Harnessing the Power of Sound for Nature – Soundscape Ecological Research | Exascale Day 2020
>> From around the globe, it's theCUBE, with digital coverage of Exascale Day. Made possible by Hewlett Packard Enterprise. >> Hey, welcome back everybody Jeff Frick here with theCUBE. We are celebrating Exascale Day. 10, 18, I think it's the second year of celebrating Exascale Day, and we're really excited to have our next guest and talk about kind of what this type of compute scale enables, and really look a little bit further down the road at some big issues, big problems and big opportunities that this is going to open up. And I'm really excited to get in this conversation with our next guest. He is Bryan Pijanowski the Professor of Landscape and Soundscape Ecology at Purdue University. Bryan, great to meet you. >> Great to be here. >> So, in getting ready for this conversation, I just watched your TED Talk, and I just loved one of the quotes. I actually got one of quote from it that's basically saying you are exploring the world through sound. I just would love to get a little deeper perspective on that, because that's such a unique way to think about things and you really dig into it and explain why this is such an important way to enjoy the world, to absorb the world and think about the world. >> Yeah, that's right Jeff. So the way I see it, sound is kind of like a universal variable. It exists all around us. And you can't even find a place on earth where there's no sound, where it's completely silent. Sound is a signal of something that's happening. And we can use that information in ways to allow us to understand the earth. Just thinking about all the different kinds of sounds that exist around us on a daily basis. I hear the birds, I hear the insects, but there's just a lot more than that. It's mammals and some cases, a lot of reptiles. And then when you begin thinking outside the biological system, you begin to hear rain, wind, thunder. And then there's the sounds that we make, sounds of traffic, the sounds of church bells. All of this is information, some of it's symbolic, some of it's telling me something about change. As an ecologist that's what I'm interested in, how is the earth changing? >> That's great and then you guys set up at Purdue, the Purdue Center for Global Soundscapes. Tell us a little bit about the mission and some of the work that you guys do. >> Well, our mission is really to use sound as a lens to study the earth, but to capture it in ways that are meaningful and to bring that back to the public to tell them a story about how the earth kind of exists. There's an incredible awe of nature that we all experience when we go out and listen into to the wild spaces of the earth. I've gone to the Eastern Steppes of Mongolian, I've climbed towers in the Paleotropics of Borneo and listened at night. And ask the question, how are these sounds different? And what is a grassland really supposed to sound like, without humans around? So we use that information and bring it back and analyze it as a means to understand how the earth is changing and really what the biological community is all about, and how things like climate change are altering our spaces, our wild spaces. I'm also interested in the role that people play and producing sound and also using sound. So getting back to Mongolia, we have a new NSF funded project where we're going to be studying herders and the ways in which they use sonic practices. They use a lot of sounds as information sources about how the environment is changing, but also how they relate back to place and to heritage a special sounds that resonate, the sounds of a river, for example, are the resonance patterns that they tune their throat to that pay homage to their parents that were born at the side of that river. There's these special connections that people have with place through sound. And so that's another thing that we're trying to do. In really simple terms, I want to go out and, what I call it sounds rather simple, record the earth-- >> Right. >> What does that mean? I want to go to every major biome and conduct a research study there. I want to know what does a grassland sound like? What is a coral reef sound like? A kelp forest and the oceans, a desert, and then capture that as baseline and use that information-- >> Yeah. >> For scientific purposes >> Now, there's so much to unpack there Bryan. First off is just kind of the foundational role that sound plays in our lives that you've outlined in great detail and you talked about it's the first sense that's really activated as we get consciousness, even before we're born right? We hear the sounds of our mother's heartbeat and her voice. And even the last sense that goes at the end a lot of times, in this really intimate relationship, as you just said, that the sounds represent in terms of our history. We don't have to look any further than a favorite song that can instantly transport you, almost like a time machine to a particular place in time. Very, very cool. Now, it's really interesting that what you're doing now is taking advantage of new technology and just kind of a new angle to capture sound in a way that we haven't done before. I think you said you have sound listening devices oftentimes in a single location for a year. You're not only capturing sound, the right sound is changes in air pressure, so that you're getting changes in air pressure, you're getting vibration, which is kind of a whole different level of data. And then to be able to collect that for a whole year and then start to try to figure out a baseline which is pretty simple to understand, but you're talking about this chorus. I love your phrase, a chorus, because that sound is made up of a bunch of individual inputs. And now trying to kind of go under the covers to figure out what is that baseline actually composed of. And you talk about a bunch of really interesting particular animals and species that combine to create this chorus that now you know is a baseline. How did you use to do that before? I think it's funny one of your research papers, you reach out to the great bird followers and bird listeners, 'cause as you said, that's the easiest way or the most prolific way for people to identify birds. So please help us in a crowdsource way try to identify all the pieces that make this beautiful chorus, that is the soundscape for a particular area. >> Right, yeah, that's right. It really does take a team of scientists and engineers and even folks in the social sciences and the humanities to really begin to put all of these pieces together. Experts in many fields are extremely valuable. They've got great ears because that's the tools that they use to go out and identify birds or insects or amphibians. What we don't have are generalists that go out and can tell you what everything sounds like. And I'll tell you that will probably never ever happen. That's just way too much, we have millions of species that exist on this planet. And we just don't have a specific catalog of what everything sounds like, it's just not possible or doable. So I need to go out and discover and bring those discoveries back that help us to understand nature and understand how the earth is changing. I can't wait for us to eventually develop that catalog. So we're trying to develop techniques and tools and approaches that allow us to develop this electronic catalog. Like you're saying this chorus, and it doesn't necessarily have to be a species specific chorus, it can be a chorus of all these different kind of sounds that we think relate back to this kind of animal or that kind of animal based upon the animals instrument-- >> Right, great. >> And this is the sound. >> Now again, you know, keep it to the exascale theme, right? You're collecting a lot of data and you mentioned in one of the pieces I've dug up, that your longest study in a single location is 17 years. You've got over 4 million recordings. And I think you said over 230 years if you wanted to listen to them all back to back. I mean, this is a huge, a big data problem in terms of the massive amount of data that you have and need to run through an analysis. >> Yeah, that's right. We're collecting 48,000 data points per second. So that's 48 kilohertz. And then so you multiply everything and then you have a sense of how many data points you actually have to put them all together. When you're listening to a sound file over 10 minutes, you have hundreds of sounds that exist in them. Oftentimes you just don't know what they are, but you can more or less put some kind of measure on all of them and then begin to summarize them over space and time and try to understand it from a perspective of really science. >> Right, right. And then I just love to get your take as you progress down this kind of identification road, we're all very familiar with copyright infringement hits on YouTube or social media or whatever, when it picks up on some sound and the technology is actually really sophisticated to pick up some of those sound signatures. But to your point, it's a lot easier to compare against the known and to search for that known. Then when you've got this kind of undefined chorus that said we do know that there can be great analysis done that we've seen AI and ML applied, especially in the surveillance side on the video-- >> Right. >> With video that it can actually do a lot of computation and a lot of extracting signal from the noise, if you will. As you look down the road on the compute side for the algorithms that you guys are trying to build with the human input of people that know what you're listening to, what kind of opportunities do you see and where are we on that journey where you can get more leverage out of some of these technology tools? >> Well, I think what we're doing right now is developing the methodological needs, kind of describe what it is we need to move into that new space, which is going to require these computational, that computational infrastructure. So, for example, we have a study right now where we're trying to identify certain kinds of mosquitoes (chuckling) a vector-borne mosquitoes, and our estimates is that we need about maybe 900 to 1200 specific recordings per species to be able to put it into something like a convolutional neural network to be able to extract out the information, and look at the patterns and data, to be able to say indeed this is the species that we're interested in. So what we're going to need and in the future here is really a lot of information that allow us to kind of train these neural networks and help us identify what's in the sound files. As you can imagine the computational infrastructure needed to do that for data storage and CPU, GPU is going to be truly amazing. >> Right, right. So I want to get your take on another topic. And again the basis of your research is really all bound around the biodiversity crisis right? That's from the kind of-- >> Yeah. >> The thing that's started it and now you're using sound as a way to measure baseline and talk about loss of species, reduced abundancies and rampant expansion of invasive species as part of your report. But I'd love to get your take on cities. And how do you think cities fit the future? Clearly, it's an efficient way to get a lot of people together. There's a huge migration of people-- >> Right. >> To cities, but one of your themes in your Ted Talk is reconnecting with nature-- >> Yeah. >> Because we're in cities, but there's this paradox right? Because you don't want people living in nature can be a little bit disruptive. So is it better to kind of get them all in a tip of a peninsula in San Francisco or-- >> Yeah. >> But then do they lose that connection that's so important. >> Yeah. >> I just love to get your take on cities and the impacts that they're have on your core research. >> Yeah, I mean, it truly is a paradox as you just described it. We're living in a concrete jungle surrounded by not a lot of nature, really, honestly, occasional bird species that tend to be fairly limited, selected for limited environments. So many people just don't get out into the wild. But visiting national parks certainly is one of those kinds of experience that people oftentimes have. But I'll just say that it's getting out there and truly listening and feeling this emotional feeling, psychological feeling that wraps around you, it's a solitude. It's just you and nature and there's just no one around. >> Right. >> And that's when it really truly sinks in, that you're a part of this place, this marvelous place called earth. And so there are very few people that have had that experience. And so as I've gone to some of these places, I say to myself I need to bring this back. I need to tell the story, tell the story of the awe of nature, because it truly is an amazing place. Even if you just close your eyes and listen. >> Right, right. >> And it, the dawn chorus in the morning in every place tells me so much about that place. It tells me about all the animals that exist there. The nighttime tells me so much too. As a scientist that's spent most of his career kind of going out and working during the day, there's so much happening at night. Matter of fact-- >> Right. >> There's more sounds at night than there were during the day. So there is a need for us to experience nature and we don't do that. And we're not aware of these crises that are happening all over the planet. I do go to places and I listen, and I can tell you I'm listening for things that I think should be there. You can listen and you can hear the gaps, the gaps and that in that chorus, and you think what should be there-- >> Right. >> And then why isn't it there? And that's where I really want to be able to dig deep into my sound files and start to explore that more fully. >> It's great, it's great, I mean, I just love the whole concept of, and you identified it in the moment you're in the tent, the thunderstorm came by, it's really just kind of changing your lens. It's really twisting your lens, changing your focus, because that sound is there, right? It's been there all along, it's just, do you tune it in or do you tune it out? Do you pay attention? Do not pay attention is an active process or a passive process and like-- >> Right. >> I love that perspective. And I want to shift gears a little bit, 'cause another big environmental thing, and you mentioned it quite frequently is feeding the world's growing population and feeding it-- >> Yeah. >> In an efficient way. And anytime you see kind of factory farming applied to a lot of things you wonder is it sustainable, and then all the issues that come from kind of single output production whether that's pigs or coffee or whatever and the susceptibility to disease and this and that. So I wonder if you could share your thoughts on, based on your research, what needs to change to successfully and without too much destruction feed this ever increasing population? >> Yeah, I mean, that's one of the grand challenges. I mean, society is facing so many at the moment. In the next 20 years or so, 30 years, we're going to add another 2 billion people to the planet, and how do we feed all of them? How do we feed them well and equitably across the globe? I don't know how to do that. But I'll tell you that our crops and the ecosystem that supports the food production needs the animals and the trees and the microbes for the ecosystem to function. We have many of our crops that are pollinated by birds and insects and other animals, seeds need to be dispersed. And so we need the rest of life to exist and thrive for us to thrive too. It's not an either, it's not them or us, it has to be all of us together on this planet working together. We have to find solutions. And again, it's me going out to some of these places and bringing it back and saying, you have to listen, you have to listen to these places-- >> Right. >> They're truly a marvelous. >> So I know most of your listening devices are in remote areas and not necessarily in urban areas, but I'm curious, do you have any in urban areas? And if so, how has that signature changed since COVID? I just got to ask, (Bryan chuckling) because we went to this-- >> Yeah. >> Light switch moment in the middle of March, human activity slowed down-- >> Yeah. >> In a way that no one could have forecast ever on a single event, globally which is just fascinating. And you think of the amount of airplanes that were not flying and trains that we're not moving and people not moving. Did you have any any data or have you been able to collect data or see data as the impact of that? Not only directly in wherever the sensors are, but a kind of a second order impact because of the lack of pollution and the other kind of human activity that just went down. I mean, certainly a lot of memes (Bryan chuckling) on social media of all the animals-- >> Yeah. >> Come back into the city. But I'm just curious if you have any data in the observation? >> Yeah, we're part of actually a global study, there's couple of hundred of us that are contributing our data to what we call the Silent Cities project. It's being coordinated out of Europe right now. So we placed our sensors out in different areas, actually around West Lafayette area here in Indiana, near road crossings and that sort of thing to be able to kind of capture that information. We have had in this area here now, the 17 year study. So we do have studies that get into areas that tend to be fairly urban. So we do have a lot of information. I tell you, I don't need my sensors to tell me something that I already know and you suspect is true. Our cities were quiet, much quieter during the COVID situation. And it's continued to kind of get a little bit louder, as we've kind of released some of the policies that put us into our homes. And so yes, there is a major change. Now there have been a couple of studies that just come out that are pretty interesting. One, which was in San Francisco looking at the white-crowned sparrow. And they looked at historical data that went back something like 20 years. And they found that the birds in the cities were singing a much softer, 30% softer. >> Really? >> And they, yeah, and they would lower their frequencies. So the way sound works is that if you lower your frequencies that sound can travel farther. And so the males can now hear themselves twice as far just due to the fact that our cities are quieter. So it does have an impact on animals, truly it does. There was some studies back in 2001, during the September, the 9/11 crisis as well, where people are going out and kind of looking at data, acoustic data, and discovering that things were much quieter. I'd be very interested to look at some of the data we have in our oceans, to what extent are oceans quieter. Our oceans sadly are the loudest part of this planet. It's really noisy, sound travels, five times farther. Generally the noise is lower frequencies, and we have lots of ships that are all over the planet and in our oceans. So I'd really be interested in those kinds of studies as well, to what extent is it impacting and helping our friends in the oceans. >> Right, right, well, I was just going to ask you that question because I think a lot of people clearly understand sound in the air that surrounds us, but you talk a lot about sound in ocean, and sound as an indicator of ocean health, and again, this concept of a chorus. And I think everybody's probably familiar with the sounds of the humpback whale right? He got very popular and we've all seen and heard that. But you're doing a lot of research, as you said, in oceans and in water. And I wonder if you can, again, kind of provide a little bit more color around that, because I don't think you people, maybe we're just not that tuned into it, think of the ocean or water as a rich sound environment especially to the degree as you're talking about where you can actually start to really understand what's going on. >> Yeah, I mean, some of us think that sound in the oceans is probably more important to animals than on land, on the terrestrial side. Sound helps animals to navigate through complex waterways and find food resources. You can only use site so far underwater especially when it gets to be kind of dark, once you get down to certain levels. So there many of us think that sound is probably going to be an important component to measuring the status of health in our oceans. >> It's great. Well, Bryan, I really enjoyed this conversation. I've really enjoyed your Ted Talk, and now I've got a bunch of research papers I want to dig into a little bit more as well. >> Okay.(chuckling) >> It's a fascinating topic, but I think the most important thing that you talked about extensively in your Ted Talk is really just taking a minute to take a step back from the individual perspective, appreciate what's around us, hear, that information and I think there's a real direct correlation to the power of exascale, to the power of hearing this data, processing this data, and putting intelligence on that data, understanding that data in a good way, in a positive way, in a delightful way, spiritual way, even that we couldn't do before, or we just weren't paying attention like with what you know is on your phone please-- >> Yeah, really. >> It's all around you. It's been there a whole time. >> Yeah. (both chuckling) >> Yeah, Jeff, I really encourage your viewers to count it, just go out and listen. As we say, go out and listen and join the mission. >> I love it, and you can get started by going to the Center for Global Soundscapes and you have a beautiful landscape. I had it going earlier this morning while I was digging through some of the research of Bryan. (Bryan chuckling) Thank you very much (Bryan murmurs) and really enjoyed the conversation best to you-- >> Okay. >> And your team and your continued success. >> Alright, thank you. >> Alright, thank you. All right, he's Bryan-- >> Goodbye. >> I'm Jeff, you're watching theCUBE. (Bryan chuckling) for continuing coverage of Exascale Day. Thanks for watching. We'll see you next time. (calm ambient music)
SUMMARY :
From around the globe, it's theCUBE, And I'm really excited to and I just loved one of the quotes. I hear the birds, I hear the insects, and some of the work that you guys do. and analyze it as a means to understand A kelp forest and the oceans, a desert, And then to be able to and even folks in the social amount of data that you have and then you have a sense against the known and to for the algorithms that you and our estimates is that we need about And again the basis of your research But I'd love to get your take on cities. So is it better to kind of get them all that connection that's I just love to get your take on cities tend to be fairly limited, And so as I've gone to the dawn chorus in the and you think what should be there-- to explore that more fully. and you identified it in the and you mentioned it quite frequently a lot of things you for the ecosystem to function. of all the animals-- Come back into the city. that tend to be fairly urban. that are all over the planet going to ask you that question to be kind of dark, and now I've got a It's been there a whole time. Yeah. listen and join the mission. the conversation best to you-- and your continued success. Alright, thank you. We'll see you next time.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Michiel | PERSON | 0.99+ |
Anna | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Bryan | PERSON | 0.99+ |
John | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Michael | PERSON | 0.99+ |
Chris | PERSON | 0.99+ |
NEC | ORGANIZATION | 0.99+ |
Ericsson | ORGANIZATION | 0.99+ |
Kevin | PERSON | 0.99+ |
Dave Frampton | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Kerim Akgonul | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
Jared | PERSON | 0.99+ |
Steve Wood | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
NECJ | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Mike Olson | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Michiel Bakker | PERSON | 0.99+ |
FCA | ORGANIZATION | 0.99+ |
NASA | ORGANIZATION | 0.99+ |
Nokia | ORGANIZATION | 0.99+ |
Lee Caswell | PERSON | 0.99+ |
ECECT | ORGANIZATION | 0.99+ |
Peter Burris | PERSON | 0.99+ |
OTEL | ORGANIZATION | 0.99+ |
David Floyer | PERSON | 0.99+ |
Bryan Pijanowski | PERSON | 0.99+ |
Rich Lane | PERSON | 0.99+ |
Kerim | PERSON | 0.99+ |
Kevin Bogusz | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Jared Woodrey | PERSON | 0.99+ |
Lincolnshire | LOCATION | 0.99+ |
Keith | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
Chuck | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
National Health Services | ORGANIZATION | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
WANdisco | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
March | DATE | 0.99+ |
Nutanix | ORGANIZATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Ireland | LOCATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Michael Dell | PERSON | 0.99+ |
Rajagopal | PERSON | 0.99+ |
Dave Allante | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
March of 2012 | DATE | 0.99+ |
Anna Gleiss | PERSON | 0.99+ |
Samsung | ORGANIZATION | 0.99+ |
Ritika Gunnar | PERSON | 0.99+ |
Mandy Dhaliwal | PERSON | 0.99+ |