Image Title

Search Results for Cal-IPC:

Jonathan Seckler, Dell & Cal Al-Dhubaib, Pandata | VMware Explore 2022


 

(gentle music) >> Welcome back to theCUBE's virtual program, covering VMware Explorer, 2022. The first time since 2019 that the VMware ecosystem is gathered in person. But in the post isolation economy, hybrid is the new format, cube plus digital, we call it. And so we're really happy to welcome Cal Al-Dhubaib who's the founder and CEO and AI strategist of Pandata. And Jonathan Seckler back in theCUBE, the senior director of product marketing at Dell Technologies. Guys, great to see you, thanks for coming on. >> Yeah, thanks a lot for having us. >> Yeah, thank you >> Cal, Pandata, cool name, what's it all about? >> Thanks for asking. Really excited to share our story. I'm a data scientist by training and I'm based here in Cleveland, Ohio. And Pandata is a company that helps organizations design and develop machine learning and AI technology. And when I started this here in Cleveland six years ago, I had people react to me with, what? So we help demystify AI and make it practical. And we specifically focus on trustworthy AI. So we work a lot in regulated industries like healthcare. And we help organizations navigate the complexities of building machine learning and AI technology when data's hard to work with, when there's risk on the potential outcomes, or high cost in the consequences. And that's what we do every day. >> Yeah, yeah timing is great given all the focus on privacy and what you're seeing with big tech and public policy, so we're going to get into that. Jonathan, I understand you guys got some hard news. What's your story around AI and AutoML? Share that with us. >> Yeah, thanks. So having the opportunity to speak with Cal today is really important because one of the hardest things that we find that our customers have is making that transition of experimenting with AI to making it really useful in real life. >> What is the tech underneath that? Are we talking VxRail here? Are you're talking servers? What do you got? >> Yeah, absolutely. So the Dell validated design for AI is a reference framework that is based on the optimized set of hardware for a given outcome. That includes it could be VxRail, VMware, vSphere and Nvidia GPUs and Nvidia software to make all of that happen. And for today, what we're working with is H2O.ai's solution to develop automatic machine learning. So take just that one more step to make it easier for customers to bring AI into production. >> Cool. >> So it's a full stack of software that includes automated machine learning, it includes NVIDIA's AI enterprise for deployment and development, and it's all built on an engineering validated set of hardware, including servers and storage and whatever else you need >> AI out of the box, I don't have to worry about cobbling it all together. >> Exactly. >> Cal, I want to come back to this trusted AI notion. A lot of people don't trust AI just by the very nature of it. I think about, okay, well how does it know it's a cat? And then you can never explain, it says black box. And so I'm like, what are they do with my data? And you mentioned healthcare, financial services, the government, they know everything about me. I just had to get a real ID and Massachusetts, I had to give all my data away. I don't trust it. So what is trusted AI? >> Well, so let me take a step back and talk about sobering statistics. There's a lot of different sources that report on this, but anywhere you look, you'll hear somewhere between 80 to 90% of AI projects fail to yield a return. That's pretty scary, that's a disappointing industry. And why is that? AI is hard. Versus traditional software, you're programming rules hard and fast. If I click this button, I expect A, B, C to happen. And we're talking about recognizing and reacting to patterns. It's not, will it be wrong? It's, when it's wrong, how wrong will it be? And what are it cost to accept related to that? So zooming back in on this lens of trustworthy AI, much of the last 10 years the development in AI has looked like this. Let's get the data, let's race to build the warehouses, okay we did that, no problem. Next was race to build the algorithms. Can we build more sophisticated models? Can we work with things like documents and images? And it used to be the exclusive domain of deep tech companies. You'd have to have teams of teams building the software, building the infrastructure, working on very specific components in this pipeline. And now we have this explosion of technologies, very much like what Jonathan was talking about with validated designs. So it removes the complexities of the infrastructure, it removes the complexities of being able to access the right data. And we have a ton of modeling capabilities and tools out there, so we can build a lot of things. Now, this is when we start to encounter risk in machine learning and AI. If you think about the models that are being used to replicate or learn from language like GPT-3 to create new content, it's training data set is everything that's on the internet. And if you haven't been on the internet recently, it's not all good. So how do you go about building technology to recognize specific patterns, pick up patterns that are desirable, and avoid unintended consequences? And no one's immune to this. So the discipline of trustworthy AI is building models that are easier to interrogate, that are useful for humans, and that minimize the risk of unintended consequences. >> I would add too, one of the good things about the Pandata solution is how it tries to enforce fairness and transparency in the models. We've done some studies recently with IDC, where we've tried to compare leaders in AI technology versus those who are just getting started. And I have to say, one of the biggest differences between a leader in AI and the rest of us is often that the leaders have a policy in place to deal with the risks and the ethics of using data through some kind of machine oriented model. And it's a really important part of making AI usable for the masses. >> You certainly hear a lot about, AI ultimately, there's algorithms which are built by humans. Although of course, there's algorithms to build algorithms, we know that today. >> Right, exactly. >> But humans are biased, there's inherent bias, and so this is a big problem. Obviously Dell, you have a giant observation space in terms of customers. But I wonder, Cal, if you can share with us how you're working with your customers at Pandata? What kind of customers are you working with? What are they asking? What problems are they asking you to solve? And how does it manifest itself? >> So when I like to talk about AI and where it's useful, it usually has to do with taking a repetitive task that humans are tasked with, but they're starting to act more like machines than humans. There's not much creativity in the process, it's handling something that's fairly routine, and it ends up being a bottleneck to scaling. And just a year ago even, we'd have to start approaching our clients with conversations around trustworthy AI, and now they're starting to approach us. Really example, this actually just happened earlier today, we're partnering with one of our clients that basically scans medical claims from insurance providers. And what they're trying to do is identify members that qualify for certain government subsidies. And this isn't as straightforward as it seems because there's a lot of complexities in how the rules are implemented, how judges look at these cases. Long story short, we help them build machine learning to identify these patients that qualify. And a question that comes up, and that we're starting to hear from the insurance companies they serve is how do you go about making sure that your decisions are fair and you're not selecting certain groups of individuals over others to get this assistance? And so clients are starting to wise up to that and ask questions. Other things that we've done include identifying potential private health information that's contained in medical images so that you can create curated research data sets. We've helped organizations identify anomalies in cybersecurity logs. And go from an exploration space of billions of eventual events to what are the top 100 that I should look at today? And so it's all about, how do you find these routine processes that humans are bottlenecked from getting to, we're starting to act more like machines and insert a little bit of outer recognition intelligence to get them to spend more time on the creative side. >> Can you talk a little bit more about how? A lot of people talk about augmented AI. AI is amazing. My daughter the other day was, I'm sure as an AI expert, you've seen it, where the machine actually creates standup comedy which it's so hilarious because it is and it isn't. Some of the jokes are actually really funny. Some of them are so funny 'cause they're not funny and they're weird. So it really underscored the gap. And so how do you do it? Is it augmented? Is it you're focusing on the mundane things that you want to take humans out of the loop? Explain how. >> So there's this great Wall Street Journal article by Jennifer Strong that she published I think four years ago now. And she says, "For AI to become more useful, it needs to become more boring." And I really truly believe in that. So you hear about these cutting edge use cases. And there's certainly some room for these generative AI applications inspiring new designs, inspiring new approaches. But the reality is, most successful use cases that we encounter in our business have to do with augmenting human decisions. How do you make arriving at a decision easier? How do you prioritize from millions of options, hundreds of thousands of options down to three or four that a human can then take the last stretch and really consider or think about? So a really cool story, I've been playing around with DALL.E 2. And for those of you who haven't heard, it's this algorithm that can create images from props. And they're just painting I really wish I had bought when I was in Paris a few years ago. And I gave it a description, skyline of the Sacre-Coeur Church in Montmartre with pink and white hues. And it came up with a handful of examples that I can now go take to an artist and say paint me this. So at the end of the day, automation, it's not really, yes, there's certain applications where you really are truly getting to that automated AI in action. But in my experience, most of the use cases have to do with using AI to make humans more effective, more creative, more valuable. >> I'd also add, I think Cal, is that the opportunity to make AI real here is to automate these things and simplify the languages so that can get what we call citizen data scientists out there. I say ordinary, ordinary employees or people who are at the front line of making these decisions, working with the data directly. We've done this with customers who have done this on farms, where the growers are able to use AI to monitor and to manage the yield of crops. I think some of the other examples that you had mentioned just recently Cal I think are great. The other examples is where you can make this technology available to anyone. And maybe that's part of the message of making it boring, it's making it so simple that any of us can use it. >> I love that. John Furrier likes to say that traditionally in IT, we solve complexity with more complexity. So anything that simplifies things is goodness. So how do you use automated machine learning at Pandata? Where does that fit in here? >> So really excited that the connection here through H2O that Jonathan had mentioned earlier. So H2O.ai is one of the leading AutoML platforms. And what's really cool is if you think about the traditional way you would approach machine learning, is you need to have data scientists. These patterns might exist in documents or images or boring old spreadsheets. And the way you'd approach this is, okay, get these expensive data scientists, and 80% of what they do is clean up the data. And I'm yet to encounter a situation where there isn't cleaning data. Now, I'll get through the cleaning up the data step, you actually have to consider, all right, am I working with language? Am I working with financial forecasts? What are the statistical modeling approaches I want to use? And there's a lot of creativity involved in that. And you have to set up a whole experiment, and that takes a lot of time and effort. And then you might test one, two or three models because you know to use those or those are the go to for this type of problem. And you see which one performs best and you iterate from there. The AutoML framework basically allows you to cut through all of that. It can reduce the amount of time you're spending on those steps to 1/10 of the time. You're able to very quickly profile data, understand anomalies, understand what data you want to work with, what data you don't want to work with. And then when it comes to the modeling steps, instead of iterating through three or four AutoML is throwing the whole kitchen sink at it. Anything that's appropriate to the task, maybe you're trying to predict a category or label something, maybe you're trying to predict a value like a financial forecast or even generate test. And it tests all of the models that it has at its disposal that are appropriate to the task and says, here are the top 10. You can use features like let me make this more explainable, let me make the model more accurate. I don't necessarily care about interrogating the results because the risk here is low, I want to a model that predicts things with a higher accuracy. So you can use these dials instead of having to approach it from a development perspective. You can approach it from more of an experimental mindset. So you still need that expertise, you still need to understand what you're looking at, but it makes it really quick. And so you're not spending all that expensive data science time cleaning up data. >> Makes sense. Last question, so Cal, obviously you guys go deep into AI, Jonathan Dell works with every customer on the planet, all sizes, all industries. So what are you hearing and doing with customers that are best practices that you can share for people that want to get into it, that are concerned about AI, they want to simplify it? What would you tell them? Go ahead, Cal. >> Okay, you go first, Cal. >> And Jonathan, you're going to bring us home. >> Sure. >> This sounds good. So as far as where people get scared, I see two sides of it. One, our data's not clean enough, not enough quality, I'm going to stay away from this. So one, I combat that with, you've got to experiment, you got to iterate, And that's the only way your data's going to improve. Two, there's organizations that worry too much about managing the risk. We don't have the data science expertise that can help us uncover potential biases we have. We are now entering a new stage of AI development and machine learning development, And I use those terms interchangeably anymore. I know some folks will differentiate between them. But machine learning is the discipline driving most of the advances. The toolkits that we have at our disposal to quickly profile and manage and mitigate against the risk that data can bring to the table is really giving organizations more comfort, should give organizations more comfort to start to build mission critical applications. The thing that I would encourage organizations to look for, is organizations that put trustworthy AI, ethical AI first as a consideration, not as an afterthought or not as a we're going to sweep this on the carpet. When you're intentional with that, when you bring that up front and you make it a part of your design, it sets you up for success. And we saw this when GDPR changed the IT world a few years ago. Organizations that built for privacy first to begin with, adapting to GDPR was relatively straightforward. Organizations that made that an afterthought or had that as an afterthought, it was a huge lift, a huge cost to adapt and adjust to those changes. >> Great example. All right, John, I said bring us home, put a bow on this. >> Last bit. So I think beyond the mechanics of how to make a AI better and more workable, one of the big challenges with the AI is this concern that you're going to isolate and spend too much effort and dollars on the infrastructure itself. And that's one of the benefits that Dell brings to the table here with validated designs. Is that our AI validated design is built on a VMware vSphere architecture. So your backup, your migration, all of the management and the operational tools that IT is most comfortable with can be used to maintain and develop and deploy artificial intelligence projects without having to create unique infrastructure, unique stacks of hardware, and then which potentially isolates the data, potentially makes things unavailable to the rest of the organization. So when you run it all in a VMware environment, that means you can put it in the cloud, you can put it in your data center. Just really makes it easier for IT to build AI into their everyday process >> Silo busting. All right, guys, thanks Cal, John. I really appreciate you guys coming on theCUBE. >> Yeah, it's been a great time, thanks. >> All right. And thank you for watching theCUBE's coverage of VMware Explorer, 2022. Keep it right there for more action from the show floor with myself, Dave Velante, John Furrier, Lisa Martin and David Nicholson, keep it right there. (gentle music)

Published Date : Aug 30 2022

SUMMARY :

that the VMware ecosystem I had people react to me with, what? given all the focus on privacy So having the opportunity that is based on the I don't have to worry about And then you can never and that minimize the risk And I have to say, one of algorithms to build algorithms, And how does it manifest itself? so that you can create And so how do you do it? that I can now go take to an the opportunity to make AI real here So how do you use automated And it tests all of the models that are best practices that you can share going to bring us home. And that's the only way your All right, John, I said bring And that's one of the benefits I really appreciate you And thank you for watching

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JonathanPERSON

0.99+

JohnPERSON

0.99+

Jennifer StrongPERSON

0.99+

Jonathan SecklerPERSON

0.99+

Dave VelantePERSON

0.99+

Lisa MartinPERSON

0.99+

David NicholsonPERSON

0.99+

ClevelandLOCATION

0.99+

ParisLOCATION

0.99+

John FurrierPERSON

0.99+

JonathPERSON

0.99+

Jonathan DellPERSON

0.99+

twoQUANTITY

0.99+

80%QUANTITY

0.99+

PandataORGANIZATION

0.99+

NVIDIAORGANIZATION

0.99+

two sidesQUANTITY

0.99+

NvidiaORGANIZATION

0.99+

DellORGANIZATION

0.99+

oneQUANTITY

0.99+

OneQUANTITY

0.99+

billionsQUANTITY

0.99+

Cleveland, OhioLOCATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

six years agoDATE

0.99+

fourQUANTITY

0.99+

MontmartreLOCATION

0.99+

threeQUANTITY

0.99+

TwoQUANTITY

0.99+

GDPRTITLE

0.99+

a year agoDATE

0.99+

2022DATE

0.99+

Cal Al-DhubaibPERSON

0.98+

todayDATE

0.98+

CalPERSON

0.98+

2019DATE

0.98+

first timeQUANTITY

0.98+

VxRailTITLE

0.98+

firstQUANTITY

0.97+

MassachusettsLOCATION

0.97+

millions of optionsQUANTITY

0.97+

AutoMLTITLE

0.97+

three modelsQUANTITY

0.97+

four years agoDATE

0.97+

80QUANTITY

0.96+

IDCORGANIZATION

0.96+

90%QUANTITY

0.96+

DALL.E 2TITLE

0.96+

1/10QUANTITY

0.95+

VMware ExplorerTITLE

0.93+

Sacre-Coeur ChurchLOCATION

0.92+

earlier todayDATE

0.91+

theCUBEORGANIZATION

0.9+

H2O.aiTITLE

0.9+

PandataPERSON

0.9+

hundreds of thousands of optionsQUANTITY

0.87+

10QUANTITY

0.86+

VMware vSphereTITLE

0.84+

few years agoDATE

0.83+

H2OTITLE

0.83+

GPTTITLE

0.82+

VMwareORGANIZATION

0.8+

Al-DhubaibPERSON

0.8+

100QUANTITY

0.79+

Alison Robinson, Cal Poly State University | AWS Public Sector Summit 2019


 

>> Narrator: Live from Washington D.C. It's the Cube, covering AWS Public Sector Summit. Brought to you by Amazon Web Services. >> Welcome back everyone, to the Cube's live coverage of the AWS Public Sector Summit here in our nations capitol. I'm your host Rebecca Knight, along with my cohost John Furrier. We have Allison Robinson joining us, she is the AVP IT operations at Cal Poly University. Thanks so much for coming on the Cube. >> Thank you for having me. >> So, talk about your big announcement yesterday in terms of ground station. This is one of John's favorite topics, so tell us more about what you announced. >> So yesterday there was an announcement that Cal Poly through our digital transformation hub, and that hub exists to do innovated things with the greater good through the public sector and helping with challenges that they're trying to learn more about and solve problems. And so, through that group, we announced the initiative to do cube satellite in connection with ground station at AWS, to be able to help people that use these satellites be able to test these satellites and collect data and share it ultimately, with others. 'Cause there's a problem, they're not expensive satellites but that means you don't have a lot of money to work with. And so to be able to test and make sure your communications are good and the infrastructure is there, is kind of missing in the whole environment. And now, that's going to be solved. >> And you're able to get many more shots and pay as you go, not necessarily have to, as you said, put up your own satellite yourself. >> Exactly, you can put the satellite up. The problem was the infrastructure to communicate back with it. So, the ground station, those antenna are approximately located to AWS regions. So you can now bring the data, process it, store it, analyze it, and then ultimately share it. That, again, being for the public good, we want to make sure the date we're collecting is in the AWS registry, data set registry. So that people can access that information, that's important. >> Allison, talk about the relationship with AWS, how did it get started? I mean your involved with these cool projects like ground station, which I'm a big fan of. 'Cause I think the impact to IOT, just forest fires in California could be a real... >> Allison: Right. >> Saver right there. Just using data, back hauling data for whatever is going to be a great thing. But you got a relationship with AWS, that goes beyond, not just ground station, there's other things going on. Take a minute to explain the relationship with AWS. >> So, the vice president of IT at Cal Poly, Bill Britton, began his position with Cal Poly about two years ago. And took a look at the data center and had to ask the question, do we invest here on prem or do we have to look for something else? And that began the conversation of, we need to do something about our data center, it looks like Amazon has the tools we need to modernize our technical environment. Both in how we work, how people work, our processes and our technical infrastructure. And so, that began the work of, we announced two years ago, I didn't work for Cal Poly yet. They announced there, the President and Bill announced that we were all in. The data center was going to AWS. I happened to be presenting on a different topic, and we connected there, and a year later, we made a connection and I have been at Cal Poly now for a year to help them get to the AWS data center. >> Lot of smart people Cal Poly, I know, I looked at the university. Great computer science, great everything. You guys got a lot of smart people, so what was it like to actually, as this starts to evolve, the progression of the modernization. Take us through where you guys are on progress, what are some of the cool things going on. What's the result of this shift? What are some of the notable highlights? >> It's really exciting, because we really did take an approach of we've got to look at, not just as AWS and a new tool. Which you have to work so differently, in dev ops and agily. We said okay, then we've got to figure out our processes to be able to work that way. We have to change as an organization. So we were more structured around those technical silos. And we became a service management group for like, who do we serve and what are they trying to accomplish? And that's the focus of everything we do. So from idea to service we have a process to handle to that. And AWS, we're all in on their tools too.6 So they completely facilitate that process6. >> You have a lot of stake holders, so you have impact at the student body level, faculty, institution overall.6 >> Right. >> What are some of the game changers that you see? Obviously the ground station, you got great R and D coming in with Amazon. What's the impact? >> The digital transformation hub is part of the IT organization as well. And our community outreach and giving students actual hands on experience to work with the public sector, whether it be law enforcement, or maybe a city trying to deal with a homeless situation. They actually are engaged with professionals and learning about problems and solutions. And in ten weeks, we work on quarters, and our quarters are ten weeks, which align perfectly to exactly how long it takes an engagement with the digital hub to find what's possible in terms of solutions to problems. >> So talk about the students of today. I mean, we hear a lot about them. And I want to hear you, you're teaching them, you're helping to educate this new generation of people who we hope will make huge, great waves in industry, private industry, as well as state, local, and the federal government. >> Allison: Right. >> What do you see as their strengths, their weaknesses, and what are they looking at in terms of building careers? >> You know, they, I really do love working with the students. They are incredible. It makes me wonder sometimes, I don't think I'd get into college now, times have changed. And they really care, they care, that's why the public, being able to work through these to serve the greater good of the public and share that data after actually means so much more to them. Than if it were just a class project, because they want to make a difference. They care about social justice and making sure that we're green and efficient with how we use our earth resources. And so this maps around a lot of the challenges. The homelessness that I mentioned before, and how we've worked with that. Or making sure that we can make cities safer. They care about that deeply. And they have access to a lot of resources. This past fall's incoming class was born in the year 2000. They've never not known a time with computers. They do math homework, they're not reading, they're actually doing homework on their phones. Their very mobilely engaged, very digitally engaged. And we're going to see wonderful things from them, because they think so differently about these things. >> It sounds as though the education that you're providing is very practical, in the sense that you're having your students work with the state and local governments on these issues like homelessness and climate change. Can you talk about some of the projects that their doing? >> So our mantra is learn by doing. And you come in and you are admitted to a major. And you begin working in that major right away. Every student finishes their last quarter with a senior project. And you actually produce an outcome and have something you can talk about, both as the product and the process to get there. I was recently invited to the senior projects showcase for the graphic arts department. And, in common, they all had technology. And some where, one of the students we had just contracted for some software, and thank you so much you helped make the difference with that. So that's neat, when you get to see to make that difference. But even though it's graphic arts, in every way technology was key to what they do. And they have, really, you know students come from some great backgrounds too, where they've had some great access to information and technology and really think differently about it. Engineering students are winning awards and doing really great things. So it's fun to see and be a part of. Great energy. >> What about the culture within your department itself? I mean, you're not only educating the next generation but you're also doing research yourself. Can you talk about, particularly, as a partner, as working so closely with AWS, which has such a famous culture of innovation and of taking risks and tolerating failure, because the more failures you'll have, you'll ultimately get there someday. So can you talk a little bit about the culture within Cal Poly? >> It's hard, because IT people are usually very analytical and there's a right and a wrong. So that sense of it's okay to get it wrong, isn't popular generally. So, that starts with me, I had to get up and say we may not get it right, but rarely do we get it wrong. We might get parts of it wrong, we adjust. It's okay to get it wrong. We've got to figure things out, all of this is new. And as I've been there longer and really work with people through different things, they believe that from me now. There's not judgment. I once worked at a place where it'd go on your permanent record. Well, try and get somebody to try something innovated if you have a problem and it goes on your permanent record. So I don't have that now. >> Rebecca: It'd be a career ender. >> Yeah. >> Bill: Yeah. >> I have a lot of people getting it, and we're trying it. And you can work so fast in the AWS environment, that if it isn't right, blow it away and start over again. >> In some organization you were a renegade if you tried something new. You know, oh my God, don't touch that third rail. >> Allison: Yeah. >> Here, you guys are doing, it's progressive in the sense that you're trying new things. >> Learn by doing is a call to action, but it also gives you that space to try. >> Bill: Yeah, be creative. >> It's learning. >> What's your impression of the show here in DC? Obviously, it's our fourth year covering public sector. I've been following them a couple years earlier, but the first four years covering live broadcasting, reporting. But, besides the growth, what's your takeaway? >> I need to be cloned. (laughter) >> There are so many things happening here. >> You need a digital twin. >> There you go. >> You can solve that, Allison. >> There's going to be a lot of people that say, no don't clone her, don't do it. But there's so much information and the innovation that AWS does. Sometimes it's like exciting to hear, and it's like oh where was that a month ago when we were working on that? So we just have to stay on our toes and we have to keep engaged with AWS and what they're doing and what we can use from them to make our environment better. And move even faster. >> You got to keep, keeping pace is also a hard thing. Because they're introducing so many new things. At amazon. We're very fortunate again in our partnership, actually that does translate into the IT operations organization. That we've been working with them on some services that they do. We can tell them, hey this isn't quite working, and they honestly listen to us. And deliver what they ask on a road map, sometimes sooner than later too. So it's been a great partnership. >> That's interesting, a company that actually delivers on what you ask for. >> Exactly, exactly. And we have scaled, you know it's a small town there's 24,000 students, you have your faculty and staff. So when we try something with them, we have the opportunity for big impacts right away. >> That's awesome, well, congratulations, great work >> Thank you. >> On the DX hubs fascinating ground station. Great projects, students and you guys to play around and help that grow. Because that's going to be a great service. >> Yes, we're excited. We can't wait to get going. >> Rebecca: Thanks for coming the Cube Allison. >> Thank you. >> We will have more of the Cubes live coverage of the AWS Public Sector Summit here in Washington DC. Stay tuned. (upbeat beat music)

Published Date : Jun 12 2019

SUMMARY :

Brought to you by Amazon Web Services. of the AWS Public Sector Summit here in our nations capitol. so tell us more about what you announced. And so to be able to test and make sure your communications as you said, put up your own satellite yourself. So you can now bring the data, process it, Allison, talk about the relationship with AWS, Take a minute to explain the relationship with AWS. And so, that began the work of, What are some of the notable highlights? And that's the focus of everything we do. so you have impact at the student body level, What are some of the game changers that you see? hands on experience to work with the public sector, So talk about the students of today. And they have access to a lot of resources. Can you talk about some of the projects that their doing? both as the product and the process to get there. What about the culture within your department itself? So that sense of it's okay to get it wrong, And you can work so fast in the AWS environment, you were a renegade if you tried something new. Here, you guys are doing, it's progressive in the sense but it also gives you that space to try. But, besides the growth, what's your takeaway? I need to be cloned. and the innovation that AWS does. and they honestly listen to us. on what you ask for. And we have scaled, you know it's a small town Because that's going to be a great service. We can't wait to get going. of the AWS Public Sector Summit here in Washington DC.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Allison RobinsonPERSON

0.99+

Rebecca KnightPERSON

0.99+

AWSORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

RebeccaPERSON

0.99+

AllisonPERSON

0.99+

Amazon Web ServicesORGANIZATION

0.99+

Cal PolyORGANIZATION

0.99+

amazonORGANIZATION

0.99+

JohnPERSON

0.99+

ten weeksQUANTITY

0.99+

Alison RobinsonPERSON

0.99+

Washington DCLOCATION

0.99+

24,000 studentsQUANTITY

0.99+

Bill BrittonPERSON

0.99+

yesterdayDATE

0.99+

DCLOCATION

0.99+

BillPERSON

0.99+

Cal Poly UniversityORGANIZATION

0.99+

Washington D.C.LOCATION

0.99+

fourth yearQUANTITY

0.99+

CaliforniaLOCATION

0.99+

a year laterDATE

0.99+

John FurrierPERSON

0.99+

a month agoDATE

0.99+

Cal Poly State UniversityORGANIZATION

0.99+

oneQUANTITY

0.98+

AWS Public Sector SummitEVENT

0.98+

two years agoDATE

0.98+

BothQUANTITY

0.98+

todayDATE

0.98+

first four yearsQUANTITY

0.98+

CubeORGANIZATION

0.97+

CubesORGANIZATION

0.96+

last quarterDATE

0.96+

bothQUANTITY

0.96+

2000DATE

0.96+

AWS Public Sector Summit 2019EVENT

0.94+

a yearQUANTITY

0.9+

third railQUANTITY

0.8+

twinQUANTITY

0.79+

past fallDATE

0.77+

a couple years earlierDATE

0.76+

AVPORGANIZATION

0.67+

earthLOCATION

0.67+

DXORGANIZATION

0.54+

vice presidentPERSON

0.52+

Team Uproot, USA | Technovation World Pitch Summit 2019


 

(upbeat music) >> Announcer: From Santa Clara, California, it's theCUBE covering Technovation World Pitch Summit 2019. Brought to you buy SiliconANGLE Media. Now, here's Sonia Tagare. >> Hi, welcome to theCube, I'm your host Sonia Tagare and we're here at Oracle Santa Clara covering Technovation World Pitch Summit 2019, a pitch competition in which girls from around the world develop mobile apps in order to create positive change in the world. With us today, we have Sydney Hough from Team Uproot. So your app Uproot tell us more about that. >> So, Uproot is an app, kind of in the field of AgTech, we worked to target noxious and invasive weeds in agriculture because what happens is noxious weeds often out compete crops for nutrients and farmers don't know what's going on sometimes, so Uproot helps farmers identify weeds by using a neural network and we also have monitoring services like mappings for tracking weeds over time. So, we're basically delivering an integrated solution to help farmers manage noxious weeds on their farms. >> Sonia: That's awesome. >> Thank You. >> Can you tell us more about how it works? >> We have basically three components, so there's the identification feature where you can scan plants in real time using your phone's camera and it basically analyzes the image and tells you what kind of plants it is and if it's harmful or not. We've got kind of an educational feature as well. So once a plant's been identified, basically the app returns a bunch of information about that plant, Is it harmful, how severe is it, how should you best control that plant? And then you've got the whole monitoring feature. So that includes tracking of weeds, pinpointing them on a map, so you can track them over time and manage them. >> Wow, and how did you come up with this idea? >> I had this brief exposure with this company called Kisan, they're a startup and they also use machine learning and mobile apps to help farmers in India actually. And I thought it was really cool how they're using machine learning to kind of target this underserved community and I was like, how can I, how can I apply that in my how backyard, right? >> Sonia: Right. So, here in California, one of the big farm issues is noxious of weeds, so I was like maybe this could be a cool solution, a cool application of ML. >> And how did you find out about Technovation? >> Last year, I competed as well. I was, I love software development, so I was looking for online coding competitions and this just happens to be in my search results, so I'm super glad I found it. >> And how do you think Technovation as helped you improve your app? >> I think before Technovation, I was really focused on just the code, and I love coding, but I didn't realize that companies can't live by code alone you have to really have a planned out business model, if you don't have that, no matter how good your app is, you're not going to get, you're not going to have success in the real worlds, so I think Technovation really helps me develop marketing plans and strategies and stuff like that. >> And who do you think your target audience is for this app? >> Currently our target audience is farmers in California. >> Okay, where do you see this app in like five years? >> So our goal right, I'm actually working closely with a statewide nonprofit called Cal-IPC, right now we're working to kind of revamp the app's mapping features, specifically enabling the sort of grid based system that allows geospatial data to be delivered out via API to plant databases. So, we're really working hard on that to get that feature out and from there, we plan to expand across California and I'd say in the next five years, our goal would be to take app nationwide to train our model on more species and just expand in general. >> And what advice would you give to featured Technovation participants? >> I would say start early because in the past two years where I've competed, I've often found my self doing a lot of things last minute just because I've procrastinated, so, have an idea early and work on your app over a long period of time, 'cause they give you several months. >> Great. So this has been Sydney Hough, from Team Uproot, Thanks so much for watching, I'm your host Sonia Tagare and stay tuned for more. (upbeat music)

Published Date : Aug 16 2019

SUMMARY :

Brought to you buy SiliconANGLE Media. and we're here at Oracle Santa Clara covering and farmers don't know what's going on sometimes, and tells you what kind of plants it is and mobile apps to help farmers in India actually. So, here in California, one of the big farm issues and this just happens to be in my search results, you have to really have a planned out business model, and I'd say in the next five years, a long period of time, 'cause they give you several months. I'm your host Sonia Tagare and stay tuned for more.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Sonia TagarePERSON

0.99+

CaliforniaLOCATION

0.99+

IndiaLOCATION

0.99+

KisanORGANIZATION

0.99+

Last yearDATE

0.99+

Cal-IPCORGANIZATION

0.99+

Sydney HoughPERSON

0.99+

Santa Clara, CaliforniaLOCATION

0.99+

Team UprootORGANIZATION

0.99+

SoniaPERSON

0.99+

Technovation World Pitch Summit 2019EVENT

0.99+

TechnovationORGANIZATION

0.98+

todayDATE

0.97+

three componentsQUANTITY

0.97+

five yearsQUANTITY

0.96+

oneQUANTITY

0.92+

UprootTITLE

0.91+

UprootORGANIZATION

0.89+

USALOCATION

0.85+

SiliconANGLE MediaORGANIZATION

0.85+

theCUBEORGANIZATION

0.84+

AgTechORGANIZATION

0.84+

next five yearsDATE

0.81+

past two yearsDATE

0.77+

several monthsQUANTITY

0.68+

Santa ClaraLOCATION

0.64+

theCubeORGANIZATION

0.54+

OracleEVENT

0.38+