Image Title

Search Results for Craig brown:

Machine Learning Panel | Machine Learning Everywhere 2018


 

>> Announcer: Live from New York, it's theCUBE. Covering machine learning everywhere. Build your ladder to AI. Brought to you by IBM. Welcome back to New York City. Along with Dave Vellante, I'm John Walls. We continue our coverage here on theCUBE of machine learning everywhere. Build your ladder to AI, IBM our host here today. We put together, occasionally at these events, a panel of esteemed experts with deep perspectives on a particular subject. Today our influencer panel is comprised of three well-known and respected authorities in this space. Glad to have Colin Sumpter here with us. He's the man with the mic, by the way. He's going to talk first. But, Colin is an IT architect with CrowdMole. Thank you for being with us, Colin. Jennifer Shin, those of you on theCUBE, you're very familiar with Jennifer, a long time Cuber. Founded 8 Path Solutions, on the faculty at NYU and Cal Berkeley, and also with us is Craig Brown, a big data consultant. And a home game for all of you guys, right, more or less here we are in the city. So, thanks for having us, we appreciate the time. First off, let's just talk about the title of the event, Build Your Path... Or Your Ladder, excuse me, to AI. What are those steps on that ladder, Colin? The fundamental steps that you've got to jump on, or step on, in order to get to that true AI environment? >> In order to get to that true AI environment, John, is a matter of mastering or organizing your information well enough to perform analytics. That'll give you two choices to do either linear regression or supervised classification, and then you actually have enough organized data to talk to your team and organize your team around that data to begin that ladder to successively benefit from your data science program. >> Want to take a stab at it, Jennifer? >> So, I would say, compute, right? You need to have the right processing, or at least the ability to scale out to be able to process the algorithm fast enough to be able to find value in your data. I think the other thing is, of course, the data source itself. Do you have right data to answer the questions you want to answer? So, I think, without those two things, you'll either have a lot of great data that you can't process in time, or you'll have a great process or a great algorithm that has no real information, so your output is useless. I think those are the fundamental things you really do need to have any sort of AI solution built. >> I'll take a stab at it from the business side. They have to adopt it first. They have to believe that this is going to benefit them and that the effort that's necessary in order to build into the various aspects of algorithms and data subjects is there, so I think adopting the concept of machine learning and the development aspects that it takes to do that is a key component to building the ladder. >> So this just isn't toe in the water, right? You got to dive in the deep end, right? >> Craig: Right. >> It gets to culture. If you look at most organizations, not the big five market capped companies, but most organizations, data is not at their core. Humans are at their core, human expertise and data is sort of bolted on, but that has to change, or they're going to get disrupted. Data has to be at the core, maybe the human expertise leverages that data. What do you guys seeing with end customers in terms of their readiness for this transformation? >> What I'm seeing customers spending time right now is getting out of the silos. So, when you speak culture, that's primarily what the culture surrounds. They develop applications with functionality as a silo, and data specific to that functionality is the component in which they look at data. They have to get out of that mindset and look at the data holistically, and ultimately, in these events, looking at it as an asset. >> The data is a shared resource. >> Craig: Right, correct. >> Okay, and again, with the exception of the... Whether it's Google, Facebook, obviously, but the Ubers, the AirBNB's, etc... With the exception of those guys, most customers aren't there. Still, the data is in silos, they've got myriad infrastructure. Your thoughts, Jennifer? >> I'm also seeing sort of a disconnect between the operationalizing team, the team that runs these codes, or has a real business need for it, and sometimes you'll see corporations with research teams, and there's sort of a disconnect between what the researchers do and what these operations, or marketing, whatever domain it is, what they're doing in terms of a day to day operation. So, for instance, a researcher will look really deep into these algorithms, and may know a lot about deep learning in theory, in theoretical world, and might publish a paper that's really interesting. But, that application part where they're actually being used every day, there's this difference there, where you really shouldn't have that difference. There should be more alignment. I think actually aligning those resources... I think companies are struggling with that. >> So, Colin, we were talking off camera about RPA, Robotic Process Automation. Where's the play for machine intelligence and RPA? Maybe, first of all, you could explain RPA. >> David, RPA stands for Robotic Process Automation. That's going to enable you to grow and scale a digital workforce. Typically, it's done in the cloud. The way RPA and Robotic Process Automation plays into machine learning and data science, is that it allows you to outsource business processes to compensate for the lack of human expertise that's available in the marketplace, because you need competency to enable the technology to take advantage of these new benefits coming in the market. And, when you start automating some of these processes, you can keep pace with the innovation in the marketplace and allow the human expertise to gradually grow into these new data science technologies. >> So, I was mentioning some of the big guys before. Top five market capped companies: Google, Amazon, Apple, Facebook, Microsoft, all digital. Microsoft you can argue, but still, pretty digital, pretty data oriented. My question is about closing that gap. In your view, can companies close that gap? How can they close that gap? Are you guys helping companies close that gap? It's a wide chasm, it seems. Thoughts? >> The thought on closing the chasm is... presenting the technology to the decision-makers. What we've learned is that... you don't know what you don't know, so it's impossible to find the new technologies if you don't have the vocabulary to just begin a simple research of these new technologies. And, to close that gap, it really comes down to the awareness, events like theCUBE, webinars, different educational opportunities that are available to line of business owners, directors, VP's of systems and services, to begin that awareness process, finding consultants... begin that pipeline enablement to begin allowing the business to take advantage and harness data science, machine learning and what's coming. >> One of the things I've noticed is that there's a lot of information out there, like everyone a webinar, everyone has tutorials, but there's a lot of overlap. There aren't that many very sophisticated documents you can find about how to implement it in real world conditions. They all tend to use the same core data set, a lot of these machine learning tutorials you'll find, which is hilarious because the data set's actually very small. And I know where it comes from, just from having the expertise, but it's not something I'd ever use in the real world. The level of skill you need to be able to do any of these methodologies. But that's what's out there. So, there's a lot of information, but they're kind of at a rudimentary level. They're not really at that sophisticated level where you're going to learn enough to deploy in real world conditions. One of the things I'm noticing is, with the technical teams, with the data science team, machine learning teams, they're kind of using the same methodologies I used maybe 10 years ago. Because the management who manage these teams are not technical enough. They're business people, so they don't understand how to guide them, how to explain hey maybe you shouldn't do that with your code, because that's actually going to cause a problem. You should use parallel code, you should make sure everything is running in parallel so compute's faster. But, if these younger teams are actually learning for the first time, they make the same mistakes you made 10 years ago. So, I think, what I'm noticing is that lack of leadership is partly one of the reasons, and also the assumption that a non-technical person can lead the technical team. >> So, it's just not skillset on the worker level, if you will. It's also knowledge base on the decision-maker level. That's a bad place to be, right? So, how do you get into the door to a business like that? Obviously, and we've talked about this a little bit today, that some companies say, "We're not data companies, we're not digital companies, we sell widgets." Well, yeah but you sell widgets and you need this to sell more widgets. And so, how do you get into the door and talk about this problem that Jennifer just cited? You're signing the checks, man. You're going to have to get up to speed on this otherwise you're not going to have checks to sign in three to five years, you're done! >> I think that speaks to use cases. I think that, and what I'm actually saying at customers, is that there's a disconnect and an understanding from the executive teams and the low-level technical teams on what the use case actually means to the business. Some of the use cases are operational in nature. Some of the use cases are data in nature. There's no real conformity on what does the use case mean across the organization, and that understanding isn't there. And so, the CIO's, the CEO's, the CTO's think that, "Okay, we're going to achieve a certain level of capability if we do a variety of technological things," and the business is looking to effectively improve some or bring some efficiency to business processes. At each level within the organization, the understanding is at the level at which the discussions are being made. And so, I'm in these meetings with senior executives and we have lots of ideas on how we can bring efficiencies and some operational productivity with technology. And then we get in a meeting with the data stewards and "What are these guys talking about? They don't understand what's going on at the data level and what data we have." And then that's where the data quality challenges come into the conversation, so I think that, to close that cataclysm, we have to figure out who needs to be in the room to effectively help us build the right understanding around the use cases and then bring the technology to those use cases then actually see within the organization how we're affecting that. >> So, to change the questioning here... I want you guys to think about how capable can we make machines in the near term, let's talk next decade near term. Let's say next decade. How capable can we make machines and are there limits to what we should do? >> That's a tough one. Although you want to go next decade, we're still faced with some of the challenges today in terms of, again, that adoption, the use case scenarios, and then what my colleagues are saying here about the various data challenges and dev ops and things. So, there's a number of things that we have to overcome, but if we can get past those areas in the next decade, I don't think there's going to be much of a limit, in my opinion, as to what the technology can do and what we can ask the machines to produce for us. As Colin mentioned, with RPA, I think that the capability is there, right? But, can we also ultimately, as humans, leverage that capability effectively? >> I get this question a lot. People are really worried about AI and robots taking over, and all of that. And I go... Well, let's think about the example. We've all been online, probably over the weekend, maybe it's 3 or 4 AM, checking your bank account, and you get an error message your password is wrong. And we swear... And I've been there where I'm like, "No, no my password's right." And it keeps saying that the password is wrong. Of course, then I change it, and it's still wrong. Then, the next day when I login, I can login, same password, because they didn't put a great error message there. They just defaulted to wrong password when it's probably a server that's down. So, there are these basics or processes that we could be improving which no one's improving. So you think in that example, how many customer service reps are going to be contacted to try to address that? How many IT teams? So, for every one of these bad technologies that are out there, or technologies that are not being run efficiently or run in a way that makes sense, you actually have maybe three people that are going to be contacted to try to resolve an issue that actually maybe could have been avoided to begin with. I feel like it's optimistic to say that robots are going to take over, because you're probably going to need more people to put band-aids on bad technology and bad engineering, frankly. And I think that's the reality of it. If we had hoverboards, that would be great, you know? For a while, we thought we did, right? But we found out, oh it's not quite hoverboards. I feel like that might be what happens with AI. We might think we have it, and then go oh wait, it's not really what we thought it was. >> So there are real limits, certainly in the near to mid to maybe even long term, that are imposed. But you're an optimist. >> Yeah. Well, not so much with AI but everything else, sure. (laughing) AI, I'm a little bit like, "Well, it would be great, but I'd like basic things to be taken care of every day." So, I think the usefulness of technology is not something anyone's talking about. They're talking about this advancement, that advancement, things people don't understand, don't know even how to use in their life. Great, great is an idea. But, what about useful things we can actually use in our real life? >> So block and tackle first, and then put some reverses in later, if you will, to switch over to football. We were talking about it earlier, just about basics. Fundamentals, get your fundamentals right and then you can complement on that with supplementary technologies. Craig, Colin? >> Jen made some really good points and brought up some very good points, and so has... >> John: Craig. >> Craig, I'm sorry. (laughing) >> Craig: It's alright. >> 10 years out, Jen and Craig spoke to false positives. And false positives create a lot of inefficiency in businesses. So, when you start using machine learning and AI 10 years from now, maybe there's reduced false positives that have been scored in real time, allowing teams not to have their time consumed and their business resources consumed trying to resolve false positives. These false positives have a business value that, today, some businesses might not be able to record. In financial services, banks count money not lended. But, in every day business, a lot of businesses aren't counting the monetary consequences of false positives and the drag it has on their operational ability and capacity. >> I want to ask you guys about disruption. If you look at where the disruption, the digital disruptions, have taken place, obviously retail, certainly advertising, certainly content businesses... There are some industries that haven't been highly disruptive: financial services, insurance, we were talking earlier about aerospace, defense rather. Is any business, any industry, safe from digital disruption? >> There are. Certain industries are just highly regulated: healthcare, financial services, real estate, transactional law... These are very extremely regulated technologies, or businesses, that are... I don't want to say susceptible to technology, but they can be disrupted at a basic level, operational efficiency, to make these things happen, these business processes happen more rapidly, more accurately. >> So you guys buy that? There's some... I'd like to get a little debate going here. >> So, I work with the government, and the government's trying to change things. I feel like that's kind of a sign because they tend to be a little bit slower than, say, other private industries, or private companies. They have data, they're trying to actually put it into a system, meaning like if they have files... I think that, at some point, I got contacted about putting files that they found, like birth records, right, marriage records, that they found from 100-plus years ago and trying to put that into the system. By the way, I did look into it, there was no way to use AI for that, because there was no standardization across these files, so they have half a million files, but someone's probably going to manually have to enter that in. The reality is, I think because there's a demand for having things be digital, we aren't likely to see a decrease in that. We're not going to have one industry that goes, "Oh, your files aren't digital." Probably because they also want to be digital. The companies themselves, the employees themselves, want to see that change. So, I think there's going to be this continuous move toward it, but there's the question of, "Are we doing it better?" It is better than, say, having it on paper sometimes? Because sometimes I just feel like it's easier on paper than to have to look through my phone, look through the app. There's so many apps now! >> (laughing) I got my index cards cards still, Jennifer! Dave's got his notebook! >> I'm not sure I want my ledger to be on paper... >> Right! So I think that's going to be an interesting thing when people take a step back and go like, "Is this really better? Is this actually an improvement?" Because I don't think all things are better digital. >> That's a great question. Will the world be a better, more prosperous place... Uncertain. Your thoughts? >> I think the competition is probably the driver as to who has to this now, who's not safe. The organizations that are heavily regulated or compliance-driven can actually use that as the reasoning for not jumping into the barrel right now, and letting it happen in other areas first, watching the technology mature-- >> Dave: Let's wait. >> Yeah, let's wait, because that's traditionally how they-- >> Dave: Good strategy in your opinion? >> It depends on the entity but I think there's nothing wrong with being safe. There's nothing wrong with waiting for a variety of innovations to mature. What level of maturity, I think, is the perspective that probably is another discussion for another day, but I think that it's okay. I don't think that everyone should jump in. Get some lessons learned, watch how the other guys do it. I think that safety is in the eyes of the beholder, right? But some organizations are just competition fierce and they need a competitive edge and this is where they get it. >> When you say safety, do you mean safety in making decisions, or do you mean safety in protecting data? How are you defining safety? >> Safety in terms of when they need to launch, and look into these new technologies as a basis for change within the organization. >> What about the other side of that point? There's so much more data about it, so much more behavior about it, so many more attitudes, so on and so forth. And there is privacy issues and security issues and all that... Those are real challenges for any company, and becoming exponentially more important as more is at stake. So, how do companies address that? That's got to be absolutely part of their equation, as they decide what these future deployments are, because they're going to have great, vast reams of data, but that's a lot of vulnerability too, isn't it? >> It's as vulnerable as they... So, from an organizational standpoint, they're accustomed to these... These challenges aren't new, right? We still see data breaches. >> They're bigger now, right? >> They're bigger, but we still see occasionally data breaches in organizations where we don't expect to see them. I think that, from that perspective, it's the experiences of the organizations that determine the risks they want to take on, to a certain degree. And then, based on those risks, and how they handle adversity within those risks, from an experience standpoint they know ultimately how to handle it, and get themselves to a place where they can figure out what happened and then fix the issues. And then the others watch while these risk-takers take on these types of scenarios. >> I want to underscore this whole disruption thing and ask... We don't have much time, I know we're going a little over. I want to ask you to pull out your Hubble telescopes. Let's make a 20 to 30 year view, so we're safe, because we know we're going to be wrong. I want a sort of scale of 1 to 10, high likelihood being 10, low being 1. Maybe sort of rapid fire. Do you think large retail stores are going to mostly disappear? What do you guys think? >> I think the way that they are structured, the way that they interact with their customers might change, but you're still going to need them because there are going to be times where you need to buy something. >> So, six, seven, something like that? Is that kind of consensus, or do you feel differently Colin? >> I feel retail's going to be around, especially fashion because certain people, and myself included, I need to try my clothes on. So, you need a location to go to, a physical location to actually feel the material, experience the material. >> Alright, so we kind of have a consensus there. It's probably no. How about driving-- >> I was going to say, Amazon opened a book store. Just saying, it's kind of funny because they got... And they opened the book store, so you know, I think what happens is people forget over time, they go, "It's a new idea." It's not so much a new idea. >> I heard a rumor the other day that their next big acquisition was going to be, not Neiman Marcus. What's the other high end retailer? >> Nordstrom? >> Nordstrom, yeah. And my wife said, "Bad idea, they'll ruin it." Will driving and owning your own car become an exception? >> Driving and owning your own car... >> Dave: 30 years now, we're talking. >> 30 years... Sure, I think the concept is there. I think that we're looking at that. IOT is moving us in that direction. 5G is around the corner. So, I think the makings of it is there. So, since I can dare to be wrong, yeah I think-- >> We'll be on 10G by then anyway, so-- >> Automobiles really haven't been disrupted, the car industry. But you're forecasting, I would tend to agree. Do you guys agree or no, or do you think that culturally I want to drive my own car? >> Yeah, I think people, I think a couple of things. How well engineered is it? Because if it's badly engineered, people are not going to want to use it. For instance, there are people who could take public transportation. It's the same idea, right? Everything's autonomous, you'd have to follow in line. There's going to be some system, some order to it. And you might go-- >> Dave: Good example, yeah. >> You might go, "Oh, I want it to be faster. I don't want to be in line with that autonomous vehicle. I want to get there faster, get there sooner." And there are people who want to have that control over their lives, but they're not subject to things like schedules all the time and that's their constraint. So, I think if the engineering is bad, you're going to have more problems and people are probably going to go away from wanting to be autonomous. >> Alright, Colin, one for you. Will robots and maybe 3D printing, for example RPA, will it reverse the trend toward offshore manufacturing? >> 30 years from now, yes. I think robotic process engineering, eventually you're going to be at your cubicle or your desk, or whatever it is, and you're going to be able to print office supplies. >> Do you guys think machines will make better diagnoses than doctors? Ohhhhh. >> I'll take that one. >> Alright, alright. >> I think yes, to a certain degree, because if you look at the... problems with diagnosis, right now they miss it and I don't know how people, even 30 years from now, will be different from that perspective, where machines can look at quite a bit of data about a patient in split seconds and say, "Hey, the likelihood of you recurring this disease is nil to none, because here's what I'm basing it on." I don't think doctors will be able to do that. Now, again, daring to be wrong! (laughing) >> Jennifer: Yeah so--6 >> Don't tell your own doctor either. (laughing) >> That's true. If anything happens, we know, we all know. I think it depends. So maybe 80%, some middle percentage might be the case. I think extreme outliers, maybe not so much. You think about anything that's programmed into an algorithm, someone probably identified that disease, a human being identified that as a disease, made that connection, and then it gets put into the algorithm. I think what w6ll happen is that, for the 20% that isn't being done well by machine, you'll have people who are more specialized being able to identify the outlier cases from, say, the standard. Normally, if you have certain symptoms, you have a cold, those are kind of standard ones. If you have this weird sort of thing where there's n6w variables, environmental variables for instance, your environment can actually lead to you having cancer. So, there's othe6 factors other than just your body and your health that's going to actually be important to think about wh6n diagnosing someone. >> John: Colin, go ahead. >> I think machines aren't going to out-decision doctors. I think doctors are going to work well the machine learning. For instance, there's a published document of Watson doing the research of a team of four in 10 minutes, when it normally takes a month. So, those doctors,6to bring up Jen and Craig's point, are going to have more time to focus in on what the actual symptoms are, to resolve the outcome of patient care and patient services in a way that benefits humanity. >> I just wish that, Dave, that you would have picked a shorter horizon that... 30 years, 20 I feel good about our chances of seeing that. 30 I'm just not so sure, I mean... For the two old guys on the panel here. >> The consensus is 20 years, not so much. But beyond 10 years, a lot's going to change. >> Well, thank you all for joining this. I always enjoy the discussions. Craig, Jennifer and Colin, thanks for being here with us here on theCUBE, we appreciate the time. Back with more here from New York right after this. You're watching theCUBE. (upbeat digital music)

Published Date : Feb 27 2018

SUMMARY :

Brought to you by IBM. enough organized data to talk to your team and organize or at least the ability to scale out to be able to process and that the effort that's necessary in order to build but that has to change, or they're going to get disrupted. and data specific to that functionality but the Ubers, the AirBNB's, etc... I think companies are struggling with that. Maybe, first of all, you could explain RPA. and allow the human expertise to gradually grow Are you guys helping companies close that gap? presenting the technology to the decision-makers. how to guide them, how to explain hey maybe you shouldn't You're going to have to get up to speed on this and the business is looking to effectively improve some and are there limits to what we should do? I don't think there's going to be much of a limit, that are going to be contacted to try to resolve an issue certainly in the near to mid to maybe even long term, but I'd like basic things to be taken care of every day." in later, if you will, to switch over to football. and brought up some very good points, and so has... Craig, I'm sorry. and the drag it has on their operational ability I want to ask you guys about disruption. operational efficiency, to make these things happen, I'd like to get a little debate going here. So, I think there's going to be this continuous move ledger to be on paper... So I think that's going to be an interesting thing Will the world be a better, more prosperous place... as to who has to this now, who's not safe. It depends on the entity but I think and look into these new technologies as a basis That's got to be absolutely part of their equation, they're accustomed to these... and get themselves to a place where they can figure out I want to ask you to pull out your Hubble telescopes. because there are going to be times I feel retail's going to be around, Alright, so we kind of have a consensus there. I think what happens is people forget over time, I heard a rumor the other day that their next big Will driving and owning your own car become an exception? So, since I can dare to be wrong, yeah I think-- or do you think that culturally I want to drive my own car? There's going to be some system, some order to it. going to go away from wanting to be autonomous. Alright, Colin, one for you. be able to print office supplies. Do you guys think machines will make "Hey, the likelihood of you recurring this disease Don't tell your own doctor either. being able to identify the outlier cases from, say, I think doctors are going to work well the machine learning. I just wish that, Dave, that you would have picked The consensus is 20 years, not so much. I always enjoy the discussions.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
CraigPERSON

0.99+

JenniferPERSON

0.99+

ColinPERSON

0.99+

DavidPERSON

0.99+

Dave VellantePERSON

0.99+

AmazonORGANIZATION

0.99+

JenPERSON

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Jennifer ShinPERSON

0.99+

AppleORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

DavePERSON

0.99+

Colin SumpterPERSON

0.99+

Craig BrownPERSON

0.99+

John WallsPERSON

0.99+

20QUANTITY

0.99+

JohnPERSON

0.99+

NordstromORGANIZATION

0.99+

IBMORGANIZATION

0.99+

AirBNBORGANIZATION

0.99+

New YorkLOCATION

0.99+

Neiman MarcusORGANIZATION

0.99+

80%QUANTITY

0.99+

20%QUANTITY

0.99+

3DATE

0.99+

todayDATE

0.99+

threeQUANTITY

0.99+

New York CityLOCATION

0.99+

20 yearsQUANTITY

0.99+

CrowdMoleORGANIZATION

0.99+

10QUANTITY

0.99+

4 AMDATE

0.99+

8 Path SolutionsORGANIZATION

0.99+

TodayDATE

0.99+

two old guysQUANTITY

0.99+

five yearsQUANTITY

0.99+

30 yearsQUANTITY

0.99+

30 yearQUANTITY

0.99+

FirstQUANTITY

0.99+

three peopleQUANTITY

0.99+

UbersORGANIZATION

0.99+

10 minutesQUANTITY

0.99+

10 yearsQUANTITY

0.99+

a monthQUANTITY

0.98+

oneQUANTITY

0.98+

first timeQUANTITY

0.98+

next decadeDATE

0.98+

10 years agoDATE

0.98+

sevenQUANTITY

0.98+

30QUANTITY

0.98+

HubbleORGANIZATION

0.98+

two thingsQUANTITY

0.98+

1QUANTITY

0.98+

half a million filesQUANTITY

0.97+

Next-Generation Analytics Social Influencer Roundtable - #BigDataNYC 2016 #theCUBE


 

>> Narrator: Live from New York, it's the Cube, covering big data New York City 2016. Brought to you by headline sponsors, CISCO, IBM, NVIDIA, and our ecosystem sponsors, now here's your host, Dave Valante. >> Welcome back to New York City, everybody, this is the Cube, the worldwide leader in live tech coverage, and this is a cube first, we've got a nine person, actually eight person panel of experts, data scientists, all alike. I'm here with my co-host, James Cubelis, who has helped organize this panel of experts. James, welcome. >> Thank you very much, Dave, it's great to be here, and we have some really excellent brain power up there, so I'm going to let them talk. >> Okay, well thank you again-- >> And I'll interject my thoughts now and then, but I want to hear them. >> Okay, great, we know you well, Jim, we know you'll do that, so thank you for that, and appreciate you organizing this. Okay, so what I'm going to do to our panelists is ask you to introduce yourself. I'll introduce you, but tell us a little bit about yourself, and talk a little bit about what data science means to you. A number of you started in the field a long time ago, perhaps data warehouse experts before the term data science was coined. Some of you started probably after Hal Varian said it was the sexiest job in the world. (laughs) So think about how data science has changed and or what it means to you. We're going to start with Greg Piateski, who's from Boston. A Ph.D., KDnuggets, Greg, tell us about yourself and what data science means to you. >> Okay, well thank you Dave and thank you Jim for the invitation. Data science in a sense is the second oldest profession. I think people have this built-in need to find patterns and whatever we find we want to organize the data, but we do it well on a small scale, but we don't do it well on a large scale, so really, data science takes our need and helps us organize what we find, the patterns that we find that are really valid and useful and not just random, I think this is a big challenge of data science. I've actually started in this field before the term Data Science existed. I started as a researcher and organized the first few workshops on data mining and knowledge discovery, and the term data mining became less fashionable, became predictive analytics, now it's data science and it will be something else in a few years. >> Okay, thank you, Eves Mulkearns, Eves, I of course know you from Twitter. A lot of people know you as well. Tell us about your experiences and what data scientist means to you. >> Well, data science to me is if you take the two words, the data and the science, the science it holds a lot of expertise and skills there, it's statistics, it's mathematics, it's understanding the business and putting that together with the digitization of what we have. It's not only the structured data or the unstructured data what you store in the database try to get out and try to understand what is in there, but even video what is coming on and then trying to find, like George already said, the patterns in there and bringing value to the business but looking from a technical perspective, but still linking that to the business insights and you can do that on a technical level, but then you don't know yet what you need to find, or what you're looking for. >> Okay great, thank you. Craig Brown, Cube alum. How many people have been on the Cube actually before? >> I have. >> Okay, good. I always like to ask that question. So Craig, tell us a little bit about your background and, you know, data science, how has it changed, what's it all mean to you? >> Sure, so I'm Craig Brown, I've been in IT for almost 28 years, and that was obviously before the term data science, but I've evolved from, I started out as a developer. And evolved through the data ranks, as I called it, working with data structures, working with data systems, data technologies, and now we're working with data pure and simple. Data science to me is an individual or team of individuals that dissect the data, understand the data, help folks look at the data differently than just the information that, you know, we usually use in reports, and get more insights on, how to utilize it and better leverage it as an asset within an organization. >> Great, thank you Craig, okay, Jennifer Shin? Math is obviously part of being a data scientist. You're good at math I understand. Tell us about yourself. >> Yeah, so I'm a senior principle data scientist at the Nielsen Company. I'm also the founder of 8 Path Solutions, which is a data science, analytics, and technology company, and I'm also on the faculty in the Master of Information and Data Science program at UC Berkeley. So math is part of the IT statistics for data science actually this semester, and I think for me, I consider myself a scientist primarily, and data science is a nice day job to have, right? Something where there's industry need for people with my skill set in the sciences, and data gives us a great way of being able to communicate sort of what we know in science in a way that can be used out there in the real world. I think the best benefit for me is that now that I'm a data scientist, people know what my job is, whereas before, maybe five ten years ago, no one understood what I did. Now, people don't necessarily understand what I do now, but at least they understand kind of what I do, so it's still an improvement. >> Excellent. Thank you Jennifer. Joe Caserta, you're somebody who started in the data warehouse business, and saw that snake swallow a basketball and grow into what we now know as big data, so tell us about yourself. >> So I've been doing data for 30 years now, and I wrote the Data Warehouse ETL Toolkit with Ralph Timbal, which is the best selling book in the industry on preparing data for analytics, and with the big paradigm shift that's happened, you know for me the past seven years has been, instead of preparing data for people to analyze data to make decisions, now we're preparing data for machines to make the decisions, and I think that's the big shift from data analysis to data analytics and data science. >> Great, thank you. Miriam, Miriam Fridell, welcome. >> Thank you. I'm Miriam Fridell, I work for Elder Research, we are a data science consultancy, and I came to data science, sort of through a very circuitous route. I started off as a physicist, went to work as a consultant and software engineer, then became a research analyst, and finally came to data science. And I think one of the most interesting things to me about data science is that it's not simply about building an interesting model and doing some interesting mathematics, or maybe wrangling the data, all of which I love to do, but it's really the entire analytics lifecycle, and a value that you can actually extract from data at the end, and that's one of the things that I enjoy most is seeing a client's eyes light up or a wow, I didn't really know we could look at data that way, that's really interesting. I can actually do something with that, so I think that, to me, is one of the most interesting things about it. >> Great, thank you. Justin Sadeen, welcome. >> Absolutely, than you, thank you. So my name is Justin Sadeen, I work for Morph EDU, an artificial intelligence company in Atlanta, Georgia, and we develop learning platforms for non-profit and private educational institutions. So I'm a Marine Corp veteran turned data enthusiast, and so what I think about data science is the intersection of information, intelligence, and analysis, and I'm really excited about the transition from big data into smart data, and that's what I see data science as. >> Great, and last but not least, Dez Blanchfield, welcome mate. >> Good day. Yeah, I'm the one with the funny accent. So data science for me is probably the funniest job I've ever to describe to my mom. I've had quite a few different jobs, and she's never understood any of them, and this one she understands the least. I think a fun way to describe what we're trying to do in the world of data science and analytics now is it's the equivalent of high altitude mountain climbing. It's like the extreme sport version of the computer science world, because we have to be this magical unicorn of a human that can understand plain english problems from C-suite down and then translate it into code, either as soles or as teams of developers. And so there's this black art that we're expected to be able to transmogrify from something that we just in plain english say I would like to know X, and we have to go and figure it out, so there's this neat extreme sport view I have of rushing down the side of a mountain on a mountain bike and just dodging rocks and trees and things occasionally, because invariably, we do have things that go wrong, and they don't quite give us the answers we want. But I think we're at an interesting point in time now with the explosion in the types of technology that are at our fingertips, and the scale at which we can do things now, once upon a time we would sit at a terminal and write code and just look at data and watch it in columns, and then we ended up with spreadsheet technologies at our fingertips. Nowadays it's quite normal to instantiate a small high performance distributed cluster of computers, effectively a super computer in a public cloud, and throw some data at it and see what comes back. And we can do that on a credit card. So I think we're at a really interesting tipping point now where this coinage of data science needs to be slightly better defined, so that we can help organizations who have weird and strange questions that they want to ask, tell them solutions to those questions, and deliver on them in, I guess, a commodity deliverable. I want to know xyz and I want to know it in this time frame and I want to spend this much amount of money to do it, and I don't really care how you're going to do it. And there's so many tools we can choose from and there's so many platforms we can choose from, it's this little black art of computing, if you'd like, we're effectively making it up as we go in many ways, so I think it's one of the most exciting challenges that I've had, and I think I'm pretty sure I speak for most of us in that we're lucky that we get paid to do this amazing job. That we get make up on a daily basis in some cases. >> Excellent, well okay. So we'll just get right into it. I'm going to go off script-- >> Do they have unicorns down under? I think they have some strange species right? >> Well we put the pointy bit on the back. You guys have in on the front. >> So I was at an IBM event on Friday. It was a chief data officer summit, and I attended what was called the Data Divas' breakfast. It was a women in tech thing, and one of the CDOs, she said that 25% of chief data officers are women, which is much higher than you would normally see in the profile of IT. We happen to have 25% of our panelists are women. Is that common? Miriam and Jennifer, is that common for the data science field? Or is this a higher percentage than you would normally see-- >> James: Or a lower percentage? >> I think certainly for us, we have hired a number of additional women in the last year, and they are phenomenal data scientists. I don't know that I would say, I mean I think it's certainly typical that this is still a male-dominated field, but I think like many male-dominated fields, physics, mathematics, computer science, I think that that is slowly changing and evolving, and I think certainly, that's something that we've noticed in our firm over the years at our consultancy, as we're hiring new people. So I don't know if I would say 25% is the right number, but hopefully we can get it closer to 50. Jennifer, I don't know if you have... >> Yeah, so I know at Nielsen we have actually more than 25% of our team is women, at least the team I work with, so there seems to be a lot of women who are going into the field. Which isn't too surprising, because with a lot of the issues that come up in STEM, one of the reasons why a lot of women drop out is because they want real world jobs and they feel like they want to be in the workforce, and so I think this is a great opportunity with data science being so popular for these women to actually have a job where they can still maintain that engineering and science view background that they learned in school. >> Great, well Hillary Mason, I think, was the first data scientist that I ever interviewed, and I asked her what are the sort of skills required and the first question that we wanted to ask, I just threw other women in tech in there, 'cause we love women in tech, is about this notion of the unicorn data scientist, right? It's been put forth that there's the skill sets required to be a date scientist are so numerous that it's virtually impossible to have a data scientist with all those skills. >> And I love Dez's extreme sports analogy, because that plays into the whole notion of data science, we like to talk about the theme now of data science as a team sport. Must it be an extreme sport is what I'm wondering, you know. The unicorns of the world seem to be... Is that realistic now in this new era? >> I mean when automobiles first came out, they were concerned that there wouldn't be enough chauffeurs to drive all the people around. Is there an analogy with data, to be a data-driven company. Do I need a data scientist, and does that data scientist, you know, need to have these unbelievable mixture of skills? Or are we doomed to always have a skill shortage? Open it up. >> I'd like to have a crack at that, so it's interesting, when automobiles were a thing, when they first bought cars out, and before they, sort of, were modernized by the likes of Ford's Model T, when we got away from the horse and carriage, they actually had human beings walking down the street with a flag warning the public that the horseless carriage was coming, and I think data scientists are very much like that. That we're kind of expected to go ahead of the organization and try and take the challenges we're faced with today and see what's going to come around the corner. And so we're like the little flag-bearers, if you'd like, in many ways of this is where we're at today, tell me where I'm going to be tomorrow, and try and predict the day after as well. It is very much becoming a team sport though. But I think the concept of data science being a unicorn has come about because the coinage hasn't been very well defined, you know, if you were to ask 10 people what a data scientist were, you'd get 11 answers, and I think this is a really challenging issue for hiring managers and C-suites when the generants say I was data science, I want big data, I want an analyst. They don't actually really know what they're asking for. Generally, if you ask for a database administrator, it's a well-described job spec, and you can just advertise it and some 20 people will turn up and you interview to decide whether you like the look and feel and smell of 'em. When you ask for a data scientist, there's 20 different definitions of what that one data science role could be. So we don't initially know what the job is, we don't know what the deliverable is, and we're still trying to figure that out, so yeah. >> Craig what about you? >> So from my experience, when we talk about data science, we're really talking about a collection of experiences with multiple people I've yet to find, at least from my experience, a data science effort with a lone wolf. So you're talking about a combination of skills, and so you don't have, no one individual needs to have all that makes a data scientist a data scientist, but you definitely have to have the right combination of skills amongst a team in order to accomplish the goals of data science team. So from my experiences and from the clients that I've worked with, we refer to the data science effort as a data science team. And I believe that's very appropriate to the team sport analogy. >> For us, we look at a data scientist as a full stack web developer, a jack of all trades, I mean they need to have a multitude of background coming from a programmer from an analyst. You can't find one subject matter expert, it's very difficult. And if you're able to find a subject matter expert, you know, through the lifecycle of product development, you're going to require that individual to interact with a number of other members from your team who are analysts and then you just end up well training this person to be, again, a jack of all trades, so it comes full circle. >> I own a business that does nothing but data solutions, and we've been in business 15 years, and it's been, the transition over time has been going from being a conventional wisdom run company with a bunch of experts at the top to becoming more of a data-driven company using data warehousing and BI, but now the trend is absolutely analytics driven. So if you're not becoming an analytics-driven company, you are going to be behind the curve very very soon, and it's interesting that IBM is now coining the phrase of a cognitive business. I think that is absolutely the future. If you're not a cognitive business from a technology perspective, and an analytics-driven perspective, you're going to be left behind, that's for sure. So in order to stay competitive, you know, you need to really think about data science think about how you're using your data, and I also see that what's considered the data expert has evolved over time too where it used to be just someone really good at writing SQL, or someone really good at writing queries in any language, but now it's becoming more of a interdisciplinary action where you need soft skills and you also need the hard skills, and that's why I think there's more females in the industry now than ever. Because you really need to have a really broad width of experiences that really wasn't required in the past. >> Greg Piateski, you have a comment? >> So there are not too many unicorns in nature or as data scientists, so I think organizations that want to hire data scientists have to look for teams, and there are a few unicorns like Hillary Mason or maybe Osama Faiat, but they generally tend to start companies and very hard to retain them as data scientists. What I see is in other evolution, automation, and you know, steps like IBM, Watson, the first platform is eventually a great advance for data scientists in the short term, but probably what's likely to happen in the longer term kind of more and more of those skills becoming subsumed by machine unique layer within the software. How long will it take, I don't know, but I have a feeling that the paradise for data scientists may not be very long lived. >> Greg, I have a follow up question to what I just heard you say. When a data scientist, let's say a unicorn data scientist starts a company, as you've phrased it, and the company's product is built on data science, do they give up becoming a data scientist in the process? It would seem that they become a data scientist of a higher order if they've built a product based on that knowledge. What is your thoughts on that? >> Well, I know a few people like that, so I think maybe they remain data scientists at heart, but they don't really have the time to do the analysis and they really have to focus more on strategic things. For example, today actually is the birthday of Google, 18 years ago, so Larry Page and Sergey Brin wrote a very influential paper back in the '90s About page rank. Have they remained data scientist, perhaps a very very small part, but that's not really what they do, so I think those unicorn data scientists could quickly evolve to have to look for really teams to capture those skills. >> Clearly they come to a point in their career where they build a company based on teams of data scientists and data engineers and so forth, which relates to the topic of team data science. What is the right division of roles and responsibilities for team data science? >> Before we go, Jennifer, did you have a comment on that? >> Yeah, so I guess I would say for me, when data science came out and there was, you know, the Venn Diagram that came out about all the skills you were supposed to have? I took a very different approach than all of the people who I knew who were going into data science. Most people started interviewing immediately, they were like this is great, I'm going to get a job. I went and learned how to develop applications, and learned computer science, 'cause I had never taken a computer science course in college, and made sure I trued up that one part where I didn't know these things or had the skills from school, so I went headfirst and just learned it, and then now I have actually a lot of technology patents as a result of that. So to answer Jim's question, actually. I started my company about five years ago. And originally started out as a consulting firm slash data science company, then it evolved, and one of the reasons I went back in the industry and now I'm at Nielsen is because you really can't do the same sort of data science work when you're actually doing product development. It's a very very different sort of world. You know, when you're developing a product you're developing a core feature or functionality that you're going to offer clients and customers, so I think definitely you really don't get to have that wide range of sort of looking at 8 million models and testing things out. That flexibility really isn't there as your product starts getting developed. >> Before we go into the team sport, the hard skills that you have, are you all good at math? Are you all computer science types? How about math? Are you all math? >> What were your GPAs? (laughs) >> David: Anybody not math oriented? Anybody not love math? You don't love math? >> I love math, I think it's required. >> David: So math yes, check. >> You dream in equations, right? You dream. >> Computer science? Do I have to have computer science skills? At least the basic knowledge? >> I don't know that you need to have formal classes in any of these things, but I think certainly as Jennifer was saying, if you have no skills in programming whatsoever and you have no interest in learning how to write SQL queries or RR Python, you're probably going to struggle a little bit. >> James: It would be a challenge. >> So I think yes, I have a Ph.D. in physics, I did a lot of math, it's my love language, but I think you don't necessarily need to have formal training in all of these things, but I think you need to have a curiosity and a love of learning, and so if you don't have that, you still want to learn and however you gain that knowledge I think, but yeah, if you have no technical interests whatsoever, and don't want to write a line of code, maybe data science is not the field for you. Even if you don't do it everyday. >> And statistics as well? You would put that in that same general category? How about data hacking? You got to love data hacking, is that fair? Eaves, you have a comment? >> Yeah, I think so, while we've been discussing that for me, the most important part is that you have a logical mind and you have the capability to absorb new things and the curiosity you need to dive into that. While I don't have an education in IT or whatever, I have a background in chemistry and those things that I learned there, I apply to information technology as well, and from a part that you say, okay, I'm a tech-savvy guy, I'm interested in the tech part of it, you need to speak that business language and if you can do that crossover and understand what other skill sets or parts of the roles are telling you I think the communication in that aspect is very important. >> I'd like throw just something really quickly, and I think there's an interesting thing that happens in IT, particularly around technology. We tend to forget that we've actually solved a lot of these problems in the past. If we look in history, if we look around the second World War, and Bletchley Park in the UK, where you had a very similar experience as humans that we're having currently around the whole issue of data science, so there was an interesting challenge with the enigma in the shark code, right? And there was a bunch of men put in a room and told, you're mathematicians and you come from universities, and you can crack codes, but they couldn't. And so what they ended up doing was running these ads, and putting challenges, they actually put, I think it was crossword puzzles in the newspaper, and this deluge of women came out of all kinds of different roles without math degrees, without science degrees, but could solve problems, and they were thrown at the challenge of cracking codes, and invariably, they did the heavy lifting. On a daily basis for converting messages from one format to another, so that this very small team at the end could actually get in play with the sexy piece of it. And I think we're going through a similar shift now with what we're refer to as data science in the technology and business world. Where the people who are doing the heavy lifting aren't necessarily what we'd think of as the traditional data scientists, and so, there have been some unicorns and we've championed them, and they're great. But I think the shift's going to be to accountants, actuaries, and statisticians who understand the business, and come from an MBA star background that can learn the relevant pieces of math and models that we need to to apply to get the data science outcome. I think we've already been here, we've solved this problem, we've just got to learn not to try and reinvent the wheel, 'cause the media hypes this whole thing of data science is exciting and new, but we've been here a couple times before, and there's a lot to be learned from that, my view. >> I think we had Joe next. >> Yeah, so I was going to say that, data science is a funny thing. To use the word science is kind of a misnomer, because there is definitely a level of art to it, and I like to use the analogy, when Michelangelo would look at a block of marble, everyone else looked at the block of marble to see a block of marble. He looks at a block of marble and he sees a finished sculpture, and then he figures out what tools do I need to actually make my vision? And I think data science is a lot like that. We hear a problem, we see the solution, and then we just need the right tools to do it, and I think part of consulting and data science in particular. It's not so much what we know out of the gate, but it's how quickly we learn. And I think everyone here, what makes them brilliant, is how quickly they could learn any tool that they need to see their vision get accomplished. >> David: Justin? >> Yeah, I think you make a really great point, for me, I'm a Marine Corp veteran, and the reason I mentioned that is 'cause I work with two veterans who are problem solvers. And I think that's what data scientists really are, in the long run are problem solvers, and you mentioned a great point that, yeah, I think just problem solving is the key. You don't have to be a subject matter expert, just be able to take the tools and intelligently use them. >> Now when you look at the whole notion of team data science, what is the right mix of roles, like role definitions within a high-quality or a high-preforming data science teams now IBM, with, of course, our announcement of project, data works and so forth. We're splitting the role division, in terms of data scientist versus data engineers versus application developer versus business analyst, is that the right breakdown of roles? Or what would the panelists recommend in terms of understanding what kind of roles make sense within, like I said, a high performing team that's looking for trying to develop applications that depend on data, machine learning, and so forth? Anybody want to? >> I'll tackle that. So the teams that I have created over the years made up these data science teams that I brought into customer sites have a combination of developer capabilities and some of them are IT developers, but some of them were developers of things other than applications. They designed buildings, they did other things with their technical expertise besides building technology. The other piece besides the developer is the analytics, and analytics can be taught as long as they understand how algorithms work and the code behind the analytics, in other words, how are we analyzing things, and from a data science perspective, we are leveraging technology to do the analyzing through the tool sets, so ultimately as long as they understand how tool sets work, then we can train them on the tools. Having that analytic background is an important piece. >> Craig, is it easier to, I'll go to you in a moment Joe, is it easier to cross train a data scientist to be an app developer, than to cross train an app developer to be a data scientist or does it not matter? >> Yes. (laughs) And not the other way around. It depends on the-- >> It's easier to cross train a data scientist to be an app developer than-- >> Yes. >> The other way around. Why is that? >> Developing code can be as difficult as the tool set one uses to develop code. Today's tool sets are very user friendly. where developing code is very difficult to teach a person to think along the lines of developing code when they don't have any idea of the aspects of code, of building something. >> I think it was Joe, or you next, or Jennifer, who was it? >> I would say that one of the reasons for that is data scientists will probably know if the answer's right after you process data, whereas data engineer might be able to manipulate the data but may not know if the answer's correct. So I think that is one of the reasons why having a data scientist learn the application development skills might be a easier time than the other way around. >> I think Miriam, had a comment? Sorry. >> I think that what we're advising our clients to do is to not think, before data science and before analytics became so required by companies to stay competitive, it was more of a waterfall, you have a data engineer build a solution, you know, then you throw it over the fence and the business analyst would have at it, where now, it must be agile, and you must have a scrum team where you have the data scientist and the data engineer and the project manager and the product owner and someone from the chief data office all at the table at the same time and all accomplishing the same goal. Because all of these skills are required, collectively in order to solve this problem, and it can't be done daisy chained anymore it has to be a collaboration. And that's why I think spark is so awesome, because you know, spark is a single interface that a data engineer can use, a data analyst can use, and a data scientist can use. And now with what we've learned today, having a data catalog on top so that the chief data office can actually manage it, I think is really going to take spark to the next level. >> James: Miriam? >> I wanted to comment on your question to Craig about is it harder to teach a data scientist to build an application or vice versa, and one of the things that we have worked on a lot in our data science team is incorporating a lot of best practices from software development, agile, scrum, that sort of thing, and I think particularly with a focus on deploying models that we don't just want to build an interesting data science model, we want to deploy it, and get some value. You need to really incorporate these processes from someone who might know how to build applications and that, I think for some data scientists can be a challenge, because one of the fun things about data science is you get to get into the data, and you get your hands dirty, and you build a model, and you get to try all these cool things, but then when the time comes for you to actually deploy something, you need deployment-grade code in order to make sure it can go into production at your client side and be useful for instance, so I think that there's an interesting challenge on both ends, but one of the things I've definitely noticed with some of our data scientists is it's very hard to get them to think in that mindset, which is why you have a team of people, because everyone has different skills and you can mitigate that. >> Dev-ops for data science? >> Yeah, exactly. We call it insight ops, but yeah, I hear what you're saying. Data science is becoming increasingly an operational function as opposed to strictly exploratory or developmental. Did some one else have a, Dez? >> One of the things I was going to mention, one of the things I like to do when someone gives me a new problem is take all the laptops and phones away. And we just end up in a room with a whiteboard. And developers find that challenging sometimes, so I had this one line where I said to them don't write the first line of code until you actually understand the problem you're trying to solve right? And I think where the data science focus has changed the game for organizations who are trying to get some systematic repeatable process that they can throw data at and just keep getting answers and things, no matter what the industry might be is that developers will come with a particular mindset on how they're going to codify something without necessarily getting the full spectrum and understanding the problem first place. What I'm finding is the people that come at data science tend to have more of a hacker ethic. They want to hack the problem, they want to understand the challenge, and they want to be able to get it down to plain English simple phrases, and then apply some algorithms and then build models, and then codify it, and so most of the time we sit in a room with whiteboard markers just trying to build a model in a graphical sense and make sure it's going to work and that it's going to flow, and once we can do that, we can codify it. I think when you come at it from the other angle from the developer ethic, and you're like I'm just going to codify this from day one, I'm going to write code. I'm going to hack this thing out and it's just going to run and compile. Often, you don't truly understand what he's trying to get to at the end point, and you can just spend days writing code and I think someone made the comment that sometimes you don't actually know whether the output is actually accurate in the first place. So I think there's a lot of value being provided from the data science practice. Over understanding the problem in plain english at a team level, so what am I trying to do from the business consulting point of view? What are the requirements? How do I build this model? How do I test the model? How do I run a sample set through it? Train the thing and then make sure what I'm going to codify actually makes sense in the first place, because otherwise, what are you trying to solve in the first place? >> Wasn't that Einstein who said if I had an hour to solve a problem, I'd spend 55 minutes understanding the problem and five minutes on the solution, right? It's exactly what you're talking about. >> Well I think, I will say, getting back to the question, the thing with building these teams, I think a lot of times people don't talk about is that engineers are actually very very important for data science projects and data science problems. For instance, if you were just trying to prototype something or just come up with a model, then data science teams are great, however, if you need to actually put that into production, that code that the data scientist has written may not be optimal, so as we scale out, it may be actually very inefficient. At that point, you kind of want an engineer to step in and actually optimize that code, so I think it depends on what you're building and that kind of dictates what kind of division you want among your teammates, but I do think that a lot of times, the engineering component is really undervalued out there. >> Jennifer, it seems that the data engineering function, data discovery and preparation and so forth is becoming automated to a greater degree, but if I'm listening to you, I don't hear that data engineering as a discipline is becoming extinct in terms of a role that people can be hired into. You're saying that there's a strong ongoing need for data engineers to optimize the entire pipeline to deliver the fruits of data science in production applications, is that correct? So they play that very much operational role as the backbone for... >> So I think a lot of times businesses will go to data scientist to build a better model to build a predictive model, but that model may not be something that you really want to implement out there when there's like a million users coming to your website, 'cause it may not be efficient, it may take a very long time, so I think in that sense, it is important to have good engineers, and your whole product may fail, you may build the best model it may have the best output, but if you can't actually implement it, then really what good is it? >> What about calibrating these models? How do you go about doing that and sort of testing that in the real world? Has that changed overtime? Or is it... >> So one of the things that I think can happen, and we found with one of our clients is when you build a model, you do it with the data that you have, and you try to use a very robust cross-validation process to make sure that it's robust and it's sturdy, but one thing that can sometimes happen is after you put your model into production, there can be external factors that, societal or whatever, things that have nothing to do with the data that you have or the quality of the data or the quality of the model, which can actually erode the model's performance over time. So as an example, we think about cell phone contracts right? Those have changed a lot over the years, so maybe five years ago, the type of data plan you had might not be the same that it is today, because a totally different type of plan is offered, so if you're building a model on that to say predict who's going to leave and go to a different cell phone carrier, the validity of your model overtime is going to completely degrade based on nothing that you have, that you put into the model or the data that was available, so I think you need to have this sort of model management and monitoring process to take this factors into account and then know when it's time to do a refresh. >> Cross-validation, even at one point in time, for example, there was an article in the New York Times recently that they gave the same data set to five different data scientists, this is survey data for the presidential election that's upcoming, and five different data scientists came to five different predictions. They were all high quality data scientists, the cross-validation showed a wide variation about who was on top, whether it was Hillary or whether it was Trump so that shows you that even at any point in time, cross-validation is essential to understand how robust the predictions might be. Does somebody else have a comment? Joe? >> I just want to say that this even drives home the fact that having the scrum team for each project and having the engineer and the data scientist, data engineer and data scientist working side by side because it is important that whatever we're building we assume will eventually go into production, and we used to have in the data warehousing world, you'd get the data out of the systems, out of your applications, you do analysis on your data, and the nirvana was maybe that data would go back to the system, but typically it didn't. Nowadays, the applications are dependent on the insight coming from the data science team. With the behavior of the application and the personalization and individual experience for a customer is highly dependent, so it has to be, you said is data science part of the dev-ops team, absolutely now, it has to be. >> Whose job is it to figure out the way in which the data is presented to the business? Where's the sort of presentation, the visualization plan, is that the data scientist role? Does that depend on whether or not you have that gene? Do you need a UI person on your team? Where does that fit? >> Wow, good question. >> Well usually that's the output, I mean, once you get to the point where you're visualizing the data, you've created an algorithm or some sort of code that produces that to be visualized, so at the end of the day that the customers can see what all the fuss is about from a data science perspective. But it's usually post the data science component. >> So do you run into situations where you can see it and it's blatantly obvious, but it doesn't necessarily translate to the business? >> Well there's an interesting challenge with data, and we throw the word data around a lot, and I've got this fun line I like throwing out there. If you torture data long enough, it will talk. So the challenge then is to figure out when to stop torturing it, right? And it's the same with models, and so I think in many other parts of organizations, we'll take something, if someone's doing a financial report on performance of the organization and they're doing it in a spreadsheet, they'll get two or three peers to review it, and validate that they've come up with a working model and the answer actually makes sense. And I think we're rushing so quickly at doing analysis on data that comes to us in various formats and high velocity that I think it's very important for us to actually stop and do peer reviews, of the models and the data and the output as well, because otherwise we start making decisions very quickly about things that may or may not be true. It's very easy to get the data to paint any picture you want, and you gave the example of the five different attempts at that thing, and I had this shoot out thing as well where I'll take in a team, I'll get two different people to do exactly the same thing in completely different rooms, and come back and challenge each other, and it's quite amazing to see the looks on their faces when they're like, oh, I didn't see that, and then go back and do it again until, and then just keep iterating until we get to the point where they both get the same outcome, in fact there's a really interesting anecdote about when the UNIX operation system was being written, and a couple of the authors went away and wrote the same program without realizing that each other were doing it, and when they came back, they actually had line for line, the same piece of C code, 'cause they'd actually gotten to a truth. A perfect version of that program, and I think we need to often look at, when we're building models and playing with data, if we can't come at it from different angles, and get the same answer, then maybe the answer isn't quite true yet, so there's a lot of risk in that. And it's the same with presentation, you know, you can paint any picture you want with the dashboard, but who's actually validating when the dashboard's painting the correct picture? >> James: Go ahead, please. >> There is a science actually, behind data visualization, you know if you're doing trending, it's a line graph, if you're doing comparative analysis, it's bar graph, if you're doing percentages, it's a pie chart, like there is a certain science to it, it's not that much of a mystery as the novice thinks there is, but what makes it challenging is that you also, just like any presentation, you have to consider your audience. And your audience, whenever we're delivering a solution, either insight, or just data in a grid, we really have to consider who is the consumer of this data, and actually cater the visual to that person or to that particular audience. And that is part of the art, and that is what makes a great data scientist. >> The consumer may in fact be the source of the data itself, like in a mobile app, so you're tuning their visualization and then their behavior is changing as a result, and then the data on their changed behavior comes back, so it can be a circular process. >> So Jim, at a recent conference, you were tweeting about the citizen data scientist, and you got emasculated by-- >> I spoke there too. >> Okay. >> TWI on that same topic, I got-- >> Kirk Borne I hear came after you. >> Kirk meant-- >> Called foul, flag on the play. >> Kirk meant well. I love Claudia Emahoff too, but yeah, it's a controversial topic. >> So I wonder what our panel thinks of that notion, citizen data scientist. >> Can I respond about citizen data scientists? >> David: Yeah, please. >> I think this term was introduced by Gartner analyst in 2015, and I think it's a very dangerous and misleading term. I think definitely we want to democratize the data and have access to more people, not just data scientists, but managers, BI analysts, but when there is already a term for such people, we can call the business analysts, because it implies some training, some understanding of the data. If you use the term citizen data scientist, it implies that without any training you take some data and then you find something there, and they think as Dev's mentioned, we've seen many examples, very easy to find completely spurious random correlations in data. So we don't want citizen dentists to treat our teeth or citizen pilots to fly planes, and if data's important, having citizen data scientists is equally dangerous, so I'm hoping that, I think actually Gartner did not use the term citizen data scientist in their 2016 hype course, so hopefully they will put this term to rest. >> So Gregory, you apparently are defining citizen to mean incompetent as opposed to simply self-starting. >> Well self-starting is very different, but that's not what I think what was the intention. I think what we see in terms of data democratization, there is a big trend over automation. There are many tools, for example there are many companies like Data Robot, probably IBM, has interesting machine learning capability towards automation, so I think I recently started a page on KDnuggets for automated data science solutions, and there are already 20 different forums that provide different levels of automation. So one can deliver in full automation maybe some expertise, but it's very dangerous to have part of an automated tool and at some point then ask citizen data scientists to try to take the wheels. >> I want to chime in on that. >> David: Yeah, pile on. >> I totally agree with all of that. I think the comment I just want to quickly put out there is that the space we're in is a very young, and rapidly changing world, and so what we haven't had yet is this time to stop and take a deep breath and actually define ourselves, so if you look at computer science in general, a lot of the traditional roles have sort of had 10 or 20 years of history, and so thorough the hiring process, and the development of those spaces, we've actually had time to breath and define what those jobs are, so we know what a systems programmer is, and we know what a database administrator is, but we haven't yet had a chance as a community to stop and breath and say, well what do we think these roles are, and so to fill that void, the media creates coinages, and I think this is the risk we've got now that the concept of a data scientist was just a term that was coined to fill a void, because no one quite knew what to call somebody who didn't come from a data science background if they were tinkering around data science, and I think that's something that we need to sort of sit up and pay attention to, because if we don't own that and drive it ourselves, then somebody else is going to fill the void and they'll create these very frustrating concepts like data scientist, which drives us all crazy. >> James: Miriam's next. >> So I wanted to comment, I agree with both of the previous comments, but in terms of a citizen data scientist, and I think whether or not you're citizen data scientist or an actual data scientist whatever that means, I think one of the most important things you can have is a sense of skepticism, right? Because you can get spurious correlations and it's like wow, my predictive model is so excellent, you know? And being aware of things like leaks from the future, right? This actually isn't predictive at all, it's a result of the thing I'm trying to predict, and so I think one thing I know that we try and do is if something really looks too good, we need to go back in and make sure, did we not look at the data correctly? Is something missing? Did we have a problem with the ETL? And so I think that a healthy sense of skepticism is important to make sure that you're not taking a spurious correlation and trying to derive some significant meaning from it. >> I think there's a Dilbert cartoon that I saw that described that very well. Joe, did you have a comment? >> I think that in order for citizen data scientists to really exist, I think we do need to have more maturity in the tools that they would use. My vision is that the BI tools of today are all going to be replaced with natural language processing and searching, you know, just be able to open up a search bar and say give me sales by region, and to take that one step into the future even further, it should actually say what are my sales going to be next year? And it should trigger a simple linear regression or be able to say which features of the televisions are actually affecting sales and do a clustering algorithm, you know I think hopefully that will be the future, but I don't see anything of that today, and I think in order to have a true citizen data scientist, you would need to have that, and that is pretty sophisticated stuff. >> I think for me, the idea of citizen data scientist I can relate to that, for instance, when I was in graduate school, I started doing some research on FDA data. It was an open source data set about 4.2 million data points. Technically when I graduated, the paper was still not published, and so in some sense, you could think of me as a citizen data scientist, right? I wasn't getting funding, I wasn't doing it for school, but I was still continuing my research, so I'd like to hope that with all the new data sources out there that there might be scientists or people who are maybe kept out of a field people who wanted to be in STEM and for whatever life circumstance couldn't be in it. That they might be encouraged to actually go and look into the data and maybe build better models or validate information that's out there. >> So Justin, I'm sorry you had one comment? >> It seems data science was termed before academia adopted formalized training for data science. But yeah, you can make, like Dez said, you can make data work for whatever problem you're trying to solve, whatever answer you see, you want data to work around it, you can make it happen. And I kind of consider that like in project management, like data creep, so you're so hyper focused on a solution you're trying to find the answer that you create an answer that works for that solution, but it may not be the correct answer, and I think the crossover discussion works well for that case. >> So but the term comes up 'cause there's a frustration I guess, right? That data science skills are not plentiful, and it's potentially a bottleneck in an organization. Supposedly 80% of your time is spent on cleaning data, is that right? Is that fair? So there's a problem. How much of that can be automated and when? >> I'll have a shot at that. So I think there's a shift that's going to come about where we're going to move from centralized data sets to data at the edge of the network, and this is something that's happening very quickly now where we can't just hold everything back to a central spot. When the internet of things actually wakes up. Things like the Boeing Dreamliner 787, that things got 6,000 sensors in it, produces half a terabyte of data per flight. There are 87,400 flights per day in domestic airspace in the U.S. That's 43.5 petabytes of raw data, now that's about three years worth of disk manufacturing in total, right? We're never going to copy that across one place, we can't process, so I think the challenge we've got ahead of us is looking at how we're going to move the intelligence and the analytics to the edge of the network and pre-cook the data in different tiers, so have a look at the raw material we get, and boil it down to a slightly smaller data set, bring a meta data version of that back, and eventually get to the point where we've only got the very minimum data set and data points we need to make key decisions. Without that, we're already at the point where we have too much data, and we can't munch it fast enough, and we can't spin off enough tin even if we witch the cloud on, and that's just this never ending deluge of noise, right? And you've got that signal versus noise problem so then we're now seeing a shift where people looking at how do we move the intelligence back to the edge of network which we actually solved some time ago in the securities space. You know, spam filtering, if an emails hits Google on the west coast of the U.S. and they create a check some for that spam email, it immediately goes into a database, and nothing gets on the opposite side of the coast, because they already know it's spam. They recognize that email coming in, that's evil, stop it. So we've already fixed its insecurity with intrusion detection, we've fixed it in spam, so we now need to take that learning, and bring it into business analytics, if you like, and see where we're finding patterns and behavior, and brew that out to the edge of the network, so if I'm seeing a demand over here for tickets on a new sale of a show, I need to be able to see where else I'm going to see that demand and start responding to that before the demand comes about. I think that's a shift that we're going to see quickly, because we'll never keep up with the data munching challenge and the volume's just going to explode. >> David: We just have a couple minutes. >> That does sound like a great topic for a future Cube panel which is data science on the edge of the fog. >> I got a hundred questions around that. So we're wrapping up here. Just got a couple minutes. Final thoughts on this conversation or any other pieces that you want to punctuate. >> I think one thing that's been really interesting for me being on this panel is hearing all of my co-panelists talking about common themes and things that we are also experiencing which isn't a surprise, but it's interesting to hear about how ubiquitous some of the challenges are, and also at the announcement earlier today, some of the things that they're talking about and thinking about, we're also talking about and thinking about. So I think it's great to hear we're all in different countries and different places, but we're experiencing a lot of the same challenges, and I think that's been really interesting for me to hear about. >> David: Great, anybody else, final thoughts? >> To echo Dez's thoughts, it's about we're never going to catch up with the amount of data that's produced, so it's about transforming big data into smart data. >> I could just say that with the shift from normal data, small data, to big data, the answer is automate, automate, automate, and we've been talking about advanced algorithms and machine learning for the science for changing the business, but there also needs to be machine learning and advanced algorithms for the backroom where we're actually getting smarter about how we ingestate and how we fix data as it comes in. Because we can actually train the machines to understand data anomalies and what we want to do with them over time. And I think the further upstream we get of data correction, the less work there will be downstream. And I also think that the concept of being able to fix data at the source is gone, that's behind us. Right now the data that we're using to analyze to change the business, typically we have no control over. Like Dez said, they're coming from censors and machines and internet of things and if it's wrong, it's always going to be wrong, so we have to figure out how to do that in our laboratory. >> Eaves, final thoughts? >> I think it's a mind shift being a data scientist if you look back at the time why did you start developing or writing code? Because you like to code, whatever, just for the sake of building a nice algorithm or a piece of software, or whatever, and now I think with the spirit of a data scientist, you're looking at a problem and say this is where I want to go, so you have more the top down approach than the bottom up approach. And have the big picture and that is what you really need as a data scientist, just look across technologies, look across departments, look across everything, and then on top of that, try to apply as much skills as you have available, and that's kind of unicorn that they're trying to look for, because it's pretty hard to find people with that wide vision on everything that is happening within the company, so you need to be aware of technology, you need to be aware of how a business is run, and how it fits within a cultural environment, you have to work with people and all those things together to my belief to make it very difficult to find those good data scientists. >> Jim? Your final thought? >> My final thoughts is this is an awesome panel, and I'm so glad that you've come to New York, and I'm hoping that you all stay, of course, for the the IBM Data First launch event that will take place this evening about a block over at Hudson Mercantile, so that's pretty much it. Thank you, I really learned a lot. >> I want to second Jim's thanks, really, great panel. Awesome expertise, really appreciate you taking the time, and thanks to the folks at IBM for putting this together. >> And I'm big fans of most of you, all of you, on this session here, so it's great just to meet you in person, thank you. >> Okay, and I want to thank Jeff Frick for being a human curtain there with the sun setting here in New York City. Well thanks very much for watching, we are going to be across the street at the IBM announcement, we're going to be on the ground. We open up again tomorrow at 9:30 at Big Data NYC, Big Data Week, Strata plus the Hadoop World, thanks for watching everybody, that's a wrap from here. This is the Cube, we're out. (techno music)

Published Date : Sep 28 2016

SUMMARY :

Brought to you by headline sponsors, and this is a cube first, and we have some really but I want to hear them. and appreciate you organizing this. and the term data mining Eves, I of course know you from Twitter. and you can do that on a technical level, How many people have been on the Cube I always like to ask that question. and that was obviously Great, thank you Craig, and I'm also on the faculty and saw that snake swallow a basketball and with the big paradigm Great, thank you. and I came to data science, Great, thank you. and so what I think about data science Great, and last but not least, and the scale at which I'm going to go off script-- You guys have in on the front. and one of the CDOs, she said that 25% and I think certainly, that's and so I think this is a great opportunity and the first question talk about the theme now and does that data scientist, you know, and you can just advertise and from the clients I mean they need to have and it's been, the transition over time but I have a feeling that the paradise and the company's product and they really have to focus What is the right division and one of the reasons I You dream in equations, right? and you have no interest in learning but I think you need to and the curiosity you and there's a lot to be and I like to use the analogy, and the reason I mentioned that is that the right breakdown of roles? and the code behind the analytics, And not the other way around. Why is that? idea of the aspects of code, of the reasons for that I think Miriam, had a comment? and someone from the chief data office and one of the things that an operational function as opposed to and so most of the time and five minutes on the solution, right? that code that the data but if I'm listening to you, that in the real world? the data that you have or so that shows you that and the nirvana was maybe that the customers can see and a couple of the authors went away and actually cater the of the data itself, like in a mobile app, I love Claudia Emahoff too, of that notion, citizen data scientist. and have access to more people, to mean incompetent as opposed to and at some point then ask and the development of those spaces, and so I think one thing I think there's a and I think in order to have a true so I'd like to hope that with all the new and I think So but the term comes up and the analytics to of the fog. or any other pieces that you want to and also at the so it's about transforming big data and machine learning for the science and now I think with the and I'm hoping that you and thanks to the folks at IBM so it's great just to meet you in person, This is the Cube, we're out.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JenniferPERSON

0.99+

Jennifer ShinPERSON

0.99+

Miriam FridellPERSON

0.99+

Greg PiateskiPERSON

0.99+

JustinPERSON

0.99+

IBMORGANIZATION

0.99+

DavidPERSON

0.99+

Jeff FrickPERSON

0.99+

2015DATE

0.99+

Joe CasertaPERSON

0.99+

James CubelisPERSON

0.99+

JamesPERSON

0.99+

MiriamPERSON

0.99+

JimPERSON

0.99+

JoePERSON

0.99+

Claudia EmahoffPERSON

0.99+

NVIDIAORGANIZATION

0.99+

HillaryPERSON

0.99+

New YorkLOCATION

0.99+

Hillary MasonPERSON

0.99+

Justin SadeenPERSON

0.99+

GregPERSON

0.99+

DavePERSON

0.99+

55 minutesQUANTITY

0.99+

TrumpPERSON

0.99+

2016DATE

0.99+

CraigPERSON

0.99+

Dave ValantePERSON

0.99+

GeorgePERSON

0.99+

Dez BlanchfieldPERSON

0.99+

UKLOCATION

0.99+

FordORGANIZATION

0.99+

Craig BrownPERSON

0.99+

10QUANTITY

0.99+

8 Path SolutionsORGANIZATION

0.99+

CISCOORGANIZATION

0.99+

five minutesQUANTITY

0.99+

twoQUANTITY

0.99+

30 yearsQUANTITY

0.99+

KirkPERSON

0.99+

25%QUANTITY

0.99+

Marine CorpORGANIZATION

0.99+

80%QUANTITY

0.99+

43.5 petabytesQUANTITY

0.99+

BostonLOCATION

0.99+

Data RobotORGANIZATION

0.99+

10 peopleQUANTITY

0.99+

Hal VarianPERSON

0.99+

EinsteinPERSON

0.99+

New York CityLOCATION

0.99+

NielsenORGANIZATION

0.99+

first questionQUANTITY

0.99+

FridayDATE

0.99+

Ralph TimbalPERSON

0.99+

U.S.LOCATION

0.99+

6,000 sensorsQUANTITY

0.99+

UC BerkeleyORGANIZATION

0.99+

Sergey BrinPERSON

0.99+

Marcia Conner - IBM Insight 2014 - theCUBE


 

>>Live from the Mandalay convention center in Las Vegas, Nevada it's doc cube at IBM insight, 2014. Here are your hosts, John furrier and Dave Volante. >>Okay. Welcome back everyone. We are here. Live in Las Vegas for IBM impact. This is the cube special presentation at IBM insight inside the digital experience. IBM insight go. Social media lounge. Uh, the social media gurus are here. John furry with David. Um, that's playing off the joke. We're just sharing on Twitter, but seriously, we're here. If I didn't see this on the noise, my coast, Dave latte, next guest Marsha Cola year. Who's the managing director of impact ingenuity at Marsha Marsha. Yes, that's your Twitter handle is awesome. Welcome. Welcome back. Welcome back. >>Well, thanks. It's thrilled to be here. >>So we were just joking about Halloween and we're going to be a social media guru. It's a little bit of a meme going around the internet. I mean, there is no social media guru. I mean, you can't really be a guru with developing technology. You can be a practitioner. I mean, I mean, guru, what is a social media? What is a social media guru? This, >>This is where, because I offered that. I would answer any question you ask me, you can ask me those things. Sure. Well, I think that's the problem. I think that's why it'd be a fabulous Halloween costume. I'm going to think about doing that one too, because people seem to be know to these folks. So following them to the ends of the earth, because of something that they sit on, social media, I mean that, that's a kind of a scary concept, but Google glass >>As well. I mean, I mean, I'm not going to go there. Um, but let's talk, let's go in into that, that theme. I mean, honestly, you know, Jeff Jonas was just on he's awesome. We always get in the weeds. He's a fun character to talk to, but he's super smart as we're on this G2 thing, observation space, but we're all internet of things, right? I mean, it reminds me of that book is to read to my kids thing one and thing two, you know, we, all things we're all in another thing. So what do you see as that impact to, uh, this digital transformation where not only are the humans connected to the machines, the data that they're exhausting or sharing or streaming, but the machines are connected and collecting as well. How is that going to change? What's your view on all this? >>While I have been in the technology sector, most of my, uh, most of my life, uh, and I appreciate and enjoy the technology. I never lose sight of the fact that this is about the people it's about us actually working together of actually learning together, doing whatever the hell it is we're needing to do. So if all of my appliances are actually then taking care of the mundane, if my water softener system is actually getting the water put in and getting delivered on the right day, you know, all, all the better. If the, if the toaster is alerting me to some sort of news, I'm thrilled. I love the idea of the technology. Actually being able to take care of all that stuff that we never wanted to do in the first place, but the technology has been so lousy over the last couple of years, actually forever, uh, that we've had to do this stuff because the technology isn't doing it for us. >>Sure. I was a patient out in the customer space because that's, you know, that's more of the home example, but even business now seems to be early innings. I mean, people are kicking the tires. You know, we've talked to all the gurus coming up here who are the tech side, IBM and customers. And the reality is we're all pro data, which we all kind of see that obvious social data and, you know, big data analytics, certainly helpful, but this transformation people are now really changing how to operate, operationalize their business with it. It's a huge daunting task and it's scary. Um, some people are like, whoa, I don't want to do it. Or, Hey, I'm jumping in. I'm cool. Is there a cool factor? Is there a scared factor? What's your, what's your observation from mountain talking to everyone out in the, in the marketplace? >>Well, first I would, I'll totally bash the, the idea that this is only a consumer play or that it doesn't apply to businesses. Think of all the, uh, the mundane and ridiculous things we have to do at work because they're not being taken care of us. We aren't taken care of for us by our desks. If you want to look at that way or our computers, I loved hearing about the, the new, uh, uh, pairing of, uh Wayblazer and, you know, Watson and the idea of the travel being taken care of us, what we discover because of the data that we're putting off each and every moment is their systems around us all the time that actually know our preferences, know how we would be handling this, but yet they don't do anything about it. So the idea that we can actually move forward in that way should be just as applicable to our business. Uh, a manager should not have to actually be asking some of the questions that they're asking the HR department is need to be asking how you're doing. It's evident by all the things that you put out into the world. And by just actually attending to what's going on, we have a huge opportunity to get back all that time that we've been wasting all these years. I'm just a stupid >>And just to what's. So what's the bottleneck is a fear security, oh, we don't want privacy. Marcia will get offended. If we tweet her, she knows that we know that she tweeted that. I mean, that's, that's a concern. People have, it seems to be, is it? Yeah. Well, look, go back up, >>But why is it a concern? It's because the people who've been doing it early are doing it horribly. I mean, they're doing it in not respectful ways. There isn't actually a real thought about how would I be okay with this doing? And then those are we're. So ahead of the curve, maybe because of the guru status, some of these social media, maybe that maybe that's the reason, >>Just look at the government, they were big data gurus and they screwed up that that whole Snowden thing was all like, Hey, just ask us, we'll give you our email addresses. You can search my email, have a nice day. >>It's a very different message. It's a very different conversation. It's a very different question. It's a very different level of respect that we have from one person working with another. I'm actually talking with people as opposed to at them. And instead of just making assumptions of actually participating, I mean, the idea that engagement is goal just implies that we haven't been engaged all these years. We haven't been thinking we haven't been doing, I haven't met. I personally, haven't met a really dumb person. It, you know, and years, and yet everything I do at would imply that we're, we're too stupid to be able to really think and act and, and be thoughtful about it. >>So you're an influencer. Um, you're out here in the digital sphere and you are, you're hearing influencer. Um, I mean, whatever you define it. Well, it's, I guess if they say so, if you are a VIP influencer, we'll go with that. Um, >>Digging on your Twitter stream here. Fantastic. >>Working on it. So share this law, you know, we'd love, we'd love to hear your stories cause you last year you were awesome with the cube. We'd love, love JV. Give us the update. What's going on with, sorry. We started together Ted at IBM conference. You super busy. Um, what's going on share with the folks out there. Some of the things you've been even into what your what's working show some, you know, some stuff that didn't work, what's going on, what's happening? What are you, what are you doing? What are you worried? All right, >>John, if you're going to ask them, I'm telling you you're really, if you're really ready, Don Damian, probably a little after I saw you last time after I was visiting here that, uh, our world's falling apart. And if all of us actually don't get on that. If we don't actually start figuring out how to use the precious time we have the, the precious money we have, the, the roles we have in our organizations, the resources at our disposal, our brains for good, not evil. I'm not so sure about the world that my son is going to be inheriting for example. And, uh, I'm, I'm at a point in my life where I realize, I, I know a heck of a lot in the world. I have a lot of skills, everybody. I know. I look at these people around me having tremendous skills. And instead of us just sort of churning out the butter one more year, uh, we best, we best be thinking about what can I do given what I have of my time and my resources, my skills, or whatever that is and apply that to what I have influence over and be able to make as much difference. >>Are we talking about God's last offer here, the sustainable world, or what's actually on all? >>Oh, you're not at the time that the timing is perfect too. If you think about it, don't seriously. >>What are we talking about? The deterioration of our planet? We're talking about social condition. Yes, >>I, well, I mean, I can go on and >>On about money return. I can, I can entertain for hours. You just made. The comment >>I made is that no matter where we look, that that scientists have pointed out that we're past the point of no return with our climate. We, uh, we look at the, uh, at the deterioration of the planet around us. I happen to live in the woods and I mean, deep in the woods and you can, you can see the change of how much rain is coming down. That didn't, I mean, I, I'm not, my intent here is not to talk about all the, that the problems around us. We all actually feel them, even if we're not acknowledging them, what I see is the wasted opportunity of us, not actually, re-examining what we're choosing to do and figure out how, whatever it is we're capable of doing could actually be helping instead of bringing it up. So how should people, let's say, people want to know that's good, but I just wanted to frame it. So let's >>Take people want to, so let's say that resonates to somebody in the audience. What should they do? How should they start pick a passion? And they >>Have, um, I mean, I, my, my approach to all the change work I do and have been doing with corporations for the last 20 years is actually not additive. It's not asking the question. What more could I do? Because that's usually what keeps people from doing it. I asked the question, what's keeping me from doing what I've always known needed to be done. So in, in our communities, you know, my experience is everybody knows who it is that could use some assistance, not in a handout sort of way in a reaching out and caring way of asking of, of having a conversation, a participating, and to be able to step back and ask that question. What's keeping me from doing that. We know what needs to be done, but we're not doing it. So how can I say, oh, well, what's keeping me from doing it. I don't have time to do it. Okay. Well, what can I do to actually just get a little bit more time to do something that matters in the world? So that that's the most, very, >>Very basic level. It could be slowly be that it's, >>It's less Twitter. It could also be a re-evaluating how much time I'm spending at work on stuff that could be automated. I mean, going back to this whole conversation about automation, it is to ask those questions. What I can do. That's just about time. Um, >>I, yeah, that is one of the biggest objections I don't have time. Right? >>Yeah. So what I find is when I talk about, uh, global health actually, is that when we look at the idea of health, not as in just exercising more or just eating, right, we're talking about fiscal health, we're talking about, uh, creating a world that is just, uh, a healthier place. When I ask people those questions, most of them can say, well, yeah, this isn't, this is important to me, but I don't know what to do about it. So one is, as you absolutely said, is finding, finding those passions and be able to figure out what you're going to do. But more importantly, to ask yourself that question, when am I going to do this? If not now, I feel like I'm, I'm falling. Like I, uh, I'm Mike is falling out. Let me, let me get that. >>Well, we chit chat a lot of hair. Yeah. Yeah. So I think, okay. So we're talking about different ways to find time. >>Um, Dave, I mean, I think it's a great time. I mean, the passionate thing, passionate thing is where the keyword is contributing, right? So like, I think it's a good time because I have, we, I, we both Dave and I both have four kids. So we see the new generation in their minds all the time because we're driving around, but they're impressionable right now is the old expression is you can grab the play though, and you can shape it. You can act, we can actually, as leaders and mature experience, instant people that have some skills in computing, we can influence like stem. We can influence women in tech. We can influence computer science curriculums or get influenced modern society because the new generation is coming in and they're natives, they're adopting and they're thirsty for leadership, but I don't think that they're seeing it. So I think there's really a good time. You've seen the Kickstarter crowdsourcing stuff is really becoming a part of this new tribe. So I believe the gravity around making things happen is participation, collaboration and data. Data is knowledge, endorsement, social proof. These are concepts that are easily transferable. If you can just, if you just wake up and do it. So I think, you know, >>If you just wake up and do it everywhere about, so Y Y if you wake up every day, why aren't you doing it today? >>We have Craig brown on earlier, he's doing $25,000 investments for kids to start companies, you know, whether the inner city kids. And that's pretty cool. I mean, so, you know, this is, this is the democratization piece, but in a connected network, it's frictionless communication. I mean, hell Twitter, overthrew governments. So you can have solidarity, peaceful solidarity as well as other rev revolution. So I think that's a very doable thing versus just checking the Basel. I volunteer to do something. And I think that has been more of like a peace Corps. I helped people. >>Uh, and I'm personally, I asked this question of everybody that I asked her, actually asked two questions of everybody I work with now. Uh, one of them is what can you not do? What can you not, not do actually. So if you, if you think to yourself, if I look back on my life, if I look back on my life, what is it that I thought to myself, oh, I didn't have time for that. Or I couldn't do it. You we've all heard that, you know, what do you want on your tombstone? However, that works. But I find that everybody, I know, think it has a burning need to be doing something useful in their lives. It's not just mission driven. It absolutely. It's a purpose. It's a connecting with, with connecting with people who are helping to move the world forward. And I just stopped. And I said, even in a business context, I say, you know, now it's time. We're kind of out of time. Get on with it, >>Please. The clock is ticking. Well, Jeff Jones was talking about the asteroid thing to geospatial smart geeky conversation. But the key thing out of that was better focus of finite resources. And that really comes down to the fundamental better decision-making. I mean, we, my wife says, so our kids will make better decisions. I mean, that's a mother talking to the kids, but that's our life now. So like, if we can make better decisions, that ultimately is the big data opportunity from social change to play to business. >>And then the second question absolutely, absolutely agree. Everything you said. I, the next big question I asked is what are you doing to improve the world? Now? I would say 50% of the people I say, just give me this completely deer in the headlights. Look, what do you mean to save the world or to improve the world, to change world? However you want to frame that. But I haven't met anybody in years that isn't interested in truly contributing, leaving the world a better place than they came into. And that's no matter what their, their demographic makeup is. That's no matter the community they live in, no matter what they're doing, people have a fundamental desire to do better. And so I asked that of every business person, every corporation I work with. And that's one of the things I love about this whole idea of, you know, building a smarter planet that should tie to every single thing we do. And, and when we lose sight of that, we see that, no, I think >>This is a really great conversation to have because it's, it's something that's emerging. And, you know, again, there's some obvious examples, oh, pebble watch crowdfunding. But if you look at really impactful things like open source software, you are seeing the playbook. I mean, the playbook is, you know, people can participate at any level. So the, the fear of getting this kind of group going is that I'm too busy or, you know, you can, the contribution doesn't have to be game changing for an individual could be one small piece of the puzzle. It could be small contribution. Someone might do more heavy lifting than the other. That's an open source concept. We've seen that work huge. A lot of leverage, a lot of participation. Um, so I think that's something that I really haven't seen get applied to at a large scale. I mean, you see the protest in Hong Kong are interesting. That's an indicator. What does that mean? Right. So what's your take on all? What do you think needs to happen to get more people tied into these shared missions? >>It's a little little over there off >>The ranch. A little bit more honesty. More honesty. Yeah. Yeah. I mean, not, not something that we talk about these sorts of events is that I I've gotten to the point where I do these large talks in front of thousands of people. And I ask everybody to turn to the person next to them and introduce themselves, honestly, like, why are you here? And why do you care? We've all gotten so wrapped up in the >>Who we are as well. And that's why I say, I love the idea of you being >>A social media guru for Halloween. It's just become, so it's so about the role that we've lost the connection with our humanity. And so I just, I asked people just to step back. So it's as simple. So yeah, I am all for the large initiatives. >>Yes. Self-aware is a really interesting concept. And that really what you're talking about here is, I mean, I make fun of myself. I put that out there. Probably gonna get some hate mail for that tweet, but no, it is what it is. I mean, I'm making fun of myself and us because we have to, because it's really not moving fast enough in the writer in my mind, at least I think, I mean, I think social media is a real, real game changer. I'm pro pro social media, but I mean, come on, if you can't make fun of yourself then, >>But what is social media do you mean? What is our untapped desire that why we're all participating in social media, where we've missed the opportunity for all these years to be human in everything that we're doing? Yeah. I mean, the idea that you can be, you know, wherever you are and be able to reach the people who have answers to be able to help you make better decisions is something that we've had that desire for a very long time. We've just been, not able to do that for so long that it's now it's time we get on >>With that. I would do the cube to Dave and I talk all the time. We want to broadcast out the data because I think people want to be part of something. And I think at the end of the day, it's human psychology is that being part of something makes psychology of the soul work better. It's like, okay, I want to be part of a group. I want to belong. It's a yearning, it's a tribe. Whatever that kind of collective group is, whether you know, the clown or the, or the guru or whatever, I think that's a people are yearning for that collectiveness of Griff groups. And I think the data gap is gravity. Like how do you a joke? It could be a serious conversation. It could be something provocative. I think content is a nice piece of gravity to kind of bring people together versus, you know, tweeting, Hey, look, how big I am. I got a zillion followers. >>Okay. So let's back up though. So content, so we can talk about the, the, the, the, the concept that has content. That's a lovely thing to do at a data conference, talking about the content it's about things we care about. That's what content is. So if we take that a step further and we actually extrapolate and say, how does this impact me? It's not because it's content it's because we're talking about topics that matter to each of us. And so the more we get back to that sort of conversation, the more we get back to that sort of point, I think we have a bigger opportunity to have conversations that matter and not be able to be. We are wasting our time doing the silly stuff. >>Okay. I'm getting the hook here, Marcia conversations that matter. That's really what it's all about. Changing the world. Thanks for calling the cube. Great to see you again. And, uh, we'll be right back after this short break live in Las Vegas date, you continues wall-to-wall coverage here, inside the cube, inside the digital experience in psycho with IBM social lounge. We right back after this short break,

Published Date : Oct 29 2014

SUMMARY :

Live from the Mandalay convention center in Las Vegas, Nevada it's doc cube at Um, that's playing off the joke. It's thrilled to be here. I mean, you can't really be a guru with developing technology. I would answer any question you ask me, you can ask me those things. I mean, it reminds me of that book is to read to my kids thing one and thing two, you know, I never lose sight of the fact that this is about the people it's about us actually working together I mean, people are kicking the tires. the new, uh, uh, pairing of, uh Wayblazer and, you know, Watson and the idea of I mean, that's, that's a concern. So ahead of the curve, Hey, just ask us, we'll give you our email addresses. of actually participating, I mean, the idea that engagement is goal just implies that we haven't Um, I mean, whatever you define it. Digging on your Twitter stream here. So share this law, you know, we'd love, we'd love to hear your stories cause you last year you were awesome with the I have a lot of skills, If you think about it, don't seriously. What are we talking about? I can, I can entertain for hours. deep in the woods and you can, you can see the change of how much rain And they So that that's the most, very, It could be slowly be that it's, I mean, going back to this whole conversation about automation, it is to ask those I, yeah, that is one of the biggest objections I don't have time. So one is, as you absolutely said, is finding, finding those passions and be able to figure out what So we're talking about different ways to find time. I mean, the passionate thing, passionate thing is where the keyword is contributing, I mean, so, you know, this is, But I find that everybody, I know, think it has a I mean, that's a mother talking to the kids, but that's our life now. love about this whole idea of, you know, building a smarter planet that should tie to every single thing we do. I mean, the playbook is, you know, people can participate at any level. I mean, not, not something that we talk about why I say, I love the idea of you being It's just become, so it's so about the role I put that out there. I mean, the idea that you can be, you know, wherever you are and be able to reach the people who have answers a nice piece of gravity to kind of bring people together versus, you know, And so the more we get back to that sort of conversation, Great to see you again.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Jeff JonasPERSON

0.99+

Jeff JonesPERSON

0.99+

MarciaPERSON

0.99+

Dave VolantePERSON

0.99+

$25,000QUANTITY

0.99+

JohnPERSON

0.99+

50%QUANTITY

0.99+

DavePERSON

0.99+

Marcia ConnerPERSON

0.99+

two questionsQUANTITY

0.99+

Hong KongLOCATION

0.99+

IBMORGANIZATION

0.99+

Las VegasLOCATION

0.99+

MikePERSON

0.99+

John furrierPERSON

0.99+

four kidsQUANTITY

0.99+

second questionQUANTITY

0.99+

oneQUANTITY

0.99+

SnowdenPERSON

0.99+

TedPERSON

0.99+

JVPERSON

0.99+

TwitterORGANIZATION

0.99+

Don DamianPERSON

0.99+

KickstarterORGANIZATION

0.99+

2014DATE

0.99+

last yearDATE

0.99+

thousands of peopleQUANTITY

0.98+

HalloweenEVENT

0.98+

Craig brownPERSON

0.98+

bothQUANTITY

0.98+

one personQUANTITY

0.98+

peace CorpsORGANIZATION

0.97+

todayDATE

0.97+

Las Vegas, NevadaLOCATION

0.97+

one more yearQUANTITY

0.96+

Marsha ColaPERSON

0.96+

one small pieceQUANTITY

0.95+

John furryPERSON

0.95+

MandalayLOCATION

0.95+

firstQUANTITY

0.94+

WatsonPERSON

0.93+

first placeQUANTITY

0.92+

zillion followersQUANTITY

0.87+

pebbleORGANIZATION

0.87+

eachQUANTITY

0.86+

Dave lattePERSON

0.86+

singleQUANTITY

0.86+

twoQUANTITY

0.82+

IBM insightORGANIZATION

0.82+

last 20 yearsDATE

0.8+

last couple of yearsDATE

0.78+

BaselLOCATION

0.77+

IBM socialORGANIZATION

0.75+

IBMEVENT

0.72+

Google glassCOMMERCIAL_ITEM

0.67+

earthLOCATION

0.66+

MarshaORGANIZATION

0.65+

WayblazeORGANIZATION

0.62+

GodPERSON

0.62+

puzzleQUANTITY

0.59+

InsightEVENT

0.55+

playbookTITLE

0.55+

MarshaPERSON

0.51+

G2COMMERCIAL_ITEM

0.45+