Image Title

Search Results for Juan Luis:

Maria Colgan & Gerald Venzl, Oracle | June CUBEconversation


 

(upbeat music) Developers have become the new king makers in the world of digital and cloud. The rise of containers and microservices has accelerated the transition to cloud native applications. A lot of people will talk about application architecture and the related paradigms and the benefits they bring for the process of writing and delivering new apps. But a major challenge continues to be, the how and the what when it comes to accessing, processing and getting insights from the massive amounts of data that we have to deal with in today's world. And with me are two experts from the data management world who will share with us how they think about the best techniques and practices based on what they see at large organizations who are working with data and developing so-called data-driven apps. Please welcome Maria Colgan and Gerald Venzl, two distinguish product managers from Oracle. Folks, welcome, thanks so much for coming on. >> Thanks for having us Dave. >> Thank you very much for having us. >> Okay, Maria let's start with you. So, we throw around this term data-driven, data-driven applications. What are we really talking about there? >> So data-driven applications are applications that work on a diverse set of data. So anything from spatial to sensor data, document data as well as your usual transaction processing data. And what they're going to do is they'll generate value from that data in very different ways to a traditional application. So for example, they may use machine learning, they are able to do product recommendations in the middle of a transaction. Or we could use graph to be able to identify an influencer within the community so we can target them with a specific promotion. It could also use spatial data to be able to help find the nearest stores to a particular customer. And because these apps are deployed on multiple platforms, everything from mobile devices as well as standard browsers, they need a data platform that's going to be both secure, reliable and scalable. >> Well, so when you think about how the workloads are shifting I mean, we're not talking about, you know it's not anymore a world of just your ERP or your HCM or your CRM, you know kind of the traditional operational systems. You really are seeing an explosion of these new data oriented apps. You're seeing, you know, modeling in the cloud, you are going to see more and more inferencing, inferencing at the edge. But Maria maybe you could talk a little bit about sort of the benefits that customers are seeing from developing these types of applications. I mean, why should people care about data-driven apps? >> Oh, for sure, there's massive benefits to them. I mean, probably the most obvious one for any business regardless of the industry, is that they not only allow you to understand what your customers are up to, but they allow you to be able to anticipate those customer's needs. So that helps businesses maintain that competitive edge and retain their customers. But it also helps them make data-driven decisions in real time based on actual data rather than on somebody's gut feeling or basing those decisions on historical data. So for example, you can do real-time price adjustments on products based on demand and so forth, that kind of thing. So it really changes the way people do business today. >> So Gerald, you think about the narrative in the industry everybody wants to be a platform player all your customers they are becoming software companies, they are becoming platform players. Everybody wants to be like, you know name a company that is huge trillion dollar market cap or whatever, and those are data-driven companies. And so it would seem to me that data-driven applications, there's nobody, no company really shouldn't be data-driven. Do you buy that? >> Yeah, absolutely. I mean, data-driven, and that naturally the whole industry is data-driven, right? It's like we all have information technologies about processing data and deriving information out of it. But when it comes to app development I think there is a big push to kind of like we have to do machine learning in our applications, we have to get insights from data. And when you actually look back a bit and take a step back, you see that there's of course many different kinds of applications out there as well that's not to be forgotten, right? So there is a usual front end user interfaces where really the application all it does is just entering some piece of information that's stored somewhere or perhaps a microservice that's not attached to a data to you at all but just receives or asks calls (indistinct). So I think it's not necessarily so important for every developer to kind of go on a bandwagon that they have to be data-driven. But I think it's equally important for those applications and those developers that build applications, that drive the business, that make business critical decisions as Maria mentioned before. Those guys should take really a close look into what data-driven apps means and what the data to you can actually give to them. Because what we see also happening a lot is that a lot of the things that are well known and out there just ready to use are being reimplemented in the applications. And for those applications, they essentially just ended up spending more time writing codes that will be already there and then have to maintain and debug the code as well rather than just going to market faster. >> Gerald can you talk to the prevailing approaches that developers take to build data-driven applications? What are the ones that you see? Let's dig into that a little bit more and maybe differentiate the different approaches and talk about that? >> Yeah, absolutely. I think right now the industry is like in two camps, it's like sort of a religious war going on that you'll see often happening with different architectures and so forth going on. So we have single purpose databases or data management technologies. Which are technologies that are as the name suggests build around a single purpose. So it's like, you know a typical example would be your ordinary key-value store. And a key-value store all it does is it allows you to store and retrieve a piece of data whatever that may be really, really fast but it doesn't really go beyond that. And then the other side of the house or the other camp would be multimodal databases, multimodal data management technologies. Those are technologies that allow you to store different types of data, different formats of data in the same technology in the same system alongside. And, you know, when you look at the geographics out there of what we have from technology, is pretty much any relational database or any database really has evolved into such a multimodal database. Whether that's MySQL that allows you to store or chase them alongside relational or even a MongoDB that allows you to do or gives you native graph support since (mumbles) and as well alongside the adjacent support. >> Well, it's clearly a trend in the industry. We've talked about this a lot in The Cube. We know where Oracle stands on this. I mean, you just mentioned MySQL but I mean, Oracle Databases you've been extending, you've mentioned JSON, we've got blockchain now in there you're infusing, you know ML and AI into the database, graph database capabilities, you know on and on and on. We talked a lot about we compared that to Amazon which is kind of the right tool, the right job approach. So maybe you could talk about, you know, your point of view, the benefits for developers of using that converged database if I can use that word approach being able to store multiple data formats? Why do you feel like that's a better approach? >> Yeah, I think on a high level it comes down to complexity. You are actually avoiding additional complexity, right? So not every use case that you have necessarily warrants to have yet another data management technology or yet the special build technology for managing that data, right? It's like many use cases that we see out there happily want to just store a piece of a chase and document, a piece of chase in a database and then perhaps retrieve it again afterwards so write some simple queries over it. And you really don't have to get a new database technology or a NoSQL database into the mix if you already have some to just fulfill that exact use case. You could just happily store that information as well in the database you already have. And what it really comes down to is the learning curve for developers, right? So it's like, as you use the same technology to store other types of data, you don't have to learn a new technology, you don't have to associate yourself with new and learn new drivers. You don't have to find new frameworks and you don't have to know how to necessarily operate or best model your data for that database. You can essentially just reuse your knowledge of the technology as well as the libraries and code you have already built in house perhaps in another application, perhaps, you know framework that you used against the same technology because it is still the same technology. So, kind of all comes down again to avoiding complexity rather than not fragmenting you know, the many different technologies we have. If you were to look at the different data formats that are out there today it's like, you know, you would end up with many different databases just to store them if you were to fully religiously follow the single purpose best built technology for every use case paradigm, right? And then you would just end up having to manage many different databases more than actually focusing on your app and getting value to your business or to your user. >> Okay, so I get that and I buy that by the way. I mean, especially if you're a larger organization and you've got all these projects going on but before we go back to Maria, Gerald, I want to just, I want to push on that a little bit. Because the counter to that argument would be in the analogy. And I wonder if you, I'd love for you to, you know knock this analogy off the blocks. The counter would be okay, Oracle is the Swiss Army knife and it's got, you know, all in one. But sometimes I need that specialized long screwdriver and I go into my toolbox and I grab that. It's better than the screwdriver in my Swiss Army knife. Why, are you the Swiss Army knife of databases? Or are you the all-in-one have that best of breed screwdriver for me? How do you think about that? >> Yeah, that's a fantastic question, right? And I think it's first of all, you have to separate between Oracle the company that has actually multiple data management technologies and databases out there as you said before, right? And Oracle Database. And I think Oracle Database is definitely a Swiss Army knife has many capabilities of since the last 40 years, you know that we've seen object support coming that's still in the Oracle Database today. We have seen XML coming, it's still in the Oracle Database, graph, spatial, et cetera. And so you have many different ways of managing your data and then on top of that going into the converge, not only do we allow you to store the different data model in there but we actually allow you also to, you apply all the security policies and so forth on top of it something Maria can talk more about the mission around converged database. I would also argue though that for some aspects, we do actually have to or add a screwdriver that you talked about as well. So especially in the relational world people get very quickly hung up on this idea that, oh, if you only do rows and columns, well, that's kind of what you put down on disk. And that was never true, it's the relational model is actually a logical model. What's probably being put down on disk is blocks that align themselves nice with block storage and always has been. So that allows you to actually model and process the data sort of differently. And one common example or one good example that we have that we introduced a couple of years ago was when, column and databases were very strong and you know, the competition came it's like, yeah, we have In-Memory column that stores now they're so much better. And we were like, well, orienting the data role-based or column-based really doesn't matter in the sense that we store them as blocks on disks. And so we introduced the in memory technology which gives you an In-Memory column, a representation of your data as well alongside your relational. So there is an example where you go like, well, actually you know, if you have this use case of the column or analytics all In-Memory, I would argue Oracle Database is also that screwdriver you want to go down to and gives you that capability. Because not only gives you representation in columnar, but also which many people then forget all the analytic power on top of SQL. It's one thing to store your data columnar, it's a completely different story to actually be able to run analytics on top of that and having all the built-in functionalities and stuff that you want to do with the data on top of it as you analyze it. >> You know, that's a great example, the kilometer 'cause I remember there was like a lot of hype around it. Oh, it's the Oracle killer, you know, at Vertica. Vertica is still around but, you know it never really hit escape velocity. But you know, good product, good company, whatever. Natezza, it kind of got buried inside of IBM. ParXL kind of became, you know, red shift with that deal so that kind of went away. Teradata bought a company, I forget which company it bought but. So that hype kind of disapated and now it's like, oh yeah, columnar. It's kind of like In-Memory, we've had a In-Memory databases ever since we've had databases you know, it's a kind of a feature not a sector. But anyway, Maria, let's come back to you. You've got a lot of customer experience. And you speak with a lot of companies, you know during your time at Oracle. What else are you seeing in terms of the benefits to this approach that might not be so intuitive and obvious right away? >> I think one of the biggest benefits to having a multimodel multiworkload or as we call it a converged database, is the fact that you can get greater data synergy from it. In other words, you can utilize all these different techniques and data models to get better value out of that data. So things like being able to do real-time machine learning, fraud detection inside a transaction or being able to do a product recommendation by accessing three different data models. So for example, if I'm trying to recommend a product for you Dave, I might use graph analytics to be able to figure out your community. Not just your friends, but other people on our system who look and behave just like you. Once I know that community then I can go over and see what products they bought by looking up our product catalog which may be stored as JSON. And then on top of that I can then see using the key-value what products inside that catalog those community members gave a five star rating to. So that way I can really pinpoint the right product for you. And I can do all of that in one transaction inside the database without having to transform that data into different models or God forbid, access different systems to be able to get all of that information. So it really simplifies how we can generate that value from the data. And of course, the other thing our customers love is when it comes to deploying data-driven apps, when you do it on a converged database it's much simpler because it is that standard data platform. So you're not having to manage multiple independent single purpose databases. You're not having to implement the security and the high availability policies, you know across a bunch of different diverse platforms. All of that can be done much simpler with a converged database 'cause the DBA team of course, is going to just use that standard set of tools to manage, monitor and secure those systems. >> Thank you for that. And you know, it's interesting, you talk about simplification and you are in Juan's organization so you've big focus on mission critical. And so one of the things that I think is often overlooked well, we talk about all the time is recovery. And if things are simpler, recovery is faster and easier. And so it's kind of the hallmark of Oracle is like the gold standard of the toughest apps, the most mission critical apps. But I wanted to get to the cloud Maria. So because everything is going to the cloud, right? Not all workloads are going to the cloud but everybody is talking about the cloud. Everybody has cloud first mentality and so yes, it's a hybrid world. But the natural next question is how do you think the cloud fits into this world of data-driven apps? >> I think just like any app that you're developing, the cloud helps to accelerate that development. And of course the deployment of these data-driven applications. 'Cause if you think about it, the developer is instantly able to provision a converged database that Oracle will automatically manage and look after for them. But what's great about doing something like that if you use like our autonomous database service is that it comes in different flavors. So you can get autonomous transaction processing, data warehousing or autonomous JSON so that the developer is going to get a database that's been optimized for their specific use case, whatever they are trying to solve. And it's also going to contain all of that great functionality and capabilities that we've been talking about. So what that really means to the developer though is as the project evolves and inevitably the business needs change a little, there's no need to panic when one of those changes comes in because your converged database or your autonomous database has all of those additional capabilities. So you can simply utilize those to able to address those evolving changes in the project. 'Cause let's face it, none of us normally know exactly what we need to build right at the very beginning. And on top of that they also kind of get a built-in buddy in the cloud, especially in the autonomous database. And that buddy comes in the form of built-in workload optimizations. So with the autonomous database we do things like automatic indexing where we're using machine learning to be that buddy for the developer. So what it'll do is it'll monitor the workload and see what kind of queries are being run on that system. And then it will actually determine if there are indexes that should be built to help improve the performance of that application. And not only does it bill those indexes but it verifies that they help improve the performance before publishing it to the application. So by the time the developer is finished with that app and it's ready to be deployed, it's actually also been optimized by the developers buddy, the Oracle autonomous database. So, you know, it's a really nice helping hand for developers when they're building any app especially data-driven apps. >> I like how you sort of gave us, you know the truth here is you don't always know where you're going when you're building an app. It's like it goes from you are trying to build it and they will come to start building it and we'll figure out where it's going to go. With Agile that's kind of how it works. But so I wonder, can you give some examples of maybe customers or maybe genericize them if you need to. Data-driven apps in the cloud where customers were able to drive more efficiency, where the cloud buddy allowed the customers to do more with less? >> No, we have tons of these but I'll try and keep it to just a couple. One that comes to mind straight away is retrace. These folks built a blockchain app in the Oracle Cloud that allows manufacturers to actually share the supply chain with the consumer. So the consumer can see exactly, who made their product? Using what raw materials? Where they were sourced from? How it was done? All of that is visible to the consumer. And in order to be able to share that they had to work on a very diverse set of data. So they had everything from JSON documents to images as well as your traditional transactions in there. And they store all of that information inside the Oracle autonomous database, they were able to build their app and deploy it on the cloud. And they were able to do all of that very, very quickly. So, you know, that ability to work on multiple different data types in a single database really helped them build that product and get it to market in a very short amount of time. Another customer that's doing something really, really interesting is MindSense. So these guys operate the largest mines in Canada, Chile, and Peru. But what they do is they put these x-ray devices on the massive mechanical shovels that are at the cove or at the mine face. And what that does is it senses the contents of the buckets inside these mining machines. And it's looking to see at that content, to see how it can optimize the processing of the ore inside in that bucket. So they're looking to minimize the amount of power and water that it's going to take to process that. And also of course, minimize the amount of waste that's going to come out of that project. So all of that sensor data is sent into an autonomous database where it's going to be processed by a whole host of different users. So everything from the mine engineers to the geo scientists, to even their own data scientists utilize that data to drive their business forward. And what I love about these guys is they're not happy with building just one app. MindSense actually use our built-in low core development environment, APEX that comes as part of the autonomous database and they actually produce applications constantly for different aspects of their business using that technology. And it's actually able to accelerate those new apps to the business. It takes them now just a couple of days or weeks to produce an app instead of months or years to build those new apps. >> Great, thank you for that Maria. Gerald, I'm going to push you again. So, I said upfront and talked about microservices and the cloud and containers and you know, anybody in the developer space follows that very closely. But some of the things that we've been talking about here people might look at that and say, well, they're kind of antithetical to microservices. This is our Oracles monolithic approach. But when you think about the benefits of microservices, people want freedom of choice, technology choice, seen as a big advantage of microservices and containers. How do you address such an argument? >> Yeah, that's an excellent question and I get that quite often. The microservices architecture in general as I said before had architectures, Linux distributions, et cetera. It's kind of always a bit of like there's an academic approach and there's a pragmatic approach. And when you look at the microservices the original definitions that came out at the early 2010s. They actually never said that each microservice has to have a database. And they also never said that if a microservice has a database, you have to use a different technology for each microservice. Just like they never said, you have to write a microservice in a different programming language, right? So where I'm going with this is like, yes you know, sometimes when you look at some vendors out there, some niche players, they push this message or they jump on this academic approach of like each microservice has the best tool at hand or I'd use a different database for your purpose, et cetera. Which almost often comes across like us. You know, we want to stay part of the conversation. Nothing stops a developer from, you know using a multimodal database for the microservice and just using that as a document store, right? Or just using that as a relational database. And, you know, sometimes I mean, it was actually something that happened that was really interesting yesterday I don't know whether you follow Dave or not. But Facebook had an outage yesterday, right? And Facebook is one of those companies that are seen as the Silicon Valley, you know know how to do microservices companies. And when you add through the outage, well, what happened, right? Some unfortunate logical error with configuration as a force that took a database cluster down. So, you know, there you have it where you go like, well, maybe not every microservice is actually in fact talking to its own database or its own special purpose database. I think there, you know, well, what we should, the industry should be focusing much more on this argument of which technology to use? What's the right tool for a job? Is more to ask themselves, what business problem actually are we trying to solve? And therefore what's the right approach and the right technology for this. And so therefore, just as I said before, you know multimodal databases they do have strong benefits. They have many built-in functionalities that are already there and they allow you to reduce this complexity of having to know many different technologies, right? And so it's not only to store different data models either you know, treat a multimodal database as a chasing documents store or a relational database but most databases are multimodal since 20 plus years. But it's also actually being able to perhaps if you store that data together, you can perhaps actually derive additional value for somebody else but perhaps not for your application. But like for example, if you were to use Oracle Database you can actually write queries on top of all of that data. It doesn't really matter for our query engine whether it's the data is format that then chase or the data is formatted in rows and columns you can just rather than query over it. And that's actually very powerful for those guys that have to, you know get the reporting done the end of the day, the end of the week. And for those guys that are the data scientists that they want to figure out, you know which product performed really well or can we tweak something here and there. When you look into that space you still see a huge divergence between the guys to put data in kind of the altarpiece style and guys that try to derive new insights. And there's still a lot of ETL going around and, you know we have big data technologies that some of them come and went and some of them came in that are still around like Apache Spark which is still like a SQL engine on top of any of your data kind of going back to the same concept. And so I will say that, you know, for developers when we look at microservices it's like, first of all, is the argument you were making because the vendor or the technology you want to use tells you this argument or, you know, you kind of want to have an argument to use a specific technology? Or is it really more because it is the best technology, to best use for this given use case for this given application that you have? And if so there's of course, also nothing wrong to use a single purpose technology either, right? >> Yeah, I mean, whenever I talk about Oracle I always come back to the most important applications, the mission critical. It's very difficult to architect databases with microservices and containers. You have to be really, really careful. And so and again, it comes back to what we were talking before about with Maria that the complexity and the recovery. But Gerald I want to stay with you for a minute. So there's other data management technologies popping out there. I mean, I've seen some people saying, okay just leave the data in an S3 bucket. We can query that, then we've got some magic sauce to do that. And so why are you optimistic about you know, traditional database technology going forward? >> I would say because of the history of databases. So one thing that once struck me when I came to Oracle and then got to meet great people like Juan Luis and Andy Mendelsohn who had been here for a long, long time. I come to realization that relational databases are around for about 45 years now. And, you know, I was like, I'm too young to have been around then, right? So I was like, what else was around 45 years? It's like just the tech stack that we have today. It's like, how does this look like? Well, Linux only came out in 93. Well, databases pre-date Linux a lot rather than as I started digging I saw a lot of technologies come and go, right? And you mentioned before like the technologies that data management systems that we had that came and went like the columnar databases or XML databases, object databases. And even before relational databases before Cot gave us the relational model there were apparently these networks stores network databases which to some extent look very similar to adjacent documents. There wasn't a harder storing data and a hierarchy to format. And, you know when you then start actually reading the Cot paper and diving a little bit more into the relation model, that's I think one important crux in there that most of the industry keeps forgetting or it hasn't been around to even know. And that is that when Cot created the relational model, he actually focused not so much on the application putting the data in, but on future users and applications still being able to making sense out of the data, right? And that's kind of like I said before we had those network models, we had XML databases you have adjacent documents stores. And the one thing that they all have along with it is like the application that puts the data in decides the structure of the data. And that's all well and good if you had an application of the developer writing an application. It can become really tricky when 10 years later you still want to look at that data and the application that the developer is no longer around then you go like, what does this all mean? Where is the structure defined? What is this attribute? What does it mean? How does it correlate to others? And the one thing that people tend to forget is that it's actually the data that's here to stay not someone who does the applications where it is. Ideally, every company wants to store every single byte of data that they have because there might be future value in it. Economically may not make sense that's now much more feasible than just years ago. But if you could, why wouldn't you want to store all your data, right? And sometimes you actually have to store the data for seven years or whatever because the laws require you to. And so coming back then and you know, like 10 years from now and looking at the data and going like making sense of that data can actually become a lot more difficult and a lot more challenging than having to first figure out and how we store this data for general use. And that kind of was what the relational model was all about. We decompose the data structures into tables and columns with relationships amongst each other so therefore between each other. So that therefore if somebody wants to, you know typical example would be well you store some purchases from your web store, right? There's a customer attribute in it. There's some credit card payment information in it, just some product information on what the customer bought. Well, in the relational model if you just want to figure out which products were sold on a given day or week, you just would query the payment and products table to get the sense out of it. You don't need to touch the customer and so forth. And with the hierarchical model you have to first sit down and understand how is the structure, what is the customer? Where is the payment? You know, does the document start with the payment or does it start with the customer? Where do I find this information? And then in the very early days those databases even struggled to then not having to scan all the documents to get the data out. So coming back to your question a bit, I apologize for going on here. But you know, it's like relational databases have been around for 45 years. I actually argue it's one of the most successful software technologies that we have out there when you look in the overall industry, right? 45 years is like, in IT terms it's like from a star being the ones who are going supernova. You have said it before that many technologies coming and went, right? And just want to add a more really interesting example by the way is Hadoop and HDFS, right? They kind of gave us this additional promise of like, you know, the 2010s like 2012, 2013 the hype of Hadoop and so forth and (mumbles) and HDFS. And people are just like, just put everything into HDFS and worry about the data later, right? And we can query it and map reduce it and whatever. And we had customers actually coming to us they were like, great we have half a petabyte of data on an HDFS cluster and we have no clue what's stored in there. How do we figure this out? What are we going to do now? Now you had a big data cleansing problem. And so I think that is why databases and also data modeling is something that will not go away anytime soon. And I think databases and database technologies are here for quite a while to stay. Because many of those are people they don't think about what's happening to the data five years from now. And many of the niche players also and also frankly even Amazon you know, following with this single purpose thing is like, just use the right tool for the job for your application, right? Just pull in the data there the way you wanted. And it's like, okay, so you use technologies all over the place and then five years from now you have your data fragmented everywhere in different formats and, you know inconsistencies, and, and, and. And those are usually when you come back to this data-driven business critical business decision applications the worst case scenario you can have, right? Because now you need an army of people to actually do data cleansing. And there's not a coincidence that data science has become very, very popular the last recent years as we kind of went on with this proliferation of different database or data management technologies some of those are not even database. But I think I leave it at that. >> It's an interesting talk track because you're right. I mean, no schema on right was alluring, but it definitely created some problems. It also created an entire, you know you referenced the hyper specialized roles and did the data cleansing component. I mean, maybe technology will eventually solve that problem but it hasn't up at least up tonight. Okay, last question, Maria maybe you could start off and Gerald if you want to chime in as well it'd be great. I mean, it's interesting to watch this industry when Oracle sort of won the top database mantle. I mean, I watched it, I saw it. It was, remember it was Informix and it was (indistinct) too and of course, Microsoft you got to give them credit with SQL server, but Oracle won the database wars. And then everything got kind of quiet for awhile database was sort of boring. And then it exploded, you know, all the, you know not only SQL and the key-value stores and the cloud databases and this is really a hot area now. And when we looked at Oracle we said, okay, Oracle it's all about Oracle Database, but we've seen the kind of resurgence in MySQL which everybody thought, you know once Oracle bought Sun they were going to kill MySQL. But now we see you investing in HeatWave, TimesTen, we talked about In-Memory databases before. So where do those fit in Maria in the grand scheme? How should we think about Oracle's database portfolio? >> So there's lots of places where you'd use those different things. 'Cause just like any other industry there are going to be new and boutique use cases that are going to benefit from a more specialized product or single purpose product. So good examples off the top of my head of the kind of systems that would benefit from that would be things like a stock exchange system or a telephone exchange system. Both of those are latency critical transaction processing applications where they need microsecond response times. And that's going to exceed perhaps what you might normally get or deploy with a converged database. And so Oracle's TimesTen database our In-Memory database is perfect for those kinds of applications. But there's also a host of MySQL applications out there today and you said it yourself there Dave, HeatWave is a great place to provision and deploy those kinds of applications because it's going to run 100 times faster than AWS (mumbles). So, you know, there really is a place in the market and in our customer's systems and the needs they have for all of these different members of our database family here at Oracle. >> Yeah, well, the internet is basically running in the lamp stack so I see MySQL going away. All right Gerald, will give you the final word, bring us home. >> Oh, thank you very much. Yeah, I mean, as Maria said, I think it comes back to what we discussed before. There is obviously still needs for special technologies or different technologies than a relational database or multimodal database. Oracle has actually many more databases that people may first think of. Not only the three that we have already mentioned but there's even SP so the Oracle's NoSQL database. And, you know, on a high level Oracle is a data management company, right? And we want to give our customers the best tools and the best technology to manage all of their data. Rather than therefore there has to be a need or there should be a part of the business that also focuses on this highly specialized systems and this highly specialized technologies that address those use cases. And I think it makes perfect sense. It's like, you know, when the customer comes to Oracle they're not only getting this, take this one product you know, and if you don't like it your problem but actually you have choice, right? And choice allows you to make a decision based on what's best for you and not necessarily best for the vendor you're talking to. >> Well guys, really appreciate your time today and your insights. Maria, Gerald, thanks so much for coming on The Cube. >> Thank you very much for having us. >> And thanks for watching this Cube conversation this is Dave Vellante and we'll see you next time. (upbeat music)

Published Date : Jun 24 2021

SUMMARY :

in the world of digital and cloud. and the benefits they bring What are we really talking about there? the nearest stores to kind of the traditional So it really changes the way So Gerald, you think about to you at all but just receives or even a MongoDB that allows you to do ML and AI into the database, in the database you already have. and I buy that by the way. of since the last 40 years, you know the benefits to this approach is the fact that you can get And so one of the things that And that buddy comes in the form of the truth here is you don't and deploy it on the cloud. and the cloud and containers and you know, is the argument you were making that the complexity and the recovery. because the laws require you to. And then it exploded, you and the needs they have in the lamp stack so I and the best technology to and your insights. we'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Gerald VenzlPERSON

0.99+

Andy MendelsohnPERSON

0.99+

MariaPERSON

0.99+

ChileLOCATION

0.99+

PeruLOCATION

0.99+

Maria ColganPERSON

0.99+

CanadaLOCATION

0.99+

OracleORGANIZATION

0.99+

GeraldPERSON

0.99+

AmazonORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

Maria ColganPERSON

0.99+

seven yearsQUANTITY

0.99+

IBMORGANIZATION

0.99+

Juan LuisPERSON

0.99+

100 timesQUANTITY

0.99+

five starQUANTITY

0.99+

DavePERSON

0.99+

FacebookORGANIZATION

0.99+

two expertsQUANTITY

0.99+

AWSORGANIZATION

0.99+

SunORGANIZATION

0.99+

45 yearsQUANTITY

0.99+

MySQLTITLE

0.99+

threeQUANTITY

0.99+

yesterdayDATE

0.99+

each microserviceQUANTITY

0.99+

Swiss ArmyORGANIZATION

0.99+

early 2010sDATE

0.99+

TeradataORGANIZATION

0.99+

Swiss ArmyORGANIZATION

0.99+

LinuxTITLE

0.99+

10 years laterDATE

0.99+

2012DATE

0.99+

two campsQUANTITY

0.99+

SQLTITLE

0.99+

BothQUANTITY

0.98+

Oracle DatabaseTITLE

0.98+

2010sDATE

0.98+

TimesTenORGANIZATION

0.98+

HadoopTITLE

0.98+

firstQUANTITY

0.98+

OraclesORGANIZATION

0.98+

VerticaORGANIZATION

0.98+

tonightDATE

0.98+

2013DATE

0.98+

Maria Colgan & Gerald Venzl, Oracle | June CUBEconversation


 

(upbeat music) >> It'll be five, four, three and then silent two, one, and then you guys just follow my lead. We're just making some last minute adjustments. Like I said, we're down two hands today. So, you good Alex? Okay, are you guys ready? >> I'm ready. >> Ready. >> I got to get get one note here. >> So I noticed Maria you stopped anyway, so I have time. >> Just so they know Dave and the Boston Studio, are they both kind of concurrently be on film even when they're not speaking or will only the speaker be on film for like if Gerald's drawing while Maria is talking about-- >> Sorry but then I missed one part of my onboarding spiel. There should be, if you go into gallery there should be a label. There should be something labeled Boston live switch feed. If you pin that gallery view you'll see what our program currently being recorded is. So any time you don't see yourself on that feed is an excellent time to take a drink of water, scratch your nose, check your notes. Do whatever you got to do off screen. >> Can you give us a three shot, Alex? >> Yes, there it is. >> And then go to me, just give me a one-shot to Dave. So when I'm here you guys can take a drink or whatever >> That makes sense? >> Yeah. >> Excellent, I will get my recordings restarted and we'll open up when Dave's ready. >> All right, you guys ready? >> Ready. >> All right Steve, you go on mute. >> Okay, on me in 5, 4, 3. Developers have become the new king makers in the world of digital and cloud. The rise of containers and microservices has accelerated the transition to cloud native applications. A lot of people will talk about application architecture and the related paradigms and the benefits they bring for the process of writing and delivering new apps. But a major challenge continues to be, the how and the what when it comes to accessing, processing and getting insights from the massive amounts of data that we have to deal with in today's world. And with me are two experts from the data management world who will share with us how they think about the best techniques and practices based on what they see at large organizations who are working with data and developing so-called data-driven apps. Please welcome Maria Colgan and Gerald Venzl, two distinguish product managers from Oracle. Folks, welcome, thanks so much for coming on. >> Thanks for having us Dave. >> Thank you very much for having us. >> Okay, Maria let's start with you. So, we throw around this term data-driven, data-driven applications. What are we really talking about there? >> So data-driven applications are applications that work on a diverse set of data. So anything from spatial to sensor data, document data as well as your usual transaction processing data. And what they're going to do is they'll generate value from that data in very different ways to a traditional application. So for example, they may use machine learning, they are able to do product recommendations in the middle of a transaction. Or we could use graph to be able to identify an influencer within the community so we can target them with a specific promotion. It could also use spatial data to be able to help find the nearest stores to a particular customer. And because these apps are deployed on multiple platforms, everything from mobile devices as well as standard browsers, they need a data platform that's going to be both secure, reliable and scalable. >> Well, so when you think about how the workloads are shifting I mean, we're not talking about, you know it's not anymore a world of just your ERP or your HCM or your CRM, you know kind of the traditional operational systems. You really are seeing an explosion of these new data oriented apps. You're seeing, you know, modeling in the cloud, you are going to see more and more inferencing, inferencing at the edge. But Maria maybe you could talk a little bit about sort of the benefits that customers are seeing from developing these types of applications. I mean, why should people care about data-driven apps? >> Oh, for sure, there's massive benefits to them. I mean, probably the most obvious one for any business regardless of the industry, is that they not only allow you to understand what your customers are up to, but they allow you to be able to anticipate those customer's needs. So that helps businesses maintain that competitive edge and retain their customers. But it also helps them make data-driven decisions in real time based on actual data rather than on somebody's gut feeling or basing those decisions on historical data. So for example, you can do real-time price adjustments on products based on demand and so forth, that kind of thing. So it really changes the way people do business today. >> So Gerald, you think about the narrative in the industry everybody wants to be a platform player all your customers they are becoming software companies, they are becoming platform players. Everybody wants to be like, you know name a company that is huge trillion dollar market cap or whatever, and those are data-driven companies. And so it would seem to me that data-driven applications, there's nobody, no company really shouldn't be data-driven. Do you buy that? >> Yeah, absolutely. I mean, data-driven, and that naturally the whole industry is data-driven, right? It's like we all have information technologies about processing data and deriving information out of it. But when it comes to app development I think there is a big push to kind of like we have to do machine learning in our applications, we have to get insights from data. And when you actually look back a bit and take a step back, you see that there's of course many different kinds of applications out there as well that's not to be forgotten, right? So there is a usual front end user interfaces where really the application all it does is just entering some piece of information that's stored somewhere or perhaps a microservice that's not attached to a data to you at all but just receives or asks calls (indistinct). So I think it's not necessarily so important for every developer to kind of go on a bandwagon that they have to be data-driven. But I think it's equally important for those applications and those developers that build applications, that drive the business, that make business critical decisions as Maria mentioned before. Those guys should take really a close look into what data-driven apps means and what the data to you can actually give to them. Because what we see also happening a lot is that a lot of the things that are well known and out there just ready to use are being reimplemented in the applications. And for those applications, they essentially just ended up spending more time writing codes that will be already there and then have to maintain and debug the code as well rather than just going to market faster. >> Gerald can you talk to the prevailing approaches that developers take to build data-driven applications? What are the ones that you see? Let's dig into that a little bit more and maybe differentiate the different approaches and talk about that? >> Yeah, absolutely. I think right now the industry is like in two camps, it's like sort of a religious war going on that you'll see often happening with different architectures and so forth going on. So we have single purpose databases or data management technologies. Which are technologies that are as the name suggests build around a single purpose. So it's like, you know a typical example would be your ordinary key-value store. And a key-value store all it does is it allows you to store and retrieve a piece of data whatever that may be really, really fast but it doesn't really go beyond that. And then the other side of the house or the other camp would be multimodal databases, multimodal data management technologies. Those are technologies that allow you to store different types of data, different formats of data in the same technology in the same system alongside. And, you know, when you look at the geographics out there of what we have from technology, is pretty much any relational database or any database really has evolved into such a multimodal database. Whether that's MySQL that allows you to store or chase them alongside relational or even a MongoDB that allows you to do or gives you native graph support since (mumbles) and as well alongside the adjacent support. >> Well, it's clearly a trend in the industry. We've talked about this a lot in The Cube. We know where Oracle stands on this. I mean, you just mentioned MySQL but I mean, Oracle Databases you've been extending, you've mentioned JSON, we've got blockchain now in there you're infusing, you know ML and AI into the database, graph database capabilities, you know on and on and on. We talked a lot about we compared that to Amazon which is kind of the right tool, the right job approach. So maybe you could talk about, you know, your point of view, the benefits for developers of using that converged database if I can use that word approach being able to store multiple data formats? Why do you feel like that's a better approach? >> Yeah, I think on a high level it comes down to complexity. You are actually avoiding additional complexity, right? So not every use case that you have necessarily warrants to have yet another data management technology or yet the special build technology for managing that data, right? It's like many use cases that we see out there happily want to just store a piece of a chase and document, a piece of chase in a database and then perhaps retrieve it again afterwards so write some simple queries over it. And you really don't have to get a new database technology or a NoSQL database into the mix if you already have some to just fulfill that exact use case. You could just happily store that information as well in the database you already have. And what it really comes down to is the learning curve for developers, right? So it's like, as you use the same technology to store other types of data, you don't have to learn a new technology, you don't have to associate yourself with new and learn new drivers. You don't have to find new frameworks and you don't have to know how to necessarily operate or best model your data for that database. You can essentially just reuse your knowledge of the technology as well as the libraries and code you have already built in house perhaps in another application, perhaps, you know framework that you used against the same technology because it is still the same technology. So, kind of all comes down again to avoiding complexity rather than not fragmenting you know, the many different technologies we have. If you were to look at the different data formats that are out there today it's like, you know, you would end up with many different databases just to store them if you were to fully religiously follow the single purpose best built technology for every use case paradigm, right? And then you would just end up having to manage many different databases more than actually focusing on your app and getting value to your business or to your user. >> Okay, so I get that and I buy that by the way. I mean, especially if you're a larger organization and you've got all these projects going on but before we go back to Maria, Gerald, I want to just, I want to push on that a little bit. Because the counter to that argument would be in the analogy. And I wonder if you, I'd love for you to, you know knock this analogy off the blocks. The counter would be okay, Oracle is the Swiss Army knife and it's got, you know, all in one. But sometimes I need that specialized long screwdriver and I go into my toolbox and I grab that. It's better than the screwdriver in my Swiss Army knife. Why, are you the Swiss Army knife of databases? Or are you the all-in-one have that best of breed screwdriver for me? How do you think about that? >> Yeah, that's a fantastic question, right? And I think it's first of all, you have to separate between Oracle the company that has actually multiple data management technologies and databases out there as you said before, right? And Oracle Database. And I think Oracle Database is definitely a Swiss Army knife has many capabilities of since the last 40 years, you know that we've seen object support coming that's still in the Oracle Database today. We have seen XML coming, it's still in the Oracle Database, graph, spatial, et cetera. And so you have many different ways of managing your data and then on top of that going into the converge, not only do we allow you to store the different data model in there but we actually allow you also to, you apply all the security policies and so forth on top of it something Maria can talk more about the mission around converged database. I would also argue though that for some aspects, we do actually have to or add a screwdriver that you talked about as well. So especially in the relational world people get very quickly hung up on this idea that, oh, if you only do rows and columns, well, that's kind of what you put down on disk. And that was never true, it's the relational model is actually a logical model. What's probably being put down on disk is blocks that align themselves nice with block storage and always has been. So that allows you to actually model and process the data sort of differently. And one common example or one good example that we have that we introduced a couple of years ago was when, column and databases were very strong and you know, the competition came it's like, yeah, we have In-Memory column that stores now they're so much better. And we were like, well, orienting the data role-based or column-based really doesn't matter in the sense that we store them as blocks on disks. And so we introduced the in memory technology which gives you an In-Memory column, a representation of your data as well alongside your relational. So there is an example where you go like, well, actually you know, if you have this use case of the column or analytics all In-Memory, I would argue Oracle Database is also that screwdriver you want to go down to and gives you that capability. Because not only gives you representation in columnar, but also which many people then forget all the analytic power on top of SQL. It's one thing to store your data columnar, it's a completely different story to actually be able to run analytics on top of that and having all the built-in functionalities and stuff that you want to do with the data on top of it as you analyze it. >> You know, that's a great example, the kilometer 'cause I remember there was like a lot of hype around it. Oh, it's the Oracle killer, you know, at Vertica. Vertica is still around but, you know it never really hit escape velocity. But you know, good product, good company, whatever. Natezza, it kind of got buried inside of IBM. ParXL kind of became, you know, red shift with that deal so that kind of went away. Teradata bought a company, I forget which company it bought but. So that hype kind of disapated and now it's like, oh yeah, columnar. It's kind of like In-Memory, we've had a In-Memory databases ever since we've had databases you know, it's a kind of a feature not a sector. But anyway, Maria, let's come back to you. You've got a lot of customer experience. And you speak with a lot of companies, you know during your time at Oracle. What else are you seeing in terms of the benefits to this approach that might not be so intuitive and obvious right away? >> I think one of the biggest benefits to having a multimodel multiworkload or as we call it a converged database, is the fact that you can get greater data synergy from it. In other words, you can utilize all these different techniques and data models to get better value out of that data. So things like being able to do real-time machine learning, fraud detection inside a transaction or being able to do a product recommendation by accessing three different data models. So for example, if I'm trying to recommend a product for you Dave, I might use graph analytics to be able to figure out your community. Not just your friends, but other people on our system who look and behave just like you. Once I know that community then I can go over and see what products they bought by looking up our product catalog which may be stored as JSON. And then on top of that I can then see using the key-value what products inside that catalog those community members gave a five star rating to. So that way I can really pinpoint the right product for you. And I can do all of that in one transaction inside the database without having to transform that data into different models or God forbid, access different systems to be able to get all of that information. So it really simplifies how we can generate that value from the data. And of course, the other thing our customers love is when it comes to deploying data-driven apps, when you do it on a converged database it's much simpler because it is that standard data platform. So you're not having to manage multiple independent single purpose databases. You're not having to implement the security and the high availability policies, you know across a bunch of different diverse platforms. All of that can be done much simpler with a converged database 'cause the DBA team of course, is going to just use that standard set of tools to manage, monitor and secure those systems. >> Thank you for that. And you know, it's interesting, you talk about simplification and you are in Juan's organization so you've big focus on mission critical. And so one of the things that I think is often overlooked well, we talk about all the time is recovery. And if things are simpler, recovery is faster and easier. And so it's kind of the hallmark of Oracle is like the gold standard of the toughest apps, the most mission critical apps. But I wanted to get to the cloud Maria. So because everything is going to the cloud, right? Not all workloads are going to the cloud but everybody is talking about the cloud. Everybody has cloud first mentality and so yes, it's a hybrid world. But the natural next question is how do you think the cloud fits into this world of data-driven apps? >> I think just like any app that you're developing, the cloud helps to accelerate that development. And of course the deployment of these data-driven applications. 'Cause if you think about it, the developer is instantly able to provision a converged database that Oracle will automatically manage and look after for them. But what's great about doing something like that if you use like our autonomous database service is that it comes in different flavors. So you can get autonomous transaction processing, data warehousing or autonomous JSON so that the developer is going to get a database that's been optimized for their specific use case, whatever they are trying to solve. And it's also going to contain all of that great functionality and capabilities that we've been talking about. So what that really means to the developer though is as the project evolves and inevitably the business needs change a little, there's no need to panic when one of those changes comes in because your converged database or your autonomous database has all of those additional capabilities. So you can simply utilize those to able to address those evolving changes in the project. 'Cause let's face it, none of us normally know exactly what we need to build right at the very beginning. And on top of that they also kind of get a built-in buddy in the cloud, especially in the autonomous database. And that buddy comes in the form of built-in workload optimizations. So with the autonomous database we do things like automatic indexing where we're using machine learning to be that buddy for the developer. So what it'll do is it'll monitor the workload and see what kind of queries are being run on that system. And then it will actually determine if there are indexes that should be built to help improve the performance of that application. And not only does it bill those indexes but it verifies that they help improve the performance before publishing it to the application. So by the time the developer is finished with that app and it's ready to be deployed, it's actually also been optimized by the developers buddy, the Oracle autonomous database. So, you know, it's a really nice helping hand for developers when they're building any app especially data-driven apps. >> I like how you sort of gave us, you know the truth here is you don't always know where you're going when you're building an app. It's like it goes from you are trying to build it and they will come to start building it and we'll figure out where it's going to go. With Agile that's kind of how it works. But so I wonder, can you give some examples of maybe customers or maybe genericize them if you need to. Data-driven apps in the cloud where customers were able to drive more efficiency, where the cloud buddy allowed the customers to do more with less? >> No, we have tons of these but I'll try and keep it to just a couple. One that comes to mind straight away is retrace. These folks built a blockchain app in the Oracle Cloud that allows manufacturers to actually share the supply chain with the consumer. So the consumer can see exactly, who made their product? Using what raw materials? Where they were sourced from? How it was done? All of that is visible to the consumer. And in order to be able to share that they had to work on a very diverse set of data. So they had everything from JSON documents to images as well as your traditional transactions in there. And they store all of that information inside the Oracle autonomous database, they were able to build their app and deploy it on the cloud. And they were able to do all of that very, very quickly. So, you know, that ability to work on multiple different data types in a single database really helped them build that product and get it to market in a very short amount of time. Another customer that's doing something really, really interesting is MindSense. So these guys operate the largest mines in Canada, Chile, and Peru. But what they do is they put these x-ray devices on the massive mechanical shovels that are at the cove or at the mine face. And what that does is it senses the contents of the buckets inside these mining machines. And it's looking to see at that content, to see how it can optimize the processing of the ore inside in that bucket. So they're looking to minimize the amount of power and water that it's going to take to process that. And also of course, minimize the amount of waste that's going to come out of that project. So all of that sensor data is sent into an autonomous database where it's going to be processed by a whole host of different users. So everything from the mine engineers to the geo scientists, to even their own data scientists utilize that data to drive their business forward. And what I love about these guys is they're not happy with building just one app. MindSense actually use our built-in low core development environment, APEX that comes as part of the autonomous database and they actually produce applications constantly for different aspects of their business using that technology. And it's actually able to accelerate those new apps to the business. It takes them now just a couple of days or weeks to produce an app instead of months or years to build those new apps. >> Great, thank you for that Maria. Gerald, I'm going to push you again. So, I said upfront and talked about microservices and the cloud and containers and you know, anybody in the developer space follows that very closely. But some of the things that we've been talking about here people might look at that and say, well, they're kind of antithetical to microservices. This is our Oracles monolithic approach. But when you think about the benefits of microservices, people want freedom of choice, technology choice, seen as a big advantage of microservices and containers. How do you address such an argument? >> Yeah, that's an excellent question and I get that quite often. The microservices architecture in general as I said before had architectures, Linux distributions, et cetera. It's kind of always a bit of like there's an academic approach and there's a pragmatic approach. And when you look at the microservices the original definitions that came out at the early 2010s. They actually never said that each microservice has to have a database. And they also never said that if a microservice has a database, you have to use a different technology for each microservice. Just like they never said, you have to write a microservice in a different programming language, right? So where I'm going with this is like, yes you know, sometimes when you look at some vendors out there, some niche players, they push this message or they jump on this academic approach of like each microservice has the best tool at hand or I'd use a different database for your purpose, et cetera. Which almost often comes across like us. You know, we want to stay part of the conversation. Nothing stops a developer from, you know using a multimodal database for the microservice and just using that as a document store, right? Or just using that as a relational database. And, you know, sometimes I mean, it was actually something that happened that was really interesting yesterday I don't know whether you follow Dave or not. But Facebook had an outage yesterday, right? And Facebook is one of those companies that are seen as the Silicon Valley, you know know how to do microservices companies. And when you add through the outage, well, what happened, right? Some unfortunate logical error with configuration as a force that took a database cluster down. So, you know, there you have it where you go like, well, maybe not every microservice is actually in fact talking to its own database or its own special purpose database. I think there, you know, well, what we should, the industry should be focusing much more on this argument of which technology to use? What's the right tool for a job? Is more to ask themselves, what business problem actually are we trying to solve? And therefore what's the right approach and the right technology for this. And so therefore, just as I said before, you know multimodal databases they do have strong benefits. They have many built-in functionalities that are already there and they allow you to reduce this complexity of having to know many different technologies, right? And so it's not only to store different data models either you know, treat a multimodal database as a chasing documents store or a relational database but most databases are multimodal since 20 plus years. But it's also actually being able to perhaps if you store that data together, you can perhaps actually derive additional value for somebody else but perhaps not for your application. But like for example, if you were to use Oracle Database you can actually write queries on top of all of that data. It doesn't really matter for our query engine whether it's the data is format that then chase or the data is formatted in rows and columns you can just rather than query over it. And that's actually very powerful for those guys that have to, you know get the reporting done the end of the day, the end of the week. And for those guys that are the data scientists that they want to figure out, you know which product performed really well or can we tweak something here and there. When you look into that space you still see a huge divergence between the guys to put data in kind of the altarpiece style and guys that try to derive new insights. And there's still a lot of ETL going around and, you know we have big data technologies that some of them come and went and some of them came in that are still around like Apache Spark which is still like a SQL engine on top of any of your data kind of going back to the same concept. And so I will say that, you know, for developers when we look at microservices it's like, first of all, is the argument you were making because the vendor or the technology you want to use tells you this argument or, you know, you kind of want to have an argument to use a specific technology? Or is it really more because it is the best technology, to best use for this given use case for this given application that you have? And if so there's of course, also nothing wrong to use a single purpose technology either, right? >> Yeah, I mean, whenever I talk about Oracle I always come back to the most important applications, the mission critical. It's very difficult to architect databases with microservices and containers. You have to be really, really careful. And so and again, it comes back to what we were talking before about with Maria that the complexity and the recovery. But Gerald I want to stay with you for a minute. So there's other data management technologies popping out there. I mean, I've seen some people saying, okay just leave the data in an S3 bucket. We can query that, then we've got some magic sauce to do that. And so why are you optimistic about you know, traditional database technology going forward? >> I would say because of the history of databases. So one thing that once struck me when I came to Oracle and then got to meet great people like Juan Luis and Andy Mendelsohn who had been here for a long, long time. I come to realization that relational databases are around for about 45 years now. And, you know, I was like, I'm too young to have been around then, right? So I was like, what else was around 45 years? It's like just the tech stack that we have today. It's like, how does this look like? Well, Linux only came out in 93. Well, databases pre-date Linux a lot rather than as I started digging I saw a lot of technologies come and go, right? And you mentioned before like the technologies that data management systems that we had that came and went like the columnar databases or XML databases, object databases. And even before relational databases before Cot gave us the relational model there were apparently these networks stores network databases which to some extent look very similar to adjacent documents. There wasn't a harder storing data and a hierarchy to format. And, you know when you then start actually reading the Cot paper and diving a little bit more into the relation model, that's I think one important crux in there that most of the industry keeps forgetting or it hasn't been around to even know. And that is that when Cot created the relational model, he actually focused not so much on the application putting the data in, but on future users and applications still being able to making sense out of the data, right? And that's kind of like I said before we had those network models, we had XML databases you have adjacent documents stores. And the one thing that they all have along with it is like the application that puts the data in decides the structure of the data. And that's all well and good if you had an application of the developer writing an application. It can become really tricky when 10 years later you still want to look at that data and the application that the developer is no longer around then you go like, what does this all mean? Where is the structure defined? What is this attribute? What does it mean? How does it correlate to others? And the one thing that people tend to forget is that it's actually the data that's here to stay not someone who does the applications where it is. Ideally, every company wants to store every single byte of data that they have because there might be future value in it. Economically may not make sense that's now much more feasible than just years ago. But if you could, why wouldn't you want to store all your data, right? And sometimes you actually have to store the data for seven years or whatever because the laws require you to. And so coming back then and you know, like 10 years from now and looking at the data and going like making sense of that data can actually become a lot more difficult and a lot more challenging than having to first figure out and how we store this data for general use. And that kind of was what the relational model was all about. We decompose the data structures into tables and columns with relationships amongst each other so therefore between each other. So that therefore if somebody wants to, you know typical example would be well you store some purchases from your web store, right? There's a customer attribute in it. There's some credit card payment information in it, just some product information on what the customer bought. Well, in the relational model if you just want to figure out which products were sold on a given day or week, you just would query the payment and products table to get the sense out of it. You don't need to touch the customer and so forth. And with the hierarchical model you have to first sit down and understand how is the structure, what is the customer? Where is the payment? You know, does the document start with the payment or does it start with the customer? Where do I find this information? And then in the very early days those databases even struggled to then not having to scan all the documents to get the data out. So coming back to your question a bit, I apologize for going on here. But you know, it's like relational databases have been around for 45 years. I actually argue it's one of the most successful software technologies that we have out there when you look in the overall industry, right? 45 years is like, in IT terms it's like from a star being the ones who are going supernova. You have said it before that many technologies coming and went, right? And just want to add a more really interesting example by the way is Hadoop and HDFS, right? They kind of gave us this additional promise of like, you know, the 2010s like 2012, 2013 the hype of Hadoop and so forth and (mumbles) and HDFS. And people are just like, just put everything into HDFS and worry about the data later, right? And we can query it and map reduce it and whatever. And we had customers actually coming to us they were like, great we have half a petabyte of data on an HDFS cluster and we have no clue what's stored in there. How do we figure this out? What are we going to do now? Now you had a big data cleansing problem. And so I think that is why databases and also data modeling is something that will not go away anytime soon. And I think databases and database technologies are here for quite a while to stay. Because many of those are people they don't think about what's happening to the data five years from now. And many of the niche players also and also frankly even Amazon you know, following with this single purpose thing is like, just use the right tool for the job for your application, right? Just pull in the data there the way you wanted. And it's like, okay, so you use technologies all over the place and then five years from now you have your data fragmented everywhere in different formats and, you know inconsistencies, and, and, and. And those are usually when you come back to this data-driven business critical business decision applications the worst case scenario you can have, right? Because now you need an army of people to actually do data cleansing. And there's not a coincidence that data science has become very, very popular the last recent years as we kind of went on with this proliferation of different database or data management technologies some of those are not even database. But I think I leave it at that. >> It's an interesting talk track because you're right. I mean, no schema on right was alluring, but it definitely created some problems. It also created an entire, you know you referenced the hyper specialized roles and did the data cleansing component. I mean, maybe technology will eventually solve that problem but it hasn't up at least up tonight. Okay, last question, Maria maybe you could start off and Gerald if you want to chime in as well it'd be great. I mean, it's interesting to watch this industry when Oracle sort of won the top database mantle. I mean, I watched it, I saw it. It was, remember it was Informix and it was (indistinct) too and of course, Microsoft you got to give them credit with SQL server, but Oracle won the database wars. And then everything got kind of quiet for awhile database was sort of boring. And then it exploded, you know, all the, you know not only SQL and the key-value stores and the cloud databases and this is really a hot area now. And when we looked at Oracle we said, okay, Oracle it's all about Oracle Database, but we've seen the kind of resurgence in MySQL which everybody thought, you know once Oracle bought Sun they were going to kill MySQL. But now we see you investing in HeatWave, TimesTen, we talked about In-Memory databases before. So where do those fit in Maria in the grand scheme? How should we think about Oracle's database portfolio? >> So there's lots of places where you'd use those different things. 'Cause just like any other industry there are going to be new and boutique use cases that are going to benefit from a more specialized product or single purpose product. So good examples off the top of my head of the kind of systems that would benefit from that would be things like a stock exchange system or a telephone exchange system. Both of those are latency critical transaction processing applications where they need microsecond response times. And that's going to exceed perhaps what you might normally get or deploy with a converged database. And so Oracle's TimesTen database our In-Memory database is perfect for those kinds of applications. But there's also a host of MySQL applications out there today and you said it yourself there Dave, HeatWave is a great place to provision and deploy those kinds of applications because it's going to run 100 times faster than AWS (mumbles). So, you know, there really is a place in the market and in our customer's systems and the needs they have for all of these different members of our database family here at Oracle. >> Yeah, well, the internet is basically running in the lamp stack so I see MySQL going away. All right Gerald, will give you the final word, bring us home. >> Oh, thank you very much. Yeah, I mean, as Maria said, I think it comes back to what we discussed before. There is obviously still needs for special technologies or different technologies than a relational database or multimodal database. Oracle has actually many more databases that people may first think of. Not only the three that we have already mentioned but there's even SP so the Oracle's NoSQL database. And, you know, on a high level Oracle is a data management company, right? And we want to give our customers the best tools and the best technology to manage all of their data. Rather than therefore there has to be a need or there should be a part of the business that also focuses on this highly specialized systems and this highly specialized technologies that address those use cases. And I think it makes perfect sense. It's like, you know, when the customer comes to Oracle they're not only getting this, take this one product you know, and if you don't like it your problem but actually you have choice, right? And choice allows you to make a decision based on what's best for you and not necessarily best for the vendor you're talking to. >> Well guys, really appreciate your time today and your insights. Maria, Gerald, thanks so much for coming on The Cube. >> Thank you very much for having us. >> And thanks for watching this Cube conversation this is Dave Vellante and we'll see you next time. (upbeat music)

Published Date : Jun 24 2021

SUMMARY :

and then you guys just follow my lead. So I noticed Maria you stopped anyway, So any time you don't So when I'm here you guys and we'll open up when Dave's ready. and the benefits they bring What are we really talking about there? the nearest stores to kind of the traditional So for example, you can do So Gerald, you think about to you at all but just receives or even a MongoDB that allows you to do ML and AI into the database, in the database you already have. and I buy that by the way. of since the last 40 years, you know the benefits to this approach is the fact that you can get And you know, it's And that buddy comes in the form of the truth here is you don't and deploy it on the cloud. and the cloud and containers and you know, is the argument you were making And so why are you because the laws require you to. And then it exploded, you and the needs they have in the lamp stack so I and the best technology to and your insights. we'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Gerald VenzlPERSON

0.99+

Andy MendelsohnPERSON

0.99+

MariaPERSON

0.99+

DavePERSON

0.99+

ChileLOCATION

0.99+

Maria ColganPERSON

0.99+

PeruLOCATION

0.99+

100 timesQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

GeraldPERSON

0.99+

AmazonORGANIZATION

0.99+

OracleORGANIZATION

0.99+

CanadaLOCATION

0.99+

seven yearsQUANTITY

0.99+

Juan LuisPERSON

0.99+

IBMORGANIZATION

0.99+

StevePERSON

0.99+

five starQUANTITY

0.99+

Maria ColganPERSON

0.99+

Swiss ArmyORGANIZATION

0.99+

Swiss ArmyORGANIZATION

0.99+

AlexPERSON

0.99+

FacebookORGANIZATION

0.99+

MySQLTITLE

0.99+

one noteQUANTITY

0.99+

yesterdayDATE

0.99+

two handsQUANTITY

0.99+

threeQUANTITY

0.99+

two expertsQUANTITY

0.99+

AWSORGANIZATION

0.99+

LinuxTITLE

0.99+

TeradataORGANIZATION

0.99+

each microserviceQUANTITY

0.99+

HadoopTITLE

0.99+

45 yearsQUANTITY

0.99+

OraclesORGANIZATION

0.99+

early 2010sDATE

0.99+

todayDATE

0.99+

one-shotQUANTITY

0.99+

fiveQUANTITY

0.99+

one good exampleQUANTITY

0.99+

SunORGANIZATION

0.99+

tonightDATE

0.99+

firstQUANTITY

0.99+