Image Title

Search Results for Caitlin Lepech:

Caitlin Halferty Lepech, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE


 

(hip-hop music) (electronic music) >> Announcer: Live from Fisherman's Wharf in San Francisco, it's theCUBE, covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. (crowd) >> Hey welcome back everybody, Jeff Fricke here with Peter Burris. We're wrapping up a very full day here at the IBM Chief Data Officer Strategy Summit Spring 2017, Fisherman's Wharf, San Francisco. An all-day affair, really an intimate affair, 170 people, but Chief Data Officers with their peers, sharing information, getting good information from IBM. And it's an interesting event. They're doing a lot of them around the country, and eventually around the world. And we're excited to have kind of the power behind the whole thing. (laughing) Caitlin Lepech, she's the one who's driving the train. Don't believe the guys in the front. She's the one behind the curtain that's pulling all the levers. So we wanted to wrap the day. It's been a really good day, some fantastic conversations, great practitioners. >> Right. >> Want to get your impression of the day? Right, it's been great. The thing I love about this event the most is this is all client-led discussion, client-led conversation. And we're quite fortunate in that we get a lot leading CDOs to come join us. I've seen quite a number this time. We tried something new. We expanded to this 170 attendees, by far the largest group that we've ever had, so we ran these four breakout session tracks. And I am hearing some good feedback about some of the discussions. So I think it's been a good and full day (laughing). >> Yes, it has been. Any surprises? Anything that kind of jumped out to you that you didn't expect? >> Yeah, a couple of things. So we structure these breakout sessions... Pointed feedback from last session was, Hey, we want the opportunity to network with peers, share use cases, learn from each other, so I've got my notes here, and that we did a function builder. So these are all our CDOs that are starting to build the CDO office. They're new in the journey, right. We've got our data integrators, so they're really our data management, data wranglers, the business optimizers, thinking about how do I make sure I've got the impact throughout the business, and then market innovators. And one of the surprises is how many people are doing really innovative things, and they don't realize it. They tell me-- >> Jeff: Oh, really. >> Ahhh, I'm just in the early stages of setting up the office. I don't have the good use cases to share. And they absolutely do! They absolutely do! So that's always the surprise, is how many are actually quite more innovative than I think they give themselves credit. >> Well, that was a pretty consistent theme that came out today, is that you can't do all the foundational work, and then wait to get that finished before you start actually innovating delivering value. >> If you want to be successful. >> (laughing) Right, and keep your job (laughing) If you're one of the 41%. So you have to be parallel tracking, that first process'll never finish, but you've got to find some short-term wins that you can execute on right away. >> And that was one of our major objectives and sort of convening this event, and continuing to invest in the CDO community, is how do I improve the failure rate? We all agree, growth in the role, okay. But over half are going to fail. >> Right. >> And we start to see some of these folks now that they're four, six years in having some challenges. And so, what we're trying to do is reduce that failure rate. >> Jeff: Yeah, hopefully they-- >> But still four to six years in is still not a bad start. >> Caitlin: Yeah, yeah. >> There's most functions that fail quick... That fail tend to fail pretty quickly. >> Yeah. >> So one of the things that I was struck by, and I want to get your feedback on this, is that 170 people, sounds like a lot. >> Caitlin: Yeah, yeah. >> But it's not so much if there is a unity of purpose. >> Caitlin: Correct, correct! >> If there's pretty clear understanding of what it is they do and how they do it, and I think the CDO's role is still evolving very rapidly. So everybody's coming at this from a different perspective. And you mentioned the four tracks. But they seem to be honing in on the same end-state. >> Absolutely. >> So talk about what you think that end-state is. Where is the CDO in five years? >> Absolutely, so I did some live polling, as we kicked off the morning, and asked a couple of questions along those lines. Where do folks report? I think we mentioned this-- >> Right. >> When we kicked off. >> Right. >> A third to the CEO, a third to CIO, and a third to a CXO-type role, functional role. And reflected in the room was about that split. I saw about a third, third, third. And, yet, regardless of where in the organization, it's how do we get data governance, right? How do we get data management, right? And then there's this, I think, reflection around, okay, machine learning, deep learning, some of these new opportunities, new technologies. What sort of skills do we need to deliver? I had an interesting conversation with a CDO that said, We make a call across the board. We're not investing to build these technical skills in-house because we know in two years the guys I had doing Python and all that stuff, it's on to the next thing. And now I've got to get machine learning, deep learning, two years I need to move to the next. So it's more identifying technologies in partnership bringing those and bringing us through, and driving the business results. >> And we heard also very frequently the role the politics played. >> Caitlin: Oh, absolutely. >> And, in fact, Fow-wad Boot from-- >> Kaiser. >> Kaiser Permanente, yeah. >> Specifically talked about this... He's looking in the stewards that he's hiring in his function. He's looking for people that have learned the fine art of influencing others. >> And I think it's a stretch for a lot of these folks. Another poll we did is, who comes from an engineering, technical background. A lot of hands in the room. And we're seeing more and more come from line of business, and more and more emphasize the relationship component of it, relationship skills, which is I think is very interesting. We also see a high number of women in CDO roles, as compared to other C-suite roles. And I like to think, perhaps, it has to do-- >> Jeff: Right, right. >> With the relationship component of it as well because it is... >> Jeff: Yeah, well-- >> Peter: That's interesting. I'm not going to touch it, but it's interesting (laughing). >> Well, no, we were-- >> (laughing) I threw it out there. >> We were at the Stanford-- >> No, no, we-- >> Women in Data Science event, which is a phenomenal event. We've covered it for a couple years, and Jayna George from Western Digital, phenomenal, super smart lady, so it is an opportunity, and I don't think it's got so much of the legacy stuff that maybe some of the other things had that people can jump in. Diane Green kicked it off-- >> Yeah. >> So I think there is a lot of examples women doing their own thing in data science. >> Yeah, I agree, and I'll give you another context. In another CUBE, another event, I actually raised that issue, relationships, because men walk into a room, they get very competitive very quickly, who's the smartest guy in the room. And on what days is blah, blah, blah. And we're talking about the need to forge relationships that facilitate influence. >> Absolutely. >> And sharing of insight and sharing of knowledge. And it was a woman guest, and she... And I said, Do you see that women are better at this than others? And she looked at me, she said, Well, that's sexist. (laughing). And it was! I guess it kind of was. >> Right, right. >> But do you... You're saying that it's a place where, perhaps, women can actually take a step into senior roles in a technology-oriented space. >> Yeah. >> And have enormous success because of some of the things that they bring to the table. >> Yeah, one quote stuck with me is, when someone comes in with great experience, really smart, Are they here to hurt me or help me? And the trust component of it and building the trust, And I think there is one event we do here, the second day of all of our CDO summits, so women in breakfast, the data divas' breakfast. And we explore some opportunities for women leaders, and it was well-attended by men and women. And I think there really is when you're establishing a data strategy for your entire organization, and you need lines of business to contribute money and funding and resources, and sign off, there is I feel sometimes like we're on the Hill. I'm back in D.C., working on Capitol Hill (laughing), and we're shopping around to deliver, so absolutely. Another tying back to what you mentioned about something that was surprising today, we started building out this trust as a service idea. And a couple people on panels mentioned thinking about the value of trust and how you instill trust. I'm hearing more and more about that, so that was interesting. >> We actually brought that up. >> Caitlin: Oh, did you! >> Yeah, we actually brought it up here in theCUBE. And it was specifically and I made an observation that when you start thinking about Watson and you start thinking about potentially-competitive offerings at some point in time they're going to offer alternative opinions-- >> Absolutely. >> And find ways to learn to offer their opinions better than their's just for competitive purposes. >> Absolutely. >> And so, this notion of trust becomes essential to the brand. >> Absolutely. >> My system is working in your best interest. >> Absolutely. >> Not my best interest. And that's not something that people have spent a lot of time thinking about. >> Exactly, and what it means when we say, when we work with clients and say, It's your data, your insight. So we certainly tap that information-- >> Sure. >> And that data to train Watson, but it's not... We don't to keep that, right. It's back to you, but how do you design that engagement model to fulfill the privacy concerns, the ethical use of data, establish that trust. >> Right. >> I think it's something we're just starting to really dig into. >> But also if you think about something like... I don't know if you ever heard of this, but this notion of principal agent theory. >> Umm-hmm. >> Where the principal being the owner, in typical-- >> Right. >> Economic terms. The agent being the manager that's working on behalf of the owner. >> Right. >> And how do their agendas align or misalign. >> Right. >> The same thing is just here. We're not talking about systems that have... Are able to undertake very, very complex problems. >> Right. >> Sometimes will do so, and people will sit back and say, I'm not sure how it actually worked. >> Yeah. >> So they have to be a good agent for the business. >> Absolutely, absolutely, definitely. >> And this notion of trust is essential to that. >> Absolutely, and it's both... It originated internally, right, trying to trust the answers you're getting-- >> Sure! >> On a client. Who's our largest... Where's our largest client opportunity, you get multiple answers, so it's kind of trusting the voracity of the data, but now it's also a competitive differentiator. As a brand you can offer that to your client. >> Right, the other big thing that came up is you guys doing it internally, and trying to drive your own internal transformation at IBM, which is interesting in of itself, but more interesting is the fact that (laughing) you actually want to publish what you're doing and how you did it-- >> Yeah. >> As a road map. I think you guys are calling it the Blueprint-- >> Yes. >> For your customers. And talk about publishing that actually in October, so I wonder if you can share a little bit more color around what exactly is this Blueprint-- >> Sure. >> How's it's going to be exposed? >> What should people look forward to? >> Sure, I'm very fortunate in that Inderpal Bhandari when he came on board as IBM's First Chief Data Officer, said, I want to be completely transparent with clients on what we're doing. And it started with the data strategy, here's how we arrived at the data strategy, here's how we're setting up our organization internally, here's how we're prioritizing selecting use cases, so client prefixes is important to us, here's why. Down at every level we've been very transparent about what we're doing internally. Here's the skill sets I'm bringing on board and why. One thing we've talked a lot about is the Business Unit Data Officer, so having someone that sits in the business unit responsible for requirements from the unit, but also ensuring that there's some level of consistency at the enterprise level. >> Right. >> So, we've had some Business Unit Data Officers that we've plucked (laughing) from other organizations that have come and joined IBM last year, which is great. And so, what we wanted to do is follow that up with an actual Blueprint, so I own the Blueprint for Inderpal, and what we want to do is deliver it along three components, so one, the technology component, what technology can you leverage. Two, the business processes both the CDO processes and the enterprise, like HR, finance, supply chain, procurement, et cetera. And then finally the organizational considerations, so what sort of strategy, culture, what talent do you need to recruit, how do you retain your existing workforce to meet some of these new technology needs. And then all the sort of relationship piece we were talking about earlier, the culture changes required. >> Right. >> How do you go out and solicit that buy-in. And so, our intent is to come back around in October and deliver that Blueprint in a way that can be implemented within organization. And, oh, one thing we were saying is the homework assignment from this event (laughing), we're going to send out the template. >> Right. And our version of it, and be very transparent, here's how we're doing it internally. And inviting clients to come back to say-- >> Right. >> You need to dig in deeper here, this part's relevant to me, along the information governance, the master data management, et cetera. And then hopefully come back in October and deliver something that's really of value and usable for our clients across the industry. >> So for folks who didn't make it today, too bad for them. >> Exactly, we missed them, (laughing) but... >> So what's the next summit? Where's it's going to be, how do people get involved? Give us a kind of a plug for the other people that wished they were here, but weren't able to make it today. >> Sure, so we will come back around in the fall, September, October timeframe, in Boston, and do our east coast version of this summit. So I hope to see you guys there. >> Jeff: Sure, we'll be there. >> It should be a lot of fun. And at that point we'll deliver the Blueprint, and I think that will be a fantastic event. We committed to 170 data executives here, which fortunately we were able to get to that point, and are targeting a little over 200 for the fall, so looking to, again, expand, continue to expand and invite folks to join us. >> Be careful, you're going to be interconnected before you know. >> (laughing) No, no, no, I want it small! >> (laughing) Okay. >> And then also as I mentioned earlier, we're starting to see more industry-specific financial services, government. We have a government CDO summit coming up, June six, seven, in Washington D.C. So I think that'll be another great event. And then we're starting to see outside of the U.S., outside of North America, more of the GO summits as well, so... >> Very exciting times. Well, thanks for inviting us along. >> Sure, it's been a great day! It's been a lot of fun. Thank you so much! >> (laughing) Alright, thank you, Caitlin. I'm Jeff Fricke with Peter Burris. You're watching theCUBE. We've been here all day at the IBM Chief Data Officer Strategy Summit, that's right the Spring version, 2017, in Fisherman's Wharf, San Francisco. Thanks for watching. We'll see you next time. (electronic music) (upbeat music)

Published Date : Mar 30 2017

SUMMARY :

Brought to you by IBM. and eventually around the world. of the day? Anything that kind of jumped out to you And one of the surprises is how many people are I don't have the good use cases to share. and then wait to get that finished before you start that you can execute on right away. And that was one of our major objectives And we start to But still four to six years in That fail tend to fail pretty quickly. So one of the things that And you mentioned the four tracks. Where is the CDO in five years? and asked a couple of questions along those lines. And reflected in the room was about that split. And we heard also very frequently He's looking for people that have learned the fine art and more and more emphasize the relationship With the relationship component of it as well I'm not going to touch it, that maybe some of the other things had So I think there is a lot and I'll give you another context. And I said, Do you see that women are better You're saying that it's a place where, perhaps, because of some of the things that they bring to the table. And the trust component of it and building the trust, and I made an observation that And find ways to learn And so, this notion of in your best interest. And that's not something that people have spent a lot Exactly, and what it means when we say, And that data I think it's something I don't know if you ever heard of this, of the owner. Are able to undertake very, very complex problems. and people will sit back and say, a good agent for the business. Absolutely, and it's both... As a brand you can offer that to your client. I think you guys are calling it the Blueprint-- And talk about publishing that actually in October, so having someone that sits in the business unit and the enterprise, like HR, finance, supply chain, And so, our intent is to come back around in October And our version of it, along the information governance, So for folks who didn't make it today, Where's it's going to be, So I hope to see you guys there. and are targeting a little over 200 for the fall, before you know. more of the GO summits as well, so... Well, thanks for inviting us along. Thank you so much! We've been here all day at the

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Caitlin LepechPERSON

0.99+

JeffPERSON

0.99+

Jayna GeorgePERSON

0.99+

Diane GreenPERSON

0.99+

IBMORGANIZATION

0.99+

Jeff FrickePERSON

0.99+

Peter BurrisPERSON

0.99+

CaitlinPERSON

0.99+

BostonLOCATION

0.99+

OctoberDATE

0.99+

PeterPERSON

0.99+

Washington D.C.LOCATION

0.99+

fourQUANTITY

0.99+

41%QUANTITY

0.99+

last yearDATE

0.99+

June sixDATE

0.99+

D.C.LOCATION

0.99+

2017DATE

0.99+

thirdQUANTITY

0.99+

170 attendeesQUANTITY

0.99+

Inderpal BhandariPERSON

0.99+

PythonTITLE

0.99+

170 data executivesQUANTITY

0.99+

six yearsQUANTITY

0.99+

170 peopleQUANTITY

0.99+

InderpalORGANIZATION

0.99+

North AmericaLOCATION

0.99+

four tracksQUANTITY

0.99+

bothQUANTITY

0.99+

two yearsQUANTITY

0.99+

one quoteQUANTITY

0.99+

U.S.LOCATION

0.99+

SeptemberDATE

0.99+

Capitol HillLOCATION

0.98+

San FranciscoLOCATION

0.98+

second dayQUANTITY

0.98+

one eventQUANTITY

0.98+

TwoQUANTITY

0.98+

Western DigitalORGANIZATION

0.98+

WatsonPERSON

0.98+

todayDATE

0.98+

Caitlin Halferty LepechPERSON

0.98+

oneQUANTITY

0.97+

five yearsQUANTITY

0.97+

firstQUANTITY

0.97+

three componentsQUANTITY

0.97+

sevenDATE

0.96+

Chief Data OfficerEVENT

0.96+

OneQUANTITY

0.96+

over 200QUANTITY

0.95+

Fisherman's Wharf, San FranciscoLOCATION

0.94+

over halfQUANTITY

0.94+

First Chief Data OfficerPERSON

0.9+

BlueprintORGANIZATION

0.87+

Women in Data ScienceEVENT

0.86+

Kaiser PermanenteORGANIZATION

0.86+

Fisherman's WharfLOCATION

0.81+

Chief Data Officer Strategy Summit Spring 2017EVENT

0.8+

#IBMCDOORGANIZATION

0.8+

Strategy SummitEVENT

0.78+

Cortnie Abercrombie & Caitlin Halferty Lepech, IBM - IBM CDO Strategy Summit - #IBMCDO - #theCUBE


 

>> Announcer: Live from Fisherman's Wharf in San Francisco, it's theCUBE, covering IBM Chief Data Officer Strategy Summit Spring 2017. Brought to you by IBM. >> Hey, welcome back, everybody. Jeff Frick here with theCUBE. We're at Fisherman's Wharf in San Francisco at the IBM Chief Data Officer Strategy Summit Spring 2017. It's a mouthful, it's 170 people here, all high-level CXOs learning about data, and it's part of an ongoing series that IBM is doing around chief data officers and data, part of a big initiative with Cognitive and Watson, I'm sure you've heard all about it, Watson TV if nothing else, if not going to the shows, and we're really excited to have the drivers behind this activity with us today, also Peter Burris from Wikibon, chief strategy officer, but we've got Caitlin Lepech who's really driving this whole show. She is the Communications and Client Engagement Executive, IBM Global Chief Data Office. That's a mouthful, she's got a really big card. And Cortnie Abercrombie, who I'm thrilled to see you, seen her many, many times, I'm sure, at the MIT CDOIQ, so she's been playing in this space for a long time. She is a Cognitive and Analytics Offerings leader, IBM Global Business. So first off, welcome. >> Thank you, great to be here. >> Thanks, always a pleasure on theCUBE. It's so comfortable, I forget you guys aren't just buddies hanging out. >> Before we jump into it, let's talk about kind of what is this series? Because it's not World of Watson, it's not InterConnect, it's a much smaller, more intimate event, but you're having a series of them, and in the keynote is a lot of talk about what's coming next and what's coming in October, so I don't know. >> Let me let you start, because this was originally Cortnie's program. >> This was a long time ago. >> 2014. >> Yeah, 2014, the role was just starting, and I was tasked with can we identify and start to build relationships with this new line of business role that's cropping up everywhere. And at that time there were only 50 chief data officers worldwide. And so I-- >> Jeff: 50? In 2014. >> 50, and I can tell you that earnestly because I knew every single of them. >> More than that here today. >> I made it a point of my career over the last three years to get to know every single chief data officer as they took their jobs. I would literally, well, hopefully I'm not a chief data officer stalker, but I basically was calling them once I'd see them on LinkedIn, or if I saw a press announcement, I would call them up and say, "You've got a tough job. "Let me help connect you with each other "and share best practices." And before we knew, it became a whole summit. It became, there were so many always asking to be connected to each other, and how do we share best practices, and what do you guys know as IBM because you're always working with different clients on this stuff? >> And Cortnie and I first started working in 2014, we wrote IBM's first paper on chief data officers, and at the time, there was a lot of skepticism within our organization, why spend the time with data officers? There's other C-suite roles you may want to focus on instead. But we were saying just the rise of data, external data, unstructured data, lot of opportunity to rise in the role, and so, I think we're seeing it reflected in the numbers. Again, first summit three years ago, 30 participants. We have 170 data executives, clients joining us today and tomorrow. >> And six papers later, and we're goin' strong still. >> And six papers later. >> Exactly, exactly. >> Before we jump into the details, some of the really top-level stuff that, again, you talked about with John and David, MIT CDOIQ, in terms of reporting structure. Where do CDOs report? What exactly are they responsible for? You covered some of that earlier in the keynote, I wonder if you can review some of those findings. >> Yeah, that was amazing >> Sure, I can share that, and then, have Cortnie add. So, we find about a third report directly to the CEO, a third report through the CIO's office, sort of the traditional relationship with CIOs, and then, a third, and what we see growing quite a bit, are CXOs, so functional or business line function. Originally, traditionally it was really a spin-off of CIO, a lot of technical folks coming up, and we're seeing more and more the shift to business expertise, and the focus on making sure we're demonstrating the business impact these data programs are driving for our organization. >> Yeah, it kind of started more as a data governance type of role, and so, it was born out of IT to some degree because, but IT was having problems with getting the line of business leaders to come to the table, and we knew that there had to be a shift over to the business leaders to get them to come and share their domain expertise because as every chief data officer will tell you, you can't have lineage or know anything about all of this great data unless you have the experts who have been sitting there creating all of that data through their processes. And so, that's kind of how we came to have this line of business type of function. >> And Inderpal really talked about, in terms of the strategy, if you don't start from the business strategy-- >> Inderpal? >> Yeah, on the keynote. >> Peter: Yeah, yeah, yeah, yeah. >> You are really in big risk of the boiling the ocean problem. I mean, you can't just come at it from the data first. You really have to come at it from the business problem first. >> It was interesting, so Inderpal was one of our clients as a CEO three times prior to rejoining IBM a year ago, and so, Cortnie and I have known him-- >> Express Scripts, Cambia. >> Exactly, we've interviewed him, featured him in our research prior, too, so when he joined IBM in December a year ago, his first task was data strategy. And where we see a lot of our clients struggle is they make data strategy an 18-month, 24-month process, getting the strategy mapped out and implemented. And we say, "You don't have the time for it." You don't have 18 months to come to data, to come to a data strategy and get by and get it implemented. >> Nail something right away. >> Exactly. >> Get it in the door, start showing some results right away. You cannot wait, or your line of business people will just, you know. >> What is a data strategy? >> Sure, so I can say what we've done internally, and then, I know you've worked with a lot of clients on what they're building. For us internally, it started with the value proposition of the data office, and so, we got very clear on what that was, and it was the ability to take internal, external data, structured, unstructured, and pull that together. If I can summarize it, it's drive to cognitive business, and it's infusing cognition across all of our business processes internally. And then, we identified all of these use cases that'll help accelerate, and the catalyst that will get us there faster. And so, Client 360, product catalog, et cetera. We took data strategy, got buy-in at the highest levels at our organization, senior vice president level, and then, once we had that support and mandate from the top, went to the implementation piece. It was moving very quickly to specify, for us, it's about transforming to cognitive business. That then guides what's critical data and critical use cases for us. >> Before you answer, before you get into it, so is a data strategy a means to cognitive, or is it an end in itself? >> I would say it, to be most effective, it's a succinct, one-page description of how you're going to get to that end. And so, we always say-- >> Peter: Of cognitive? >> Exactly, for us, it's cognitive. So, we always ask very simple question, how is your company going to make money? Not today, what's its monetization strategy for the future? For us, it's coming to cognitive business. I have a lot of clients that say, "We're product-centric. "We want to become customer, client-centric. "That's our key piece there." So, it's that key at the highest level for us becoming a cognitive business. >> Well, and data strategies are as big or as small as you want them to be, quite frankly. They're better when they have a larger vision, but let's just face it, some companies have a crisis going on, and they need to know, what's my data strategy to get myself through this crisis and into the next step so that I don't become the person whose cheese moved overnight. Am I giving myself away? Do you all know the cheese, you know, Who Moved My Cheese? >> Every time the new iOS comes up, my wife's like-- >> I don't know if the younger people don't know that term, I don't think. >> Ah, but who cares about them? >> Who cares about the millenials? I do, I love the millenials. But yes, cheese, you don't want your cheese to move overnight. >> But the reason I ask the question, and the reason why I think it's important is because strategy is many things to many people, but anybody who has a view on strategy ultimately concludes that the strategic process is what's important. It's the process of creating consensus amongst planners, executives, financial people about what we're going to do. And so, the concept of a data strategy has to be, I presume, as crucial to getting the organization to build a consensus about the role the data's going to play in business. >> Absolutely. >> And that is the hardest. That is the hardest job. Everybody thinks of a data officer as being a technical, highly technical person, when in fact, the best thing you can be as a chief data officer is political, very, very adept at politics and understanding what drives the business forward and how to bring results that the CEO will get behind and that the C-suite table will get behind. >> And by politics here you mean influencing others to get on board and participate in this process? >> Even just understanding, sometimes leaders of business don't articulate very well in terms of data and analytics, what is it that they actually need to accomplish to get to their end goal, and you find them kind of stammering when it comes to, "Well, I don't really know "how you as Inderpal Bhandari can help me, "but here's what I've got to do." And it's a crisis usually. "I've got to get this done, "and I've got to make these numbers by this date. "How can you help me do that?" And that's when the chief data officer kicks into gear and is very creative and actually brings a whole new mindset to the person to understand their business and really dive in and understand, "Okay, this is how "we're going to help you meet that sales number," or, "This is how we're going to help you "get the new revenue growth." >> In certain respects, there's a business strategy, and then, you have to resource the business strategy. And the data strategy then is how are we going to use data as a resource to achieve our business strategy? >> Cortnie: Yes. >> So, let me test something. The way that we at SiliconANGLE, Wikibon have defined digital business is that a business, a digital business uses data as an asset to differentially create and keep customers. >> Caitlin: Right. >> Does that work for you guys? >> Cortnie: Yeah, sure. >> It's focused on, and therefore, you can look at a business and say is it more or less digital based on how, whether it's more or less focused on data as an asset and as a resource that's going to differentiate how it's business behaves and what it does for customers. >> Cortnie: And it goes from the front office all the way to the back. >> Yes, because it's not just, but that's what, create and keep, I'm borrowing from Peter Drucker, right. Peter Drucker said the goal of business is to create and keep customers. >> Yeah, that's right. Absolutely, at the end of the day-- >> He included front end and back end. >> You got to make money and you got to have customers. >> Exactly. >> You got to have customers to make the money. >> So data becomes a de-differentiating asset in the digital business, and increasingly, digital is becoming the differentiating approach in all business. >> I would argue it's not the data, because everybody's drowning in data, it's how you use the data and how creative you can be to come up with the methods that you're going to employ. And I'll give you an example. Here's just an example that I've been using with retailers lately. I can look at all kinds of digital exhaust, that's what we call it these days. Let's say you have a personal digital shopping experience that you're creating for these new millenials, we'll go with that example, because shoppers, 'cause retailers really do need to get more millenials in the door. They're used to their Amazon.coms and their online shopping, so they're trying to get more of them in the door. When you start to combine all of that data that's underlying all of these cool things that you're doing, so personal shopping, thumbs up, thumb down, you like this dress, you like that cut, you like these heels? Yeah, yes, yes or no, yes or no. I'm getting all this rich data that I'm building with my app, 'cause you got to be opted in, no violating privacy here, but you're opting in all the way along, and we're building and building, and so, we even have, for us, we have this Metro Pulse retail asset that we use that actually has hyperlocal information. So, you could, knowing that millenials like, for example, food trucks, we all like food trucks, let's just face it, but millenials really love food trucks. You could even, if you are a retailer, you could even provide a fashion truck directly to their location outside their office equipped with things that you know they like because you've mined that digital exhaust that's coming off the personal digital shopping experience, and you've understood how they like to pair up what they've got, so you're doing a next best action type of thing where you're cross-selling, up-selling. And now, you bring it into the actual real world for them, and you take it straight to them. That's a new experience, that's a new millennial experience for retail. But it's how creative you are with all that data, 'cause you could have just sat there before and done nothing about that. You could have just looked at it and said, "Well, let's run some reports, "let's look at a dashboard." But unless you actually have someone creative enough, and usually it's a pairing of data scientist, chief data officers, digital officers all working together who come up with these great ideas, and it's all based, if you go back to what my example was, that example is how do I create a new experience that will get millenials through my doors, or at least get them buying from me in a different way. If you think about that was the goal, but how I combined it was data, a digital process, and then, I put it together in a brand new way to take action on it. That's how you get somewhere. >> Let me see if I can summarize very quickly. And again, just as an also test, 'cause this is the way we're looking at it as well, that there's human beings operate and businesses operate in an analog world, so the first test is to take analog data and turn it into digital data. IOT does that. >> Cortnie: Otherwise, there's not digital exhaust. >> Otherwise, there's no digital anything. >> Cortnie: That's right. >> And we call it IOT and P, Internet of Things and People, because of the people element is so crucial in this process. Then we have analytics, big data, that's taking those data streams and turning them into models that have suggestions and predictions about what might be the right way to go about doing things, and then there's these systems of action, or what we've been calling systems of enactment, but we're going to lose that battle, it's probably going to be called systems of action that then take and transduce the output of the model back into the real world, and that's going to be a combination of digital and physical. >> And robotic process automation. We won't even introduce that yet. >> Which is all great. >> But that's fun. >> That's going to be in October. >> But I really like the example that you gave of the fashion truck because people don't look at a truck and say, "Oh, that's digital business." >> Cortnie: Right, but it manifested in that. >> But it absolutely is digital business because the data allows you to bring a more personal experience >> Understand it, that's right. >> right there at that moment, and it's virtually impossible to even conceive of how you can make money doing that unless you're able to intercept that person with that ensemble in a way that makes both parties happy. >> And wouldn't that be cheaper than having big, huge retail stores? Someone's going to take me up on that. Retailers are going to take me up on this, I'm telling you. >> But I think the other part is-- >> Right next to the taco truck. >> There could be other trucks in that, a much cleaner truck, and this and that. But one thing, Cortnie, you talk about and you got to still have a hypothesis, I think of the early false promises of big data and Hadoop, just that you throw all this stuff in, and the answer just comes out. That just isn't the way. You've got to be creative, and you have to have a hypothesis to test, and I'm just curious from your experience, how ready are people to take in the external data sources and the unstructured data sources and start to incorporate that in with the proprietary data, 'cause that's a really important piece of the puzzle? It's very different now. >> I think they're ready to do it, it depends on who in the business you are working with. Digital offices, marketing offices, merchandising offices, medical offices, they're very interested in how can we do this, but they don't know what they need. They need guidance from a data officer or a data science head, or something like this, because it's all about the creativity of what can I bring together to actually reach that patient diagnostic, that whatever the case may be, the right fashion truck mix, or whatever. Taco Tuesday. >> So, does somebody from the chief data office, if you will, you know, get assigned to, you're assigned to marketing and you're assigned to finance, and you're assigned to sales. >> I have somebody assigned to us. >> To put this in-- >> Caitlin: Exactly, exactly. >> To put this in kind of a common or more modern parlance, there's a design element. You have to have use case design, and what are we going, how are we going to get better at designing use cases so we can go off and explore the role that data is going to play, how we're going to combine it with other things, and to your point, and it's a great point, how that turns into a new business activity. >> And if I can connect two points there, the single biggest question I get from clients is how do you prioritize your use cases. >> Oh, gosh, yeah. >> How can you help me select where I'm going to have the biggest impact? And it goes, I think my thing's falling again. (laughing) >> Jeff: It's nice and quiet in here. >> Okay, good. It goes back to what you were saying about data strategy. We say what's your data strategy? What's your overarching mission of the organization? For us, it's becoming cognitive business, so for us, it's selecting projects where we can infuse cognition the quickest way, so Client 360, for example. We'll often say what's your strategy, and that guides your prioritization. That's the question we get the most, what use case do I select? Where am I going to have the most impact for the business, and that's where you have to work with close partnership with the business. >> But is it the most impact, which just sounds scary, and you could get in analysis paralysis, or where can I show some impact the easiest or the fastest? >> You're going to delineate both, right? >> Exactly. >> Inderpal's got his shortlist, and he's got his long list. Here's the long term that we need to be focused on to make sure that we are becoming holistically a cognitive company so that we can be flexible and agile in this marketplace and respond to all kinds of different situations, whether they're HR and we need more skills and talent, 'cause let's face it, we're a technology company who's rapidly evolving to fit with the marketplace, or whether it's just good old-fashioned we need more consultants. Whatever the case may be. >> Always, always. >> Yes! >> I worked my business in. >> More consultants! >> Alright, we could go, we could go and go and go, but we're running out of time, we had a full slate. >> Caitlin: We just started. >> I know. >> I agree, we're just starting this convers, I started a whole other conversation to him. We haven't even hit the robotics yet. >> We need to keep going, guys. >> Get control. >> Cortnie: Less coffee for us. >> What do people think about when they think about this series? What should they look forward to, what's the next one for the people that didn't make it here today, where should they go on the calendar and book in their calendars? >> So, I'll speak to the summits first. It's great, we do Spring in San Francisco. We'll come back, reconvene in Boston in fall, so that'll be September, October frame. I'm seeing two other trends, which I'm quite excited about, we're also looking at more industry-specific CDO summits. So, for those of our friends that are in government sectors, we'll be in June 6th and 7th at a government CDO summit in D.C., so we're starting to see more of the industry-specific, as well as global, so we just ran our first in Rio, Brazil for that area. We're working on a South Africa summit. >> Cortnie: I know, right. >> We actually have a CDO here with us that traveled from South Africa from a bank to see our summit here and hoping to take some of that back. >> We have several from Peru and Mexico and Chile, so yeah. >> We'll continue to do our two flagship North America-based summits, but I'm seeing a lot of growth out in our geographies, which is fantastic. >> And it was interesting, too, in your keynote talking about people's request for more networking time. You know, it is really a sharing of best practices amongst peers, and that cannot be overstated. >> Well, it's community. A community is building. >> It really is. >> It's a family, it really is. >> We joke, this is a reunion. >> We all come in and hug, I don't know if you noticed, but we're all hugging each other. >> Everybody likes to hug their own team. It's a CUBE thing, too. >> It's like therapy. It's like data therapy, that's what it is. >> Alright, well, Caitlin, Cortnie, again, thanks for having us, congratulations on a great event, and I'm sure it's going to be a super productive day. >> Thank you so much. Pleasure. >> Thanks. >> Jeff Frick with Peter Burris, you're watchin' theCUBE from the IBM Chief Data Officer Summit Spring 2017 San Francisco, thanks for watching. (electronic keyboard music)

Published Date : Mar 29 2017

SUMMARY :

Brought to you by IBM. and we're really excited to have the drivers It's so comfortable, I forget you guys and in the keynote is a lot of talk about what's coming next Let me let you start, because this was and start to build relationships with this new Jeff: 50? 50, and I can tell you that and what do you guys know as IBM and at the time, there was a lot of skepticism and we're goin' strong still. You covered some of that earlier in the keynote, and the focus on making sure the line of business leaders to come to the table, I mean, you can't just come at it from the data first. You don't have 18 months to come to data, Get it in the door, start showing some results right away. and then, once we had that support and mandate And so, we always say-- So, it's that key at the highest level so that I don't become the person the younger people don't know that term, I don't think. I do, I love the millenials. about the role the data's going to play in business. and that the C-suite table will get behind. "we're going to help you meet that sales number," and then, you have to resource the business strategy. as an asset to differentially create and keep customers. and what it does for customers. Cortnie: And it goes from the front office is to create and keep customers. Absolutely, at the end of the day-- digital is becoming the differentiating approach and how creative you can be to come up with so the first test is to take analog data and that's going to be a combination of digital and physical. And robotic process automation. But I really like the example that you gave how you can make money doing that Retailers are going to take me up on this, I'm telling you. You've got to be creative, and you have to have because it's all about the creativity of from the chief data office, if you will, assigned to us. and to your point, and it's a great point, is how do you prioritize your use cases. How can you help me and that's where you have to work with and respond to all kinds of different situations, Alright, we could go, We haven't even hit the robotics yet. So, I'll speak to the summits first. to see our summit here and hoping to take some of that back. We'll continue to do our two flagship And it was interesting, too, in your keynote Well, it's community. We all come in and hug, I don't know if you noticed, Everybody likes to hug their own team. It's like data therapy, that's what it is. and I'm sure it's going to be a super productive day. Thank you so much. Jeff Frick with Peter Burris,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Caitlin LepechPERSON

0.99+

Cortnie AbercrombiePERSON

0.99+

Peter BurrisPERSON

0.99+

PeruLOCATION

0.99+

2014DATE

0.99+

IBMORGANIZATION

0.99+

CortniePERSON

0.99+

JeffPERSON

0.99+

Jeff FrickPERSON

0.99+

BostonLOCATION

0.99+

South AfricaLOCATION

0.99+

CaitlinPERSON

0.99+

JohnPERSON

0.99+

PeterPERSON

0.99+

D.C.LOCATION

0.99+

two pointsQUANTITY

0.99+

ChileLOCATION

0.99+

OctoberDATE

0.99+

18 monthsQUANTITY

0.99+

oneQUANTITY

0.99+

MexicoLOCATION

0.99+

18-monthQUANTITY

0.99+

Peter DruckerPERSON

0.99+

CognitiveORGANIZATION

0.99+

Inderpal BhandariPERSON

0.99+

30 participantsQUANTITY

0.99+

Amazon.comsORGANIZATION

0.99+

San FranciscoLOCATION

0.99+

50QUANTITY

0.99+

tomorrowDATE

0.99+

24-monthQUANTITY

0.99+

first testQUANTITY

0.99+

three years agoDATE

0.99+

170 peopleQUANTITY

0.99+

third reportQUANTITY

0.99+

June 6thDATE

0.99+

todayDATE

0.99+

bothQUANTITY

0.99+

IBM GlobalORGANIZATION

0.99+

Rio, BrazilLOCATION

0.99+

DavidPERSON

0.99+

first paperQUANTITY

0.98+

both partiesQUANTITY

0.98+

a year agoDATE

0.98+

one-pageQUANTITY

0.98+

LinkedInORGANIZATION

0.98+

7thDATE

0.98+

iOSTITLE

0.98+

first taskQUANTITY

0.98+

December a year agoDATE

0.98+

firstQUANTITY

0.98+

IBM Global BusinessORGANIZATION

0.97+

WikibonORGANIZATION

0.97+

North AmericaLOCATION

0.97+

Spring 2017DATE

0.97+

thirdQUANTITY

0.97+

170 data executivesQUANTITY

0.96+

50 chief data officersQUANTITY

0.96+

Caitlin Lepech & Dave Schubmehl - IBM Chief Data Officer Strategy Summit - #IBMCDO - #theCUBE


 

>> live from Boston, Massachusetts. >> It's the Cube >> covering IBM Chief Data Officer Strategy Summit brought to you by IBM. Now, here are your hosts. Day villain Day and >> stew minimum. Welcome back to Boston, everybody. This is the IBM Chief Data Officer Summit. And this is the Cube, the worldwide leader in live tech coverage. Caitlin Lepic is here. She's an executive within the chief data officer office at IBM. And she's joined by Dave Shoot Mel, who's a research director at, uh D. C. And he covers cognitive systems and content analytics. Folks, welcome to the Cube. Good to see you. Thank you. Can't. Then we'll start with you. You were You kicked off the morning and I referenced the Forbes article or CDOs. Miracle workers. That's great. I hadn't read that article. You put up their scanned it very quickly, but you set up the event. It started yesterday afternoon at noon. You're going through, uh, this afternoon? What's it all about? This is evolved. Since, what, 2014 >> it has, um, we started our first CDO summit back in 2014. And at that time, we estimated there were maybe 200 or so CDOs worldwide, give or take and we had 30, 30 people at our first event. and we joked that we had one small corner of the conference room and we were really quite excited to start the event in 30 2014. And we've really grown. So this year we have about 170 folks joining us, 70 of which are CEOs, more acting, the studios in the organization. And so we've really been able to grow the community over the last two years and are really excited to see to see how we can continue to do that moving forward. >> And IBM has always had a big presence at the conference that we've covered the CDO event. So that's nice that you can leverage that community and continue to cultivate it. Didn't want to ask you, so it used that we were talking when we first met this morning. It used to be dated was such a wonky topic, you know, data was data value. People would try to put a value on data, and but it was just a really kind of boring but important topic. Now it's front and center with cognitive with analytics. What are you seeing in the marketplace. >> Yeah, I think. Well, what we're seeing in the market is this emphasis on predictive applications, predictive analytics, cognitive applications, artificial intelligence of deep learning. All of those those types of applications are derived and really run by data. So unless you have really good authoritative data to actually make these models work, you know, the systems aren't going to be effective. So we're seeing an emerging marketplace in both people looking at how they can leverage their first party data, which, you know, IBM is really talking about what you know, Bob Picciotto talked about this morning. But also, we're seeing thie emergency of a second party and third party data market to help build these models out even further so that I think that's what we're really seeing is the combination of the third party data along with the first party data really being the instrument for building these kind of predictive models, you know, they're going to take us hopefully, you know, far into the future. >> Okay, so, Caitlin square the circle for us. So the CDO roll generally is not perceived. Is it technology role? Correct. Yet as Davis to saying, we're talking about machine learning cognitive. Aye, aye. These air like heavy technical topics. So how does the miracle worker deal with all this stuff generally? And how does IBM deal with it inside the CDO office? Specifically? >> Sure. So it is. It's a very good point, you know, Traditionally, Seo's really have a business background, and we find that the most successful CDO sit in the business organization. So they report somewhere in a line of business. Um, and there are certainly some that have a technical background, but far more come from business background and sit in the business. I can't tell you how we are setting up our studio office at IBM. Um, so are new. And our first global chief date officer joined in December of last year. Interpol Bhandari, um and I started working for him shortly thereafter, and the way he's setting up his office is really three pillars. So first and foremost, we focused on the data engineering data sign. So getting that team in place next, it's information, governance and policy. How are we going to govern access, manage, work with data, both data that we own within our organization as well as the long list of of external data sources that that we bring in and then third is the business integration filler. So the idea is CDOs are going to be most successful when they deliver those data Science data engineering. Um, they manage and govern the data, but they pull it through the business, so ensuring that were really, you know, grounded in business unit and doing this. And so those there are three primary pillars at this point. So prior >> to formalizing the CDO role at I b m e mean remnants of these roles existed. There was a date, equality, you know, function. There was certainly governance in policy, and somebody was responsible to integrate between, you know, from the i t. To the applications, tow the business. Were those part of I t where they sort of, you know, by committee and and how did you bring all those pieces together? That couldn't have been trivial, >> and I would say it's filling. It's still going filling ongoing process. But absolutely, I would say they typically resided within particular business units, um, and so certainly have mature functions within the unit. But when we're looking for enterprise wide answers to questions about certain customers, certain business opportunities. That's where I think the role the studio really comes in and what we're What we're doing now is we are partnering very closely with business units. One example is IBM analytic. Seen it. So we're here with Bob Luciano and other business units to ensure that, as they provide us, you know, their data were able to create the single trusted source of data across the organization across the enterprise. And so I agree with you, I think, ah, lot of those capabilities and functions quite mature, they, you know, existed within units. And now it's about pulling that up to the enterprise level and then our next step. The next vision is starting to make that cognitive and starting to add some of those capabilities in particular data science, engineering, the deep learning on starting to move toward cognitive. >> Dave, I think Caitlin brought up something really interesting. We've been digging into the last couple of years is you know, there's that governance peace, but a lot of CEOs are put into that role with a mandate for innovation on. That's something that you know a lot of times it has been accused of not being all that innovative. Is that what you're seeing? You know what? Because some of the kind of is it project based or, you know, best initiatives that air driving forward with CEOs. I think what we're seeing is that enterprises they're beginning to recognize that it's not just enough to be a manufacturer. It's not just enough to be a retail organization. You need to be the one of the best one of the top two or the top three. And the only way to get to that top two or top three is to have that innovation that you're talking about and that innovation relies on having accurate data for decision making. It also relies on having accurate data for operations. So we're seeing a lot of organizations that are really, you know, looking at how data and predictive models and innovation all become part of the operational fabric of a company. Uh, you know, and if you think about the companies that are there, you know, just beating it together. You know Amazon, for example. I mean, Amazon is a completely data driven company. When you get your recommendations for, you know what to buy, or that's all coming from the data when they set up these logistics centers where they're, you know, shipping the latest supplies. They're doing that because they know where their customers are. You know, they have all this data, so they're they're integrating data into their day to day decision making. And I think that's what we're seeing, You know, throughout industry is this this idea of integrating decision data into the decision making process and elevating it? And I think that's why the CDO rule has become so much more important over the last 2 to 3 years. >> We heard this morning at 88% percent of data is dark data. Papa Geno talked about that. So thinking about the CEOs scope roll agenda, you've got data sources. You've gotto identify those. You gotta deal with data quality and then Dave, with some of the things you've been talking about, you've got predictive models that out of the box they may not be the best predictive models in the world. You've got iterated them. So how does an organization, because not every organizations like Amazon with virtually unlimited resource is capital? How does an organization balance What are you seeing in terms of getting new data sources? Refining those data source is putting my emphasis on the data vs refining and calibrating the predictive models. How organizations balancing that Maybe we start with how IBM is doing. It's what you're seeing in the field. >> So So I would say, from what we're doing from a setting up the chief data office role, we've taken a step back to say, What's the company's monitor monetization strategy? Not how your mind monetizing data. How are how are you? What's your strategy? Moving forward, Um, for Mance station. And so with IBM we've talked about it is moved to enabling cognition throughout the enterprise. And so we've really talked about taking all of your standard business processes, whether they be procurement HR finance and infusing those with cognitive and figuring out how to make those smarter. We talking examples with contracts, for example. Every organization has a lot of contracts, and right now it's, you know, quite a manual process to go through and try and discern the sorts of information you need to make better decisions and optimize the contract process. And so the idea is, you start with that strategy for us. IBM, it's cognitive. And that then dictates what sort of data sources you need. Because that's the problem you're trying to solve in the opportunity you're chasing down. And so then we talk about Okay, we've got some of that data currently residing today internally, typically in silos, typically in business units, you know, some different databases. And then what? What are longer term vision is, is we want to build the intelligence that pulls in that internal data and then really does pull in the external data that we've that we've all talked about. You know, the social data, the sentiment analysis, analysis, the weather. You know, all of that sort of external data to help us. Ultimately, in our value proposition, our mission is, you know, data driven enablement cognition. So helps us achieve our our strategy there. >> Thank you, Dad, to that. Yeah, >> I mean, I think I mean, you could take a number of examples. I mean, there's there's ah, uh, small insurance company in Florida, for example. Uh, and what they've done is they have organized their emergency situation, their emergency processing to be able to deal with tweets and to be able to deal with, you know, SMS messages and things like that. They're using sentiment analysis. They're using Tex analytics to identify where problems are occurring when hurricane happens. So they're what they're doing is they're they're organizing that kind of data and >> there and there were >> relatively small insurance company. And a lot of this is being done to the cloud, but they're basically getting that kind of sentiment analysis being ableto interpret that and add that to their decision making process. About where should I land a person? Where should I land? You know, an insurance adjuster and agent, you know, based on the tweets, that air coming in rather than than just the phone calls that air coming into the into the organization, you know? So that's a That's a simple example. And you were talking about Not everybody has the resources of an Amazon, but, you know, certainly small insurance companies, small manufacturers, small retail organizations, you, Khun get started by, you know, analyzing your You know what people are saying about you. You know, what are people saying about me on Twitter? What are people saying about me on Facebook? You know how can I use that to improve my customer service? Uh, you know, we're seeing ah whole range of solutions coming out, and and IBM actually has a broad range of solutions for things like that. But, you know, they're not the only points out there. There's there's a lot of folks do it that kind of thing, you know, in terms of the dark data analysis and barely providing that, you know, as part of the solution to help people make better decisions. >> So the answers to the questions both You're doing both new sources of data and trying to improve the the the analytics and the models. But it's a balancing act, and you could come back to the E. R. A. Y question. It sounds like IBM strategies to supercharge your existing businesses by infusing them with new data and new insights. Is >> that correctly? I would say that is correct. >> Okay, where is in many cases, the R A. Y of analytics projects that date have been a reduction on investment? You know, I'm going to move stuff from my traditional W two. A dupe is cheaper, and we feels like Dave, we're entering a new wave now maybe could talk about that a little bit. >> Yeah. I mean, I think I think there's a desk in the traditional way of measuring ROI. And I think what people are trying to do now is look at how you mentioned disruption, for example. You know what I think? Disruption is a huge opportunity. How can I increase my sales? How can I increase my revenue? How can I find new customers, you know, through these mechanisms? And I think that's what we're starting to see in the organization. And we're starting to see start ups that are dedicated to providing this level of disruption and helping address new markets. You know, by using these kinds of technologies, uh, in in new and interesting ways. I mean, everybody uses the airbnb example. Everybody uses uber example. You know that these are people who don't own cars. They don't know what hotel rooms. But, you know, they provide analytics to disrupt the hotel industry and disrupt the taxi industry. It's not just limited to those two industries. It's, you know, virtually everything you know. And I think that's what we're starting to see is this height of, uh, virtual disruption based on the dark data, uh, that people can actually begin to analyze >> within IBM. Uh, the chief data officer reports to whom. >> So the way we've set up in our organization is our CBO reports to our senior vice president of transformation and operations, who then reports to our CEO our recommendation as we talked with clients. I mean, we see this as a CEO level reporting relationship, and and oftentimes we advocate, you know, for that is where we're talking with customers and clients. It fits nicely in our organization within transformation operations, because this line is really responsible for transforming IBM. And so they're really charged with a number of initiatives throughout the organization to have better skills alignment with some of the new opportunities. To really improve process is to bring new folks on board s. So it made sense to fit within, uh, organization that the mandate is really transformation of the company of the >> and the CDO was a peer of the CIA. Is that right? Yes. >> Yes, that's right. That's right. Um, and then in our organization, the role of split and that we have a chief data officer as well as a chief analytics officer. Um, but, you know, we often see one person serving both of those roles as well. So that's kind of, you know, depend on the organizational structure of the company. >> So you can't run the business. So to grow the business, which I guess is the P and L manager's role and transformed the business, which is where the CDO comes. >> Right? Right, right. Exactly. >> I can't give you the last word. Sort of Put a bumper sticker on this event. Where do you want to see it go? In the future? >> Yes. Eso last word. You know, we try Tio, we tried a couple new things. Uh, this this year we had our deep dive breakout sessions yesterday. And the feedback I've been hearing from folks is the opportunity to talk about certain topics they really care about. Is their governance or is innovation being able to talk? How do you get started in the 1st 90 days? What? What do you do first? You know, we we have sort of a five steps that we talk through around, you know, getting your data strategy and your plan together and how you execute against that. Um And I have to tell you, those topics continue to be of interest to our to our participants every year. So we're going to continue to have those, um, and I just I love to see the community grow. I saw the first Chief data officer University, you know, announced earlier this year. I did notice a lot of PR and media around. Role of studio is miracle workers, As you mentioned, doing a lot of great work. So, you know, we're really supportive. Were big supporters of the role we'll continue to host in person events. Uh, do virtual events continue to support studios? To be successful on our big plug is will be world of Watson. Eyes are big IBM Analytics event in October, last week of October in Vegas. So we certainly invite folks to join us. There >> will be, >> and he'll be there. Right? >> Get still, try to get Jimmy on. So, Jenny, if you're watching, talking to come on the Q. >> So we do a second interview >> and we'll see. We get Teo, And I saw Hillary Mason is going to be the oh so fantastic to see her so well. Excellent. Congratulations. on being ahead of the curve with the chief date officer can theme. And I really appreciate you coming to Cube, Dave. Thank you. Thank you. All right, Keep right there. Everybody stew and I were back with our next guest. We're live from the Chief Data Officers Summit. IBM sze event in Boston Right back. My name is Dave Volante on DH. I'm a longtime industry analysts.

Published Date : Sep 23 2016

SUMMARY :

covering IBM Chief Data Officer Strategy Summit brought to you by You put up their scanned it very quickly, but you set up the event. And at that time, we estimated there were maybe 200 or so CDOs worldwide, give or take and we had 30, 30 people at our first event. the studios in the organization. a wonky topic, you know, data was data value. data to actually make these models work, you know, the systems aren't going to be effective. So how does the miracle worker deal with all this stuff generally? so ensuring that were really, you know, grounded in business unit and doing this. and somebody was responsible to integrate between, you know, from the i t. units to ensure that, as they provide us, you know, their data were able to create the single that are really, you know, looking at how data and are you seeing in terms of getting new data sources? And so the idea is, you start with that Thank you, Dad, to that. to be able to deal with, you know, SMS messages and things like that. You know, an insurance adjuster and agent, you know, based on the tweets, that air coming in rather than than just So the answers to the questions both You're doing both new sources of data and trying to improve I would say that is correct. You know, I'm going to move stuff from my traditional W two. And I think what people are trying to do now is look at how you mentioned disruption, Uh, the chief data officer reports to whom. you know, for that is where we're talking with customers and clients. and the CDO was a peer of the CIA. So that's kind of, you know, depend on the organizational structure of So you can't run the business. Right? I can't give you the last word. I saw the first Chief data officer University, you know, announced earlier this and he'll be there. So, Jenny, if you're watching, talking to come on the Q. And I really appreciate you coming to Cube, Dave.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Caitlin LepicPERSON

0.99+

AmazonORGANIZATION

0.99+

CIAORGANIZATION

0.99+

Dave SchubmehlPERSON

0.99+

Dave VolantePERSON

0.99+

FloridaLOCATION

0.99+

IBMORGANIZATION

0.99+

Bob LucianoPERSON

0.99+

Bob PicciottoPERSON

0.99+

JennyPERSON

0.99+

Dave Shoot MelPERSON

0.99+

Caitlin LepechPERSON

0.99+

DavePERSON

0.99+

DavisPERSON

0.99+

BostonLOCATION

0.99+

uberORGANIZATION

0.99+

TeoPERSON

0.99+

70QUANTITY

0.99+

VegasLOCATION

0.99+

2014DATE

0.99+

JimmyPERSON

0.99+

Hillary MasonPERSON

0.99+

OctoberDATE

0.99+

Boston, MassachusettsLOCATION

0.99+

CaitlinPERSON

0.99+

firstQUANTITY

0.99+

bothQUANTITY

0.99+

200QUANTITY

0.99+

both peopleQUANTITY

0.99+

thirdQUANTITY

0.99+

first eventQUANTITY

0.99+

One exampleQUANTITY

0.99+

two industriesQUANTITY

0.99+

yesterdayDATE

0.99+

five stepsQUANTITY

0.99+

second interviewQUANTITY

0.98+

singleQUANTITY

0.98+

top threeQUANTITY

0.98+

December of last yearDATE

0.98+

this afternoonDATE

0.97+

1st 90 daysQUANTITY

0.97+

oneQUANTITY

0.97+

Chief Data Officers SummitEVENT

0.97+

IBM Chief Data OfficerEVENT

0.96+

one personQUANTITY

0.96+

this yearDATE

0.96+

last week of OctoberDATE

0.95+

about 170 folksQUANTITY

0.95+

both dataQUANTITY

0.95+

earlier this yearDATE

0.95+

top twoQUANTITY

0.95+

yesterday afternoon at noonDATE

0.94+

30 2014DATE

0.94+

CDOEVENT

0.94+

88% percentQUANTITY

0.93+

three primary pillarsQUANTITY

0.93+

first partyQUANTITY

0.9+

this morningDATE

0.89+

CDOORGANIZATION

0.89+

30,QUANTITY

0.88+

KhunORGANIZATION

0.88+

D. C.PERSON

0.88+

three pillarsQUANTITY

0.87+

one small cornerQUANTITY

0.87+