Image Title

Search Results for Daubert:

Seth Dobrin, IBM | IBM Data and AI Forum


 

>>live from Miami, Florida It's the Q covering. IBM is data in a I forum brought to you by IBM. >>Welcome back to the port of Miami, everybody. We're here at the Intercontinental Hotel. You're watching the Cube? The leader and I live tech covered set. Daubert is here. He's the vice president of data and I and a I and the chief data officer of cloud and cognitive software. And I'd be upset too. Good to see you again. >>Good. See, Dave, thanks for having me >>here. The data in a I form hashtag data. I I It's amazing here. 1700 people. Everybody's gonna hands on appetite for learning. Yeah. What do you see out in the marketplace? You know what's new since we last talked. >>Well, so I think if you look at some of the things that are really need in the marketplace, it's really been around filling the skill shortage. And how do you operationalize and and industrialize? You're a I. And so there's been a real need for things ways to get more productivity out of your data. Scientists not necessarily replace them. But how do you get more productivity? And we just released a few months ago, something called Auto A I, which really is, is probably the only tool out there that automates the end end pipeline automates 80% of the work on the Indian pipeline, but isn't a black box. It actually kicks out code. So your data scientists can then take it, optimize it further and understand it, and really feel more comfortable about it. >>He's got a eye for a eyes. That's >>exactly what is a eye for an eye. >>So how's that work? So you're applying machine intelligence Two data to make? Aye. Aye, more productive pick algorithms. Best fit. >>Yeah, So it does. Basically, you feed it your data and it identifies the features that are important. It does feature engineering for you. It does model selection for you. It does hyper parameter tuning and optimization, and it does deployment and also met monitors for bias. >>So what's the date of scientists do? >>Data scientist takes the code out the back end. And really, there's some tweaks that you know, the model, maybe the auto. Aye, aye. Maybe not. Get it perfect, Um, and really customize it for the business and the needs of the business. that the that the auto A I so they not understand >>the data scientist, then can can he or she can apply it in a way that is unique to their business that essentially becomes their I p. It's not like generic. Aye, aye for everybody. It's it's customized by And that's where data science to complain that I have the time to do this. Wrangling data >>exactly. And it was built in a combination from IBM Research since a great assets at IBM Research plus some cattle masters at work here at IBM that really designed and optimize the algorithm selection and things like that. And then at the keynote today, uh, wonderment Thompson was up there talking, and this is probably one of the most impactful use cases of auto. Aye, aye to date. And it was also, you know, my former team, the data science elite team, was engaged, but wonderment Thompson had this problem where they had, like, 17,000 features in their data sets, and what they wanted to do was they wanted to be able to have a custom solution for their customers. And so every time they get a customer that have to have a data scientist that would sit down and figure out what the right features and how the engineer for this customer. It was an intractable problem for them. You know, the person from wonderment Thompson have prevented presented today said he's been trying to solve this problem for eight years. Auto Way I, plus the data science elite team solve the form in two months, and after that two months, it went right into production. So in this case, oughta way. I isn't doing the whole pipeline. It's helping them identify the features and engineering the features that are important and giving them a head start on the model. >>What's the, uh, what's the acquisition bottle for all the way as a It's a license software product. Is it assassin part >>of Cloudpack for data, and it's available on IBM Cloud. So it's on IBM Cloud. You can use it paper use so you get a license as part of watching studio on IBM Cloud. If you invest in Cloudpack for data, it could be a perpetual license or committed term license, which essentially assassin, >>it's essentially a feature at dawn of Cloudpack for data. >>It's part of Cloudpack per day and you're >>saying it can be usage based. So that's key. >>Consumption based hot pack for data is all consumption based, >>so people want to use a eye for competitive advantage. I said by my open that you know, we're not marching to the cadence of Moore's Law in this industry anymore. It's a combination of data and then cloud for scale. So so people want competitive advantage. You've talked about some things that folks are doing to gain that competitive advantage. But the same time we heard from Rob Thomas that only about 4 to 10% penetration for a I. What? What are the key blockers that you see and how you're knocking them >>down? Well, I think there's. There's a number of key blockers, so one is of access to data, right? Cos have tons of data, but being able to even know what data is, they're being able to pull it all together and being able to do it in a way that is compliant with regulation because you got you can't do a I in a vacuum. You have to do it in the context of ever increasing regulation like GDP R and C, C, P A and all these other regulator privacy regulations that are popping up. So so that's that's really too so access to data and regulation can be blockers. The 2nd 1 or the 3rd 1 is really access to appropriate skills, which we talked a little bit about. Andi, how do you retrain, or how do you up skill, the talent you have? And then how do you actually bring in new talent that can execute what you want on then? Sometimes in some cos it's a lack of strategy with appropriate measurement, right? So what is your A II strategy, and how are you gonna measure success? And you and I have talked about this on Cuban on Cube before, where it's gotta measure your success in dollars and cents right cost savings, net new revenue. That's really all your CFO is care about. That's how you have to be able to measure and monitor your success. >>Yes. Oh, it's so that's that Last one is probably were where most organizations start. Let's prioritize the use cases of the give us the best bang for the buck, and then business guys probably get really excited and say Okay, let's go. But to up to truly operationalize that you gotta worry about these other things. You know, the compliance issues and you gotta have the skill sets. Yeah, it's a scale. >>And sometimes that's actually the first thing you said is sometimes a mistake. So focusing on the one that's got the most bang for the buck is not necessarily the best place to start for a couple of reasons. So one is you may not have the right data. It may not be available. It may not be governed properly. Number one, number two the business that you're building it for, may not be ready to consume it right. They may not be either bought in or the processes need to change so much or something like that, that it's not gonna get used. And you can build the best a I in the world. If it doesn't get used, it creates zero value, right? And so you really want to focus on for the first couple of projects? What are the one that we can deliver the best value, not Sarah, the most value, but the best value in the shortest amount of time and ensure that it gets into production because especially when you're starting off, if you don't show adoption, people are gonna lose interest. >>What are you >>seeing in terms of experimentation now in the customer base? You know, when you talk to buyers and you talk about, you know, you look at the I T. Spending service. People are concerned about tariffs. The trade will hurt the 2020 election. They're being a little bit cautious. But in the last two or three years have been a lot of experimentation going on. And a big part of that is a I and machine learning. What are you seeing in terms of that experimentation turning into actually production project that we can learn from and maybe do some new experiments? >>Yeah, and I think it depends on how you're doing the experiments. There's, I think there's kind of academic experimentation where you have data science, Sistine Data science teams that come work on cool stuff that may or may not have business value and may or may not be implemented right. They just kind of latch on. The business isn't really involved. They latch on, they do projects, and that's I think that's actually bad experimentation if you let it that run your program. The good experimentation is when you start identity having a strategy. You identify the use cases you want to go after and you experiment by leveraging, agile to deliver these methodologies. You deliver value in two weeks prints, and you can start delivering value quickly. You know, in the case of wonderment, Thompson again 88 weeks, four sprints. They got value. That was an experiment, right? That was an experiment because it was done. Agile methodologies using good coding practices using good, you know, kind of design up front practices. They were able to take that and put it right into production. If you're doing experimentation, you have to rewrite your code at the end. And it's a waste of time >>T to your earlier point. The moon shots are oftentimes could be too risky. And if you blow it on a moon shot, it could set you back years. So you got to be careful. Pick your spots, picked ones that maybe representative, but our lower maybe, maybe lower risk. Apply agile methodologies, get a quick return, learn, develop those skills, and then then build up to the moon ship >>or you break that moon shot down its consumable pieces. Right, Because the moon shot may take you two years to get to. But maybe there are sub components of that moon shot that you could deliver in 34 months and you start delivering knows, and you work up to the moon shot. >>I always like to ask the dog food in people. And I said, like that. Call it sipping your own champagne. What do you guys done internally? When we first met, it was and I think, a snowy day in Boston, right at the spark. Some it years ago. And you did a big career switch, and it's obviously working out for you, But But what are some of the things? And you were in part, brought in to help IBM internally as well as Interpol Help IBM really become data driven internally? Yeah. How has that gone? What have you learned? And how are you taking that to customers? >>Yeah, so I was hired three years ago now believe it was that long toe lead. Our internal transformation over the last couple of years, I got I don't want to say distracted there were really important business things I need to focus on, like gpr and helping our customers get up and running with with data science, and I build a data science elite team. So as of a couple months ago, I'm back, you know, almost entirely focused on her internal transformation. And, you know, it's really about making sure that we use data and a I to make appropriate decisions on DSO. Now we have. You know, we have an app on her phone that leverages Cognos analytics, where at any point, Ginny Rometty or Rob Thomas or Arvin Krishna can pull up and look in what we call E P M. Which is enterprise performance management and understand where the business is, right? What what do we do in third quarter, which just wrapped up what was what's the pipeline for fourth quarter? And it's at your fingertips. We're working on revamping our planning cycle. So today planning has been done in Excel. We're leveraging Planning Analytics, which is a great planning and scenario planning tool that with the tip of a button, really let a click of a button really let you understand how your business can perform in the future and what things need to do to get it perform. We're also looking across all of cloud and cognitive software, which data and A I sits in and within each business unit and cloud and cognitive software. The sales teams do a great job of cross sell upsell. But there's a huge opportunity of how do we cross sell up sell across the five different businesses that live inside of cloud and cognitive software. So did an aye aye hybrid cloud integration, IBM Cloud cognitive Applications and IBM Security. There's a lot of potential interplay that our customers do across there and providing a I that helps the sales people understand when they can create more value. Excuse me for our customers. >>It's interesting. This is the 10th year of doing the Cube, and when we first started, it was sort of the beginning of the the big data craze, and a lot of people said, Oh, okay, here's the disruption, crossing the chasm. Innovator's dilemma. All that old stuff going away, all the new stuff coming in. But you mentioned Cognos on mobile, and that's this is the thing we learned is that the key ingredients to data strategies. Comprised the existing systems. Yes. Throw those out. Those of the systems of record that were the single version of the truth, if you will, that people trusted you, go back to trust and all this other stuff built up around it. Which kind of created dissidents. Yeah. And so it sounds like one of the initiatives that you you're an IBM I've been working on is really bringing in the new pieces, modernizing sort of the existing so that you've got sort of consistent data sets that people could work. And one of the >>capabilities that really has enabled this transformation in the last six months for us internally and for our clients inside a cloud pack for data, we have this capability called IBM data virtualization, which we have all these independent sources of truth to stomach, you know? And then we have all these other data sources that may or may not be as trusted, but to be able to bring them together literally. With the click of a button, you drop your data sources in the Aye. Aye, within data. Virtualization actually identifies keys across the different things so you can link your data. You look at it, you check it, and it really enables you to do this at scale. And all you need to do is say, pointed out the data. Here's the I. P. Address of where the data lives, and it will bring that in and help you connect it. >>So you mentioned variances in data quality and consumer of the data has to have trust in that data. Can you use machine intelligence and a I to sort of give you a data confidence meter, if you will. Yeah. So there's two things >>that we use for data confidence. I call it dodging this factor, right. Understanding what the dodging this factor is of the data. So we definitely leverage. Aye. Aye. So a I If you have a date, a dictionary and you have metadata, the I can understand eight equality. And it can also look at what your data stewards do, and it can do some of the remediation of the data quality issues. But we all in Watson Knowledge catalog, which again is an in cloudpack for data. We also have the ability to vote up and vote down data. So as much as the team is using data internally. If there's a data set that had a you know, we had a hive data quality score, but it wasn't really valuable. It'll get voted down, and it will help. When you search for data in the system, it will sort it kind of like you do a search on the Internet and it'll it'll down rank that one, depending on how many down votes they got. >>So it's a wisdom of the crowd type of. >>It's a crowd sourcing combined with the I >>as that, in your experience at all, changed the dynamics of politics within organizations. In other words, I'm sure we've all been a lot of meetings where somebody puts foursome data. And if the most senior person in the room doesn't like the data, it doesn't like the implication he or she will attack the data source, and then the meeting's over and it might not necessarily be the best decision for the organization. So So I think it's maybe >>not the up, voting down voting that does that, but it's things like the E PM tool that I said we have here. You know there is a single source of truth for our finance data. It's on everyone's phone. Who needs access to it? Right? When you have a conversation about how the company or the division or the business unit is performing financially, it comes from E. P M. Whether it's in the Cognos app or whether it's in a dashboard, a separate dashboard and Cognos or is being fed into an aye aye, that we're building. This is the source of truth. Similarly, for product data, our individual products before me it comes from here's so the conversation at the senior senior meetings are no longer your data is different from my data. I don't believe it. You've eliminated that conversation. This is the data. This is the only data. Now you can have a conversation about what's really important >>in adult conversation. Okay, Now what are we going to do? It? It's >>not a bickering about my data versus your data. >>So what's next for you on? You know, you're you've been pulled in a lot of different places again. You started at IBM as an internal transformation change agent. You got pulled into a lot of customer situations because yeah, you know, you're doing so. Sales guys want to drag you along and help facilitate activity with clients. What's new? What's what's next for you. >>So really, you know, I've only been refocused on the internal transformation for a couple months now. So really extending IBM struck our cloud and cognitive software a data and a I strategy and starting to quickly implement some of these products, just like project. So, like, just like I just said, you know, we're starting project without even knowing what the prioritized list is. Intuitively, this one's important. The team's going to start working on it, and one of them is an aye aye project, which is around cross sell upsell that I mentioned across the portfolio and the other one we just got done talking about how in the senior leadership meeting for Claude Incognito software, how do we all work from a Cognos dashboard instead of Excel data data that's been exported put into Excel? The challenge with that is not that people don't trust the data. It's that if there's a question you can't drill down. So if there's a question about an Excel document or a power point that's up there, you will get back next meeting in a month or in two weeks, we'll have an e mail conversation about it. If it's presented in a really live dashboard, you can drill down and you can actually answer questions in real time. The value of that is immense, because now you as a leadership team, you can make a decision at that point and decide what direction you're going to do. Based on data, >>I said last time I have one more questions. You're CDO but you're a polymath on. So my question is, what should people look for in a chief data officer? What sort of the characteristics in the attributes, given your >>experience, that's kind of a loaded question, because there is. There is no good job, single job description for a chief date officer. I think there's a good solid set of skill sets, the fine for a cheap date officer and actually, as part of the chief data officer summits that you you know, you guys attend. We had were having sessions with the chief date officers, kind of defining a curriculum for cheap date officers with our clients so that we can help build the chief. That officer in the future. But if you look a quality so cheap, date officer is also a chief disruption officer. So it needs to be someone who is really good at and really good at driving change and really good at disrupting processes and getting people excited about it changes hard. People don't like change. How do you do? You need someone who can get people excited about change. So that's one thing. On depending on what industry you're in, it's got to be. It could be if you're in financial or heavy regulated industry, you want someone that understands governance. And that's kind of what Gardner and other analysts call a defensive CDO very governance Focus. And then you also have some CDOs, which I I fit into this bucket, which is, um, or offensive CDO, which is how do you create value from data? How do you caught save money? How do you create net new revenue? How do you create new business models, leveraging data and a I? And now there's kind of 1/3 type of CDO emerging, which is CDO not as a cost center but a studio as a p N l. How do you generate revenue for the business directly from your CDO office. >>I like that framework, right? >>I can't take credit for it. That's Gartner. >>Its governance, they call it. We say he called defensive and offensive. And then first time I met Interpol. He said, Look, you start with how does data affect the monetization of my organization? And that means making money or saving money. Seth, thanks so much for coming on. The Cube is great to see you >>again. Thanks for having me >>again. All right, Keep it right to everybody. We'll be back at the IBM data in a I form from Miami. You're watching the Cube?

Published Date : Oct 22 2019

SUMMARY :

IBM is data in a I forum brought to you by IBM. Good to see you again. What do you see out in the marketplace? And how do you operationalize and and industrialize? He's got a eye for a eyes. So how's that work? Basically, you feed it your data and it identifies the features that are important. And really, there's some tweaks that you know, the data scientist, then can can he or she can apply it in a way that is unique And it was also, you know, my former team, the data science elite team, was engaged, Is it assassin part You can use it paper use so you get a license as part of watching studio on IBM Cloud. So that's key. What are the key blockers that you see and how you're knocking them the talent you have? You know, the compliance issues and you gotta have the skill sets. And sometimes that's actually the first thing you said is sometimes a mistake. You know, when you talk to buyers and you talk You identify the use cases you want to go after and you experiment by leveraging, And if you blow it on a moon shot, it could set you back years. Right, Because the moon shot may take you two years to And how are you taking that to customers? with the tip of a button, really let a click of a button really let you understand how your business And so it sounds like one of the initiatives that you With the click of a button, you drop your data sources in the Aye. to sort of give you a data confidence meter, if you will. So a I If you have a date, a dictionary and you have And if the most senior person in the room doesn't like the data, so the conversation at the senior senior meetings are no longer your data is different Okay, Now what are we going to do? a lot of customer situations because yeah, you know, you're doing so. So really, you know, I've only been refocused on the internal transformation for What sort of the characteristics in the attributes, given your And then you also have some CDOs, which I I I can't take credit for it. The Cube is great to see you Thanks for having me We'll be back at the IBM data in a I form from Miami.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SethPERSON

0.99+

Arvin KrishnaPERSON

0.99+

IBMORGANIZATION

0.99+

DaubertPERSON

0.99+

BostonLOCATION

0.99+

Rob ThomasPERSON

0.99+

DavePERSON

0.99+

Ginny RomettyPERSON

0.99+

Seth DobrinPERSON

0.99+

IBM ResearchORGANIZATION

0.99+

two yearsQUANTITY

0.99+

MiamiLOCATION

0.99+

ExcelTITLE

0.99+

eight yearsQUANTITY

0.99+

88 weeksQUANTITY

0.99+

Rob ThomasPERSON

0.99+

GardnerPERSON

0.99+

SarahPERSON

0.99+

Miami, FloridaLOCATION

0.99+

34 monthsQUANTITY

0.99+

17,000 featuresQUANTITY

0.99+

two thingsQUANTITY

0.99+

10th yearQUANTITY

0.99+

two weeksQUANTITY

0.99+

1700 peopleQUANTITY

0.99+

GartnerORGANIZATION

0.99+

CognosTITLE

0.99+

three years agoDATE

0.99+

two monthsQUANTITY

0.99+

first timeQUANTITY

0.98+

oneQUANTITY

0.98+

todayDATE

0.98+

each businessQUANTITY

0.97+

first coupleQUANTITY

0.97+

InterpolORGANIZATION

0.96+

about 4QUANTITY

0.96+

ThompsonPERSON

0.96+

third quarterDATE

0.96+

five different businessesQUANTITY

0.95+

Two dataQUANTITY

0.95+

Intercontinental HotelORGANIZATION

0.94+

IBM DataORGANIZATION

0.94+

firstQUANTITY

0.93+

single jobQUANTITY

0.93+

first thingQUANTITY

0.92+

CognosORGANIZATION

0.91+

last couple of yearsDATE

0.91+

single sourceQUANTITY

0.89+

few months agoDATE

0.89+

one more questionsQUANTITY

0.89+

couple months agoDATE

0.88+

CloudpackTITLE

0.87+

single versionQUANTITY

0.87+

CubeCOMMERCIAL_ITEM

0.86+

80% ofQUANTITY

0.85+

last six monthsDATE

0.84+

Claude IncognitoORGANIZATION

0.84+

agileTITLE

0.84+

10%QUANTITY

0.84+

yearsDATE

0.84+

MooreORGANIZATION

0.82+

zeroQUANTITY

0.81+

three yearsQUANTITY

0.8+

2020 electionEVENT

0.8+

E PMTITLE

0.79+

four sprintsQUANTITY

0.79+

WatsonORGANIZATION

0.77+

2nd 1QUANTITY

0.75+