Image Title

Search Results for Hannah Freitag:

TheCUBE Insights | WiDS 2023


 

(energetic music) >> Everyone, welcome back to theCUBE's coverage of WiDS 2023. This is the eighth annual Women in Data Science Conference. As you know, WiDS is not just a conference or an event, it's a movement. This is going to include over 100,000 people in the next year WiDS 2023 in 200-plus countries. It is such a powerful movement. If you've had a chance to be part of the Livestream or even be here in person with us at Stanford University, you know what I'm talking about. This is Lisa Martin. I have had the pleasure all day of working with two fantastic graduate students in Stanford's Data Journalism Master's Program. Hannah Freitag has been here. Tracy Zhang, ladies, it's been such a pleasure working with you today. >> Same wise. >> I want to ask you both what are, as we wrap the day, I'm so inspired, I feel like I could go build an airplane. >> Exactly. >> Probably can't. But WiDS is just the inspiration that comes from this event. When you walk in the front door, you can feel it. >> Mm-hmm. >> Tracy, talk a little bit about what some of the things are that you heard today that really inspired you. >> I think one of the keyword that's like in my mind right now is like finding a mentor. >> Yeah. >> And I think, like if I leave this conference if I leave the talks, the conversations with one thing is that I'm very positive that if I want to switch, say someday, from Journalism to being a Data Analyst, to being like in Data Science, I'm sure that there are great role models for me to look up to, and I'm sure there are like mentors who can guide me through the way. So, like that, I feel reassured for some reason. >> It's a good feeling, isn't it? What do you, Hannah, what about you? What's your takeaway so far of the day? >> Yeah, one of my key takeaways is that anything's possible. >> Mm-hmm. >> So, if you have your vision, you have the role model, someone you look up to, and even if you have like a different background, not in Data Science, Data Engineering, or Computer Science but you're like, "Wow, this is really inspiring. I would love to do that." As long as you love it, you're passionate about it, and you are willing to, you know, take this path even though it won't be easy. >> Yeah. >> Then you can achieve it, and as you said, Tracy, it's important to have mentors on the way there. >> Exactly. >> But as long as you speak up, you know, you raise your voice, you ask questions, and you're curious, you can make it. >> Yeah. >> And I think that's one of my key takeaways, and I was just so inspiring to hear like all these women speaking on stage, and also here in our conversations and learning about their, you know, career path and what they learned on their way. >> Yeah, you bring up curiosity, and I think that is such an important skill. >> Mm-hmm. >> You know, you could think of Data Science and think about all the hard skills that you need. >> Mm, like coding. >> But as some of our guests said today, you don't have to be a statistician or an engineer, or a developer to get into this. Data Science applies to every facet of every part of the world. >> Mm-hmm. >> Finances, marketing, retail, manufacturing, healthcare, you name it, Data Science has the power and the potential to unlock massive achievements. >> Exactly. >> It's like we're scratching the surface. >> Yeah. >> But that curiosity, I think, is a great skill to bring to anything that you do. >> Mm-hmm. >> And I think we... For the female leaders that we're on stage, and that we had a chance to talk to on theCUBE today, I think they all probably had that I think as a common denominator. >> Exactly. >> That curious mindset, and also something that I think as hard is the courage to raise your hand. I like this, I'm interested in this. I don't see anybody that looks like me. >> But that doesn't mean I shouldn't do it. >> Exactly. >> Exactly, in addition to the curiosity that all the women, you know, bring to the table is that, in addition to that, being optimistic, and even though we don't see gender equality or like general equality in companies yet, we make progress and we're optimistic about it, and we're not like negative and complaining the whole time. But you know, this positive attitude towards a trend that is going in the right direction, and even though there's still a lot to be done- >> Exactly. >> We're moving it that way. >> Right. >> Being optimistic about this. >> Yeah, exactly, like even if it means that it's hard. Even if it means you need to be your own role model it's still like worth a try. And I think they, like all of the great women speakers, all the female leaders, they all have that in them, like they have the courage to like raise their hand and be like, "I want to do this, and I'm going to make it." And they're role models right now, so- >> Absolutely, they have drive. >> They do. >> Right. They have that ambition to take something that's challenging and complicated, and help abstract end users from that. Like we were talking to Intuit. I use Intuit in my small business for financial management, and she was talking about how they can from a machine learning standpoint, pull all this data off of documents that you upload and make that, abstract that, all that complexity from the end user, make something that's painful taxes. >> Mm-hmm. >> Maybe slightly less painful. It's still painful when you have to go, "Do I have to write you a check again?" >> Yeah. (laughs) >> Okay. >> But talking about just all the different applications of Data Science in the world, I found that to be very inspiring and really eye-opening. >> Definitely. >> I hadn't thought about, you know, we talk about climate change all the time, especially here in California, but I never thought about Data Science as a facilitator of the experts being able to make sense of what's going on historically and in real-time, or the application of Data Science in police violence. We see far too many cases of police violence on the news. It's an epidemic that's a horrible problem. Data Science can be applied to that to help us learn from that, and hopefully, start moving the needle in the right direction. >> Absolutely. >> Exactly. >> And especially like one sentence from Guitry from the very beginnings I still have in my mind is then when she said that arguments, no, that data beats arguments. >> Yes. >> In a conversation that if you be like, okay, I have this data set and it can actually show you this or that, it's much more powerful than just like being, okay, this is my position or opinion on this. And I think in a world where increasing like misinformation, and sometimes, censorship as we heard in one of the talks, it's so important to have like data, reliable data, but also acknowledge, and we talked about it with one of our interviewees that there's spices in data and we also need to be aware of this, and how to, you know, move this forward and use Data Science for social good. >> Mm-hmm. >> Yeah, for social good. >> Yeah, definitely, I think they like data, and the question about, or like the problem-solving part about like the social issues, or like some just questions, they definitely go hand-in-hand. Like either of them standing alone won't be anything that's going to be having an impact, but combining them together, you have a data set that illustrate a point or like solves the problem. I think, yeah, that's definitely like where Data Set Science is headed to, and I'm glad to see all these great women like making their impact and combining those two aspects together. >> It was interesting in the keynote this morning. We were all there when Margot Gerritsen who's one of the founders of WiDS, and Margot's been on the program before and she's a huge supporter of what we do and vice versa. She asked the non-women in the room, "Those who don't identify as women, stand up," and there was a handful of men, and she said, "That's what it's like to be a female in technology." >> Oh, my God. >> And I thought that vision give me goosebumps. >> Powerful. (laughs) >> Very powerful. But she's right, and one of the things I think that thematically another common denominator that I think we heard, I want to get your opinions as well from our conversations today, is the importance of community. >> Mm-hmm. >> You know, I was mentioning this stuff from AnitaB.org that showed that in 2022, the percentage of females and technical roles is 27.6%. It's a little bit of an increase. It's been hovering around 25% for a while. But one of the things that's still a problem is attrition. It doubled last year. >> Right. >> And I was asking some of the guests, and we've all done that today, "How would you advise companies to start moving the needle down on attrition?" >> Mm-hmm. >> And I think the common theme was network, community. >> Exactly. >> It takes a village like this. >> Mm-hmm. >> So you can see what you can be to help start moving that needle and that's, I think, what underscores the value of what WiDS delivers, and what we're able to showcase on theCUBE. >> Yeah, absolutely. >> I think it's very important to like if you're like a woman in tech to be able to know that there's someone for you, that there's a whole community you can rely on, and that like you are, you have the same mindset, you're working towards the same goal. And it's just reassuring and like it feels very nice and warm to have all these women for you. >> Lisa: It's definitely a warm fuzzy, isn't it? >> Yeah, and both the community within the workplace but also outside, like a network of family and friends who support you to- >> Yes. >> To pursue your career goals. I think that was also a common theme we heard that it's, yeah, necessary to both have, you know your community within your company or organization you're working but also outside. >> Definitely, I think that's also like how, why, the reason why we feel like this in like at WiDS, like I think we all feel very positive right now. So, yeah, I think that's like the power of the connection and the community, yeah. >> And the nice thing is this is like I said, WiDS is a movement. >> Yes. >> This is global. >> Mm-hmm. >> We've had some WiDS ambassadors on the program who started WiDS and Tel Aviv, for example, in their small communities. Or in Singapore and Mumbai that are bringing it here and becoming more of a visible part of the community. >> Tracy: Right. >> I loved seeing all the young faces when we walked in the keynote this morning. You know, we come here from a journalistic perspective. You guys are Journalism students. But seeing all the potential in the faces in that room just seeing, and hearing stories, and starting to make tangible connections between Facebook and data, and the end user and the perspectives, and the privacy and the responsibility of AI is all... They're all positive messages that need to be reinforced, and we need to have more platforms like this to be able to not just raise awareness, but sustain it. >> Exactly. >> Right. It's about the long-term, it's about how do we dial down that attrition, what can we do? What can we do? How can we help? >> Mm-hmm. >> Both awareness, but also giving women like a place where they can connect, you know, also outside of conferences. Okay, how do we make this like a long-term thing? So, I think WiDS is a great way to, you know, encourage this connectivity and these women teaming up. >> Yeah, (chuckles) girls help girls. >> Yeah. (laughs) >> It's true. There's a lot of organizations out there, girls who Code, Girls Inc., et cetera, that are all aimed at helping women kind of find their, I think, find their voice. >> Exactly. >> And find that curiosity. >> Yeah. Unlock that somewhere back there. Get some courage- >> Mm-hmm. >> To raise your hand and say, "I think I want to do this," or "I have a question. You explained something and I didn't understand it." Like, that's the advice I would always give to my younger self is never be afraid to raise your hand in a meeting. >> Mm-hmm. >> I guarantee you half the people weren't listening or, and the other half may not have understood what was being talked about. >> Exactly. >> So, raise your hand, there goes Margot Gerritsen, the founder of WiDS, hey, Margot. >> Hi. >> Keep alumni as you know, raise your hand, ask the question, there's no question that's stupid. >> Mm-hmm. >> And I promise you, if you just take that chance once it will open up so many doors, you won't even know which door to go in because there's so many that are opening. >> And if you have a question, there's at least one more person in the room who has the exact same question. >> Exact same question. >> Yeah, we'll definitely keep that in mind as students- >> Well, I'm curious how Data Journalism, what you heard today, Tracy, we'll start with you, and then, Hannah, to you. >> Mm-hmm. How has it influenced how you approach data-driven, and storytelling? Has it inspired you? I imagine it has, or has it given you any new ideas for, as you round out your Master's Program in the next few months? >> I think like one keyword that I found really helpful from like all the conversations today, was problem-solving. >> Yeah. >> Because I think, like we talked a lot about in our program about how to put a face on data sets. How to put a face, put a name on a story that's like coming from like big data, a lot of numbers but you need to like narrow it down to like one person or one anecdote that represents a bigger problem. And I think essentially that's problem-solving. That's like there is a community, there is like say maybe even just one person who has, well, some problem about something, and then we're using data. We're, by giving them a voice, by portraying them in news and like representing them in the media, we're solving this problem somehow. We're at least trying to solve this problem, trying to make some impact. And I think that's like what Data Science is about, is problem-solving, and, yeah, I think I heard a lot from today's conversation, also today's speakers. So, yeah, I think that's like something we should also think about as Journalists when we do pitches or like what kind of problem are we solving? >> I love that. >> Or like kind of what community are we trying to make an impact in? >> Yes. >> Absolutely. Yeah, I think one of the main learnings for me that I want to apply like to my career in Data Journalism is that I don't shy away from complexity because like Data Science is oftentimes very complex. >> Complex. >> And also data, you're using for your stories is complex. >> Mm-hmm. >> So, how can we, on the one hand, reduce complexity in a way that we make it accessible for broader audience? 'Cause, we don't want to be this like tech bubble talking in data jargon, we want to, you know, make it accessible for a broader audience. >> Yeah. >> I think that's like my purpose as a Data Journalist. But at the same time, don't reduce complexity when it's needed, you know, and be open to dive into new topics, and data sets and circling back to this of like raising your hand and asking questions if you don't understand like a certain part. >> Yeah. >> So, that's definitely a main learning from this conference. >> Definitely. >> That like, people are willing to talk to you and explain complex topics, and this will definitely facilitate your work as a Data Journalist. >> Mm-hmm. >> So, that inspired me. >> Well, I can't wait to see where you guys go from here. I've loved co-hosting with you today, thank you. >> Thank you. >> For joining me at our conference. >> Wasn't it fun? >> Thank you. >> It's a great event. It's, we, I think we've all been very inspired and I'm going to leave here probably floating above the ground a few inches, high on the inspiration of what this community can deliver, isn't that great? >> It feels great, I don't know, I just feel great. >> Me too. (laughs) >> So much good energy, positive energy, we love it. >> Yeah, so we want to thank all the organizers of WiDS, Judy Logan, Margot Gerritsen in particular. We also want to thank John Furrier who is here. And if you know Johnny, know he gets FOMO when he is not hosting. But John and Dave Vellante are such great supporters of women in technology, women in technical roles. We wouldn't be here without them. So, shout out to my bosses. Thank you for giving me the keys to theCube at this event. I know it's painful sometimes, but we hope that we brought you great stories all day. We hope we inspired you with the females and the one male that we had on the program today in terms of raise your hand, ask a question, be curious, don't be afraid to pursue what you're interested in. That's my soapbox moment for now. So, for my co-host, I'm Lisa Martin, we want to thank you so much for watching our program today. You can watch all of this on-demand on thecube.net. You'll find write-ups on siliconeangle.com, and, of course, YouTube. Thanks, everyone, stay safe and we'll see you next time. (energetic music)

Published Date : Mar 8 2023

SUMMARY :

I have had the pleasure all day of working I want to ask you both But WiDS is just the inspiration that you heard today I think one of the keyword if I leave the talks, is that anything's possible. and even if you have like mentors on the way there. you know, you raise your And I think that's one Yeah, you bring up curiosity, the hard skills that you need. of the world. and the potential to unlock bring to anything that you do. and that we had a chance to I don't see anybody that looks like me. But that doesn't all the women, you know, of the great women speakers, documents that you upload "Do I have to write you a check again?" I found that to be very of the experts being able to make sense from the very beginnings and how to, you know, move this and the question about, or of the founders of WiDS, and And I thought (laughs) of the things I think But one of the things that's And I think the common like this. So you can see what you and that like you are, to both have, you know and the community, yeah. And the nice thing and becoming more of a and the privacy and the It's about the long-term, great way to, you know, et cetera, that are all aimed Unlock that somewhere back there. Like, that's the advice and the other half may not have understood the founder of WiDS, hey, Margot. ask the question, there's if you just take that And if you have a question, and then, Hannah, to you. as you round out your Master's Program from like all the conversations of numbers but you need that I want to apply like to And also data, you're using you know, make it accessible But at the same time, a main learning from this conference. people are willing to talk to you with you today, thank you. at our conference. and I'm going to leave know, I just feel great. (laughs) positive energy, we love it. that we brought you great stories all day.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

JohnnyPERSON

0.99+

Lisa MartinPERSON

0.99+

Lisa MartinPERSON

0.99+

Hannah FreitagPERSON

0.99+

MargotPERSON

0.99+

Tracy ZhangPERSON

0.99+

Dave VellantePERSON

0.99+

LisaPERSON

0.99+

Margot GerritsenPERSON

0.99+

SingaporeLOCATION

0.99+

CaliforniaLOCATION

0.99+

John FurrierPERSON

0.99+

TracyPERSON

0.99+

HannahPERSON

0.99+

Judy LoganPERSON

0.99+

27.6%QUANTITY

0.99+

Margot GerritsenPERSON

0.99+

2022DATE

0.99+

CodeORGANIZATION

0.99+

MumbaiLOCATION

0.99+

last yearDATE

0.99+

FacebookORGANIZATION

0.99+

todayDATE

0.99+

siliconeangle.comOTHER

0.99+

WiDSORGANIZATION

0.99+

two aspectsQUANTITY

0.99+

GuitryPERSON

0.98+

bothQUANTITY

0.98+

WiDSEVENT

0.98+

oneQUANTITY

0.98+

thecube.netOTHER

0.98+

BothQUANTITY

0.98+

over 100,000 peopleQUANTITY

0.98+

WiDS 2023EVENT

0.98+

one keywordQUANTITY

0.98+

next yearDATE

0.98+

200-plus countriesQUANTITY

0.98+

one sentenceQUANTITY

0.98+

IntuitORGANIZATION

0.97+

Girls Inc.ORGANIZATION

0.97+

YouTubeORGANIZATION

0.96+

one personQUANTITY

0.95+

two fantastic graduate studentsQUANTITY

0.95+

Stanford UniversityORGANIZATION

0.94+

Women in Data Science ConferenceEVENT

0.94+

around 25%QUANTITY

0.93+

StanfordORGANIZATION

0.93+

this morningDATE

0.92+

theCUBEORGANIZATION

0.88+

half the peopleQUANTITY

0.87+

Data Journalism Master's ProgramTITLE

0.86+

one thingQUANTITY

0.85+

eighth annualQUANTITY

0.83+

at least one more personQUANTITY

0.8+

next few monthsDATE

0.78+

halfQUANTITY

0.74+

one anecdoteQUANTITY

0.73+

AnitaB.orgOTHER

0.71+

key takeawaysQUANTITY

0.71+

TheCUBEORGANIZATION

0.71+

Shir Meir Lador, Intuit | WiDS 2023


 

(gentle upbeat music) >> Hey, friends of theCUBE. It's Lisa Martin live at Stanford University covering the Eighth Annual Women In Data Science. But you've been a Cube fan for a long time. So you know that we've been here since the beginning of WiDS, which is 2015. We always loved to come and cover this event. We learned great things about data science, about women leaders, underrepresented minorities. And this year we have a special component. We've got two grad students from Stanford's Master's program and Data Journalism joining. One of my them is here with me, Hannah Freitag, my co-host. Great to have you. And we are pleased to welcome from Intuit for the first time, Shir Meir Lador Group Manager at Data Science. Shir, it's great to have you. Thank you for joining us. >> Thank you for having me. >> And I was just secrets girl talking with my boss of theCUBE who informed me that you're in great company. Intuit's Chief Technology Officer, Marianna Tessel is an alumni of theCUBE. She was on at our Supercloud event in January. So welcome back into it. >> Thank you very much. We're happy to be with you. >> Tell us a little bit about what you're doing. You're a data science group manager as I mentioned, but also you've had you've done some cool things I want to share with the audience. You're the co-founder of the PyData Tel Aviv Meetups the co-host of the unsupervised podcast about data science in Israel. You give talks, about machine learning, about data science. Tell us a little bit about your background. Were you always interested in STEM studies from the time you were small? >> So I was always interested in mathematics when I was small, I went to this special program for youth going to university. So I did my test in mathematics earlier and studied in university some courses. And that's when I understood I want to do something in that field. And then when I got to go to university, I went to electrical engineering when I found out about algorithms and how interested it is to be able to find solutions to problems, to difficult problems with math. And this is how I found my way into machine learning. >> Very cool. There's so much, we love talking about machine learning and AI on theCUBE. There's so much potential. Of course, we have to have data. One of the things that I love about WiDS and Hannah and I and our co-host Tracy, have been talking about this all day is the impact of data in everyone's life. If you break it down, I was at Mobile World Congress last week, all about connectivity telecom, and of course we have these expectation that we're going to be connected 24/7 from wherever we are in the world and we can do whatever we want. I can do an Uber transaction, I can watch Netflix, I can do a bank transaction. It all is powered by data. And data science is, some of the great applications of it is what it's being applied to. Things like climate change or police violence or health inequities. Talk about some of the data science projects that you're working on at Intuit. I'm an intuit user myself, but talk to me about some of those things. Give the audience really a feel for what you're doing. >> So if you are a Intuit product user, you probably use TurboTax. >> I do >> In the past. So for those who are not familiar, TurboTax help customers submit their taxes. Basically my group is in charge of getting all the information automatically from your documents, the documents that you upload to TurboTax. We extract that information to accelerate your tax submission to make it less work for our customers. So- >> Thank you. >> Yeah, and this is why I'm so proud to be working at this team because our focus is really to help our customers to simplify all the you know, financial heavy lifting with taxes and also with small businesses. We also do a lot of work in extracting information from small business documents like bill, receipts, different bank statements. Yeah, so this is really exciting for me, the opportunity to work to apply data science and machine learning to solution that actually help people. Yeah >> Yeah, in the past years there have been more and more digital products emerging that needs some sort of data security. And how did your team, or has your team developed in the past years with more and more products or companies offering digital services? >> Yeah, so can you clarify the question again? Sorry. >> Yeah, have you seen that you have more customers? Like has your team expanded in the past years with more digital companies starting that need kind of data security? >> Well, definitely. I think, you know, since I joined Intuit, I joined like five and a half years ago back when I was in Tel Aviv. I recently moved to the Bay Area. So when I joined, there were like a dozens of data scientists and machine learning engineers on Intuit. And now there are a few hundreds. So we've definitely grown with the year and there are so many new places we can apply machine learning to help our customers. So this is amazing, so much we can do with machine learning to get more money in the pocket of our customers and make them do less work. >> I like both of those. More money in my pocket and less work. That's awesome. >> Exactly. >> So keep going Intuit. But one of the things that is so cool is just the the abstraction of the complexity that Intuit's doing. I upload documents or it scans my receipts. I was just in Barcelona last week all these receipts and conversion euros to dollars and it takes that complexity away from the end user who doesn't know all that's going on in the background, but you're making people's lives simpler. Unfortunately, we all have to pay taxes, most of us should. And of course we're in tax season right now. And so it's really cool what you're doing with ML and data science to make fundamental processes to people's lives easier and just a little bit less complicated. >> Definitely. And I think that's what's also really amazing about Intuit it, is how it combines human in the loop as well as AI. Because in some of the tax situation it's very complicated maybe to do it yourself. And then there's an option to work with an expert online that goes on a video with you and helps you do your taxes. And the expert's work is also accelerated by AI because we build tools for those experts to do the work more efficiently. >> And that's what it's all about is you know, using data to be more efficient, to be faster, to be smarter, but also to make complicated processes in our daily lives, in our business lives just a little bit easier. One of the things I've been geeking out about recently is ChatGPT. I was using it yesterday. I was telling everyone I was asking it what's hot in data science and I didn't know would it know what hot is and it did, it gave me trends. But one of the things that I was so, and Hannah knows I've been telling this all day, I was so excited to learn over the weekend that the the CTO of OpenAI is a female. I didn't know that. And I thought why are we not putting her on a pedestal? Because people are likening ChatGPT to like the launch of the iPhone. I mean revolutionary. And here we have what I think is exciting for all of us females, whether you're in tech or not, is another role model. Because really ultimately what WiDS is great at doing is showcasing women in technical roles. Because I always say you can't be what you can't see. We need to be able to see more role models, female role role models, underrepresented minorities of course men, because a lot of my sponsors and mentors are men, but we need more women that we can look up to and see ah, she's doing this, why can't I? Talk to me about how you stay the course in data science. What excites you about the potential, the opportunities based on what you've already accomplished what inspires you to continue and be one of those females that we say oh my God, I could be like Shir. >> I think that what inspires me the most is the endless opportunities that we have. I think we haven't even started tapping into everything that we can do with generative AI, for example. There's so much that can be done to further help you know, people make more money and do less work because there's still so much work that we do that we don't need to. You know, this is with Intuit, but also there are so many other use cases like I heard today you know, with the talk about the police. So that was really exciting how you can apply machine learning and data to actually help people, to help people that been through wrongful things. So I was really moved by that. And I'm also really excited about all the medical applications that we can have with data. >> Yeah, yeah. It's true that data science is so diverse in terms of what fields it can cover but it's equally important to have diverse teams and have like equity and inclusion in your teams. Where is Intuit at promoting women, non-binary minorities in your teams to progress data science? >> Yeah, so I have so much to say on this. >> Good. >> But in my work in Tel Aviv, I had the opportunity to start with Intuit women in data science branch in Tel Aviv. So that's why I'm super excited to be here today for that because basically this is the original conference, but as you know, there are branches all over the world and I got the opportunity to lead the Tel Aviv branch with Israel since 2018. And we've been through already this year it's going to be it's next week, it's going to be the sixth conference. And every year our number of submission to make talk in the conference doubled itself. >> Nice. >> We started with 20 submission, then 50, then 100. This year we have over 200 submissions of females to give talk at the conference. >> Ah, that's fantastic. >> And beyond the fact that there's so much traction, I also feel the great impact it has on the community in Israel because one of the reason we started WiDS was that when I was going to conferences I was seeing so little women on stage in all the technical conferences. You know, kind of the reason why I guess you know, Margaret and team started the WiDS conference. So I saw the same thing in Israel and I was always frustrated. I was organizing PyData Meetups as you mentioned and I was always having such a hard time to get female speakers to talk. I was trying to role model, but that's not enough, you know. We need more. So once we started WiDS and people saw you know, so many examples on the stage and also you know females got opportunity to talk in a place for that. Then it also started spreading and you can see more and more female speakers across other conferences, which are not women in data science. So I think just the fact that Intuits started this conference back in Israel and also in Bangalore and also the support Intuit does for WiDS in Stanford here, it shows how much WiDS values are aligned with our values. Yeah, and I think that to chauffeur that I think we have over 35% females in the data science and machine learning engineering roles, which is pretty amazing I think compared to the industry. >> Way above average. Yeah, absolutely. I was just, we've been talking about some of the AnitaB.org stats from 2022 showing that 'cause usually if we look at the industry to you point, over the last, I don't know, probably five, 10 years we're seeing the number of female technologists around like a quarter, 25% or so. 2022 data from AnitaB.org showed that that number is now 27.6%. So it's very slowly- >> It's very slowly increasing. >> Going in the right direction. >> Too slow. >> And that representation of women technologists increase at every level, except intern, which I thought was really interesting. And I wonder is there a covid relation there? >> I don't know. >> What do we need to do to start opening up the the top of the pipeline, the funnel to go downstream to find kids like you when you were younger and always interested in engineering and things like that. But the good news is that the hiring we've seen improvements, but it sounds like Intuit is way ahead of the curve there with 35% women in data science or technical roles. And what's always nice and refreshing that we've talked, Hannah about this too is seeing companies actually put action into initiatives. It's one thing for a company to say we're going to have you know, 50% females in our organization by 2030. It's a whole other ball game to actually create a strategy, execute on it, and share progress. So kudos to Intuit for what it's doing because that is more companies need to adopt that same sort of philosophy. And that's really cultural. >> Yeah. >> At an organization and culture can be hard to change, but it sounds like you guys kind of have it dialed in. >> I think we definitely do. That's why I really like working and Intuit. And I think that a lot of it is with the role modeling, diversity and inclusion, and by having women leaders. When you see a woman in leadership position, as a woman it makes you want to come work at this place. And as an evidence, when I build the team I started in Israel at Intuit, I have over 50% women in my team. >> Nice. >> Yeah, because when you have a woman in the interviewers panel, it's much easier, it's more inclusive. That's why we always try to have at least you know, one woman and also other minorities represented in our interviews panel. Yeah, and I think that in general it's very important as a leader to kind of know your own biases and trying to have defined standard and rubrics in how you evaluate people to avoid for those biases. So all of that inclusiveness and leadership really helps to get more diversity in your teams. >> It's critical. That thought diversity is so critical, especially if we talk about AI and we're almost out of time, I just wanted to bring up, you brought up a great point about the diversity and equity. With respect to data science and AI, we know in AI there's biases in data. We need to have more inclusivity, more representation to help start shifting that so the biases start to be dialed down and I think a conference like WiDS and it sounds like someone like you and what you've already done so far in the work that you're doing having so many females raise their hands to want to do talks at events is a good situation. It's a good scenario and hopefully it will continue to move the needle on the percentage of females in technical roles. So we thank you Shir for your time sharing with us your story, what you're doing, how Intuit and WiDS are working together. It sounds like there's great alignment there and I think we're at the tip of the iceberg with what we can do with data science and inclusion and equity. So we appreciate all of your insights and your time. >> Thank you very much. >> All right. >> I enjoyed very, very much >> Good. We hope, we aim to please. Thank you for our guests and for Hannah Freitag. This is Lisa Martin coming to you live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. Stick around, next guest will be here in just a minute.

Published Date : Mar 8 2023

SUMMARY :

Shir, it's great to have you. And I was just secrets girl talking We're happy to be with you. from the time you were small? and how interested it is to be able and of course we have these expectation So if you are a Intuit product user, the documents that you upload to TurboTax. the opportunity to work Yeah, in the past years Yeah, so can you I recently moved to the Bay Area. I like both of those. and data science to make and helps you do your taxes. Talk to me about how you stay done to further help you know, to have diverse teams I had the opportunity to start of females to give talk at the conference. Yeah, and I think that to chauffeur that the industry to you point, And I wonder is there the funnel to go downstream but it sounds like you guys I build the team I started to have at least you know, so the biases start to be dialed down This is Lisa Martin coming to you live

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Hannah FreitagPERSON

0.99+

Lisa MartinPERSON

0.99+

Marianna TesselPERSON

0.99+

IsraelLOCATION

0.99+

BangaloreLOCATION

0.99+

27.6%QUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

MargaretPERSON

0.99+

Shir Meir LadorPERSON

0.99+

HannahPERSON

0.99+

Bay AreaLOCATION

0.99+

IntuitORGANIZATION

0.99+

Tel AvivLOCATION

0.99+

last weekDATE

0.99+

UberORGANIZATION

0.99+

BarcelonaLOCATION

0.99+

JanuaryDATE

0.99+

ShirPERSON

0.99+

20 submissionQUANTITY

0.99+

50QUANTITY

0.99+

TracyPERSON

0.99+

2030DATE

0.99+

100QUANTITY

0.99+

35%QUANTITY

0.99+

50%QUANTITY

0.99+

yesterdayDATE

0.99+

2015DATE

0.99+

fiveQUANTITY

0.99+

this yearDATE

0.99+

next weekDATE

0.99+

bothQUANTITY

0.99+

2022DATE

0.99+

sixth conferenceQUANTITY

0.99+

IntuitsORGANIZATION

0.99+

todayDATE

0.99+

OpenAIORGANIZATION

0.99+

This yearDATE

0.99+

StanfordORGANIZATION

0.98+

oneQUANTITY

0.98+

WiDSEVENT

0.98+

2018DATE

0.98+

over 200 submissionsQUANTITY

0.98+

Eighth Annual Women In Data ScienceEVENT

0.98+

eighth Annual Women in Data Science ConferenceEVENT

0.98+

theCUBEORGANIZATION

0.98+

TurboTaxTITLE

0.98+

OneQUANTITY

0.98+

over 50%QUANTITY

0.98+

over 35%QUANTITY

0.97+

five and a half years ago backDATE

0.97+

Stanford UniversityORGANIZATION

0.97+

first timeQUANTITY

0.97+

NetflixORGANIZATION

0.96+

one womanQUANTITY

0.96+

Mobile World CongressEVENT

0.94+

one thingQUANTITY

0.94+

AnitaB.orgORGANIZATION

0.93+

25%QUANTITY

0.92+

PyData MeetupsEVENT

0.9+

Gayatree Ganu, Meta | WiDS 2023


 

(upbeat music) >> Hey everyone. Welcome back to "The Cube"'s live coverage of "Women in Data Science 2023". As every year we are here live at Stanford University, profiling some amazing women and men in the fields of data science. I have my co-host for this segment is Hannah Freitag. Hannah is from Stanford's Data Journalism program, really interesting, check it out. We're very pleased to welcome our first guest of the day fresh from the keynote stage, Gayatree Ganu, the VP of Data Science at Meta. Gayatree, It's great to have you on the program. >> Likewise, Thank you for having me. >> So you have a PhD in Computer Science. You shared some really cool stuff. Everyone knows Facebook, everyone uses it. I think my mom might be one of the biggest users (Gayatree laughs) and she's probably watching right now. People don't realize there's so much data behind that and data that drives decisions that we engage with. But talk to me a little bit about you first, PhD in Computer Science, were you always, were you like a STEM kid? Little Gayatree, little STEM, >> Yeah, I was a STEM kid. I grew up in Mumbai, India. My parents are actually pharmacists, so they were not like math or stats or anything like that, but I was always a STEM kid. I don't know, I think it, I think I was in sixth grade when we got our first personal computer and I obviously used it as a Pacman playing machine. >> Oh, that's okay. (all laugh) >> But I was so good at, and I, I honestly believe I think being good at games kind of got me more familiar and comfortable with computers. Yeah. I think I always liked computers, I, yeah. >> And so now you lead, I'm looking at my notes here, the Engagement Ecosystem and Monetization Data Science teams at Facebook, Meta. Talk about those, what are the missions of those teams and how does it impact the everyday user? >> Yeah, so the engagement is basically users coming back to our platform more, there's, no better way for users to tell us that they are finding value on the things that we are doing on Facebook, Instagram, WhatsApp, all the other products than coming back to our platform more. So the Engagement Ecosystem team is looking at trends, looking at where there are needs, looking at how users are changing their behaviors, and you know, helping build strategy for the long term, using that data knowledge. Monetization is very different. You know, obviously the top, top apex goal is have a sustainable business so that we can continue building products for our users. And so, but you know, I said this in my keynote today, it's not about making money, our mission statement is not, you know, maximize as much money as you can make. It's about building a meaningful connection between businesses, customers, users, and, you know especially in these last two or three funky, post-pandemic years, it's been such a big, an important thing to do for small businesses all over all, all around the world for users to find like goods and services and products that they care about and that they can connect to. So, you know, there is truly an connection between my engagement world and the monetization world. And you know, it's not very clear always till you go in to, like, you peel the layers. Everything we do in the ads world is also always first with users as our, you know, guiding principle. >> Yeah, you mentioned how you supported especially small businesses also during the pandemic. You touched a bit upon it in the keynote speech. Can you tell our audience what were like special or certain specific programs you implemented to support especially small businesses during these times? >> Yeah, so there are 200 million businesses on our platform. A lot of them small businesses, 10 million of them run ads. So there is a large number of like businesses on our platform who, you know use the power of social media to connect to the customers that matter to them, to like you, you know use the free products that we built. In the post-pandemic years, we built a lot of stuff very quickly when Covid first hit for business to get the word out, right? Like, they had to announce when special shopping hours existed for at-risk populations, or when certain goods and services were available versus not. We had grants, there's $100 million grant that we gave out to small businesses. Users could show sort of, you know show their support with a bunch of campaigns that we ran, and of course we continue running ads. Our ads are very effective, I guess, and, you know getting a very reliable connection with from the customer to the business. And so, you know, we've run all these studies. We support, I talked about two examples today. One of them is the largest black-owned, woman black-owned wine company, and how they needed to move to an online program and, you know, we gave them a grant, and supported them through their ads campaign and, you know, they saw 60% lift in purchases, or something like that. So, a lot of good stories, small stories, you know, on a scale of 200 million, that really sort of made me feel proud about the work we do. And you know, now more than ever before, I think people can connect so directly with businesses. You can WhatsApp them, I come from India, every business is on WhatsApp. And you can, you know, WhatsApp them, you can send them Facebook messages, and you can build this like direct connection with things that matter to you. >> We have this expectation that we can be connected anywhere. I was just at Mobile World Congress for MWC last week, where, obviously talking about connectivity. We want to be able to do any transaction, whether it's post on Facebook or call an Uber, or watch on Netflix if you're on the road, we expect that we're going to be connected. >> Yeah. >> And what we, I think a lot of us don't realize I mean, those of us in tech do, but how much data science is a facilitator of all of those interactions. >> Yeah! >> As we, Gayatree, as we talk about, like, any business, whether it is the black women-owned wine business, >> Yeah. >> great business, or a a grocer or a car dealer, everybody has to become data-driven. >> Yes. >> Because the consumer has the expectation. >> Yes. >> Talk about data science as a facilitator of just pretty much everything we are doing and conducting in our daily lives. >> Yeah, I think that's a great question. I think data science as a field wasn't really defined like maybe 15 years ago, right? So this is all in our lifetimes that we are seeing this. Even in data science today, People come from so many different backgrounds and bring their own expertise here. And I think we, you know, this conference, all of us get to define what that means and how we can bring data to do good in the world. Everything you do, as you said, there is a lot of data. Facebook has a lot of data, Meta has a lot of data, and how do we responsibly use this data? How do we use this data to make sure that we're, you know representing all diversity? You know, minorities? Like machine learning algorithms don't do well with small data, they do well with big data, but the small data matters. And how do you like, you know, bring that into algorithms? Yeah, so everything we do at Meta is very, very data-driven. I feel proud about that, to be honest, because while data gets a bad rap sometimes, having no data and making decisions in the blind is just the absolute worst thing you can do. And so, you know, we, the job as a data scientist at Facebook is to make sure that we use this data, use this responsibly, make sure that we are representing every aspect of the, you know, 3 billion users who come to our platform. Yeah, data serves all the products that we build here. >> The responsibility factor is, is huge. You know, we can't talk about AI without talking about ethics. One of the things that I was talking with Hannah and our other co-host, Tracy, about during our opening is something I just learned over the weekend. And that is that the CTO of ChatGPT is a woman. (Gayatree laughs) I didn't know that. And I thought, why isn't she getting more awareness? There's a lot of conversations with their CEO. >> Yeah. >> Everyone's using it, playing around with it. I actually asked it yesterday, "What's hot in Data Science?" (all laugh) I was like, should I have asked that to let itself in, what's hot? (Gayatree laughs) But it, I thought that was phenomenal, and we need to be talking about this more. >> Yeah. >> This is something that they're likening to the launch of the iPhone, which has transformed our lives. >> I know, it is. >> ChatGPT, and its chief technologist is a female, how great is that? >> And I don't know whether you, I don't know the stats around this, but I think CTO is even less, it's even more rare to have a woman there, like you have women CEOs because I mean, we are building upon years and years of women not choosing technical fields and not choosing STEM, and it's going to take some time, but yeah, yeah, she's a woman. Isn't it amazing? It's wonderful. >> Yes, there was a great, there's a great "Fast Company" article on her that I was looking at yesterday and I just thought, we need to do what we can to help spread, Mira Murati is her name, because what she's doing is, one of the biggest technological breakthroughs we may ever see in our lifetime. It gives me goosebumps just thinking about it. (Gayatree laughs) I also wanted to share some stats, oh, sorry, go ahead, Hannah. >> Yeah, I was going to follow up on the thing that you mentioned that we had many years with like not enough women choosing a career path in STEM and that we have to overcome this trend. What are some, like what is some advice you have like as the Vice-President Data Science? Like what can we do to make this feel more, you know, approachable and >> Yeah. >> accessible for women? >> Yeah, I, there's so much that we have done already and you know, want to continue, keep doing. Of course conferences like these were, you know and I think there are high school students here there are students from my Alma Mater's undergrad year. It's amazing to like get all these women together to get them to see what success could look like. >> Yeah. >> What being a woman leader in this space could look like. So that's, you know, that's one, at Meta I lead recruiting at Meta and we've done a bunch to sort of open up the thinking around data science and technical jobs for women. Simple things like what you write in your job description. I don't know whether you know this, or this is a story you've heard before, when you see, when you have a job description and there are like 10 things that you need to, you know be good at to apply to this job, a woman sees those 10 and says, okay, I don't meet the qualifications of one of them and she doesn't apply. And a man sees one that he meets the qualifications to and he applies. And so, you know, there's small things you can do, and just how you write your job description, what goals you set for diversity and inclusion for your own organization. We have goals, Facebook's always been pretty up there in like, you know, speaking out for diversity and Sheryl Sandberg has been our Chief Business Officer for a very long time and she's been, like, amazing at like pushing from more women. So yeah, every step of the way, I think, we made a lot of progress, to be honest. I do think women choose STEM fields a lot more than they did. When I did my Computer Science I was often one of one or two women in the Computer Science class. It takes some time to, for it to percolate all the way to like having more CTOs and CEOs, >> Yeah. >> but it's going to happen in our lifetime, and you know, three of us know this, women are going to rule the world, and it (laughs) >> Drop the mic, girl! >> And it's going to happen in our lifetime, so I'm excited about it. >> And we have responsibility in helping make that happen. You know, I'm curious, you were in STEM, you talked about Computer Science, being one of the only females. One of the things that the nadb.org data from 2022 showed, some good numbers, the number of women in technical roles is now 27.6%, I believe, so up from 25, it's up in '22, which is good, more hiring of women. >> Yeah. >> One of the biggest challenges is attrition. What keeps you motivated? >> Yeah. >> To stay what, where you are doing what you're doing, managing a family and helping to drive these experiences at Facebook that we all expect are just going to happen? >> Yeah, two things come to mind. It does take a village. You do need people around you. You know, I'm grateful for my husband. You talked about managing a family, I did the very Indian thing and my parents live with us, and they help take care of the kids. >> Right! (laughs) >> (laughs) My kids are young, six and four, and I definitely needed help over the last few years. It takes mentors, it takes other people that you look up to, who've gone through all of those same challenges and can, you know, advise you to sort of continue working in the field. I remember when my kid was born when he was six months old, I was considering quitting. And my husband's like, to be a good role model for your children, you need to continue working. Like, just being a mother is not enough. And so, you know, so that's one. You know, the village that you build around you your supporters, your mentors who keep encouraging you. Sheryl Sandberg said this to me in my second month at Facebook. She said that women drop out of technical fields, they become managers, they become sort of administrative more, in their nature of their work, and her advice was, "Don't do that, Don't stop the technical". And I think that's the other thing I'd say to a lot of women. Technical stuff is hard, but you know, keeping up with that and keeping sort of on top of it actually does help you in the long run. And it's definitely helped me in my career at Facebook. >> I think one of the things, and Hannah and I and Tracy talked about this in the open, and I think you'll agree with us, is the whole saying of you can't be what you can't see, and I like to way, "Well, you can be what you can see". That visibility, the great thing that WiDS did, of having you on the stage as a speaker this morning so people can understand, everyone, like I said, everyone knows Meta, >> Yeah. >> everyone uses Facebook. And so it's important to bring that connection, >> Yeah. >> of how data is driving the experiences, the fact that it's User First, but we need to be able to see women in positions, >> Yes. >> like you, especially with Sheryl stepping down moving on to something else, or people that are like YouTube influencers, that have no idea that the head of YouTube for a very long time, Susan Wojcicki is a woman. >> (laughs) Yes. Who pioneered streaming, and I mean how often do you are you on YouTube every day? >> Yep, every day. >> But we have to be able to see and and raise the profile of these women and learn from them and be inspired, >> Absolutely. >> to keep going and going. I like what I do, I'm making a difference here. >> Yeah, yeah, absolutely. >> And I can be the, the sponsor or the mentor for somebody down the road. >> Absolutely. >> Yeah, and then referring back to what we talked in the beginning, show that data science is so diverse and it doesn't mean if you're like in IT, you're like sitting in your dark room, >> Right. (laughs) >> coding all day, but you know, >> (laughs) Right! >> to show the different facets of this job and >> Right! >> make this appealing to women, >> Yeah. for sure. >> And I said this in my keynote too, you know, one of the things that helped me most is complimenting the data and the techniques and the algorithms with how you work with people, and you know, empathy and alignment building and leadership, strategic thinking. And I think honestly, I think women do a lot of this stuff really well. We know how to work with people and so, you know, I've seen this at Meta for sure, like, you know, all of these skills soft skills, as we call them, go a long way, and like, you know, doing the right things and having a lasting impact. And like I said, women are going to rule the world, you know, in our lifetimes. (laughs) >> Oh, I can't, I can't wait to see that happen. There's some interesting female candidates that are already throwing their hats in the ring for the next presidential election. >> Yes. >> So we'll have to see where that goes. But some of the things that are so interesting to me, here we are in California and Palo Alto, technically Stanford is its own zip code, I believe. And we're in California, we're freaking out because we've gotten so much rain, it's absolutely unprecedented. We need it, we had a massive drought, an extreme drought, technically, for many years. I've got friends that live up in Tahoe, I've been getting pictures this morning of windows that are >> (laughs) that are covered? >> Yes, actually, yes. (Gayatree laughs) That, where windows like second-story windows are covered in snow. >> Yeah. >> Climate change. >> Climate change. >> There's so much that data science is doing to power and power our understanding of climate change whether it's that, or police violence. >> Yeah. (all talk together) >> We had talk today on that it was amazing. >> Yes. So I want more people to know what data science is really facilitating, that impacts all of us, whether you're in a technical role or not. >> And data wins arguments. >> Yes, I love that! >> I said this is my slide today, like, you know, there's always going to be doubters and naysayers and I mean, but there's hard evidence, there's hard data like, yeah. In all of these fields, I mean the data that climate change, the data science that we have done in the environmental and climate change areas and medical, and you know, medicine professions just so much, so much more opportunity, and like, how much we can learn more about the world. >> Yeah. >> Yeah, it's a pretty exciting time to be a data scientist. >> I feel like, we're just scratching the surface. >> Yeah. >> With the potential and the global impact that we can make with data science. Gayatree, it's been so great having you on theCUBE, thank you. >> Right, >> Thank you so much, Gayatree. >> So much, I love, >> Thank you. >> I'm going to take Data WiD's arguments into my personal life. (Gayatree laughs) I was actually just, just a quick anecdote, funny story. I was listening to the radio this morning and there was a commercial from an insurance company and I guess the joke is, it's an argument between two spouses, and the the voiceover comes in and says, "Let's watch a replay". I'm like, if only they, then they got the data that helped the woman win the argument. (laughs) >> (laughs) I will warn you it doesn't always help with arguments I have with my husband. (laughs) >> Okay, I'm going to keep it in the middle of my mind. >> Yes! >> Gayatree, thank you so much. >> Thank you so much, >> for sharing, >> Thank you both for the opportunity. >> And being a great female that we can look up to, we really appreciate your insights >> Oh, likewise. >> and your time. >> Thank you. >> All right, for our guest, for Hannah Freitag, I'm Lisa Martin, live at Stanford University covering "Women in Data Science '23". Stick around, our next guest joins us in just a minute. (upbeat music) I have been in the software and technology industry for over 12 years now, so I've had the opportunity as a marketer to really understand and interact with customers across the entire buyer's journey. Hi, I'm Lisa Martin and I'm a host of theCUBE. (upbeat music) Being a host on theCUBE has been a dream of mine for the last few years. I had the opportunity to meet Jeff and Dave and John at EMC World a few years ago and got the courage up to say, "Hey, I'm really interested in this. I love talking with customers, gimme a shot, let me come into the studio and do an interview and see if we can work together". I think where I really impact theCUBE is being a female in technology. We interview a lot of females in tech, we do a lot of women in technology events and one of the things I.

Published Date : Mar 8 2023

SUMMARY :

in the fields of data science. and data that drives and I obviously used it as a (all laugh) and comfortable with computers. And so now you lead, I'm and you know, helping build Yeah, you mentioned how and you can build this I was just at Mobile World a lot of us don't realize has to become data-driven. has the expectation. and conducting in our daily lives. And I think we, you know, this conference, And that is that the CTO and we need to be talking about this more. to the launch of the iPhone, which has like you have women CEOs and I just thought, we on the thing that you mentioned and you know, want to and just how you write And it's going to One of the things that the One of the biggest I did the very Indian thing and can, you know, advise you to sort of and I like to way, "Well, And so it's important to bring that have no idea that the head of YouTube and I mean how often do you I like what I do, I'm Yeah, yeah, for somebody down the road. (laughs) Yeah. and like, you know, doing the right things that are already throwing But some of the things that are covered in snow. There's so much that Yeah. on that it was amazing. that impacts all of us, and you know, medicine professions to be a data scientist. I feel like, and the global impact and I guess the joke is, (laughs) I will warn you I'm going to keep it in the and one of the things I.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Susan WojcickiPERSON

0.99+

Lisa MartinPERSON

0.99+

HannahPERSON

0.99+

Mira MuratiPERSON

0.99+

CaliforniaLOCATION

0.99+

TracyPERSON

0.99+

FacebookORGANIZATION

0.99+

Hannah FreitagPERSON

0.99+

Sheryl SandbergPERSON

0.99+

10QUANTITY

0.99+

GayatreePERSON

0.99+

$100 millionQUANTITY

0.99+

JeffPERSON

0.99+

27.6%QUANTITY

0.99+

60%QUANTITY

0.99+

TahoeLOCATION

0.99+

threeQUANTITY

0.99+

SherylPERSON

0.99+

oneQUANTITY

0.99+

Palo AltoLOCATION

0.99+

2022DATE

0.99+

OneQUANTITY

0.99+

IndiaLOCATION

0.99+

200 millionQUANTITY

0.99+

six monthsQUANTITY

0.99+

sixQUANTITY

0.99+

MetaORGANIZATION

0.99+

10 thingsQUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

two spousesQUANTITY

0.99+

Engagement EcosystemORGANIZATION

0.99+

10 millionQUANTITY

0.99+

yesterdayDATE

0.99+

todayDATE

0.99+

last weekDATE

0.99+

25QUANTITY

0.99+

Mumbai, IndiaLOCATION

0.99+

YouTubeORGANIZATION

0.99+

JohnPERSON

0.99+

fourQUANTITY

0.99+

two examplesQUANTITY

0.99+

UberORGANIZATION

0.99+

DavePERSON

0.99+

over 12 yearsQUANTITY

0.98+

firstQUANTITY

0.98+

two thingsQUANTITY

0.98+

200 million businessesQUANTITY

0.98+

StanfordORGANIZATION

0.98+

bothQUANTITY

0.98+

InstagramORGANIZATION

0.98+

Women in Data Science 2023TITLE

0.98+

WhatsAppORGANIZATION

0.98+

Gayatree GanuPERSON

0.98+

ChatGPTORGANIZATION

0.98+

second monthQUANTITY

0.97+

nadb.orgORGANIZATION

0.97+

sixth gradeQUANTITY

0.97+

first guestQUANTITY

0.97+

'22DATE

0.97+

Keynote Analysis | WiDS 2023


 

(ambient music) >> Good morning, everyone. Lisa Martin with theCUBE, live at the eighth Annual Women in Data Science Conference. This is one of my absolute favorite events of the year. We engage with tons of great inspirational speakers, men and women, and what's happening with WiDS is a global movement. I've got two fabulous co-hosts with me today that you're going to be hearing and meeting. Please welcome Tracy Zhang and Hannah Freitag, who are both from the sata journalism program, master's program, at Stanford. So great to have you guys. >> So excited to be here. >> So data journalism's so interesting. Tracy, tell us a little bit about you, what you're interested in, and then Hannah we'll have you do the same thing. >> Yeah >> Yeah, definitely. I definitely think data journalism is very interesting, and in fact, I think, what is data journalism? Is definitely one of the big questions that we ask during the span of one year, which is the length of our program. And yeah, like you said, I'm in this data journalism master program, and I think coming in I just wanted to pivot from my undergrad studies, which is more like a traditional journalism, into data. We're finding stories through data, so that's why I'm also very excited about meeting these speakers for today because they're all, they have different backgrounds, but they all ended up in data science. So I think they'll be very inspirational and I can't wait to talk to them. >> Data in stories, I love that. Hannah, tell us a little bit about you. >> Yeah, so before coming to Stanford, I was a research assistant at Humboldt University in Berlin, so I was in political science research. And I love to work with data sets and data, but I figured that, for me, I don't want this story to end up in a research paper, which is only very limited in terms of the audience. And I figured, okay, data journalism is the perfect way to tell stories and use data to illustrate anecdotes, but to make it comprehensive and accessible for a broader audience. So then I found this program at Stanford and I was like, okay, that's the perfect transition from political science to journalism, and to use data to tell data-driven stories. So I'm excited to be in this program, I'm excited for the conference today and to hear from these amazing women who work in data science. >> You both brought up great points, and we were chatting earlier that there's a lot of diversity in background. >> Tracy: Definitely. >> Not everyone was in STEM as a young kid or studied computer science. Maybe some are engineering, maybe some are are philosophy or economic, it's so interesting. And what I find year after year at WiDS is it brings in so much thought diversity. And that's what being data-driven really demands. It demands that unbiased approach, that diverse, a spectrum of diverse perspectives, and we definitely get that at WiDS. There's about 350 people in person here, but as I mentioned in the opening, hundreds of thousands will engage throughout the year, tens of thousands probably today at local events going on across the globe. And it just underscores the importance of every organization, whether it's a bank or a grocer, has to be data-driven. We have that expectation as consumers in our consumer lives, and even in our business lives, that I'm going to engage with a business, whatever it is, and they're going to know about me, they're going to deliver me a personalized experience that's relevant to me and my history. And all that is powered by data science, which is I think it's fascinating. >> Yeah, and the great way is if you combine data with people. Because after all, large data sets, they oftentimes consist of stories or data that affects people. And to find these stories or advanced research in whatever fields, maybe in the financial business, or in health, as you mentioned, the variety of fields, it's very powerful, powerful tool to use. >> It's a very power, oh, go ahead Tracy. >> No, definitely. I just wanted to build off of that. It's important to put a face on data. So a dataset without a name is just some numbers, but if there's a story, then I think it means something too. And I think Margot was talking about how data science is about knowing or understanding the past, I think that's very interesting. That's a method for us to know who we are. >> Definitely. There's so many opportunities. I wanted to share some of the statistics from AnitaB.org that I was just looking at from 2022. We always talk at events like WiDS, and some of the other women in tech things, theCUBE is very much pro-women in tech, and has been for a very long, since the beginning of theCUBE. But we've seen the numbers of women technologists historically well below 25%, and we see attrition rates are high. And so we often talk about, well, what can we do? And part of that is raising the awareness. And that's one of the great things about WiDS, especially WiDS happening on International Women's Day, today, March 8th, and around event- >> Tracy: A big holiday. >> Exactly. But one of the nice things I was looking at, the AnitaB.org research, is that representation of tech women is on the rise, still below pre-pandemic levels, but it's actually nearly 27% of women in technical roles. And that's an increase, slow increase, but the needle is moving. We're seeing much more gender diversity across a lot of career levels, which is exciting. But some of the challenges remain. I mean, the representation of women technologists is growing, except at the intern level. And I thought that was really poignant. We need to be opening up that pipeline and going younger. And you'll hear a lot of those conversations today about, what are we doing to reach girls in grade school, 10 year olds, 12 year olds, those in high school? How do we help foster them through their undergrad studies- >> And excite them about science and all these fields, for sure. >> What do you think, Hannah, on that note, and I'll ask you the same question, what do you think can be done? The theme of this year's International Women's Day is Embrace Equity. What do you think can be done on that intern problem to help really dial up the volume on getting those younger kids interested, one, earlier, and two, helping them stay interested? >> Yeah. Yeah, that's a great question. I think it's important to start early, as you said, in school. Back in the day when I went to high school, we had this one day per year where we could explore as girls, explore a STEM job and go into the job for one day and see how it's like to work in a, I dunno, in IT or in data science, so that's a great first step. But as you mentioned, it's important to keep girls and women excited about this field and make them actually pursue this path. So I think conferences or networking is very powerful. Also these days with social media and technology, we have more ability and greater ways to connect. And I think we should even empower ourselves even more to pursue this path if we're interested in data science, and not be like, okay, maybe it's not for me, or maybe as a woman I have less chances. So I think it's very important to connect with other women, and this is what WiDS is great about. >> WiDS is so fantastic for that network effect, as you talked about. It's always such, as I was telling you about before we went live, I've covered five or six WiDS for theCUBE, and it's always such a day of positivity, it's a day of of inclusivity, which is exactly what Embrace Equity is really kind of about. Tracy, talk a little bit about some of the things that you see that will help with that hashtag Embrace Equity kind of pulling it, not just to tech. Because we're talking and we saw Meta was a keynote who's going to come to talk with Hannah and me in a little bit, we see Total Energies on the program today, we see Microsoft, Intuit, Boeing Air Company. What are some of the things you think that can be done to help inspire, say, little Tracy back in the day to become interested in STEM or in technology or in data? What do you think companies can and should be doing to dial up the volume for those youngsters? >> Yeah, 'cause I think somebody was talking about, one of the keynote speakers was talking about how there is a notion that girls just can't be data scientists. girls just can't do science. And I think representation definitely matters. If three year old me see on TV that all the scientists are women, I think I would definitely have the notion that, oh, this might be a career choice for me and I can definitely also be a scientist if I want. So yeah, I think representation definitely matters and that's why conference like this will just show us how these women are great in their fields. They're great data scientists that are bringing great insight to the company and even to the social good as well. So yeah, I think that's very important just to make women feel seen in this data science field and to listen to the great woman who's doing amazing work. >> Absolutely. There's a saying, you can't be what you can't see. >> Exactly. >> And I like to say, I like to flip it on its head, 'cause we can talk about some of the negatives, but there's a lot of positives and I want to share some of those in a minute, is that we need to be, that visibility that you talked about, the awareness that you talked about, it needs to be there but it needs to be sustained and maintained. And an organization like WiDS and some of the other women in tech events that happen around the valley here and globally, are all aimed at raising the profile of these women so that the younger, really, all generations can see what they can be. We all, the funny thing is, we all have this expectation whether we're transacting on Uber ride or we are on Netflix or we're buying something on Amazon, we can get it like that. They're going to know who I am, they're going to know what I want, they're going to want to know what I just bought or what I just watched. Don't serve me up something that I've already done that. >> Hannah: Yeah. >> Tracy: Yeah. >> So that expectation that everyone has is all about data, though we don't necessarily think about it like that. >> Hannah: Exactly. >> Tracy: Exactly. >> But it's all about the data that, the past data, the data science, as well as the realtime data because we want to have these experiences that are fresh, in the moment, and super relevant. So whether women recognize it or not, they're data driven too. Whether or not you're in data science, we're all driven by data and we have these expectations that every business is going to meet it. >> Exactly. >> Yeah. And circling back to young women, I think it's crucial and important to have role models. As you said, if you see someone and you're younger and you're like, oh I want to be like her. I want to follow this path, and have inspiration and a role model, someone you look up to and be like, okay, this is possible if I study the math part or do the physics, and you kind of have a goal and a vision in mind, I think that's really important to drive you. >> Having those mentors and sponsors, something that's interesting is, I always, everyone knows what a mentor is, somebody that you look up to, that can guide you, that you admire. I didn't learn what a sponsor was until a Women in Tech event a few years ago that we did on theCUBE. And I was kind of, my eyes were open but I didn't understand the difference between a mentor and a sponsor. And then it got me thinking, who are my sponsors? And I started going through LinkedIn, oh, he's a sponsor, she's a sponsor, people that help really propel you forward, your recommenders, your champions, and it's so important at every level to build that network. And we have, to your point, Hannah, there's so much potential here for data drivenness across the globe, and there's so much potential for women. One of the things I also learned recently , and I wanted to share this with you 'cause I'm not sure if you know this, ChatGPT, exploding, I was on it yesterday looking at- >> Everyone talking about it. >> What's hot in data science? And it was kind of like, and I actually asked it, what was hot in data science in 2023? And it told me that it didn't know anything prior to 2021. >> Tracy: Yes. >> Hannah: Yeah. >> So I said, Oh, I'm so sorry. But everyone's talking about ChatGPT, it is the most advanced AI chatbot ever released to the masses, it's on fire. They're likening it to the launch of the iPhone, 100 million-plus users. But did you know that the CTO of ChatGPT is a woman? >> Tracy: I did not know, but I learned that. >> I learned that a couple days ago, Mira Murati, and of course- >> I love it. >> She's been, I saw this great profile piece on her on Fast Company, but of course everything that we're hearing about with respect to ChatGPT, a lot on the CEO. But I thought we need to help dial up the profile of the CTO because she's only 35, yet she is at the helm of one of the most groundbreaking things in our lifetime we'll probably ever see. Isn't that cool? >> That is, yeah, I completely had no idea. >> I didn't either. I saw it on LinkedIn over the weekend and I thought, I have to talk about that because it's so important when we talk about some of the trends, other trends from AnitaB.org, I talked about some of those positive trends. Overall hiring has rebounded in '22 compared to pre-pandemic levels. And we see also 51% more women being hired in '22 than '21. So the data, it's all about data, is showing us things are progressing quite slowly. But one of the biggest challenges that's still persistent is attrition. So we were talking about, Hannah, what would your advice be? How would you help a woman stay in tech? We saw that attrition last year in '22 according to AnitaB.org, more than doubled. So we're seeing women getting into the field and dropping out for various reasons. And so that's still an extent concern that we have. What do you think would motivate you to stick around if you were in a technical role? Same question for you in a minute. >> Right, you were talking about how we see an increase especially in the intern level for women. And I think if, I don't know, this is a great for a start point for pushing the momentum to start growth, pushing the needle rightwards. But I think if we can see more increase in the upper level, the women representation in the upper level too, maybe that's definitely a big goal and something we should work towards to. >> Lisa: Absolutely. >> But if there's more representation up in the CTO position, like in the managing level, I think that will definitely be a great factor to keep women in data science. >> I was looking at some trends, sorry, Hannah, forgetting what this source was, so forgive me, that was showing that there was a trend in the last few years, I think it was Fast Company, of more women in executive positions, specifically chief operating officer positions. What that hasn't translated to, what they thought it might translate to, is more women going from COO to CEO and we're not seeing that. We think of, if you ask, name a female executive that you'd recognize, everyone would probably say Sheryl Sandberg. But I was shocked to learn the other day at a Women in Tech event I was doing, that there was a survey done by this organization that showed that 78% of people couldn't identify. So to your point, we need more of them in that visible role, in the executive suite. >> Tracy: Exactly. >> And there's data that show that companies that have women, companies across industries that have women in leadership positions, executive positions I should say, are actually more profitable. So it's kind of like, duh, the data is there, it's telling you this. >> Hannah: Exactly. >> Right? >> And I think also a very important point is work culture and the work environment. And as a woman, maybe if you enter and you work two or three years, and then you have to oftentimes choose, okay, do I want family or do I want my job? And I think that's one of the major tasks that companies face to make it possible for women to combine being a mother and being a great data scientist or an executive or CEO. And I think there's still a lot to be done in this regard to make it possible for women to not have to choose for one thing or the other. And I think that's also a reason why we might see more women at the entry level, but not long-term. Because they are punished if they take a couple years off if they want to have kids. >> I think that's a question we need to ask to men too. >> Absolutely. >> How to balance work and life. 'Cause we never ask that. We just ask the woman. >> No, they just get it done, probably because there's a woman on the other end whose making it happen. >> Exactly. So yeah, another thing to think about, another thing to work towards too. >> Yeah, it's a good point you're raising that we have this conversation together and not exclusively only women, but we all have to come together and talk about how we can design companies in a way that it works for everyone. >> Yeah, and no slight to men at all. A lot of my mentors and sponsors are men. They're just people that I greatly admire who saw raw potential in me 15, 18 years ago, and just added a little water to this little weed and it started to grow. In fact, theCUBE- >> Tracy: And look at you now. >> Look at me now. And theCUBE, the guys Dave Vellante and John Furrier are two of those people that are sponsors of mine. But it needs to be diverse. It needs to be diverse and gender, it needs to include non-binary people, anybody, shouldn't matter. We should be able to collectively work together to solve big problems. Like the propaganda problem that was being discussed in the keynote this morning with respect to China, or climate change. Climate change is a huge challenge. Here, we are in California, we're getting an atmospheric river tomorrow. And Californians and rain, we're not so friendly. But we know that there's massive changes going on in the climate. Data science can help really unlock a lot of the challenges and solve some of the problems and help us understand better. So there's so much real-world implication potential that being data-driven can really lead to. And I love the fact that you guys are studying data journalism. You'll have to help me understand that even more. But we're going to going to have great conversations today, I'm so excited to be co-hosting with both of you. You're going to be inspired, you're going to learn, they're going to learn from us as well. So let's just kind of think of this as a community of men, women, everything in between to really help inspire the current generations, the future generations. And to your point, let's help women feel confident to be able to stay and raise their hand for fast-tracking their careers. >> Exactly. >> What are you guys, last minute, what are you looking forward to most for today? >> Just meeting these great women, I can't wait. >> Yeah, learning from each other. Having this conversation about how we can make data science even more equitable and hear from the great ideas that all these women have. >> Excellent, girls, we're going to have a great day. We're so glad that you're here with us on theCUBE, live at Stanford University, Women in Data Science, the eighth annual conference. I'm Lisa Martin, my two co-hosts for the day, Tracy Zhang, Hannah Freitag, you're going to be seeing a lot of us, we appreciate. Stick around, our first guest joins Hannah and me in just a minute. (ambient music)

Published Date : Mar 8 2023

SUMMARY :

So great to have you guys. and then Hannah we'll have Is definitely one of the Data in stories, I love that. And I love to work with and we were chatting earlier and they're going to know about me, Yeah, and the great way is And I think Margot was And part of that is raising the awareness. I mean, the representation and all these fields, for sure. and I'll ask you the same question, I think it's important to start early, What are some of the things and even to the social good as well. be what you can't see. and some of the other women in tech events So that expectation that everyone has that every business is going to meet it. And circling back to young women, and I wanted to share this with you know anything prior to 2021. it is the most advanced Tracy: I did not of one of the most groundbreaking That is, yeah, I and I thought, I have to talk about that for pushing the momentum to start growth, to keep women in data science. So to your point, we need more that have women in leadership positions, and the work environment. I think that's a question We just ask the woman. a woman on the other end another thing to work towards too. and talk about how we can design companies and it started to grow. And I love the fact that you guys great women, I can't wait. and hear from the great ideas Women in Data Science, the

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Mira MuratiPERSON

0.99+

HannahPERSON

0.99+

TracyPERSON

0.99+

Lisa MartinPERSON

0.99+

Hannah FreitagPERSON

0.99+

Tracy ZhangPERSON

0.99+

CaliforniaLOCATION

0.99+

MicrosoftORGANIZATION

0.99+

Sheryl SandbergPERSON

0.99+

twoQUANTITY

0.99+

Tracy ZhangPERSON

0.99+

LisaPERSON

0.99+

Boeing Air CompanyORGANIZATION

0.99+

BerlinLOCATION

0.99+

one yearQUANTITY

0.99+

IntuitORGANIZATION

0.99+

2023DATE

0.99+

Dave VellantePERSON

0.99+

78%QUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

AmazonORGANIZATION

0.99+

MargotPERSON

0.99+

tens of thousandsQUANTITY

0.99+

one dayQUANTITY

0.99+

International Women's DayEVENT

0.99+

2022DATE

0.99+

yesterdayDATE

0.99+

last yearDATE

0.99+

tomorrowDATE

0.99+

three yearsQUANTITY

0.99+

10 yearQUANTITY

0.99+

12 yearQUANTITY

0.99+

three yearQUANTITY

0.99+

LinkedInORGANIZATION

0.99+

Humboldt UniversityORGANIZATION

0.99+

bothQUANTITY

0.99+

International Women's DayEVENT

0.99+

hundreds of thousandsQUANTITY

0.98+

oneQUANTITY

0.98+

'22DATE

0.98+

todayDATE

0.98+

WiDSEVENT

0.98+

John FurrierPERSON

0.98+

UberORGANIZATION

0.98+

two co-hostsQUANTITY

0.98+

35QUANTITY

0.98+

eighth Annual Women in Data Science ConferenceEVENT

0.97+

first stepQUANTITY

0.97+

first guestQUANTITY

0.97+

one thingQUANTITY

0.97+

fiveQUANTITY

0.97+

sixQUANTITY

0.97+

'21DATE

0.97+

about 350 peopleQUANTITY

0.96+

100 million-plus usersQUANTITY

0.95+

2021DATE

0.95+

theCUBEORGANIZATION

0.95+

AnitaB.orgORGANIZATION

0.95+

StanfordORGANIZATION

0.95+