbers seem different, right? So that's why we have trusted this reporting. So we know if a, the dashboard, a data product essentially is built, we not that all the right steps are being followed and that whoever is consuming that can be quite confident in the result either, Right. And that silver browser, right? Absolutely >>Decay. >>Exactly. Yes, >>Absolutely. Talk a little bit about some of the, the key performance indicators that you're using to measure the success of the data office. What are some of those KPIs? >>KPIs and measuring is a big topic in the, in the data chief data officer profession, I would say, and again, it always varies with to your organization, but there's a few that we use that might be of interest. Use those pillars, right? And we have metrics across those pillars. So for example, a pillar on the data engineering side is gonna be more related to that uptime, right? Are the, is the data platform up and running? Are the data products up and running? Is the quality in them good enough? Is it going up? Is it going down? What's the usage? But also, and especially if you're in the cloud and if consumption's a big thing, you have metrics around cost, for example, right? So that's one set of examples. Another one is around the data sciences and products. Are people using them? Are they getting value from it? >>Can we calculate that value in ay perspective, right? Yeah. So that we can to the rest of the business continue to say we're tracking all those numbers and those numbers indicate that value is generated and how much value estimated in that region. And then you have some data intelligence, data governance metrics, which is, for example, you have a number of domains in a data mesh. People talk about being the owner of a data domain, for example, like product or, or customer. So how many of those domains do you have covered? How many of them are already part of the program? How many of them have owners assigned? How well are these owners organized, executing on their responsibilities? How many tickets are open closed? How many data products are built according to process? And so and so forth. So these are an set of examples of, of KPIs. There's a, there's a lot more, but hopefully those can already inspire the audience. >>Absolutely. So we've, we've talked about the rise cheap data offices, it's only accelerating. You mentioned this is like a 10 year journey. So if you were to look into a crystal ball, what do you see in terms of the maturation of data offices over the next decade? >>So we, we've seen indeed the, the role sort of grow up, I think in, in thousand 10 there may have been like 10 achieve data officers or something. Gartner has exact numbers on them, but then they grew, you know, industries and the number is estimated to be about 20,000 right now. Wow. And they evolved in a sort of stack of competencies, defensive data strategy, because the first chief data officers were more regulatory driven, offensive data strategy support for the digital program. And now all about data products, right? So as a data leader, you now need all of those competences and need to include them in, in your strategy. >>How is that going to evolve for the next couple of years? I wish I had one of those balls, right? But essentially I think for the next couple of years there's gonna be a lot of people, you know, still moving along with those four levels of the stack. A lot of people I see are still in version one and version two of the chief data. So you'll see over the years that's gonna evolve more digital and more data products. So for next years, my, my prediction is it's all products because it's an immediate link between data and, and the essentially, right? Right. So that's gonna be important and quite likely a new, some new things will be added on, which nobody can predict yet. But we'll see those pop up in a few years. I think there's gonna be a continued challenge for the chief officer role to become a real executive role as opposed to, you know, somebody who claims that they're executive, but then they're not, right? >>So the real reporting level into the board, into the CEO for example, will continue to be a challenging point. But the ones who do get that done will be the ones that are successful and the ones who get that will the ones that do it on the basis of data monetization, right? Connecting value to the data and making that value clear to all the data citizens in the organization, right? And in that sense, they'll need to have both, you know, technical audiences and non-technical audiences aligned of course. And they'll need to focus on adoption. Again, it's not enough to just have your data office be involved in this. It's really important that you're waking up data citizens across the organization and you make everyone in the organization think about data as an asset. >>Absolutely. Because there's so much value that can be extracted. Organizations really strategically build that data office and democratize access across all those data citizens. Stan, this is an exciting arena. We're definitely gonna keep our eyes on this. Sounds like a lot of evolution and maturation coming from the data office perspective. From the data citizen perspective. And as the data show that you mentioned in that IDC study, you mentioned Gartner as well, organizations have so much more likelihood of being successful and being competitive. So we're gonna watch this space. Stan, thank you so much for joining me on the cube at Data Citizens 22. We appreciate it. >>Thanks for having me over >>From Data Citizens 22, I'm Lisa Martin, you're watching The Cube, the leader in live tech coverage. >>Okay, this concludes our coverage of Data Citizens 2022, brought to you by Collibra. Remember, all these videos are available on demand@thecube.net. And don't forget to check out silicon angle.com for all the news and wiki bod.com for our weekly breaking analysis series where we cover many data topics and share survey research from our partner ETR Enterprise Technology Research. If you want more information on the products announced at Data Citizens, go to collibra.com. There are tons of resources there. You'll find analyst reports, product demos. It's really worthwhile to check those out. Thanks for watching our program and digging into Data Citizens 2022 on the Cube, your leader in enterprise and emerging tech coverage. We'll see you soon.

Published Date : Nov 2 2022

SUMMARY :

largely about getting the technology to work. Now the cloud is definitely helping with that, but also how do you automate governance? So you can see how data governance has evolved into to say we extract the signal from the noise, and over the, the next couple of days, we're gonna feature some of the So it's a really interesting story that we're thrilled to be sharing And we said at the time, you know, maybe it's time to rethink data innovation. 2020s from the previous decade, and what challenges does that bring for your customers? as data becomes more impactful than important, the level of scrutiny with respect to privacy, So again, I think it just another incentive for organization to now truly look at data You know, I don't know when you guys founded Collibra, if, if you had a sense as to how complicated the last kind of financial crisis, and that was really the, the start of Colli where we found product market Well, that's interesting because, you know, in my observation it takes seven to 10 years to actually build a again, a lot of momentum in the org in, in the, in the markets with some of the cloud partners And the second is that those data pipelines that are now being created in the cloud, I mean, the acquisition of i l dq, you know, So that's really the theme of a lot of the innovation that we're driving. And so that's the big theme from an innovation perspective, One of our key differentiators is the ability to really drive a lot of automation through workflows. So actually pushing down the computer and data quality, one of the key principles you think about monetization. And I, and I think we we're really at this pivotal moment, and I think you said it well. We need to look beyond just the I know you're gonna crush it out there. This is Dave Valante for the cube, your leader in enterprise and Without data leverage the Collibra data catalog to automatically And for that you'll establish community owners, a data set to a KPI to a report now enables your users to see what Finally, seven, promote the value of this to your users and Welcome to the Cube's coverage of Data Citizens 2022 Collibra's customer event. And now you lead data quality at Collibra. imagine if we get that wrong, you know, what the ramifications could be, And I realized in that moment, you know, I might have failed him because, cause I didn't know. And it's so complex that the way companies consume them in the IT function is And so it's really become front and center just the whole quality issue because data's so fundamental, nowadays to this topic is, so maybe we could surface all of these problems with So the language is changing a you know, stale data, you know, the, the whole trend toward real time. we sort of lived this problem for a long time, you know, in, in the Wall Street days about a decade you know, they just said, Oh, it's a glitch, you know, so they didn't understand the root cause of it. And the one right now is these hyperscalers in the cloud. And I think if you look at the whole So this is interesting because what you just described, you know, you mentioned Snowflake, And so when you were to log into Big Query tomorrow using our I love this example because, you know, Barry talks about, wow, the cloud guys are gonna own the world and, Seeing that across the board, people used to know it was a zip code and nowadays Appreciate it. Right, and thank you for watching. Nice to be here. Can can you explain to our audience why the ability to manage data across the entire organization. I was gonna say, you know, when I look back at like the last 10 years, it was all about getting the technology to work and it And one of the big pushes and passions we have at Collibra is to help with I I, you know, you mentioned this idea of, and really speeding the time to value for any of the business analysts, So where do you see, you know, the friction in adopting new data technologies? So one of the other things we're announcing with, with all of the innovations that are coming is So anybody in the organization is only getting access to the data they should have access to. So it was kind of smart that you guys were early on and We're able to profile and classify that data we're announcing with Calibra Protect this week that and get the right and make sure you have the right quality. I mean, the nice thing about Snowflake, if you play in the Snowflake sandbox, you, you, you, you can get sort of a, We also are doing more with Google around, you know, GCP and kbra protect there, you know, this year, the event your, your perspectives. And so it's all about everybody being able to easily It was great to have you on the cube first time I believe, cube, your leader in enterprise and emerging tech coverage. the cloud where you get the benefit of scale and security and so on. And the last example that comes to mind is that of a large home loan, home mortgage, Stan, it's great to have you back on the cube. Talk to us about what you mean by data citizenship and the And we believe that today's organizations, you have a lot of people, And one of the conclusions they found as they So you can say, ok, I'm doing this, you know, data culture for everyone, awakening them But the IDC study that you just mentioned demonstrates they're three times So as to how you get this done, establish this. part of the equation of getting that right, is it's not enough to just have that leadership out Talk to us about how you are building a data culture within Collibra and But over the years I've run, you know, So we said you the data products can run, the data can flow and you know, the quality can be checked. The catalog for the data scientists to know what's in their data lake, and data citizens join kbra, they immediately have a place to go to, Yes, success of the data office. So for example, a pillar on the data engineering side is gonna be more related So how many of those domains do you have covered? to look into a crystal ball, what do you see in terms of the maturation industries and the number is estimated to be about 20,000 right now. How is that going to evolve for the next couple of years? And in that sense, they'll need to have both, you know, technical audiences and non-technical audiences And as the data show that you mentioned in that IDC study, the leader in live tech coverage. Okay, this concludes our coverage of Data Citizens 2022, brought to you by Collibra.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
LauraPERSON

0.99+

Lisa MartinPERSON

0.99+

DavePERSON

0.99+

AmazonORGANIZATION

0.99+

HeinekenORGANIZATION

0.99+

Dave ValantePERSON

0.99+

Laura SellersPERSON

0.99+

2008DATE

0.99+

CollibraORGANIZATION

0.99+

AdobeORGANIZATION

0.99+

Felix Von DalaPERSON

0.99+

GoogleORGANIZATION

0.99+

Felix Van DemaPERSON

0.99+

sevenQUANTITY

0.99+

Stan ChristiansPERSON

0.99+

2010DATE

0.99+

LisaPERSON

0.99+

San DiegoLOCATION

0.99+

JayPERSON

0.99+

50 dayQUANTITY

0.99+

FelixPERSON

0.99+

oneQUANTITY

0.99+

Kurt HasselbeckPERSON

0.99+

Bank of AmericaORGANIZATION

0.99+

10 yearQUANTITY

0.99+

California Consumer Privacy ActTITLE

0.99+

10 dayQUANTITY

0.99+

SixQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

Dave AntePERSON

0.99+

Last yearDATE

0.99+

demand@thecube.netOTHER

0.99+

ETR Enterprise Technology ResearchORGANIZATION

0.99+

BarryPERSON

0.99+

GartnerORGANIZATION

0.99+

one partQUANTITY

0.99+

PythonTITLE

0.99+

2010sDATE

0.99+

2020sDATE

0.99+

CalibraLOCATION

0.99+

last yearDATE

0.99+

twoQUANTITY

0.99+

CalibraORGANIZATION

0.99+

K Bear ProtectORGANIZATION

0.99+

two sidesQUANTITY

0.99+

Kirk HasselbeckPERSON

0.99+

12 monthsQUANTITY

0.99+

tomorrowDATE

0.99+

AWSORGANIZATION

0.99+

BarbPERSON

0.99+

StanPERSON

0.99+

Data CitizensORGANIZATION

0.99+

Jim Cushman Product strategy vision | Data Citizens'21


 

>>Hi everyone. And welcome to data citizens. Thank you for making the time to join me and the over 5,000 data citizens like you that are looking to become United by data. My name is Jim Cushman. I serve as the chief product officer at Collibra. I have the benefit of sharing with you, the product, vision, and strategy of Culebra. There's several sections to this presentation, and I can't wait to share them with you. The first is a story of how we're taking a business user and making it possible for him or her data, use data and gain. And if it and insight from that data, without relying on anyone in the organization to write code or do the work for them next I'll share with you how Collibra will make it possible to manage metadata at scales, into the billions of assets. And again, load this into our software without writing any code third, I will demonstrate to you the integration we have already achieved with our newest product release it's data quality that's powered by machine learning. >>Right? Finally, you're going to hear about how Colibra has become the most universally available solution in the market. Now, we all know that data is a critical asset that can make or break an organization. Yet organizations struggle to capture the power of their data and many remain afraid of how their data could be misused and or abused. We also observe that the understanding of and access to data remains in the hands of just a small few, three out of every four companies continue to struggle to use data, to drive meaningful insights, all forward looking companies, looking for an advantage, a differentiator that will set them apart from their peers and competitors. What if you could improve your organization's productivity by just 5%, even a modest 5% productivity improvement compounded over a five-year period will make your organization 28% more productive. This will leave you with an overwhelming advantage over your competition and uniting your data. >>Litter employees with data is the key to your success. And dare I say, sorry to unlock this potential for increased productivity, huge competitive advantage organizations need to enable self-service access to data for everyday to literate knowledge worker. Our ultimate goal at Cleaver has always been to enable this self-service for our customers to empower every knowledge worker to access the data they need when they need it. But with the peace of mind that your data is governed insecure. Just to imagine if you had a single integrated solution that could deliver a seamless governed, no code user experience of delivering the right data to the right person at the right time, just as simply as ordering a pair of shoes online would be quite a magic trick and one that would place you and your organization on the fast track for success. Let me introduce you to our character here. >>Cliff cliff is that business analyst. He doesn't write code. He doesn't know Julian or R or sequel, but is data literate. When cliff has presented with data of high quality and can actually help find that data of high-quality cliff knows what to do with it. Well, we're going to expose cliff to our software and see how he can find the best data to solve his problem of the day, which is customer churn. Cliff is going to go out and find this information is going to bring it back to him. And he's going to analyze it in his favorite BI reporting tool. Tableau, of course, that could be Looker, could be power BI or any other of your favorites, but let's go ahead and get started and see how cliff can do this without any help from anyone in the organization. So cliff is going to log into Cleaver and being a business user. >>The first thing he's going to do is look for a business term. He looks for customer churn rate. Now, when he brings back a churn rate, it shows him the definition of churn rate and various other things that have been attributed to it such as data domains like product and customer in order. Now, cliff says, okay, customer is really important. So let me click on that and see what makes up customer definition. Cliff will scroll through a customer and find out the various data concepts attributes that make up the definition of customer and cliff knows that customer identifier is a really important aspect to this. It helps link all the data together. And so cliff is going to want to make sure that whatever source he brings actually has customer identifier in it. And that it's of high quality cliff is also interested in things such as email address and credit activity and credit card. >>But he's now going to say, okay, what data sets actually have customer as a data domain in, and by the way, why I'm doing it, what else has product and order information? That's again, relevant to the concept of customer churn. Now, as he goes on, he can actually filter down because there's a lot of different results that could potentially come back. And again, customer identifier was very important to cliff. So cliff, further filters on customer identifier any further does it on customer churn rate as well. This results in two different datasets that are available to cliff for selection, which one to use? Well, he's first presented with some data quality information you can see for customer analytics. It has a data quality score of 76. You can see for sales data enrichment dataset. It has a data quality score of 68. Something that he can see right at the front of the box of things that he's looking for, but let's dig in deeper because the contents really matter. >>So we see again the score of 76, but we actually have the chance to find out that this is something that's actually certified. And this is something that has a check mark. And so he knows someone he trusts is actually certified. This is a dataset. You'll see that there's 91 columns that make up this data set. And rather than sifting through all of that information, cliff is going to go ahead and say, well, okay, customer identifier is very important to me. Let me search through and see if I can find what it's data quality scores very quickly. He finds that using a fuzzy search and brings back and sees, wow, that's a really high data quality score of 98. Well, what's the alternative? Well, the data set is only has 68, but how about, uh, the customer identifier and quickly, he discovers that the data quality for that is only 70. >>So all things being equal, customer analytics is the better data set for what cliff needs to achieve. But now he wants to look and say, other people have used this, what have they had to say about it? And you can see there are various reviews for different reviews from peers of his, in the organization that have given it five stars. So this is encourages cliffs, a confidence that this is great data set to use. Now cliff wants to look a little bit more detailed before he finally commits to using this dataset. Cliff has the opportunity to look at it in the broader set. What are the things can I learn about customer analytics, such as what else is it related to? Who else uses it? Where did it come from? Where does it go and what actually happens to it? And so within our graph of information, we're able to show you a diagram. >>You can see the customer analytics actually comes from the CRM cloud system. And from there you can inherit some wonderful information. We know exactly what CRM cloud is about as an overall system. It's related to other logical models. And here you're actually seeing that it's related to a policy policy about PII or personally identifiable information. This gets cliff almost the immediate knowledge that there's going to be some customer information in this PII information that he's not going to be able to see given his user role in the organization. But cliff says, Hey, that's okay. I actually don't need to see somebody's name and social security number to do my work. I can actually work with other information in the data file. That'll actually help me understand why our customers churning in, what can I actually do about it. If we dig in deeper, we can see what is personally identifiable information that actually could cause issues. >>And as we scroll down and take a little bit of a focus on what we call or what you'll see here is customer phone, because we'll show that to you a little bit later, but these show the various information that once cliff actually has it fulfilled and delivered to him, he will see that it's actually massed and or redacted from his use. Now cliff might drive in deeper and see more information. And he says, you know what? Another piece that's important to me in my analysis is something called is churned. This is basically suggesting that has a customer actually churned. It's an important flag, of course, because that's the analysis that he's performing cliff sees that the score is a mere 65. That's not exactly a great data quality score, but cliff has, is kind of in a hurry. His bosses is, has come back and said, we need to have this information so we can take action. >>So he's not going to wait around to see if they can go through some long day to quality project before he pursues, but he is going to come up and use it. The speed of thinking. He's going to create a suggestion, an issue. He's going to submit this as a work queue item that actually informs others that are responsible for the quality of data. That there's an opportunity for improvement to this dataset that is highly reviewed, but it may be, it has room for improvement as cliff is actually typing in his explanation that he'll pass along. We can also see that the data quality is made up of multiple components, such as integrity, duplication, accuracy, consistency, and conformity. Um, we see that we can submit this, uh, issue and pass it through. And this will go to somebody else who can actually work on this. >>And we'll show that to you a little bit later, but back to cliff, cliff says, okay, I'd like to, I'd like to work with this dataset. So he adds it to his data basket. And just like if he's shopping online, cliff wants that kind of ability to just say, I want to just click once and be done with it. Now it is data and there's some sensitivity about it. And again, there's an owner of this data who you need to get permission from. So cliff is going to provide information to the owner to say, here's why I need this data. And how long do I need this data for starting on a certain date and ending on a certain date and ultimately, what purpose am I going to have with this data? Now, there are other things that cliff can choose to run. This one is how do you want this day to deliver to you? >>Now, you'll see down below, there are three options. One is borrow the other's lease and others by what does that mean? Well, borrow is this idea of, I don't want to have the data that's currently in this CRM, uh, cloud database moved somewhere. I don't want it to be persistent anywhere else. I just want to borrow it very short term to use in my Tablo report and then poof be gone. Cause I don't want to create any problems in my organization. Now you also see lease. Lease is a situation where you actually do need to take possession of the data, but only for a time box period of time, you don't need it for an indefinite amount of time. And ultimately buy is your ability to take possession of the data and have it in perpetuity. So we're going to go forward with our bar use case and cliff is going to submit this and all the fun starts there. >>So cliff has actually submitted the order and the owner, Joanna is actually going to receive the request for the order. Joanna, uh, opens up her task, UCS there's work to perform. It says, oh, okay, here's this there's work for me to perform. Now, Joanna has the ability to automate this using incorporated workflow that we have in Colibra. But for this situation, she's going to manually review that. Cliff wants to borrow a specific data set for a certain period of time. And he actually wants to be using in a Tablo context. So she reviews. It makes an approval and submits it this in turn, flips it back to cliff who says, okay, what obligations did I just take on in order to work for this data? And he reviews each of these data sharing agreements that you, as an organization would set up and say, what am I, uh, what are my restrictions for using this data site? >>As cliff accepts his notices, he now has triggered the process of what we would call fulfillment or a service broker. And in this situation we're doing a virtualization, uh, access, uh, for the borrow use case. Cliff suggests Tablo is his preferred BI and reporting tool. And you can see the various options that are available from power BI Looker size on ThoughtSpot. There are others that can be added over time. And from there, cliff now will be alerted the minute this data is available to them. So now we're running out and doing a distributed query to get the information and you see it returns back for raw view. Now what's really interesting is you'll see, the customer phone has a bunch of X's in it. If you remember that's PII. So it's actually being massed. So cliff can't actually see the raw data. Now cliff also wants to look at it in a Tablo report and can see the visualization layer, but you also see an incorporation of something we call Collibra on the go. >>Not only do we bring the data to the report, but then we tell you the reader, how to interpret the report. It could be that there's someone else who wants to use the very same report that cliff helped create, but they don't understand exactly all the things that cliff went through. So now they have the ability to get a full interpretation of what was this data that was used, where did it come from? And how do I actually interpret some of the fields that I see on this report? Really a clever combination of bringing the data to you and showing you how to use it. Cliff can also see this as a registered asset within a Colibra. So the next shopper comes through might actually, instead of shopping for the dataset might actually shop for the report itself. And the report is connected with the data set he used. >>So now they have a full bill of materials to run a customer Shern report and schedule it anytime they want. So now we've turned cliff actually into a creator of data assets, and this is where intelligent, it gets more intelligence and that's really what we call data intelligence. So let's go back through that magic trick that we just did with cliff. So cliff went into the software, not knowing if the source of data that he was looking for for customer product sales was even available to him. He went in very quickly and searched and found his dataset, use facts and facets to filter down to exactly what was available. Compare to contrast the options that were there actually made an observation that there actually wasn't enough data quality around a certain thing was important to him, created an idea, or basically a suggestion for somebody to follow up on was able to put that into his shopping basket checkout and have it delivered to his front door. >>I mean, that's a bit of a magic trick, right? So, uh, cliff was successful in finding data that he wanted and having it, deliver it to him. And then in his preferred model, he was able to look at it into Tableau. All right. So let's talk about how we're going to make this vision a reality. So our first section here is about performance and scale, but it's also about codeless database registration. How did we get all that stuff into the data catalog and available for, uh, cliff to find? So allow us to introduce you to what we call the asset life cycle and some of the largest organizations in the world. They might have upwards of a billion data assets. These are columns and tables, reports, API, APIs, algorithms, et cetera. These are very high volume and quite technical and far more information than a business user like cliff might want to be engaged with those very same really large organizations may have upwards of say, 20 to 25 million that are critical data sources and data assets, things that they do need to highly curate and make available. >>But through that as a bit of a distillation, a lifecycle of different things you might want to do along that. And so we're going to share with you how you can actually automatically register these sources, deal with these very large volumes at speed and at scale, and actually make it available with just a level of information you need to govern and protect, but also make it available for opportunistic use cases, such as the one we presented with cliff. So as you recall, when cliff was actually trying to look for his dataset, he identified that the is churned, uh, data at your was of low quality. So he passed this over to Eliza, who's a data steward and she actually receives this work queue in a collaborative fashion. And she has to review, what is the request? If you recall, this was the request to improve the data quality for his churn. >>Now she needs to familiarize herself with what cliff was observing when he was doing his shopping experience. So she digs in and wants to look at the quality that he was observing and sure enough, as she goes down and it looks at his churn, she sees that it was a low 65% and now understands exactly what cliff was referring to. She says, aha, okay. I need to get help. I need to decide whether I have a data quality project to fix the data, or should I see if there's another data set in the organization that has better, uh, data for this. And so she creates a queue that can go over to one of her colleagues who really focuses on data quality. She submits this request and it goes over to, uh, her colleague, John who's really familiar with data quality. So John actually receives the request from Eliza and you'll see a task showing up in his queue. >>He opens up the request and finds out that Eliza's asking if there's another source out there that actually has good is churned, uh, data available. Now he actually knows quite a bit about the quality of information sturdiness. So he goes into the data quality console and does a quick look for a dataset that he's familiar with called customer product sales. He quickly scrolls down and finds out the one that's actually been published. That's the one he was looking for and he opens it up to find out more information. What data sets are, what columns are actually in there. And he goes down to find his churned is in fact, one of the attributes in there. It actually does have active rules that are associated with it to manage the quality. And so he says, well, let's look in more detail and find out what is the quality of this dataset? >>Oh, it's 86. This is a dramatic improvement over what we've seen before. So we can see again, it's trended quite nicely over time each day, it hasn't actually degraded in performance. So we actually responds back to realize and say, this data set, uh, is actually the data set that you want to bring in. It really will improve. And you'll see that he refers to the refined database within the CRM cloud solution. Once he actually submits this, it goes back to Eliza and she's able to continue her work. Now when Eliza actually brings this back open, she's able to very quickly go into the database registration process for her. She very quickly goes into the CRM cloud, selects the community, to which she wants to register this, uh, data set into the schemas community. And the CRM cloud is the system that she wants to load it in. >>And the refined is the database that John told her that she should bring in. After a quick description, she's able to click register. And this triggers that automatic codeless process of going out to the dataset and bringing back its metadata. Now metadata is great, but it's not the end all be all. There's a lot of other values that she really cares about as she's actually registering this dataset and synchronizing the metadata she's also then asked, would you like to bring in quality information? And so she'll go out and say, yes, of course, I want to enable the quality information from CRM refined. I also want to bring back lineage information to associate with this metadata. And I also want to select profiling and classification information. Now when she actually selects it, she can also say, how often do you want to synchronize this? This is a daily, weekly, monthly kind of update. >>That's part of the change data capture process. Again, all automated without the require of actually writing code. So she's actually run this process. Now, after this loads in, she can then open up this new registered, uh, dataset and actually look and see if it actually has achieved the problem that cliff set her out on, which was improved data quality. So looking into the data quality for the is churn capability shows her that she has fantastic quality. It's at a hundred, it's exactly what she was looking for. So she can with confidence actually, uh, suggest that it's done, but she did notice something and something that she wants to tell John, which is there's a couple of data quality checks that seem to be missing from this dataset. So again, in a collaborative fashion, she can pass that information, uh, for validity and completeness to say, you know what, check for NOLs and MPS and send that back. >>So she submits this onto John to work on. And John now has a work queue in his task force, but remember she's been working in this task forklift and because she actually has actually added a much better source for his churn information, she's going to update that test that was sent to her to notify cliff that the work has actually been done and that she actually has a really good data set in there. In fact, if you recall, it was 100% in terms of its data quality. So this will really make life a lot easier for cliff. Once he receives that data and processes, the churn report analysis next time. So let's talk about these audacious performance goals that we have in mind. Now today, we actually have really strong performance and amazing usability. Our customers continue to tell us how great our usability is, but they keep asking for more well, we've decided to present to you. >>Something you can start to bank on. This is the performance you can expect from us on the highly curated assets that are available for the business users, as well as the technical and lineage assets that are more available for the developer uses and for things that are more warehoused based, you'll see in Q1, uh, our Q2 of this year, we're making available 5 million curated assets. Now you might be out there saying, Hey, I'm already using the software and I've got over 20 million already. That's fair. We do. We have customers that are actually well over 20 million in terms of assets they're managing, but we wanted to present this to you with zero conditions, no limitations we wouldn't talk about, well, it depends, et cetera. This is without any conditions. That's what we can offer you without fail. And yes, it can go higher and higher. We're also talking about the speed with which you can ingest the data right now, we're ingesting somewhere around 50,000 to a hundred thousand records per and of course, yes, you've probably seen it go quite a bit faster, but we are assuring you that that's the case, but what's really impressive is right now, we can also, uh, help you manage 250 million technical assets and we can load it at a speed of 25 million for our, and you can see how over the next 18 months about every two quarters, we show you dramatic improvements, more than doubling of these. >>For most of them leading up to the end of 2022, we're actually handling over a billion technical lineage assets and we're loading at a hundred million per hour. That sets the mark for the industry. Earlier this year, we announced a recent acquisition Al DQ. LDQ brought to us machine learning based data quality. We're now able to introduce to you Collibra data quality, the first integrated approach to Al DQ and Culebra. We've got a demo to follow. I'm really excited to share it with you. Let's get started. So Eliza submitted a task for John to work on, remember to add checks for no and for empty. So John picks up this task very quickly and looks and sees what's what's the request. And from there says, ah, yes, we do have a quality check issue when we look at these churns. So he jumps over to the data quality console and says, I need to create a new data quality test. >>So cliff is able to go in, uh, to the solution and, uh, set up quick rules, automated rules. Uh, he could inherit rules from other things, but it starts with first identifying what is the data source that he needs to connect to, to perform this. And so he chooses the CRM refined data set that was most recently, uh, registered by Lysa. You'll see the same score of 86 was the quality score for the dataset. And you'll also see, there are four rules that are associated underneath this. Now there are various checks that, uh, that John can establish on this, but remember, this is a fairly easy request that he receives from Eliza. So he's going to go in and choose the actual field, uh, is churned. Uh, and from there identify quick rules of, uh, an empty check and that quickly sets up the rules for him. >>And also the null check equally fast. This one's established and analyzes all the data in there. And this sets up the baseline of data quality, uh, for this. Now this data, once it's captured then is periodically brought back to the catalog. So it's available to not only Eliza, but also to cliff next time he, uh, where to shop in the environment. As we look through the rules that were created through that very simple user experience, you can see the one for is empty and is no that we're set up. Now, these are various, uh, styles that can be set up either manually, or you can set them up through machine learning again, or you can inherit them. But the key is to track these, uh, rule creation in the metrics that are generated from these rules so that it can be brought back to the catalog and then used in meaningful context, by someone who's shopping and the confidence that this has neither empty nor no fields, at least most of them don't well now give a confidence as you go forward. >>And as you can see, those checks have now been entered in and you can see that it's a hundred percent quality score for the Knoll check. So with confidence now, John can actually respond back to Eliza and say, I've actually inserted them they're up and running. And, uh, you're in good status. So that was pretty amazing integration, right? And four months after our acquisition, we've already brought that level of integration between, uh, Colibra, uh, data intelligence, cloud, and data quality. Now it doesn't stop there. We have really impressive and high site set early next year. We're getting introduced a fully immersive experience where customers can work within Culebra and actually bring the data quality information all the way in as well as start to manipulate the rules and generate the machine learning rules. On top of it, all of that will be a deeply immersive experience. >>We also have something really clever coming, which we call continuous data profiling, where we bring the power of data quality all the way into the database. So it's continuously running and always making that data available for you. Now, I'd also like to share with you one of the reasons why we are the most universally available software solutions in data intelligence. We've already announced that we're available on AWS and Google cloud prior, but today we can announce to you in Q3, we're going to be, um, available on Microsoft Azure as well. Now it's not just these three cloud providers that were available on we've also become available on each of their marketplaces. So if you are buying our software, you can actually go out and achieve that same purchase from their marketplace and achieve your financial objectives as well. We're very excited about this. These are very important partners for, uh, for our, for us. >>Now, I'd also like to introduce you our system integrators, without them. There's no way we could actually achieve our objectives of growing so rapidly and dealing with the demand that you customers have had Accenture, Deloitte emphasis, and even others have been instrumental in making sure that we can serve your needs when you need them. Uh, and so it's been a big part of our growth and will be a continued part of our growth as well. And finally, I'd like to actually introduce you to our product showcases where we can go into absolute detail on many of the topics I talked about today, such as data governance with Arco or data privacy with Sergio or data quality with Brian and finally catalog with Peter. Again, I'd like to thank you all for joining us. Uh, and we really look forward to hearing your feedback. Thank you..

Published Date : Jun 17 2021

SUMMARY :

I have the benefit of sharing with you, We also observe that the understanding of and access to data remains in the hands of to imagine if you had a single integrated solution that could deliver a seamless governed, And he's going to analyze it in his favorite BI reporting tool. And so cliff is going to want to make sure that are available to cliff for selection, which one to use? And rather than sifting through all of that information, cliff is going to go ahead and say, well, okay, Cliff has the opportunity to look at it in the broader set. knowledge that there's going to be some customer information in this PII information that he's not going to be And as we scroll down and take a little bit of a focus on what we call or what you'll see here is customer phone, We can also see that the data quality is made up of multiple components, So cliff is going to provide information to the owner to say, case and cliff is going to submit this and all the fun starts there. So cliff has actually submitted the order and the owner, Joanna is actually going to receive the request for the order. in a Tablo report and can see the visualization layer, but you also see an incorporation of something we call Collibra Really a clever combination of bringing the data to you and showing you how to So now they have a full bill of materials to run a customer Shern report and schedule it anytime they want. So allow us to introduce you to what we call the asset life cycle and And so we're going to share with you how you can actually automatically register these sources, And so she creates a queue that can go over to one of her colleagues who really focuses on data quality. And he goes down to find So we actually responds back to realize and say, this data set, uh, is actually the data set that you want And the refined is the database that John told her that she should bring in. So again, in a collaborative fashion, she can pass that information, uh, So she submits this onto John to work on. We're also talking about the speed with which you can ingest the data right We're now able to introduce to you Collibra data quality, the first integrated approach to Al So cliff is able to go in, uh, to the solution and, uh, set up quick rules, So it's available to not only Eliza, but also to cliff next time he, uh, And as you can see, those checks have now been entered in and you can see that it's a hundred percent quality Now, I'd also like to share with you one of the reasons why we are the most And finally, I'd like to actually introduce you to our product showcases where we can go into

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JoannaPERSON

0.99+

JohnPERSON

0.99+

BrianPERSON

0.99+

Jim CushmanPERSON

0.99+

DeloitteORGANIZATION

0.99+

PeterPERSON

0.99+

ElizaPERSON

0.99+

AccentureORGANIZATION

0.99+

cliffPERSON

0.99+

ArcoORGANIZATION

0.99+

100%QUANTITY

0.99+

5 millionQUANTITY

0.99+

250 millionQUANTITY

0.99+

20QUANTITY

0.99+

65QUANTITY

0.99+

28%QUANTITY

0.99+

25 millionQUANTITY

0.99+

AWSORGANIZATION

0.99+

98QUANTITY

0.99+

CliffPERSON

0.99+

CollibraORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

5%QUANTITY

0.99+

first sectionQUANTITY

0.99+

68QUANTITY

0.99+

firstQUANTITY

0.99+

76QUANTITY

0.99+

OneQUANTITY

0.99+

five starsQUANTITY

0.99+

CulebraORGANIZATION

0.99+

LDQORGANIZATION

0.99+

91 columnsQUANTITY

0.99+

todayDATE

0.99+

Al DQORGANIZATION

0.99+

CleaverORGANIZATION

0.99+

86QUANTITY

0.99+

oneQUANTITY

0.98+

threeQUANTITY

0.98+

end of 2022DATE

0.98+

each dayQUANTITY

0.98+

eachQUANTITY

0.98+

over 20 millionQUANTITY

0.98+

Cliff cliffPERSON

0.98+

next yearDATE

0.98+

Q1DATE

0.98+

70QUANTITY

0.98+

GoogleORGANIZATION

0.98+

TableauTITLE

0.98+