Image Title

Search Results for J C D C:

Wendi Whitmore, Palo Alto Networks | Palo Alto Networks Ignite22


 

>>The Cube presents Ignite 22, brought to you by Palo Alto Networks. >>Welcome back to Vegas. Guys. We're happy that you're here. Lisa Martin here covering with Dave Valante, Palo Alto Networks Ignite 22. We're at MGM Grand. This is our first day, Dave of two days of cube coverage. We've been having great conversations with the ecosystem with Palo Alto executives, with partners. One of the things that they have is unit 42. We're gonna be talking with them next about cyber intelligence. And the threat data that they get is >>Incredible. Yeah. They have all the data, they know what's going on, and of course things are changing. The state of play changes. Hold on a second. I got a text here. Oh, my Netflix account was frozen. Should I click on this link? Yeah. What do you think? Have you had a, it's, have you had a little bit more of that this holiday season? Yeah, definitely. >>Unbelievable, right? A lot of smishing going on. >>Yeah, they're very clever. >>Yeah, we're very pleased to welcome back one of our alumni to the queue. Wendy Whitmore is here, the SVP of Unit 42. Welcome back, Wendy. Great to have >>You. Thanks Lisa. So >>Unit 42 created back in 2014. One of the things that I saw that you said in your keynote this morning or today was everything old is still around and it's co, it's way more prolific than ever. What are some of the things that Unit 42 is seeing these days with, with respect to cyber threats as the landscape has changed so much the last two years alone? >>You know, it, it has. So it's really interesting. I've been responding to these breaches for over two decades now, and I can tell you that there are a lot of new and novel techniques. I love that you already highlighted Smishing, right? In the opening gate. Right. Because that is something that a year ago, no one knew what that word was. I mean, we, it's probably gonna be invented this year, right? But that said, so many of the tactics that we have previously seen, when it comes to just general espionage techniques, right? Data act filtration, intellectual property theft, those are going on now more than ever. And you're not hearing about them as much in the news because there are so many other things, right? We're under the landscape of a major war going on between Russia and Ukraine of ransomware attacks, you know, occurring on a weekly basis. And so we keep hearing about those, but ultimately these nations aid actors are using that top cover, if you will, as a great distraction. It's almost like a perfect storm for them to continue conducting so much cyber espionage work that like we may not be feeling that today, but years down the road, they're, the work that they're doing today is gonna have really significant impact. >>Ransomware has become a household word in the last couple of years. I think even my mom knows what it is, to some degree. Yeah. But the threat actors are far more sophisticated than they've ever written. They're very motivated. They're very well funded. I think I've read a stat recently in the last year that there's a ransomware attack once every 11 seconds. And of course we only hear about the big ones. But that is a concern that goes all the way up to the board. >>Yeah. You know, we have a stat in our ransomware threat report that talks about how often victims are posted on leak sites. And I think it's once every seven minutes at this point that a new victim is posted. Meaning a victim has had their data, a victim organization had their data stolen and posted on some leak site in the attempt to be extorted. So that has become so common. One of the shifts that we've seen this year in particular and in recent months, you know, a year ago when I was at Ignite, which was virtual, we talked about quadruple extortion, meaning four different ways that these ransomware actors would go out and try to make money from these attacks in what they're doing now is often going to just one, which is, I don't even wanna bother with encrypting your data now, because that means that in order to get paid, I probably have to decrypt it. Right? That's a lot of work. It's time consuming. It's kind of painstaking. And so what they've really looked to do now is do the extortion where they simply steal the data and then threaten to post it on these leak sites, you know, release it other parts of the web and, and go from there. And so that's really a blending of these techniques of traditional cyber espionage with intellectual property theft. Wow. >>How trustworthy are those guys in terms of, I mean, these are hackers, right? In terms of it's really the, the hacker honor system, isn't it? I mean, if you get compromised like that, you really beholden to criminals. And so, you >>Know, so that's one of the key reasons why having the threat intelligence is so important, right? Understanding which group that you're dealing with and what their likelihood of paying is, what's their modus operandi. It's become even more important now because these groups switch teams more frequently than NFL trades, you know, free agents during the regular season, right? Or players become free agents. And that's because their infrastructure. So the, you know, infrastructure, the servers, the systems that they're using to conduct these attacks from is actually largely being disrupted more from law enforcement, international intelligence agencies working together with public private partnerships. So what they're doing is saying, okay, great. All that infrastructure that I just had now is, is burned, right? It's no longer effective. So then they'll disband a team and then they'll recruit a new team and it's constant like mixing and matching in players. >>All that said, even though that's highly dynamic, one of the other areas that they pride themselves on is customer service. So, and I think it's interesting because, you know, when I said they're not wanting to like do all the decryption? Yeah. Cuz that's like painful techni technical slow work. But on the customer service side, they will create these customer service portals immediately stand one up, say, you know, hey it's, it's like an Amazon, you know, if you've ever had to return a package on Amazon for example, and you need to click through and like explain, you know, Hey, I didn't receive this package. A portal window pops up, you start talking to either a bot or a live agent on the backend. In this case they're hu what appeared to be very much humans who are explaining to you exactly what happened, what they're asking for, super pleasant, getting back within minutes of a response. And they know that in order for them to get paid, they need to have good customer service because otherwise they're not going to, you know, have a business. How, >>So what's the state of play look like from between nation states, criminals and how, how difficult or not so difficult is it for you to identify? Do you have clear signatures? My understanding in with Solar Winds it was a little harder, but maybe help us understand and help our audience understand what the state of play is right now. >>One of the interesting things that I think is occurring, and I highlighted this this morning, is this idea of convergence. And so I'll break it down for one example relates to the type of malware or tools that these attackers use. So traditionally, if we looked at a nation state actor like China or Russia, they were very, very specific and very strategic about the types of victims that they were going to go after when they had zero day. So, you know, new, new malware out there, new vulnerabilities that could be exploited only by them because the rest of the world didn't know about it. They might have one organization that they would target that at, at most, a handful and all very strategic for their objective. They wanted to keep that a secret as long as possible. Now what we're seeing actually is those same attackers going towards one, a much larger supply chain. >>So, so lorenzen is a great example of that. The Hafnia attacks towards Microsoft Exchange server last year. All great examples of that. But what they're also doing is instead of using zero days as much, or you know, because those are expensive to build, they take a lot of time, a lot of funding, a lot of patience and research. What they're doing is using commercially available tools. And so there's a tool that our team identified earlier this year called Brute Rael, C4 or BRC four for short. And that's a tool that we now know that nation state actors are using. But just two weeks ago we invested a ransomware attack where the ransomware actor was using that same piece of tooling. So to your point, yak can get difficult for defenders when you're looking through and saying, well wait, they're all using some of the same tools right now and some of the same approaches when it comes to nation states, that's great for them because they can blend into the noise and it makes it harder to identify as >>Quickly. And, and is that an example of living off the land or is that B BRC four sort of a homegrown hacker tool? Is it, is it a, is it a commercial >>Off the shelf? So it's a tool that was actually, so you can purchase it, I believe it's about 2,500 US dollars for a license. It was actually created by a former Red teamer from a couple well-known companies in the industry who then decided, well hey, I built this tool for work, I'm gonna sell this. Well great for Red teamers that are, you know, legitimately doing good work, but not great now because they're, they built a, a strong tool that has the ability to hide amongst a, a lot of protocols. It can actually hide within Slack and teams to where you can't even see the data is being exfiltrated. And so there's a lot of concern. And then now the reality that it gets into the wrong hands of nation state actors in ransomware actors, one of the really interesting things about that piece of malware is it has a setting where you can change wallpaper. And I don't know if you know offhand, you know what that means, but you know, if that comes to mind, what you would do with it. Well certainly a nation state actor is never gonna do something like that, right? But who likes to do that are ransomware actors who can go in and change the background wallpaper on a desktop that says you've been hacked by XYZ organization and let you know what's going on. So pretty interesting, obviously the developer doing some work there for different parts of the, you know, nefarious community. >>Tremendous amount of sophistication that's gone on the last couple of years alone. I was just reading that Unit 42 is now a founding member of the Cyber Threat Alliance includes now more than 35 organizations. So you guys are getting a very broad picture of today's threat landscape. How can customers actually achieve cyber resilience? Is it achievable and how do you help? >>So I, I think it is achievable. So let me kind of parse out the question, right. So the Cyber Threat Alliance, the J C D C, the Cyber Safety Review Board, which I'm a member of, right? I think one of the really cool things about Palo Alto Networks is just our partnerships. So those are just a handful. We've got partnerships with over 200 organizations. We work closely with the Ukrainian cert, for example, sharing information, incredible information about like what's going on in the war, sharing technical details. We do that with Interpol on a daily basis where, you know, we're sharing information. Just last week the Africa cyber surge operation was announced where millions of nodes were taken down that were part of these larger, you know, system of C2 channels that attackers are using to conduct exploits and attacks throughout the world. So super exciting in that regard and it's something that we're really passionate about at Palo Alto Networks in terms of resilience, a few things, you know, one is visibility, so really having a, an understanding of in a real, as much of real time as possible, right? What's happening. And then it goes into how you, how can we decrease operational impact. So that's everything from network segmentation to wanna add the terms and phrases I like to use a lot is the win is really increasing the time it takes for the attackers to get their work done and decreasing the amount of time it takes for the defenders to get their work done, right? >>Yeah. I I call it increasing the denominator, right? And the ROI equation benefit over or value, right? Equals equals or benefit equals value over cost if you can increase the cost to go go elsewhere, right? Absolutely. And that's the, that's the game. Yeah. You mentioned Ukraine before, what have we learned from Ukraine? I, I remember I was talking to Robert Gates years ago, 2016 I think, and I was asking him, yeah, but don't we have the best cyber technology? Can't we attack? He said, we got the most to lose too. Yeah. And so what have we learned from, from Ukraine? >>Well, I, I think that's part of the key point there, right? Is you know, a great offense essentially can also be for us, you know, deterrent. So in that aspect we have as an, as a company and or excuse me, as a country, as a company as well, but then as partners throughout all parts of the world have really focused on increasing the intelligence sharing and specifically, you know, I mentioned Ukrainian cert. There are so many different agencies and other sorts throughout the world that are doing everything they can to share information to help protect human life there. And so what we've really been concerned with, with is, you know, what cyber warfare elements are going to be used there, not only how does that impact Ukraine, but how does it potentially spread out to other parts of the world critical infrastructure. So you've seen that, you know, I mentioned CS rrb, but cisa, right? >>CISA has done a tremendous job of continuously getting out information and doing everything they can to make sure that we are collaborating at a commercial level. You know, we are sharing information and intelligence more than ever before. So partners like Mania and CrowdStrike, our Intel teams are working together on a daily basis to make sure that we're able to protect not only our clients, but certainly if we've got any information relevant that we can share that as well. And I think if there's any silver lining to an otherwise very awful situation, I think the fact that is has accelerated intelligence sharing is really positive. >>I was gonna ask you about this cause I think, you know, 10 or so years ago, there was a lot of talk about that, but the industry, you know, kind of kept things to themselves, you know, a a actually tried to monetize some of that private data. So that's changing is what I'm hearing from you >>More so than ever more, you know, I've, I mentioned I've been in the field for 20 years. You know, it, it's tough when you have a commercial business that relies on, you know, information to, in order to pay people's salaries, right? I think that has changed quite a lot. We see the benefit of just that continuous sharing. There are, you know, so many more walls broken down between these commercial competitors, but also the work on the public private partnership side has really increased some of those relationships. Made it easier. And you know, I have to give a whole lot of credit and mention sisa, like the fact that during log four J, like they had GitHub repositories, they were using Slack, they were using Twitter. So the government has really started pushing forward with a lot of the newer leadership that's in place to say, Hey, we're gonna use tools and technology that works to share and disseminate information as quickly as we can. Right? That's fantastic. That's helping everybody. >>We knew that every industry, no, nobody's spared of this. But did you notice in the last couple of years, any industries in particular that are more vulnerable? Like I think of healthcare with personal health information or financial services, any industries kind of jump out as being more susceptible than others? >>So I think those two are always gonna be at the forefront, right? Financial services and healthcare. But what's been really top of mind is critical infrastructure, just making sure right? That our water, our power, our fuel, so many other parts of right, the ecosystem that go into making sure that, you know, we're keeping, you know, houses heated during the winter, for example, that people have fresh water. Those are extremely critical. And so that is really a massive area of focus for the industry right now. >>Can I come back to public-private partnerships? My question is relates to regulations because the public policy tends to be behind tech, the technology industry as an understatement. So when you take something like GDPR is the obvious example, but there are many, many others, data sovereignty, you can't move the data. Are are, are, is there tension between your desire as our desire as an industry to share data and government's desire to keep data private and restrict that data sharing? How is that playing out? How do you resolve that? >>Well I think there have been great strides right in each of those areas. So in terms of regulation when it comes to breaches there, you know, has been a tendency in the past to do victim shaming, right? And for organizations to not want to come forward because they're concerned about the monetary funds, right? I think there's been tremendous acceleration. You're seeing that everywhere from the fbi, from cisa, to really working very closely with organizations to, to have a true impact. So one example would be a ransomware attack that occurred. This was for a client of ours within the United States and we had a very close relationship with the FBI at that local field office and made a phone call. This was 7:00 AM Eastern time. And this was an organization that had this breach gone public, would've made worldwide news. There would've been a very big impact because it would've taken a lot of their systems offline. >>Within the 30 minutes that local FBI office was on site said, we just saw this piece of malware last week, we have a decryptor for it from another organization who shared it with us. Here you go. And within 60 minutes, every system was back up and running. Our teams were able to respond and get that disseminated quickly. So efforts like that, I think the government has made a tremendous amount of headway into improving relationships. Is there always gonna be some tension between, you know, competing, you know, organizations? Sure. But I think that we're doing a whole lot to progress it, >>But governments will make exceptions in that case. Especially for something as critical as the example that you just gave and be able to, you know, do a reach around, if you will, on, on onerous regulations that, that ne aren't helpful in that situation, but certainly do a lot of good in terms of protecting privacy. >>Well, and I think there used to be exceptions made typically only for national security elements, right? And now you're seeing that expanding much more so, which I think is also positive. Right. >>Last question for you as we are wrapping up time here. What can organizations really do to stay ahead of the curve when it comes to, to threat actors? We've got internal external threats. What can they really do to just be ahead of that curve? Is that possible? >>Well, it is now, it's not an easy task so I'm not gonna, you know, trivialize it. But I think that one, having relationships with right organizations in advance always a good thing. That's a, everything from certainly a commercial relationships, but also your peers, right? There's all kinds of fantastic industry spec specific information sharing organizations. I think the biggest thing that impacts is having education across your executive team and testing regularly, right? Having a plan in place, testing it. And it's not just the security pieces of it, right? As security responders, we live these attacks every day, but it's making sure that your general counsel and your head of operations and your CEO knows what to do. Your board of directors, do they know what to do when they receive a phone call from Bloomberg, for example? Are they supposed supposed to answer? Do your employees know that those kind of communications in advance and training can be really critical and make or break a difference in an attack. >>That's a great point about the testing but also the communication that it really needs to be company wide. Everyone at every level needs to know how to react. Wendy, it's been so great having, >>Wait one last question. Sure. Do you have a favorite superhero growing up? >>Ooh, it's gotta be Wonder Woman. Yeah, >>Yeah, okay. Yeah, so cuz I'm always curious, there's not a lot of women in, in security in cyber. How'd you get into it? And many cyber pros like wanna save the world? >>Yeah, no, that's a great question. So I joined the Air Force, you know, I, I was a special agent doing computer crime investigations and that was a great job. And I learned about that from, we had an alumni day and all these alumni came in from the university and they were in flight suits and combat gear. And there was one woman who had long blonde flowing hair and a black suit and high heels and she was carrying a gun. What did she do? Because that's what I wanted do. >>Awesome. Love it. We >>Blonde >>Wonder Woman. >>Exactly. Wonder Woman. Wendy, it's been so great having you on the program. We, we will definitely be following unit 42 and all the great stuff that you guys are doing. Keep up the good >>Work. Thanks so much Lisa. Thank >>You. Day our pleasure. For our guest and Dave Valante, I'm Lisa Martin, live in Las Vegas at MGM Grand for Palo Alto Ignite, 22. You're watching the Cube, the leader in live enterprise and emerging tech coverage.

Published Date : Dec 14 2022

SUMMARY :

The Cube presents Ignite 22, brought to you by Palo Alto One of the things that they have is unit Have you had a, it's, have you had a little bit more of that this holiday season? A lot of smishing going on. Wendy Whitmore is here, the SVP One of the things that I saw that you said in your keynote this morning or I love that you already highlighted Smishing, And of course we only hear about the big ones. the data and then threaten to post it on these leak sites, you know, I mean, if you get compromised like that, you really So the, you know, infrastructure, the servers, the systems that they're using to conduct these attacks from immediately stand one up, say, you know, hey it's, it's like an Amazon, you know, if you've ever had to return a or not so difficult is it for you to identify? One of the interesting things that I think is occurring, and I highlighted this this morning, days as much, or you know, because those are expensive to build, And, and is that an example of living off the land or is that B BRC four sort of a homegrown for Red teamers that are, you know, legitimately doing good work, but not great So you guys are getting a very broad picture of today's threat landscape. at Palo Alto Networks in terms of resilience, a few things, you know, can increase the cost to go go elsewhere, right? And so what we've really been concerned with, with is, you know, And I think if there's any silver lining to an otherwise very awful situation, I was gonna ask you about this cause I think, you know, 10 or so years ago, there was a lot of talk about that, but the industry, And you know, I have to give a whole lot of credit and mention sisa, like the fact that during log four But did you notice in the last couple of years, making sure that, you know, we're keeping, you know, houses heated during the winter, is the obvious example, but there are many, many others, data sovereignty, you can't move the data. of regulation when it comes to breaches there, you know, has been a tendency in the past to Is there always gonna be some tension between, you know, competing, you know, Especially for something as critical as the example that you just And now you're seeing that expanding much more so, which I think is also positive. Last question for you as we are wrapping up time here. Well, it is now, it's not an easy task so I'm not gonna, you know, That's a great point about the testing but also the communication that it really needs to be company wide. Wait one last question. Yeah, How'd you get into it? So I joined the Air Force, you know, I, I was a special agent doing computer We Wendy, it's been so great having you on the program. For our guest and Dave Valante, I'm Lisa Martin, live in Las Vegas at MGM

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave ValantePERSON

0.99+

Lisa MartinPERSON

0.99+

WendyPERSON

0.99+

2014DATE

0.99+

FBIORGANIZATION

0.99+

LisaPERSON

0.99+

InterpolORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

DavePERSON

0.99+

Cyber Threat AllianceORGANIZATION

0.99+

BloombergORGANIZATION

0.99+

two daysQUANTITY

0.99+

Cyber Safety Review BoardORGANIZATION

0.99+

Wendi WhitmorePERSON

0.99+

Las VegasLOCATION

0.99+

last yearDATE

0.99+

Wendy WhitmorePERSON

0.99+

20 yearsQUANTITY

0.99+

AmazonORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

last weekDATE

0.99+

United StatesLOCATION

0.99+

twoQUANTITY

0.99+

J C D CORGANIZATION

0.99+

Palo AltoORGANIZATION

0.99+

one womanQUANTITY

0.99+

CISAORGANIZATION

0.99+

todayDATE

0.99+

NetflixORGANIZATION

0.99+

first dayQUANTITY

0.99+

CrowdStrikeORGANIZATION

0.99+

Robert GatesPERSON

0.99+

a year agoDATE

0.99+

30 minutesQUANTITY

0.99+

XYZORGANIZATION

0.99+

VegasLOCATION

0.99+

zero daysQUANTITY

0.99+

over 200 organizationsQUANTITY

0.99+

Unit 42ORGANIZATION

0.99+

more than 35 organizationsQUANTITY

0.99+

ManiaORGANIZATION

0.99+

GitHubORGANIZATION

0.99+

IgniteORGANIZATION

0.98+

this yearDATE

0.98+

two weeks agoDATE

0.98+

oneQUANTITY

0.98+

MicrosoftORGANIZATION

0.98+

one exampleQUANTITY

0.98+

eachQUANTITY

0.98+

GDPRTITLE

0.98+

millionsQUANTITY

0.98+

zero dayQUANTITY

0.97+

2016DATE

0.97+

MGM GrandLOCATION

0.97+

OneQUANTITY

0.97+

UkraineLOCATION

0.96+

one last questionQUANTITY

0.96+

earlier this yearDATE

0.95+

60 minutesQUANTITY

0.95+

UkrainianOTHER

0.95+

unit 42OTHER

0.95+

one organizationQUANTITY

0.94+

fbiORGANIZATION

0.93+

IntelORGANIZATION

0.92+

RussiaORGANIZATION

0.92+

years agoDATE

0.92+

about 2,500 US dollarsQUANTITY

0.92+

once every 11 secondsQUANTITY

0.9+

10 or so years agoDATE

0.9+

this morningDATE

0.89+

HelloFresh v2


 

>>Hello. And we're here at the cube startup showcase made possible by a Ws. Thanks so much for joining us today. You know when Jim McDaid Ghani was formulating her ideas around data mesh, She wasn't the only one thinking about decentralized data architecture. Hello, Fresh was going into hyper growth mode and realized that in order to support its scale, it needed to rethink how it thought about data. Like many companies that started in the early part of last decade, Hello Fresh relied on a monolithic data architecture and the internal team. It had concerns about its ability to support continued innovation at high velocity. The company's data team began to think about the future and work backwards from a target architecture which possessed many principles of so called data mesh even though they didn't use that term. Specifically, the company is a strong example of an early but practical pioneer of data mission. Now there are many practitioners and stakeholders involved in evolving the company's data architecture, many of whom are listed here on this on the slide to are highlighted in red are joining us today, we're really excited to welcome into the cube Clements cheese, the Global Senior Director for Data at Hello Fresh and christoph Nevada who's the Global Senior Director of data also, of course. Hello Fresh folks. Welcome. Thanks so much for making some time today and sharing your story. >>Thank you very much. Hey >>steve. All right, let's start with Hello Fresh. You guys are number one in the world in your field, you deliver hundreds of millions of meals each year to many, many millions of people around the globe. You're scaling christoph. Tell us a little bit more about your company and its vision. >>Yeah. Should I start or Clements maybe maybe take over the first piece because Clements has actually been a longer trajectory yet have a fresh. >>Yeah go ahead. Climate change. I mean yes about approximately six years ago I joined handle fresh and I didn't think about the startup I was joining would eventually I. P. O. And just two years later and the freshman public and approximately three years and 10 months after. Hello fresh was listed on the German stock exchange which was just last week. Hello Fresh was included in the Ducks Germany's leading stock market index and debt to mind a great great milestone and I'm really looking forward and I'm very excited for the future for the future for head of fashion. All our data. Um the vision that we have is to become the world's leading food solution group and there's a lot of attractive opportunities. So recently we did lounge and expand Norway. This was in july and earlier this year we launched the U. S. Brand green >>chef in the U. K. As >>well. We're committed to launch continuously different geographies in the next coming years and have a strong pipe ahead of us with the acquisition of ready to eat companies like factor in the U. S. And the planned acquisition of you foods in Australia. We're diversifying our offer now reaching even more and more untapped customer segments and increase our total addressable market. So by offering customers and growing range of different alternatives to shop food and consumer meals. We are charging towards this vision and the school to become the world's leading integrated food solutions group. >>Love it. You guys are on a rocket ship, you're really transforming the industry and as you expand your tam it brings us to sort of the data as a as a core part of that strategy. So maybe you guys could talk a little bit about your journey as a company specifically as it relates to your data journey. You began as a start up. You had a basic architecture like everyone. You made extensive use of spreadsheets. You built a Hadoop based system that started to grow and when the company I. P. O. You really started to explode. So maybe describe that journey from a data perspective. >>Yes they saw Hello fresh by 2015 approximately had evolved what amount of classical centralized management set up. So we grew very organically over the years and there were a lot of very smart people around the globe. Really building the company and building our infrastructure. Um This also means that there were a small number of internal and external sources. Data sources and a centralized the I team with a number of people producing different reports, different dashboards and products for our executives for example of our different operations teams, christian company's performance and knowledge was transferred um just via talking to each other face to face conversations and the people in the data where's team were considered as the data wizard or as the E. T. L. Wizard. Very classical challenges. And those et al. Reserves indicated the kind of like a silent knowledge of data management. Right? Um so a central data whereas team then was responsible for different type of verticals and different domains, different geographies and all this setup gave us to the beginning the flexibility to grow fast as a company in 2015 >>christoph anything that might add to that. >>Yes. Um Not expected to that one but as as clement says it right, this was kind of set up that actually work for us quite a while. And then in 2017 when L. A. Freshman public, the company also grew rapidly and just to give you an idea how that looked like. As was that the tech department self actually increased from about 40 people to almost 300 engineers And the same way as a business units as Clemens has described, also grew sustainable, sustainably. So we continue to launch hello fresh and new countries launching brands like every plate and also acquired other brands like much of a factor and with that grows also from a data perspective the number of data requests that centrally we're getting become more and more and more and also more and more complex. So that for the team meant that they had a fairly high mental load. So they had to achieve a very or basically get a very deep understanding about the business. And also suffered a lot from this context switching back and forth, essentially there to prioritize across our product request from our physical product, digital product from the physical from sorry, from the marketing perspective and also from the central reporting uh teams. And in a nutshell this was very hard for these people. And this that also to a situation that, let's say the solution that we have became not really optimal. So in a nutshell, the central function became a bottleneck and slowdown of all the innovation of the company. >>It's a classic case, isn't it? I mean Clements, you see you see the central team becomes a bottleneck and so the lines of business, the marketing team salesman's okay, we're going to take things into our own hands. And then of course I I. T. And the technical team is called in later to clean up the mess. Uh maybe, I mean was that maybe I'm overstating it, but that's a common situation, isn't it? >>Yeah. Uh This is what exactly happened. Right. So um we had a bottleneck, we have the central teams, there was always a little of tension um analytics teams then started in this business domains like marketing, trade chain, finance, HR and so on. Started really to build their own data solutions at some point you have to get the ball rolling right and then continue the trajectory um which means then that the data pipelines didn't meet the engineering standards. And um there was an increased need for maintenance and support from central teams. Hence over time the knowledge about those pipelines and how to maintain a particular uh infrastructure for example left the company such that most of those data assets and data sets are turned into a huge step with decreasing data quality um also decrease the lack of trust, decreasing transparency. And this was increasing challenge where majority of time was spent in meeting rooms to align on on data quality for example. >>Yeah. And and the point you were making christoph about context switching and this is this is a point that Jemaah makes quite often is we've we've we've contextualized are operational systems like our sales systems, our marketing system but not our our data system. So you're asking the data team, Okay. Be an expert in sales, be an expert in marketing, be an expert in logistics, be an expert in supply chain and it start stop, start, stop, it's a paper cut environment and it's just not as productive. But but on the flip side of that is when you think about a centralized organization you think, hey this is going to be a very efficient way, a cross functional team to support the organization but it's not necessarily the highest velocity, most effective organizational structure. >>Yeah, so so I agree with that. Is that up to a certain scale, a centralized function has a lot of advantages, right? That's clear for everyone which would go to some kind of expert team. However, if you see that you actually would like to accelerate that and specific and this hyper growth, right, you wanna actually have autonomy and certain teams and move the teams or let's say the data to the experts in these teams and this, as you have mentioned, right, that increases mental load and you can either internally start splitting your team into a different kind of sub teams focusing on different areas. However, that is then again, just adding another peace where actually collaboration needs to happen busy external sees, so why not bridging that gap immediately and actually move these teams and to end into into the function themselves. So maybe just to continue what, what was Clements was saying and this is actually where over. So Clements, my journey started to become one joint journey. So Clements was coming actually from one of these teams to build their own solutions. I was basically having the platform team called database housed in these days and in 2019 where basically the situation become more and more serious, I would say so more and more people have recognized that this model doesn't really scale In 2019, basically the leadership of the company came together and I identified data as a key strategic asset and what we mean by that, that if we leverage data in a proper way, it gives us a unique competitive advantage which could help us to, to support and actually fully automated our decision making process across the entire value chain. So what we're, what we're trying to do now or what we should be aiming for is that Hello, Fresh is able to build data products that have a purpose. We're moving away from the idea. Data is just a by problem products, we have a purpose why we would like to collect this data. There's a clear business need behind that. And because it's so important to for the company as a business, we also want to provide them as a trust versi asset to the rest of the organization. We say there's the best customer experience, but at least in a way that users can easily discover, understand and security access high quality data. >>Yeah, so and and and Clements, when you c J Maxx writing, you see, you know, she has the four pillars and and the principles as practitioners you look at that say, okay, hey, that's pretty good thinking and then now we have to apply it and that's and that's where the devil meets the details. So it's the four, you know, the decentralized data ownership data as a product, which we'll talk about a little bit self serve, which you guys have spent a lot of time on inclement your wheelhouse which is which is governance and a Federated governance model. And it's almost like if you if you achieve the first two then you have to solve for the second to it almost creates a new challenges but maybe you could talk about that a little bit as to how it relates to Hello fresh. >>Yes. So christophe mentioned that we identified economic challenge beforehand and for how can we actually decentralized and actually empower the different colleagues of ours. This was more a we realized that it was more an organizational or a cultural change and this is something that somebody also mentioned I think thought words mentioned one of the white papers, it's more of a organizational or cultural impact and we kicked off a um faced reorganization or different phases we're currently and um in the middle of still but we kicked off different phases of organizational reconstruct oring reorganization, try unlock this data at scale. And the idea was really moving away from um ever growing complex matrix organizations or matrix setups and split between two different things. One is the value creation. So basically when people ask the question, what can we actually do, what shall we do? This is value creation and how, which is capability building and both are equal in authority. This actually then creates a high urge and collaboration and this collaboration breaks up the different silos that were built and of course this also includes different needs of stuffing forward teams stuffing with more, let's say data scientists or data engineers, data professionals into those business domains and hence also more capability building. Um Okay, >>go ahead. Sorry. >>So back to Tzemach did johnny. So we the idea also Then crossed over when she published her papers in May 2019 and we thought well The four colors that she described um we're around decentralized data ownership, product data as a product mindset, we have a self service infrastructure and as you mentioned, Federated confidential governance. And this suited very much with our thinking at that point of time to reorganize the different teams and this then leads to a not only organisational restructure but also in completely new approach of how we need to manage data, show data. >>Got it. Okay, so your business is is exploding. Your data team will have to become domain experts in too many areas, constantly contact switching as we said, people started to take things into their own hands. So again we said classic story but but you didn't let it get out of control and that's important. So we actually have a picture of kind of where you're going today and it's evolved into this Pat, if you could bring up the picture with the the elephant here we go. So I would talk a little bit about the architecture, doesn't show it here, the spreadsheet era but christoph maybe you can talk about that. It does show the Hadoop monolith which exists today. I think that's in a managed managed hosting service, but but you you preserve that piece of it, but if I understand it correctly, everything is evolving to the cloud, I think you're running a lot of this or all of it in A W. S. Uh you've got everybody's got their own data sources, uh you've got a data hub which I think is enabled by a master catalog for discovery and all this underlying technical infrastructure. That is really not the focus of this conversation today. But the key here, if I understand it correctly is these domains are autonomous and not only that this required technical thinking, but really supportive organizational mindset, which we're gonna talk about today. But christoph maybe you could address, you know, at a high level some of the architectural evolution that you guys went through. >>Yeah, sure. Yeah, maybe it's also a good summary about the entire history. So as you have mentioned, right, we started in the very beginning with the model is on the operation of playing right? Actually, it wasn't just one model is both to one for the back end and one for the for the front and and or analytical plane was essentially a couple of spreadsheets and I think there's nothing wrong with spreadsheets, right, allows you to store information, it allows you to transform data allows you to share this information. It allows you to visualize this data, but all the kind of that's not actually separating concern right? Everything in one tool. And this means that obviously not scalable, right? You reach the point where this kind of management set up in or data management of isn't one tool reached elements. So what we have started is we've created our data lake as we have seen here on Youtube. And this at the very beginning actually reflected very much our operational populace on top of that. We used impala is a data warehouse, but there was not really a distinction between borders, our data warehouse and borders our data like the impala was used as a kind of those as the kind of engine to create a warehouse and data like construct itself and this organic growth actually led to a situation as I think it's it's clear now that we had to centralized model is for all the domains that will really lose kimball modeling standards. There was no uniformity used actually build in house uh ways of building materialized use abuse that we have used for the presentation layer, there was a lot of duplication of effort and in the end essentially they were missing feedbacks, food, which helped us to to improve of what we are filled. So in the end, in the natural, as we have said, the lack of trust and that's basically what the starting point for us to understand. Okay, how can we move away and there are a lot of different things that you can discuss of apart from this organizational structure that we have said, okay, we have these three or four pillars from from Denmark. However, there's also the next extra question around how do we implement our talking about actual right, what are the implications on that level? And I think that is there's something that we are that we are currently still in progress. >>Got it. Okay, so I wonder if we could talk about switch gears a little bit and talk about the organizational and cultural challenges that you faced. What were those conversations like? Uh let's dig into that a little bit. I want to get into governance as well. >>The conversations on the cultural change. I mean yes, we went through a hyper growth for the last year since obviously there were a lot of new joiners, a lot of different, very, very smart people joining the company which then results that collaboration uh >>got a bit more difficult. Of course >>there are times and changes, you have different different artifacts that you were created um and documentation that were flying around. Um so we were we had to build the company from scratch right? Um Of course this then resulted always this tension which I described before, but the most important part here is that data has always been a very important factor at l a fresh and we collected >>more of this >>data and continued to improve use data to improve the different key areas of our business. >>Um even >>when organizational struggles, the central organizational struggles data somehow always helped us to go through this this kind of change. Right? Um in the end those decentralized teams in our local geography ease started with solutions that serve the business which was very very important otherwise wouldn't be at the place where we are today but they did by all late best practices and standards and I always used sport analogy Dave So like any sport, there are different rules and regulations that need to be followed. These rules are defined by calling the sports association and this is what you can think about data governance and compliance team. Now we add the players to it who need to follow those rules and bite by them. This is what we then called data management. Now we have the different players and professionals, they need to be trained and understand the strategy and it rules before they can play. And this is what I then called data literacy. So we realized that we need to focus on helping our teams to develop those capabilities and teach the standards for how work is being done to truly drive functional excellence in a different domains. And one of our mission of our data literacy program for example is to really empower >>every employee at hello >>fresh everyone to make the right data informs decisions by providing data education that scaled by royal Entry team. Then this can be different things, different things like including data capabilities, um, with the learning paths for example. Right? So help them to create and deploy data products connecting data producers and data consumers and create a common sense and more understanding of each other's dependencies, which is important, for example, S. S. L. O. State of contracts and etcetera. Um, people getting more of a sense of ownership and responsibility. Of course, we have to define what it means, what does ownership means? But the responsibility means. But we're teaching this to our colleagues via individual learning patterns and help them up skill to use. Also, there's shared infrastructure and those self self service applications and overall to summarize, we're still in this progress of of, of learning, we are still learning as well. So learning never stops the tele fish, but we are really trying this um, to make it as much fun as possible. And in the end we all know user behavior has changed through positive experience. Uh, so instead of having massive training programs over endless courses of workshops, um, leaving our new journalists and colleagues confused and overwhelmed. >>We're applying um, >>game ification, right? So split different levels of certification where our colleagues can access, have had access points, they can earn badges along the way, which then simplifies the process of learning and engagement of the users and this is what we see in surveys, for example, where our employees that your justification approach a lot and are even competing to collect Those learning path batteries to become the # one on the leader board. >>I love the game ification, we've seen it work so well and so many different industries, not the least of which is crypto so you've identified some of the process gaps uh that you, you saw it is gloss over them. Sometimes I say paved the cow path. You didn't try to force, in other words, a new architecture into the legacy processes. You really have to rethink your approach to data management. So what what did that entail? >>Um, to rethink the way of data management. 100%. So if I take the example of Revolution, Industrial Revolution or classical supply chain revolution, but just imagine that you have been riding a horse, for example, your whole life and suddenly you can operate a car or you suddenly receive just a complete new way of transporting assets from A to B. Um, so we needed to establish a new set of cross functional business processes to run faster, dry faster, um, more robustly and deliver data products which can be trusted and used by downstream processes and systems. Hence we had a subset of new standards and new procedures that would fall into the internal data governance and compliance sector with internal, I'm always referring to the data operations around new things like data catalog, how to identify >>ownership, >>how to change ownership, how to certify data assets, everything around classical software development, which we know apply to data. This this is similar to a new thinking, right? Um deployment, versioning, QA all the different things, ingestion policies, policing procedures, all the things that suffer. Development has been doing. We do it now with data as well. And in simple terms, it's a whole redesign of the supply chain of our data with new procedures and new processes and as a creation as management and as a consumption. >>So data has become kind of the new development kit. If you will um I want to shift gears and talk about the notion of data product and, and we have a slide uh that we pulled from your deck and I'd like to unpack it a little bit. Uh I'll just, if you can bring that up, I'll read it. A data product is a product whose primary objective is to leverage on data to solve customer problems where customers, both internal and external. So pretty straightforward. I know you've gone much deeper and you're thinking and into your organization, but how do you think about that And how do you determine for instance who owns what? How did you get everybody to agree? >>I can take that one. Um, maybe let me start with the data product. So I think um that's an ongoing debate. Right? And I think the debate itself is an important piece here, right? That visit the debate, you clarify what we actually mean by that product and what is actually the mindset. So I think just from a definition perspective, right? I think we find the common denominator that we say okay that our product is something which is important for the company has come to its value what you mean by that. Okay, it's it's a solution to a customer problem that delivers ideally maximum value to the business. And yes, it leverages the power of data and we have a couple of examples but it had a fresh year, the historical and classical ones around dashboards for example, to monitor or error rates but also more sophisticated ways for example to incorporate machine learning algorithms in our recipe recommendations. However, I think the important aspects of the data product is a there is an owner, right? There's someone accountable for making sure that the product that we are providing is actually served and is maintained and there are, there is someone who is making sure that this actually keeps the value of that problem thing combined with the idea of the proper documentation, like a product description, right that people understand how to use their bodies is about and related to that peace is the idea of it is a purpose. Right? You need to understand or ask ourselves, Okay, why does this thing exist does it provide the value that you think it does. That leads into a good understanding about the life cycle of the data product and life cycle what we mean? Okay from the beginning from the creation you need to have a good understanding, we need to collect feedback, we need to learn about that. We need to rework and actually finally also to think about okay benefits time to decommission piece. So overall, I think the core of the data product is product thinking 11 right that we start the point is the starting point needs to be the problem and not the solution and this is essentially what we have seen what was missing but brought us to this kind of data spaghetti that we have built there in in Russia, essentially we built at certain data assets, develop in isolation and continuously patch the solution just to fulfill these articles that we got and actually these aren't really understanding of the stakeholder needs and the interesting piece as a result in duplication of work and this is not just frustrating and probably not the most efficient way how the company should work. But also if I build the same that assets but slightly different assumption across the company and multiple teams that leads to data inconsistency and imagine the following too narrow you as a management for management perspective, you're asking basically a specific question and you get essentially from a couple of different teams, different kind of grass, different kind of data and numbers and in the end you do not know which ones to trust. So there's actually much more ambiguity and you do not know actually is a noise for times of observing or is it just actually is there actually a signal that I'm looking for? And the same is if I'm running in a B test right, I have a new future, I would like to understand what has it been the business impact of this feature. I run that specific source in an unfortunate scenario. Your production system is actually running on a different source. You see different numbers. What you've seen in a B test is actually not what you see then in production typical thing then is you're asking some analytics tend to actually do a deep dive to understand where the discrepancies are coming from. The worst case scenario. Again, there's a different kind of source. So in the end it's a pretty frustrating scenario and that's actually based of time of people that have to identify the root cause of this divergence. So in a nutshell, the highest degree of consistency is actually achieved that people are just reusing Dallas assets and also in the media talk that we have given right, we we start trying to establish this approach for a B testing. So we have a team but just providing or is kind of owning their target metric associated business teams and they're providing that as a product also to other services including the A B testing team, they'll be testing team can use this information defines an interface is okay I'm joining this information that the metadata of an experiment and in the end after the assignment after this data collection face, they can easily add a graph to the dashboard. Just group by the >>Beatles Hungarian. >>And we have seen that also in other companies. So it's not just a nice dream that we have right. I have actually worked in other companies where we worked on search and we established a complete KPI pipeline that was computing all this information. And this information was hosted by the team and it was used for everything A B test and deep dives and and regular reporting. So uh just one of the second the important piece now, why I'm coming back to that is that requires that we are treating this data as a product right? If you want to have multiple people using the things that I am owning and building, we have to provide this as a trust mercy asset and in a way that it's easy for people to discover and actually work with. >>Yeah. And coming back to that. So this is to me this is why I get so excited about data mesh because I really do think it's the right direction for organizations. When people hear data product they say well, what does that mean? Uh but then when you start to sort of define it as you did, it's it's using data to add value, that could be cutting costs, that could be generating revenue, it could be actually directly you're creating a product that you monetize, So it's sort of in the eyes of the beholder. But I think the other point that we've made is you made it earlier on to and again, context. So when you have a centralized data team and you have all these P NL managers a lot of times they'll question the data because they don't own it. They're like wait a minute. If they don't, if it doesn't agree with their agenda, they'll attack the data. But if they own the data then they're responsible for defending that and that is a mindset change, that's really important. Um And I'm curious uh is how you got to, you know, that ownership? Was it a was it a top down with somebody providing leadership? Was it more organic bottom up? Was it a sort of a combination? How do you decide who owned what in other words, you know, did you get, how did you get the business to take ownership of the data and what is owning? You know, the data actually mean? >>That's a very good question. Dave I think this is one of the pieces where I think we have a lot of learnings and basically if you ask me how we could start the feeling. I think that would be the first piece. Maybe we need to start to really think about how that should be approached if it stopped his ownership. Right? It means somehow that the team has a responsibility to host and self the data efforts to minimum acceptable standards. This minimum dependencies up and down string. The interesting piece has been looking backwards. What what's happening is that under that definition has actually process that we have to go through is not actually transferring ownership from the central team to the distributor teams. But actually most cases to establish ownership, I make this difference because saying we have to transfer ownership actually would erroneously suggests that the data set was owned before. But this platform team, yes, they had the capability to make the changes on data pipelines, but actually the analytics team, they're always the ones who had the business understands, you use cases and but no one actually, but it's actually expensive expected. So we had to go through this very lengthy process and establishing ownership. We have done that, as in the beginning, very naively. They have started, here's a document here, all the data assets, what is probably the nearest neighbor who can actually take care of that and then we we moved it over. But the problem here is that all these things is kind of technical debt, right? It's not really properly documented, pretty unstable. It was built in a very inconsistent over years and these people who have built this thing have already left the company. So there's actually not a nice thing that is that you want to see and people build up a certain resistance, e even if they have actually bought into this idea of domain ownership. So if you ask me these learnings, but what needs to happen as first, the company needs to really understand what our core business concept that they have, they need to have this mapping from. These are the core business concept that we have. These are the domain teams who are owning this concept and then actually link that to the to the assets and integrated better with both understanding how we can evolve actually, the data assets and new data build things new in the in this piece in the domain. But also how can we address reduction of technical death and stabilizing what we have already. >>Thank you for that christoph. So I want to turn a direction here and talk about governance and I know that's an area that's passionate, you're passionate about. Uh I pulled this slide from your deck, which I kind of messed up a little bit sorry for that, but but by the way, we're going to publish a link to the full video that you guys did. So we'll share that with folks. But it's one of the most challenging aspects of data mesh, if you're going to decentralize you, you quickly realize this could be the Wild West as we talked about all over again. So how are you approaching governance? There's a lot of items on this slide that are, you know, underscore the complexity, whether it's privacy, compliance etcetera. So, so how did you approach this? >>It's yeah, it's about connecting those dots. Right. So the aim of the data governance program is about the autonomy of every team was still ensuring that everybody has the right interoperability. So when we want to move from the Wild West riding horses to a civilised way of transport, um you can take the example of modern street traffic, like when all participants can manoeuvre independently and as long as they follow the same rules and standards, everybody can remain compatible with each other and understand and learn from each other so we can avoid car crashes. So when I go from country to country, I do understand what the street infrastructure means. How do I drive my car? I can also read the traffic lights in the different signals. Um, so likewise as a business and Hello Fresh, we do operate autonomously and consequently need to follow those external and internal rules and standards to set forth by the redistribution in which we operate so in order to prevent a car crash, we need to at least ensure compliance with regulations to account for society's and our customers increasing concern with data protection and privacy. So teaching and advocating this advantage, realizing this to everyone in the company um was a key community communication strategy and of course, I mean I mentioned data privacy external factors, the same goes for internal regulations and processes to help our colleagues to adapt to this very new environment. So when I mentioned before the new way of thinking the new way of um dealing and managing data, this of course implies that we need new processes and regulations for our colleagues as well. Um in a nutshell then this means the data governance provides a framework for managing our people the processes and technology and culture around our data traffic. And those components must come together in order to have this effective program providing at least a common denominator, especially critical for shared dataset, which we have across our different geographies managed and shared applications on shared infrastructure and applications and is then consumed by centralized processes um for example, master data, everything and all the metrics and KPI s which are also used for a central steering. Um it's a big change day. Right. And our ultimate goal is to have this noninvasive, Federated um ultimatum and computational governance and for that we can't just talk about it. We actually have to go deep and use case by use case and Qc buy PVC and generate learnings and learnings with the different teams. And this would be a classical approach of identifying the target structure, the target status, match it with the current status by identifying together with the business teams with the different domains have a risk assessment for example, to increase transparency because a lot of teams, they might not even know what kind of situation they might be. And this is where this training and this piece of illiteracy comes into place where we go in and trade based on the findings based on the most valuable use case um and based on that help our teams to do this change to increase um their capability just a little bit more and once they hand holding. But a lot of guidance >>can I kind of kind of trying to quickly David will allow me I mean there's there's a lot of governance piece but I think um that is important. And if you're talking about documentation for example, yes, we can go from team to team and tell these people how you have to document your data and data catalog or you have to establish data contracts and so on the force. But if you would like to build data products at scale following actual governance, we need to think about automation right. We need to think about a lot of things that we can learn from engineering before. And that starts with simple things like if we would like to build up trust in our data products, right, and actually want to apply the same rigor and the best practices that we know from engineering. There are things that we can do and we should probably think about what we can copy and one example might be. So the level of service level agreements, service level objectives. So that level indicators right, that represent on on an engineering level, right? If we're providing services there representing the promises we made to our customers or consumers, these are the internal objectives that help us to keep those promises. And actually these are the way of how we are tracking ourselves, how we are doing. And this is just one example of that thing. The Federated Governor governance comes into play right. In an ideal world, we should not just talk about data as a product but also data product. That's code that we say, okay, as most as much as possible. Right? Give the engineers the tool that they are familiar basis and actually not ask the product managers for example to document their data assets in the data catalog but make it part of the configuration. Have this as a, as a C D C I, a continuous delivery pipeline as we typically see another engineering task through and services we say, okay, there is configuration, we can think about pr I can think about data quality monitoring, we can think about um the ingestion data catalog and so on and forest, I think ideally in the data product will become of a certain templates that can be deployed and are actually rejected or verified at build time before we actually make them deploy them to production. >>Yeah, So it's like devoPS for data product um so I'm envisioning almost a three phase approach to governance and you kind of, it sounds like you're in early phases called phase zero where there's there's learning, there's literacy, there's training, education, there's kind of self governance and then there's some kind of oversight, some a lot of manual stuff going on and then you you're trying to process builders at this phase and then you codify it and then you can automate it. Is that fair? >>Yeah, I would rather think think about automation as early as possible in the way and yes, there needs to be certain rules but then actually start actually use case by use case. Is there anything that small piece that we can already automate? It's as possible. Roll that out and then actually extended step by step, >>is there a role though that adjudicates that? Is there a central Chief state officer who is responsible for making sure people are complying or is it how do you handle that? >>I mean from a from a from a platform perspective, yes, we have a centralized team to uh implement certain pieces they'll be saying are important and actually would like to implement. However, that is actually working very closely with the governance department. So it's Clements piece to understand and defy the policies that needs to be implemented. >>So Clements essentially it's it's your responsibility to make sure that the policy is being followed. And then as you were saying, christoph trying to compress the time to automation as fast as possible percent. >>So >>it's really it's uh >>what needs to be really clear that it's always a split effort, Right? So you can't just do one thing or the other thing, but everything really goes hand in hand because for the right automation for the right engineering tooling, we need to have the transparency first. Uh I mean code needs to be coded so we kind of need to operate on the same level with the right understanding. So there's actually two things that are important which is one its policies and guidelines, but not only that because more importantly or even well equally important to align with the end user and tech teams and engineering and really bridge between business value business teams and the engineering teams. >>Got it. So just a couple more questions because we gotta wrap I want to talk a little bit about the business outcome. I know it's hard to quantify and I'll talk about that in a moment but but major learnings, we've got some of the challenges that you cited. I'll just put them up here. We don't have to go detailed into this, but I just wanted to share with some folks. But my question, I mean this is the advice for your peers question if you had to do it differently if you had a do over or a Mulligan as we like to say for you golfers, what would you do differently? Yeah, >>I mean can we start with from a from the transformational challenge that understanding that it's also high load of cultural change. I think this is this is important that a particular communication strategy needs to be put into place and people really need to be um supported. Right? So it's not that we go in and say well we have to change towards data mesh but naturally it's in human nature, you know, we're kind of resistance to to change right? Her speech uncomfortable. So we need to take that away by training and by communicating um chris we're gonna add something to that >>and definitely I think the point that I have also made before right we need to acknowledge that data mesh is an architecture of scale, right? You're looking for something which is necessary by huge companies who are vulnerable, data productive scale. I mean Dave you mentioned it right, there are a lot of advantages to have a centralized team but at some point it may make sense to actually decentralized here and at this point right? If you think about data Mash, you have to recognize that you're not building something on a green field. And I think there's a big learning which is also reflected here on the slide is don't underestimate your baggage. It's typically you come to a point where the old model doesn't doesn't broke anymore and has had a fresh right? We lost our trust in our data and actually we have seen certain risks that we're slowing down our innovation so we triggered that this was triggering the need to actually change something. So this transition implies that you typically have a lot of technical debt accumulated over years and I think what we have learned is that potentially we have decentralized some assets to earlier, this is not actually taking into account the maturity of the team where we are actually distributed to and now we actually in the face of correcting pieces of that one. Right? But I think if you if you if you start from scratch you have to understand, okay, is are my team is actually ready for taking on this new uh, this news capabilities and you have to make sure that business decentralization, you build up these >>capabilities and the >>teams and as Clements has mentioned, right, make sure that you take the people on your journey. I think these are the pieces that also here, it comes with this knowledge gap, right? That we need to think about hiring and literacy the technical depth I just talked about and I think the last piece that I would add now which is not here on the flight deck is also from our perspective, we started on the analytical layer because that's kind of where things are exploding, right, this is the thing that people feel the pain but I think a lot of the efforts that we have started to actually modernize the current state uh, towards data product towards data Mash. We've understood that it always comes down basically to a proper shape of our operational plane and I think what needs to happen is is I think we got through a lot of pains but the learning here is this need to really be a commitment from the company that needs to happen and to act. >>I think that point that last point you made it so critical because I I hear a lot from the vendor community about how they're gonna make analytics better and that's that's not unimportant, but but through data product thinking and decentralized data organizations really have to operationalize in order to scale. So these decisions around data architecture an organization, their fundamental and lasting, it's not necessarily about an individual project are why they're gonna be project sub projects within this architecture. But the architectural decision itself is an organizational, its cultural and what's the best approach to support your business at scale. It really speaks to to to what you are, who you are as a company, how you operate and getting that right, as we've seen in the success of data driven driven companies is yields tremendous results. So I'll ask each of you to give give us your final thoughts and then we'll wrap maybe >>maybe it quickly, please. Yeah, maybe just just jumping on this piece that you have mentioned, right, the target architecture. If we talk about these pieces right, people often have this picture of mind like OK, there are different kind of stages, we have sources, we have actually ingestion layer, we have historical transformation presentation layer and then we're basically putting a lot of technology on top of that kind of our target architecture. However, I think what we really need to make sure is that we have these different kind of viewers, right? We need to understand what are actually the capabilities that we need in our new goals. How does it look and feel from the different kind of personas and experience view? And then finally, that should actually go to the to the target architecture from a technical perspective um maybe just to give an outlook but what we're what we're planning to do, how we want to move that forward. We have actually based on our strategy in the in the sense of we would like to increase that to maturity as a whole across the entire company and this is kind of a framework around the business strategy and it's breaking down into four pillars as well. People meaning the data, cultural, data literacy, data organizational structure and so on that. We're talking about governance as Clements has actually mentioned that, right, compliance, governance, data management and so on. You talk about technology and I think we could talk for hours for that one. It's around data platform, better science platform and then finally also about enablement through data, meaning we need to understand that a quality data accessibility and the science and data monetization. >>Great, thank you christophe clement. Once you bring us home give us your final thoughts. >>Can't can just agree with christoph that uh important is to understand what kind of maturity people have to understand what the maturity level, where the company where where people organization is and really understand what does kind of some kind of a change replies to that those four pillars for example, um what needs to be taken first and this is not very clear from the very first beginning of course them it's kind of like Greenfield you come up with must wins to come up with things that we really want to do out of theory and out of different white papers. Um only if you really start conducting the first initiatives you do understand. Okay, where we have to put the starts together and where do I missed out on one of those four different pillars? People, process technology and governance. Right? And then that kind of an integration. Doing step by step, small steps by small steps not boiling the ocean where you're capable ready to identify the gaps and see where either you can fill um the gaps are where you have to increase maturity first and train people or increase your text text, >>you know Hello Fresh is an excellent example of a company that is innovating. It was not born in Silicon Valley which I love. It's a global company. Uh and I gotta ask you guys, it seems like this is an amazing place to work you guys hiring? >>Yes, >>definitely. We do >>uh as many rights as was one of these aspects distributing. And actually we are hiring as an entire company specifically for data. I think there are a lot of open roles serious. Please visit or our page from better engineering, data, product management and Clemens has a lot of rules that you can speak about. But yes >>guys, thanks so much for sharing with the cube audience, your, your pioneers and we look forward to collaborations in the future to track progress and really want to thank you for your time. >>Thank you very much. Thank you very much. Dave >>thank you for watching the cubes startup showcase made possible by A W. S. This is Dave Volonte. We'll see you next time. >>Yeah.

Published Date : Sep 20 2021

SUMMARY :

and realized that in order to support its scale, it needed to rethink how it thought Thank you very much. You guys are number one in the world in your field, Clements has actually been a longer trajectory yet have a fresh. So recently we did lounge and expand Norway. ready to eat companies like factor in the U. S. And the planned acquisition of you foods in Australia. So maybe you guys could talk a little bit about your journey as a company specifically as So we grew very organically So that for the team becomes a bottleneck and so the lines of business, the marketing team salesman's okay, we're going to take things into our own Started really to build their own data solutions at some point you have to get the ball rolling But but on the flip side of that is when you think about a centralized organization say the data to the experts in these teams and this, as you have mentioned, right, that increases mental load look at that say, okay, hey, that's pretty good thinking and then now we have to apply it and that's And the idea was really moving away from um ever growing complex go ahead. we have a self service infrastructure and as you mentioned, the spreadsheet era but christoph maybe you can talk about that. So in the end, in the natural, as we have said, the lack of trust and that's and cultural challenges that you faced. The conversations on the cultural change. got a bit more difficult. there are times and changes, you have different different artifacts that you were created These rules are defined by calling the sports association and this is what you can think about So learning never stops the tele fish, but we are really trying this and this is what we see in surveys, for example, where our employees that your justification not the least of which is crypto so you've identified some of the process gaps uh So if I take the example of This this is similar to a new thinking, right? gears and talk about the notion of data product and, and we have a slide uh that we There's someone accountable for making sure that the product that we are providing is actually So it's not just a nice dream that we have right. So this is to me this is why I get so excited about data mesh because I really do the company needs to really understand what our core business concept that they have, they need to have this mapping from. to the full video that you guys did. in order to prevent a car crash, we need to at least ensure the promises we made to our customers or consumers, these are the internal objectives that help us to keep a three phase approach to governance and you kind of, it sounds like you're in early phases called phase zero where Is there anything that small piece that we can already automate? and defy the policies that needs to be implemented. that the policy is being followed. so we kind of need to operate on the same level with the right understanding. or a Mulligan as we like to say for you golfers, what would you do differently? So it's not that we go in and say So this transition implies that you typically have a lot of the company that needs to happen and to act. It really speaks to to to what you are, who you are as a company, how you operate and in the in the sense of we would like to increase that to maturity as a whole across the entire company and this is kind Once you bring us home give us your final thoughts. and see where either you can fill um the gaps are where you Uh and I gotta ask you guys, it seems like this is an amazing place to work you guys hiring? We do you can speak about. really want to thank you for your time. Thank you very much. thank you for watching the cubes startup showcase made possible by A W. S.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

2015DATE

0.99+

AustraliaLOCATION

0.99+

Dave VolontePERSON

0.99+

May 2019DATE

0.99+

2017DATE

0.99+

2019DATE

0.99+

threeQUANTITY

0.99+

Hello FreshORGANIZATION

0.99+

RussiaLOCATION

0.99+

DavidPERSON

0.99+

Silicon ValleyLOCATION

0.99+

100%QUANTITY

0.99+

julyDATE

0.99+

DenmarkLOCATION

0.99+

ClementsPERSON

0.99+

Jim McDaid GhaniPERSON

0.99+

U. S.LOCATION

0.99+

christophePERSON

0.99+

two years laterDATE

0.99+

last yearDATE

0.99+

first pieceQUANTITY

0.99+

one exampleQUANTITY

0.99+

ClementsORGANIZATION

0.99+

stevePERSON

0.99+

last weekDATE

0.99+

BeatlesORGANIZATION

0.99+

OneQUANTITY

0.99+

oneQUANTITY

0.99+

one toolQUANTITY

0.98+

two thingsQUANTITY

0.98+

NorwayLOCATION

0.98+

secondQUANTITY

0.98+

bothQUANTITY

0.98+

fourQUANTITY

0.98+

christophPERSON

0.98+

todayDATE

0.98+

first twoQUANTITY

0.98+

hundreds of millions of mealsQUANTITY

0.98+

one modelQUANTITY

0.98+

four colorsQUANTITY

0.97+

four pillarsQUANTITY

0.97+

firstQUANTITY

0.97+

first initiativesQUANTITY

0.97+

earlier this yearDATE

0.97+

JemaahPERSON

0.97+

eachQUANTITY

0.96+

handle freshORGANIZATION

0.96+

U. K.LOCATION

0.95+

DallasLOCATION

0.95+

christoph NevadaPERSON

0.95+

johnnyPERSON

0.95+

Wild WestLOCATION

0.94+

YoutubeORGANIZATION

0.94+

christophe clementPERSON

0.94+

four different pillarsQUANTITY

0.94+

about 40 peopleQUANTITY

0.93+

each yearQUANTITY

0.93+

A W. S.PERSON

0.92+

two different thingsQUANTITY

0.92+

Hello freshORGANIZATION

0.92+

millions of peopleQUANTITY

0.91+