Liza Donnelly, The New Yorker | WiDS 2019
>> Live from Stanford University. It's the Cube covering global Women in Data Science conference brought to you by Silicon Angle media. >> Welcome back to the Cube. I'm Lisa Martin Live at the Stanford Ari Aga Alone, My Center for the Fourth Annual Women and Data Science Conference with twenty nineteen and were joined by a very special guest, Liza Donnelly, cartoonist for The New Yorker. But Liza, you are a visual journalists, visual journalism. You're here live, drawing a lot of the things that are going on. It would. You were just at the Oscars at the Grammys. Your work is so unique, so descriptive. Tell us a little bit our audience about what is visual journalism? >> Well, I suppose a lot of us define it different ways. But I did find it is somebody who I am, somebody who goes to events, either political or social, cultural and draw what I see. I'm not a court reporter. I'm I'm an Impressionist. I give people a feeling that they're they're with me from what? By what I draw what I see, how I draw it, and and it's I don't usually put any editorializing in those visual drawings, but my perspective is sort of a certain kind of approach. >> So you're bringing your viewers along this journey in almost real time. When people see people might be most failure with New Yorker your illustrations there. But folks that are watching the Woods event lie that engaging with that tell us a little bit about the importance of using the illustrations to bring them on this journey as if they were here. >> Well, you know, I send the drawings out immediately, do them on my iPad and I send them out on social media almost immediately, so as I do that so that people can see them immediately. So they feel like they're there, and it's a way to draw attention to whatever it is I'm drawing. Because on the Internet, there's so many words in so many photographs, people see a drawing by other stream that like, Wait, what's that? And I'm a thumb stopper, in other words, so it's. It gives people different perspective on what's going on. And I think that my background is a cartoonist for The New Yorker for forty years. Informs these drawings in an indirect background kind of way, because I have been watching culture have been watching politics for a very long time, so it gives me a, you know, a new attitude or a way to look at what's going on, >> right? And so you you call these illustrations, not cartoons. >> I do call the cartoons cartoons. Okay, we'll do the cartoons for the for >> The New Yorker and some other magazines, and those have a caption, and they often are supposed to be funny, or at least cultural commentary. I do political cartoons for medium, and those also have it have a point of view, are a caption. But the's this visual journalism like I'm doing here is more like reportage. It's more like this is what's happening here. You might be interested in seeing what people are talking about, what they're doing and I do behind the scenes to I don't just do like the Oscars. I'll do the stars if I could get them. And on the red crime on the red carpet, it's really cool. If I catch them, I'll draw them. And then But then I also do the people taking out the trash, the guy painting, you know, painting the sideboard or the counterman, things like that. So I try to give a sense of what it's like to be there. >> So you really kind of telling a story from different perspectives. Yes, right. Yeah. And so the role of I'd love to understand you mentioned being with the New Yorker for very long time and loved. You understand from your perspective, the evolution of cartoons and the impact they can make in in our society, in politics and economics. Tell us a little bit about some of the impacts that you've seen evolve over the last few decades. >> Well, I've written about >> that. I'm also a writer. I've written about that for a very sites. Did a commentary on op ed for The New York Times about the Charlie Hebdo's murders a couple years ago because we know cartoons can be very controversial. Yes and problematic Nick. And that's been true through the course of the history of our country, and I'm sure in England and other countries as well. But it's compounded. Now because of the Internet. I think cartoons could be misunderstood that could be used as weapons. People are gonna be talking about this next week at the South by Southwest. I'm talking about political cartoons and what what their impact has been in the past and how, >> how they, how they create an impact now >> and why that is, and how we could use it to the to our to good effect. You know, not a divisive tool, which I think is a problem that we're dealing with right now in our culture is everybody's so divided and so opinionated and so hateful towards each other. Can we use cartoons? Not to perpetuate that, but to make things better in some way. >> And that's kind of the theme of Wits, Women and Data Science Conference. You know, we're talking Teo and listening Teo at the live event here at Stanford and all of those around the world. It's really strong leaders and data sign. So we think of data science on DH, the technical skills. But data is generated. We generate tons of it as people, right with whatever we're buying, what we're watching on Netflix. But we're listening to on Spotify, etcetera. There's this data trail that we're all leaving, and we know you talked about using cartoons for good. Same conversations that we have on the data side, about being able to use data for good for cancer research, for example, rather than exposing and being malicious, that's interesting. Parallel that you've seen over the years that there is a lot of potential here. Tell me a little bit about the appetite in. Maybe we'll say the millennials and the younger generations for cartoons as a tool for positive the spread of positive social news and not fake news. >> Well, there. I know that >> there's more and more cartoons on the Internet now. A lot of Web comics and cartoonists are young. Cartoonists are using the Internet effectively, too. Put out their ideas. In fact, I when the Internet hit, I was mid career right, and it just took off and helped me become Mohr more well known just by leveraging the Internet. No, because I love it. You know, I love Communicate. It's >> actually it's really an extension >> of what I did as a child learning to draw, communicate with people. I was shy. I don't want to talk. The Internet is just a matter of for me. It's like a dialogue with people on DH. That's how I look at it, and I I think this new generation is really trying to find ways to use these tools in a good way. I think there's a whole new, you know, the kids in their >> twenties. I think they're trying >> to make a better world, are working on it, and that's exciting. >> You talk about communication and how you used your artistic skills from the time you were a child to communicate. Being shy. We also talk about communication in the context of events like the women, the data science, where it isn't just enough to be ableto understand and have the technical acumen to evaluate complex, messy data sets. But the communication piece kind of go back, Teo sort of basic human scaled, being able to communicate effectively. This is what I think the data say and why, and here's what we can do with it. So I think it's interesting that you're here at this event. That has a lot of parallels with communication with using a tool or information for the betterment off a little bit about how you got involved with women in data science. >> Well, I met Margot Garretson >> about five years ago, and through a mutual friend, we met in Iceland. All places >> like it's conference >> about women's rights. It was, it was the Icelandic women are so powerful anyway. We met there, really, to be good friends, and she invited me to come live, draw her new conference at the time. I think she had one year of it, and I thought, data science, OK, >> did you even know what >> that Wass? Yeah, kind of. But I didn't think I didn't see my connection. But I thought, Well, it's about women's rights and >> I'm a big part of my interest in what I want to do with my work is promote equal rights for women around the world. And so I thought, this this sounds terrific. Plus, it's global, and I do a lot of work globally to help them and help freedom of speech as well. So it seemed to be a great fit on DH and and it seems even more to be a good fit in that. It's a way to get the information out there in a visual way because people will hear that word data, and they like they probably just >> start. Yeah, zero because >> they see it connected with a cartoon or drawing it humanizes it for them a little bit. And if I could do that, that's great. And that's what's also fun is that I thought about this today was drawing the speakers, and I'm drawing one of the speakers. I forget her name right now, but I thought and I put it out on the Internet. There were no words on there, but it was just a woman speaker talking about really very technical data science. I put on the Internet with the caption on the tweet and I thought, People, it's it's it's just a constant reminder to people that women are doing this. And it's not a silly not like writing a long essay about why women should be in data signs and why they are and why they're important. But they're doing great things. But if you see it, it resonates a little bit more quickly and more forcefully. >> Absolutely. And it aligns with what we hear and say a lot of we can't be what we can't see. >> That's right. Yeah, that's a saying right where you said that. >> Yes. I'm not sure I'd love to take credit for it. Sure >> would be if she can see it, she could be it. That's another >> thing. That a young girl, she's my drawing of a professor talking on stage. Maybe she'll think about it. >> Absolutely. So in the last few seconds here, can you just give us a little bit of an idea of how you actually What What inspires you when you're seeing someone give a talk like you mentioned about maybe an esoteric or a very technical top? What do you normally look for? That's that Ah ha moment that you want to capture in ten minutes. >> Well, I try to capture that person's essence. I'm not a caricaturist. I don't pretend to be, but I draw >> a likeness of them, and they're the full body is the best body language. You know, they're just tick yah late ing. And then oftentimes I try to capture a sentence that they're saying that has has more universal appeal that somehow brings like a not like a layman into the subject A little bit. If I can find that sentence in what they're saying, I'll put that you have the speech balloon will be saying that. But I just try to capture the person best. I can >> do anything if you compare two wins. Twenty eighteen. Here we are a year later. Even more people here, the live event, even more people engaging and think Margo's that about twenty thousand live today. One hundred thousand over. I think the one hundred thirty plus regional with events, anything that you hear, see or feel that's even more exciting this year than last year. >> Um, well, I do. I do feel the >> the increase in numbers. I can feel it. There's there soon be more people here I don't true, but the senior more young people here, what else is it is it is a buzz. I think there's a >> There's an energy >> is an energy. Not that there wasn't there last. The last I've >> done three years now. It's been there, but there's a certain excitement right now. I think more women are stepping into this field of being recognized for doing so. >> And it's great that you're able Tio, reach, help wigs, reach an even bigger audience and tell this story with your illustrations in a more visual way, way also. Thank you so much, Liza, for taking some time. Must daughter by the Cuban talked to us. It's an honor to meet you And you. I love your drawings. >> Thank you so much. You >> want to thank you for watching the Cube? I'm Lisa Martin Live at the fourth annual Women and Data Science Conference at Stanford's took around. Be right back with my next guests.
SUMMARY :
global Women in Data Science conference brought to you by Silicon Angle media. My Center for the Fourth Annual Women and Data Science Conference with twenty nineteen and were joined I give people a feeling that they're they're with me from But folks that are watching the Woods event lie that engaging with that tell us a And I think that my background is a cartoonist for The New Yorker And so you you call these illustrations, not cartoons. I do call the cartoons cartoons. the trash, the guy painting, you know, painting the sideboard or the counterman, And so the Now because of the Internet. Not to perpetuate that, but to make things better in some way. And that's kind of the theme of Wits, Women and Data Science Conference. I know that A lot of Web comics and of what I did as a child learning to draw, communicate with people. I think they're trying from the time you were a child to communicate. we met in Iceland. I think she had one year of it, and I But I didn't think I didn't see my connection. I'm a big part of my interest in what I want to do with my work is promote Yeah, zero because I put on the Internet with the caption on the tweet and I thought, And it aligns with what we hear and say a lot of we can't be what we can't see. Yeah, that's a saying right where you said that. That's another Maybe she'll think about it. So in the last few seconds here, can you just give us a little bit of an idea of how I don't pretend to be, but I draw But I just try to capture I think the one hundred thirty plus regional with events, I do feel the I think there's a Not that there wasn't there last. I think more women are stepping into this field of being recognized for doing so. It's an honor to meet you And you. Thank you so much. I'm Lisa Martin Live at the fourth annual Women and Data Science Conference
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Liza Donnelly | PERSON | 0.99+ |
Liza | PERSON | 0.99+ |
Iceland | LOCATION | 0.99+ |
Teo | PERSON | 0.99+ |
England | LOCATION | 0.99+ |
one year | QUANTITY | 0.99+ |
iPad | COMMERCIAL_ITEM | 0.99+ |
Margot Garretson | PERSON | 0.99+ |
ten minutes | QUANTITY | 0.99+ |
forty years | QUANTITY | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
a year later | DATE | 0.99+ |
Nick | PERSON | 0.99+ |
today | DATE | 0.99+ |
Oscars | EVENT | 0.99+ |
One hundred thousand | QUANTITY | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
twenties | QUANTITY | 0.98+ |
three years | QUANTITY | 0.98+ |
twenty nineteen | QUANTITY | 0.98+ |
Lisa Martin | PERSON | 0.98+ |
Grammys | EVENT | 0.98+ |
Fourth Annual Women and Data Science Conference | EVENT | 0.98+ |
one | QUANTITY | 0.97+ |
two wins | QUANTITY | 0.97+ |
this year | DATE | 0.97+ |
The New Yorker | TITLE | 0.97+ |
Netflix | ORGANIZATION | 0.96+ |
about twenty thousand | QUANTITY | 0.96+ |
Stanford | LOCATION | 0.96+ |
eighteen | QUANTITY | 0.95+ |
Women in Data Science | EVENT | 0.95+ |
next week | DATE | 0.94+ |
Ari Aga Alone | PERSON | 0.93+ |
Spotify | ORGANIZATION | 0.9+ |
couple years ago | DATE | 0.9+ |
WiDS | EVENT | 0.89+ |
one hundred thirty plus | QUANTITY | 0.89+ |
Women and Data Science Conference | EVENT | 0.87+ |
Stanford | ORGANIZATION | 0.86+ |
Hebdo | TITLE | 0.8+ |
Mohr | PERSON | 0.79+ |
about five years ago | DATE | 0.79+ |
Margo | PERSON | 0.78+ |
Cube | ORGANIZATION | 0.77+ |
Wits, Women and Data Science Conference | EVENT | 0.74+ |
zero | QUANTITY | 0.73+ |
The New York Times | ORGANIZATION | 0.72+ |
last few decades | DATE | 0.72+ |
Icelandic | OTHER | 0.72+ |
New Yorker | OTHER | 0.69+ |
New Yorker | PERSON | 0.68+ |
many words | QUANTITY | 0.68+ |
2019 | DATE | 0.65+ |
Cuban | OTHER | 0.64+ |
Cube | TITLE | 0.64+ |
Charlie | PERSON | 0.63+ |
South | LOCATION | 0.6+ |
fourth | QUANTITY | 0.54+ |
Twenty | DATE | 0.54+ |
Woods | EVENT | 0.53+ |
annual | EVENT | 0.39+ |
Southwest | LOCATION | 0.36+ |
Srujana Kaddevarmuth, Accenture | WiDS 2019
live from Stanford University it's the cube covering global women and data science conference brought to you by Silicon angle media good morning and welcome to the cube I'm Lisa Martin and we are live at the global fourth annual women in data science conference at the Arriaga Alumni Center at Stanford I'm very pleased to be joined by one of the Wits ambassadors this year Regina cut of our math data science senior manager Accenture at Google and as I mentioned you are an ambassador for wits in Bangla Road the event is Saturday so Janelle welcome to the cube thank you pleasure it is - this is the fourth annual women in data science conference this year over 150 regional events of which you are hosting Bengaluru on Saturday March 9th 50-plus countries they're expecting a hundred thousand people to engage tell us a little bit about how you got to be involved in wins yeah so I care about data science but also what accurate representation of women in gender minority in the space and I think it's global initiative is doing amazing job in creating a significant impact globally and that kind of excited me to get involved with its initiative so you have which I can't believe you're an SME with ten plus years experience and data analytics focusing on marketing and customer analytics you've had senior analytics leadership positions at Accenture Hewlett Packard now Google tell me a little bit about before we get into some of the things that you're doing specifically the data--the on your experience as a female in technology the last ten plus years it's been exciting I started my career as an engineer I wanted to be a doctor fortunately unfortunately it couldn't happen and I ended up being an engineer and it has been an exciting ride since then I felt that had a passion for doing personal management and I posted management and specialization of operational research and project management and I started my career as a data scientist worked my way up through different leadership positions and currently leading a portfolio for Accenture at Google yeah in the read of science domain yeah it's exciting absolutely so one of the things that is happening this year wins 2019 the second annual data thon that's right really looking at predictive analytics challenge for social impact tell us a little bit about why Woods is doing this data thon and what you're doing in not respectively in Bengaluru okay so well you see data science in itself is a highly interdisciplinary domain and it requires people from different disciplines to come together look at the problem from different perspectives to be able to come up with the most amicable and optimal solution at any given point of time and Gareth on is one such avenue that fosters this collaboration and data thon is also an interesting Avenue because it helps young data science enthusiasts whom the require design skill sets and also helps the data science practitioners enhance and sustain their skill sets and that's the reason which Bangalore was keen on supporting what's global data thon initiative so this skill set so I'd like to kind of dig into that a bit because we're very familiar with those required data analytics skill sets from a subject matter expertise perspective but there's other skill sets that we talk about more and more with respect to data science and analytics and that's empathy it's communication negotiation can you talk to us a little bit about how some of those other skills help these data thon participants not just in the actual event but to further their careers absolutely so really into the real world so there are a lot of these challenges wherein you would require a domain expert you require someone who has a coding experience someone who has experience to handle multiple data sites programmatically and also you need someone who has a background of statistics and mathematics so you would need different people to come together I look at the problem and then be able to solve the challenges right so collaboration is extremely pivotal it's extremely important for us to put ourselves in other shoes and see a look at the problem and look at the problem from different perspective and collaboration or the key to be able to be successful in data science domain as such okay so let's get into the specifics about this year's data sets and the teams that were involved in the data thon all right so this year's marathon was focused on using satellite imagery to analyze the scenario of deforestation cost of oil palm plantations so what we did at which Bangalore is we conducted a community workshop because our research indicated that men dominated the Kegel leaderboard not just in Bangla but for India in general despite that region having amazing female leader scientists who are innovators in their space with multiple patents publications and innovations to the credit so we asked few questions to certain female data scientists to understand what could be the potential reason for their lower participation and the Kegel as a platform and their responses led us to these three reasons firstly they may not have the awareness about Kegel as a platform may be a little bit more about that platform so reviewers can understand that right so Kegel is a platform where in a lot of these data sets have been posted if anybody is interested to hold the required a design skill says they can definitely try explore build some codes and submit those schools and the teams that are submitting the codes which are very effective having greater accuracy he would get scored and the jiggle-ator build and you know that which is the most effective solution that can be implemented in the real world so we connected this data Sun workshop and one of the challenges that most of the female leader scientists face is having an environment to network collaborate and come up with a team to be able to attempt a specific data on challenge that is in hand so we connected data from workshop to help participants overcome this challenge and to encourage them to participate into its global hit a fun challenge so what we did as a part of this workshop was we give them on how to navigate Kegel as a platform and we connected an event specifically focused on networking so that participants could network form teams we also conducted a deep in-depth technical session focusing on deep neural nets and specifically on convolutional neural nets the understanding of which was pivotal to be able to solve this year's marathon challenge and the most interesting part of this telethon workshop was a mentorship guidance we were able to line up some amazing mentors and assign these minders to the concern or the interested participating teams and these matters work with respective teams for the next three weeks and for them terms with the required guidance coaching and mentorship held them for the VidCon showed me that's fantastic so over a three-week period how many participants did you have there 110 plus people for the key right yeah for the event and there are multiple teams that have formed and we assigned those mentors we identified seven different mentors and assigned these mentors to the interested participating teams we got a great response in terms of amazing turnout for the event new teams got formed new relationships got initiated new relationships new collaborations all right tell us about those achievements so they were there was one team from engineering branch or engineering division who were really near to the killer's platform they have their engineering exams coming up but despite that they learned a lot of these new concepts they form the team they work together as a team and we were able to submit the code on the Kegel leader board they were not the top scoring team but this entire experience of being able to collaborate look at the problem from different perspective and be able to submit the code despite one of these challenges and also navigate the platforming itself was a decent achievement from my perspective a huge achievement yeah so who you are at Stanford today you're gonna be flying back to go host the event there tell us about from your perspective if we look at the future line of sight for data science let's just take a peek at the momentum this that this Woods movement is generating this is our fourth year covering this fourth annual event fourth year on the cube and we see tremendous tremendous momentum mm-hmm with not just females participating and the woods leaders providing this sustained education throughout the year the podcast for example that they released a few months ago on Google Play on iTunes but also the number of participants worldwide as you look where we are today what in your perspective is the future for data science all right so data science is a domain is evolving at a lightning speed and may possibly hold the solution to almost all the challenges faced by humanity in the near future but to be able to come up with the most amicable and sustainable solution that's more relevant to the domain achieving diversity in this field is most and initiatives like wits help achieve that diversity and foster a real impact absolutely what's original thank you so much for joining me on the cube this morning live from wins 2019 we appreciate that wish you the best of luck kids a local event in Bengaluru over the weekend thank you it was a pleasure likewise thank you we want to thank you you're watching the cube live from Stanford University at the fourth annual woods conference I'm Lisa Martin stick around my next guest will join me in just a moment
**Summary and Sentiment Analysis are not been shown because of improper transcript**
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Bengaluru | LOCATION | 0.99+ |
Accenture | ORGANIZATION | 0.99+ |
Srujana Kaddevarmuth | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Janelle | PERSON | 0.99+ |
Regina | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
ten plus years | QUANTITY | 0.99+ |
Saturday | DATE | 0.99+ |
2019 | DATE | 0.99+ |
Bangla | LOCATION | 0.99+ |
iTunes | TITLE | 0.99+ |
Google Play | TITLE | 0.99+ |
Saturday March 9th | DATE | 0.99+ |
VidCon | EVENT | 0.99+ |
Woods | PERSON | 0.99+ |
today | DATE | 0.99+ |
50 | QUANTITY | 0.99+ |
fourth year | QUANTITY | 0.98+ |
Bangla Road | LOCATION | 0.98+ |
Gareth | PERSON | 0.98+ |
fourth year | QUANTITY | 0.98+ |
one team | QUANTITY | 0.98+ |
Stanford University | ORGANIZATION | 0.97+ |
India | LOCATION | 0.97+ |
Bangalore | LOCATION | 0.97+ |
110 plus people | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
three reasons | QUANTITY | 0.97+ |
Stanford University | ORGANIZATION | 0.95+ |
three-week | QUANTITY | 0.95+ |
Stanford | LOCATION | 0.95+ |
this year | DATE | 0.95+ |
Silicon angle media | ORGANIZATION | 0.94+ |
seven different mentors | QUANTITY | 0.93+ |
over 150 regional events | QUANTITY | 0.93+ |
fourth annual women in data science conference | EVENT | 0.9+ |
Kegel | ORGANIZATION | 0.89+ |
Kegel | TITLE | 0.89+ |
fourth annual women in data science conference | EVENT | 0.89+ |
firstly | QUANTITY | 0.88+ |
hundred thousand people | QUANTITY | 0.87+ |
few months ago | DATE | 0.85+ |
fourth annual event | QUANTITY | 0.84+ |
fourth annual woods conference | EVENT | 0.84+ |
Arriaga Alumni Center | LOCATION | 0.83+ |
Accenture Hewlett Packard | ORGANIZATION | 0.82+ |
second annual | QUANTITY | 0.77+ |
few questions | QUANTITY | 0.77+ |
plus countries | QUANTITY | 0.76+ |
WiDS 2019 | EVENT | 0.76+ |
next three weeks | DATE | 0.69+ |
global women and data science conference | EVENT | 0.69+ |
one of the challenges | QUANTITY | 0.68+ |
last ten plus years | DATE | 0.63+ |
morning | DATE | 0.61+ |
data thon | EVENT | 0.58+ |
wins | EVENT | 0.56+ |
telethon | EVENT | 0.44+ |
Wits | ORGANIZATION | 0.4+ |
Woods | EVENT | 0.36+ |
Sun | TITLE | 0.35+ |
Maria Klawe, Harvey Mudd College | WiDS 2018
live from Stanford University in Palo Alto California it's the cube covering women in data science conference 2018 brought to you by Stanford welcome to the cube we are alive at Stanford University I'm Lisa Martin and we are at the 3rd annual women in data science conference or woods whiz if you're not familiar is a one-day technical conference that has keynote speakers technical vision talks as well as a career panel and we are fortunate to have guests from all three today it's also an environment it's really a movement that's aimed at inspiring and educating data scientists globally and supporting women in the field this event is remarkable in its third year they are expecting to reach sit down for this 100,000 people today we were here at Stanford this is the main event in person but there's over 150 plus regional events around the globe in 50 plus countries and I think those numbers will shift up during the day and I'll be sure to brief you on that we're excited to be joined by one of the speakers featured on mainstage this morning not only a cube alum not returning to us but also the first ever female president of Harvey Mudd College dr. Maria Klawe a maria welcome back to the cube thank you it's great to be here it's so exciting to have you here I love you representing with your t-shirt there I mentioned you are the first-ever female president of Harvey Mudd you've been in this role for about 12 years and you've made some pretty remarkable changes there supporting women in technology you gave some stats this morning in your talk a few minutes ago share with us what you've done to improve the percentages of females in faculty positions as well as in this student body well the first thing I should say is as president I do nothing nothing it's like a good job the whole thing that makes it work at Harvey Mudd is we are community that's committed to diversity and inclusion and so everything we do we try to figure out ways that we will attract people who are underrepresented so that's women in areas like computer science and engineering physics it's people of color in all areas of science and engineering and it's also LGTB q+ i mean it's you know it's it's muslims it's it's just like all kinds of things and our whole goal is to show that it doesn't matter what race you are doesn't matter what gender or anything else if you bring hard work and persistence and curiosity you can succeed i love that especially the curiosity part one of the things that you mentioned this morning was that for people don't worry about the things that you you might think you're not good at i thought that was a very important message as well as something that I heard you say previously on the cube as well and that is the best time that you found to reach women young women and to get them interested in stem as even a field of study is the first semester in college and I should with you off camera that was when I found stem in biology tell me a little bit more about that and how what are some of the key elements that you find about that time in a university career that are so I guess right for inspire inspiration so I think the thing is that when you're starting in college if somebody can introduce you to something you find fun engaging and if you can really discover that you can solve major issues in the world by using these ideas these concepts the skills you're probably going to stay in that and graduate in that field whereas if somebody does that to when you're in middle school there's still lots of time to get put off and so our whole idea is that we emphasize creativity teamwork and problem-solving and we do that whether it's in math or an engineering or computer science or biology we just in all of our fields and when we get young women and young men excited about these possibilities they stick with it and I love that you mentioned the word fun and curiosity I can remember exactly where I was and bio 101 and I was suddenly I'd like to biology but never occurred to me that I would ever have the ability to study it and it was a teacher that showed me this is fun and also and I think you probably do this too showed that you believe in someone you've got talent here and I think that that inspiration coming from a mentor whether you know it's a mentor or not is a key element there that is one that I hope all of the the viewers today and the women that are participating in which have the chance to find so one of the things every single one of us can do in our lives is encourage others and you know it's amazing how much impact you can have I met somebody who's now a faculty person at Stanford she did her PhD in mechanical engineering her name is Allison Marsden I hadn't seen her for I don't know probably almost 12 years and she said she came up to me and she said I met you just as I was finishing my PhD and you gave me a much-needed pep talk and you know that is so easy to do believing in people encouraging them and it makes so much difference it does I love that so wins is as I mentioned in the third annual and the growth that they have seen is unbelievable I've not seen anything quite like it in in tech in terms of events it's aimed at inspiring not just women and data science but but data science in general what is it about wizz that attracted you and what are some of the key things that you shared this morning in your opening remarks well so the thing that attracts me about weeds is the following data science is growing exponentially in terms of the job opportunities in terms of the impact on the world and what I love about withes is that they had the insight this flash of genius I think that they would do a conference where all the speakers would be women and just that they would show that there are women all over the world who are contributing to data science who are loving it who are being successful and it's it's the crazy thing because in some ways it's really easy to do but nobody had done it right and it's so clear that there's a need for this when you think about all of the different locations around the world that are are doing a width version in Nigeria in Mumbai in London in you know just all across the world there are people doing this yeah so the things I shared are number one oh my goodness this is a great time to get into data science it's just there's so many opportunities in terms of career opportunities but there's so many opportunities to make a difference in the world and that's really important number two I shared that it's you never too old to learn math and CS and you know my example is my younger sister who's 63 and who's learning math and computer science at the northern Alberta Institute of Technology Nate all the other students are 18 to 24 she suffers from fibromyalgia she's walked with a walker she's quite disabled she's getting A's and a-pluses it's so cool and you know I think for every single person in the world there's an opportunity to learn something new and the most important thing is hard work and perseverance that it's so much more important than absolutely anything else I agree with that so much it's it's such an inspiring time but I think that you said there was clearly a demand for this what Wits has done in such a short time period demonstrates massive demand the stats that I was reading the last couple of days that show that women with stem degrees only 26% of them are actually working in STEM fields that's very low and and even can start from things like how how companies are recruiting talent and the messages that they're sending may be the right ones maybe not so much so I have a great example for you about companies recruiting talent so about three years ago I was no actually almost four years ago now I was talking in a conference called HR 50 and it's a conference that's aimed at the chief human resource officers of 50 multinationals and my talk I was talking for 25 minutes on how to recruit and retain women in tech careers and afterwards the chief HR officer from Accenture came up to me and she said you know we hire 17,000 software engineers a year Justin India 17,000 and she said we've been coming in at 30 percent female and I want to get that up to 45 she said you told me some really good things I could use she she said you told me how to change the way we advertise jobs change the way we interview for jobs four months later her name is Ellen Chowk Ellen comes up to me at another conference this has happens to be the most powerful women's summit that's run by Fortune magazine every year and she comes up and she says Maria I implemented different job descriptions we changed the way we interview and I also we started actually recruiting at Women's College engineering colleges in India as well as co-ed once she said we came in at 42% Wow from 30 to 42 just making those changes crying I went Ellen you owe me you're joining my more my board and she did right and you know they have Accenture has now set a goal of being at 50/50 in technical roles by 2025 Wow they even continued to come in all around the world they're coming in over 40% and then they've started really looking at how many women are being promoted to partners and they've moved that number up to 30% in the most recent year so you know it's a such a great example of a company that just decided we're gonna think about how we advertise we're going to think about how we interview we're gonna think about how we do promotions and we're going to make it equitable and from a marketing perspective those aren't massive massive changes so whether it expects quite simple exactly yeah these are so the thing I think about so when I look at what's happening at Harvey Mudd and how we've gotten more women into computer science engineering physics into every discipline it's really all about encouragement and support it's about believing in people it's about having faculty who when they start teaching a class the perhaps is technically very rigorous they might say this is a really challenging course every student in this course who works hard is going to succeed it's setting that expectation that everyone can succeed it's so important I think back to physics and college and how the baseline was probably 60% in terms of of grades scoring and you went in with intimidation I don't know if I can do this and it sounds like again a such a simple yet revolutionary approach that you're taking let's make things simple let's be supportive and encouraging yet hopefully these people will get enough confidence that they'll be able to sustain that even within themselves as they graduate and go into careers whether they stay in academia or go in industry and I know you've got great experiences in both I have I so I've been very lucky and I've been able to work both in academia and in industry I will say so I worked for IBM Research for eight years early in my career and you know I tribute a lot of my success as a leader since then to the kind of professional development that I got as a manager at IBM Research and you know what I think is that I there's not that much difference between creating a great learning environment and a great work environment and one of the interesting results that came out of a study at Google sometime in the last few months is they looked at what made senior engineering managers successful and the least important thing was their knowledge of engineering of course they all have good knowledge of engineering but it was empathy ability to mentor communication skills ability to encourage all of these kinds of things that we think of as quote unquote soft skills but to actually change the world and and on those sasuke's you know we hear a lot about the hard skills if we're thinking about data scientists from a role perspective statistical analysis etcetera but those soft skills empathy and also the ability to kind of bring in different perspectives for analyzing data can really have a major impact on every sector and socially in the world today and that's why we need women and people of color and people who are not well represented in these fields because data science is changing everything in the world absolutely is and if we want those changes to be for the better we really need diverse perspectives and experiences influencing things that get made because you know algorithms are not algorithms can be hostile and negative as well as positive and you know good for the world and you need people who actually will raise the questions about the ethics of algorithms and how it gets used there's a great book about how math can be used for the bad of humanity as well as the good of humanity and until we get enough people with different perspectives into these roles nobody's going to be asking those questions right right well I think with the momentum that we're feeling in this movement today and it sounds like what you're being able to influence greatly at Mudd for the last twelve years plus there is there are our foundations that are being put in place with not just on the education perspective but on the personal perspective and in inspiring the next generation giving them helping them I should say achieve the confidence that they need to sustain them throughout their career summary I thank you so much for finding the time to join us this morning on the cube it's great to have you back and we can't wait to talk to you next year and hear what great things do you influence and well next twelve months well it's wonderful to have a chance to talk with you as well thank you so much excellent you've been watching the cube we're live at Stanford University for the third annual women in data science wins conference join the conversation hashtag wins 2018 I'm Lisa Martin stick around I'll be right back with my next guest after a short break
SUMMARY :
for the world and you need people who
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Maria Klawe | PERSON | 0.99+ |
IBM Research | ORGANIZATION | 0.99+ |
Nigeria | LOCATION | 0.99+ |
60% | QUANTITY | 0.99+ |
Ellen | PERSON | 0.99+ |
India | LOCATION | 0.99+ |
Maria | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
63 | QUANTITY | 0.99+ |
Allison Marsden | PERSON | 0.99+ |
30 percent | QUANTITY | 0.99+ |
18 | QUANTITY | 0.99+ |
Accenture | ORGANIZATION | 0.99+ |
25 minutes | QUANTITY | 0.99+ |
Mumbai | LOCATION | 0.99+ |
2025 | DATE | 0.99+ |
Ellen Chowk | PERSON | 0.99+ |
Harvey Mudd College | ORGANIZATION | 0.99+ |
24 | QUANTITY | 0.99+ |
100,000 people | QUANTITY | 0.99+ |
30 | QUANTITY | 0.99+ |
dr. | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
42% | QUANTITY | 0.99+ |
London | LOCATION | 0.99+ |
50 plus countries | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
17,000 | QUANTITY | 0.99+ |
42 | QUANTITY | 0.99+ |
2018 | DATE | 0.99+ |
Harvey Mudd | ORGANIZATION | 0.99+ |
one-day | QUANTITY | 0.99+ |
Palo Alto California | LOCATION | 0.99+ |
first semester | QUANTITY | 0.98+ |
Harvey Mudd College | ORGANIZATION | 0.98+ |
third year | QUANTITY | 0.98+ |
Stanford | ORGANIZATION | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
about 12 years | QUANTITY | 0.97+ |
both | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
first | QUANTITY | 0.97+ |
Stanford | LOCATION | 0.96+ |
over 150 plus regional events | QUANTITY | 0.96+ |
Fortune | TITLE | 0.95+ |
last twelve years | DATE | 0.95+ |
four years ago | DATE | 0.94+ |
over 40% | QUANTITY | 0.93+ |
26% | QUANTITY | 0.93+ |
third annual | QUANTITY | 0.93+ |
almost 12 years | QUANTITY | 0.92+ |
17,000 software engineers a year | QUANTITY | 0.91+ |
next twelve months | DATE | 0.91+ |
Stanford University | ORGANIZATION | 0.91+ |
this morning | DATE | 0.9+ |
50 multinationals | QUANTITY | 0.9+ |
sasuke | PERSON | 0.9+ |
third annual women in data science wins conference | EVENT | 0.89+ |
Justin India | PERSON | 0.87+ |
this morning | DATE | 0.87+ |
years | QUANTITY | 0.85+ |
first thing | QUANTITY | 0.85+ |
about three years ago | DATE | 0.84+ |
last few months | DATE | 0.82+ |
covering women in data science conference 2018 | EVENT | 0.8+ |
up to 30% | QUANTITY | 0.79+ |
northern Alberta Institute of Technology | ORGANIZATION | 0.78+ |
every year | QUANTITY | 0.78+ |
50/50 | QUANTITY | 0.77+ |
every student | QUANTITY | 0.77+ |
Mudd | ORGANIZATION | 0.77+ |
part one | QUANTITY | 0.76+ |
few minutes ago | DATE | 0.75+ |
last couple | DATE | 0.74+ |
College | ORGANIZATION | 0.74+ |
months later | DATE | 0.72+ |
Maria Klawe | PERSON | 0.72+ |
Harvey Mudd | PERSON | 0.72+ |
science | EVENT | 0.71+ |
HR 50 | EVENT | 0.71+ |
muslims | ORGANIZATION | 0.68+ |