Image Title

Search Results for j raymond:

Session 6 Industry Success in Developing Cybersecurity-Space Resources


 

>>from around the globe. It's the Cube covering space and cybersecurity. Symposium 2020 hosted by Cal Poly >>Oven. Welcome back to the Space and Cyber Security Symposium. 2020 I'm John for your host with the Cuban silicon angle, along with Cal Poly, representing a great session here on industry success in developing space and cybersecurity. Resource is Got a great lineup. Brigadier General Steve Hotel, whose are also known as Bucky, is Call Sign director of Space Portfolio Defense Innovation Unit. Preston Miller, chief information security officer at JPL, NASA and Major General retired Clint Crozier, director of aerospace and satellite solutions at Amazon Web services, also known as a W s. Gentlemen, thank you for for joining me today. So the purpose of this session is to spend the next hour talking about the future of workforce talent. Um, skills needed and we're gonna dig into it. And Spaces is an exciting intersection of so many awesome disciplines. It's not just get a degree, go into a track ladder up and get promoted. Do those things. It's much different now. Love to get your perspectives, each of you will have an opening statement and we will start with the Brigadier General Steve Hotel. Right? >>Thank you very much. The Defense Innovation Unit was created in 2015 by then Secretary of Defense Ash Carter. To accomplish three things. One is to accelerate the adoption of commercial technology into the Department of Defense so that we can transform and keep our most relevant capabilities relevant. And also to build what we call now called the national Security Innovation Base, which is inclusive all the traditional defense companies, plus the commercial companies that may not necessarily work with focus exclusively on defense but could contribute to our national security and interesting ways. Um, this is such an exciting time Azul here from our other speakers about space on and I can't, uh I'm really excited to be here today to be able to share a little bit of our insight on the subject. >>Thank you very much. Precedent. Miller, Chief information security officer, Jet Propulsion Lab, NASA, Your opening statement. >>Hey, thank you for having me. I would like to start off by providing just a little bit of context of what brings us. Brings us together to talk about this exciting topic for space workforce. Had we've seen In recent years there's been there's been a trend towards expanding our space exploration and the space systems that offer the great things that we see in today's world like GPS. Um, but a lot of that has come with some Asian infrastructure and technology, and what we're seeing as we go towards our next generation expects of inspiration is that we now want to ensure that were secured on all levels. And there's an acknowledgement that our space systems are just a susceptible to cyber attacks as our terrestrial assistance. We've seen a recent space, uh, policy Directive five come out from our administration, that that details exactly how we should be looking at the cyber principle for our space systems, and we want to prevent. We want to prevent a few things as a result of that of these principles. Spoofing and jamming of our space systems are not authorized commands being sent to those space systems, lots of positive control of our space vehicles on lots of mission data. We also acknowledge that there's a couple of frameworks we wanna adopt across the board of our space systems levers and things like our nice miss cybersecurity frameworks. eso what has been a challenge in the past adopted somebody Cyber principles in space systems, where there simply has been a skill gap in a knowledge gap. We hire our space engineers to do a few things. Very well designed space systems, the ploy space systems and engineer space systems, often cybersecurity is seen as a after thought and certainly hasn't been a line item and in any budget for our spaces in racing. Uh, in the past in recent years, the dynamic started to change. We're now now integrating cyber principles at the onset of development of these life cycle of space. Systems were also taking a hard look of how we train the next generation of engineers to be both adequate. Space engineers, space system engineers and a cyber engineers, as a result to Mrs success on DWI, also are taking a hard look at What do we mean when we talk about holistic risk management for our space assistance, Traditionally risk management and missing insurance for space systems? I've really revolved around quality control, but now, in recent years we've started to adopt principles that takes cyber risk into account, So this is a really exciting topic for me. It's something that I'm fortunate to work with and live with every day. I'm really excited to get into this discussion with my other panel members. Thank you. >>You Preston. Great insight there. Looking forward. Thio chatting further. Um, Clint Closure with a W. S now heading up. A director of aerospace and satellite Solutions, formerly Major General, Your opening statement. >>Thanks, John. I really appreciate that introduction and really appreciate the opportunity to be here in the Space and Cybersecurity Symposium. And thanks to Cal Poly for putting it together, you know, I can't help, but as I think to Cal Poly there on the central California coast, San Luis Obispo, California I can't help but to think back in this park quickly. I spent two years of my life as a launch squadron commander at Vandenberg Air Force Base, about an hour south of Cal Poly launching rockets, putting satellites in orbit for the national intelligence community and so some really fond memories of the Central California coast. I couldn't agree more with the theme of our symposium this week. The space and cyber security we've all come to know over the last decade. How critical spaces to the world, whether it's for national security intelligence, whether it's whether communications, maritime, agriculture, development or a whole host of other things, economic and financial transactions. But I would make the case that I think most of your listeners would agree we won't have space without cybersecurity. In other words, if we can't guaranteed cybersecurity, all those benefits that we get from space may not be there. Preston in a moment ago that all the threats that have come across in the terrestrial world, whether it be hacking or malware or ransomware or are simple network attacks, we're seeing all those migrate to space to. And so it's a really important issue that we have to pay attention to. I also want to applaud Cow Pauling. They've got some really important initiatives. The conference here, in our particular panel, is about developing the next generation of space and cyber workers, and and Cal Poly has two important programs. One is the digital transformation hub, and the other is space data solutions, both of which, I'm happy to say, are in partnership with a W. S. But these were important programs where Cal Poly looks to try to develop the next generation of space and cyber leaders. And I would encourage you if you're interested in that toe. Look up the program because that could be very valuable is well, I'm relatively new to the AWS team and I'm really happy Thio team, as John you said recently retired from the U. S. Air Force and standing up the U. S. Space force. But the reason that I mentioned that as the director of the aerospace and satellite team is again it's in perfect harmony with the theme today. You know, we've recognized that space is critically important and that cyber security is critically important and that's been a W s vision as well. In fact, a W s understands how important the space domain is and coupled with the fact that AWS is well known that at a W s security is job zero and stolen a couple of those to fax A. W. S was looking to put together a team the aerospace and satellite team that focus solely and exclusively every single day on technical innovation in space and more security for the space domain through the cloud and our offerings there. So we're really excited to reimagine agree, envision what space networks and architectures could look like when they're born on the cloud. So that's important. You know, talk about workforce here in just a moment, but but I'll give you just a quick sneak. We at AWS have also recognized the gap in the projected workforce, as Preston mentioned, Um, depending on the projection that you look at, you know, most projections tell us that the demand for highly trained cyber cyber security cloud practitioners in the future outweighs what we think is going to be the supply. And so a ws has leaned into that in a number of ways that we're gonna talk about the next segment. I know. But with our workforce transformation, where we've tried to train free of charge not just a W s workers but more importantly, our customers workers. It s a W s we obsessed over the customer. And so we've provided free training toe over 7000 people this year alone toe bring their cloud security and cyber security skills up to where they will be able to fully leverage into the new workforce. So we're really happy about that too? I'm glad Preston raised SPD five space policy Directive five. I think it's gonna have a fundamental impact on the space and cyber industry. Uh, now full disclosure with that said, You know, I'm kind of a big fan of space policy directives, ESPN, Or was the space policy directive that directed to stand up of the U. S. Space Force and I spent the last 18 months of my life as the lead planner and architect for standing up the U. S. Space force. But with that said, I think when we look back a decade from now, we're going to see that s p d five will have as much of an impact in a positive way as I think SPD for on the stand up of the space Force have already done so. So I'll leave it there, but really look forward to the dialogue and discussion. >>Thank you, gentlemen. Clint, I just wanna say thank you for all your hard work and the team and the people who were involved in standing up Space force. Um, it is totally new. It's a game changer. It's modern, is needed. And there's benefits on potential challenges and opportunities that are gonna be there, so thank you very much for doing that. I personally am excited. I know a lot of people are excited for what the space force is today and what it could become. Thank you very much. >>Yeah, Thanks. >>Okay, So >>with >>that, let me give just jump in because, you know, as you're talking about space force and cybersecurity and you spend your time at Vanderburgh launching stuff into space, that's very technical. Is operation okay? I mean, it's complex in and of itself, but if you think about like, what's going on beyond in space is a lot of commercial aspect. So I'm thinking, you know, launching stuff into space on one side of my brain and the other side of brain, I'm thinking like air travel. You know, all the logistics and the rules of the road and air traffic control and all the communications and all the technology and policy and, you >>know, landing. >>So, Major General Clint, what's your take on this? Because this is not easy. It's not just one thing that speaks to the diversity of workforce needs. What's your reaction to that? >>Yeah. I mean, your observation is right on. We're seeing a real boom in the space and aerospace industry. For all the good reasons we talked about, we're recognizing all the value space from again economic prosperity to exploration to being ableto, you know, improve agriculture and in weather and all those sorts of things that we understand from space. So what I'm really excited about is we're seeing this this blossom of space companies that we sort of referred to his new space. You know, it used to be that really only large governments like the United States and a handful of others could operate in the space domain today and largely infused because of the technological innovation that have come with Cyber and Cyrus Space and even the cloud we're seeing more and more companies, capabilities, countries, all that have the ability, you know. Even a well funded university today can put a cube sat in orbit, and Cal Poly is working on some of those too, by the way, and so it's really expanded the number of people that benefits the activity in space and again, that's why it's so critically important because we become more and more reliant and we will become more and more reliant on those capabilities that we have to protect him. It's fundamental that we do. So, >>Bucky, I want you to weigh in on this because actually, you you've flown. Uh, I got a call sign which I love interviewing people. Anyone who's a call sign is cool in my book. So, Bucky, I want you to react to that because that's outside of the technology, you know, flying in space. There's >>no >>rule. I mean, is there like a rules? I mean, what's the rules of the road? I mean, state of the right. I mean, what I mean, what what's going? What's gonna have toe happen? Okay, just logistically. >>Well, this is very important because, uh and I've I've had access thio information space derived information for most of my flying career. But the amount of information that we need operate effectively in the 21st century is much greater than Thanet has been in the past. Let me describe the environment s so you can appreciate a little bit more what our challenges are. Where, from a space perspective, we're going to see a new exponential increase in the number of systems that could be satellites. Uh, users and applications, right? And so eso we're going we're growing rapidly into an environment where it's no longer practical to just simply evolved or operate on a perimeter security model. We and with this and as I was brought up previously, we're gonna try to bring in MAWR commercial capabilities. There is a tremendous benefit with increasing the diversity of sources of information. We use it right now. The military relies very heavily on commercial SAT com. We have our military capabilities, but the commercial capabilities give us capacity that we need and we can. We can vary that over time. The same will be true for remote sensing for other broadband communications capabilities on doing other interesting effects. Also, in the modern era, we doom or operations with our friends and allies, our regional partners all around the world, in order to really improve our interoperability and have rapid exchange of information, commercial information, sources and capabilities provides the best means of doing that. So that so that the imperative is very important and what all this describes if you want to put one word on it. ISS, we're involving into ah hybrid space architectures where it's gonna be imperative that we protect the integrity of information and the cyber security of the network for the things most important to us from a national security standpoint. But we have to have the rules that that allows us to freely exchange information rapidly and in a way that that we can guarantee that the right users are getting the right information at the right. >>We're gonna come back to that on the skill set and opportunities for people driving. That's just looking. There's so much opportunity. Preston, I want you to react to this. I interviewed General Keith Alexander last year. He formerly ran Cyber Command. Um, now he's building Cyber Security Technologies, and his whole thesis is you have to share. So the question is, how do you share and lock stuff down at the same time when you have ah, multi sided marketplace in space? You know, suppliers, users, systems. This is a huge security challenge. What's your reaction to this? Because we're intersecting all these things space and cybersecurity. It's just not easy. What's your reaction? >>Absolutely, Absolutely. And what I would say in response to that first would be that security really needs to be baked into the onset of how we develop and implement and deploy our space systems. Um, there's there's always going to be the need to collect and share data across multiple entities, particularly when we're changing scientific data with our mission partners. Eso with that necessitates that we have a security view from the onset, right? We have a system spaces, and they're designed to share information across the world. How do we make sure that those, uh, those other those communication channels so secure, free from interception free from disruption? So they're really done? That necessitates of our space leaders in our cyber leaders to be joining the hip about how to secure our space systems, and the communications there in Clinton brought up a really good point of. And then I'm gonna elaborate on a little bit, just toe invite a little bit more context and talk about some the complexities and challenges we face with this advent of new space and and all of our great commercial partners coming into therefore way, that's going to present a very significant supply chain risk management problems that we have to get our hands around as well. But we have these manufacturers developing these highly specialized components for the space instruments, Um, that as it stands right now, it's very little oversight And how those things air produced, manufactured, put into the space systems communication channels that they use ports protocols that they use to communicate. And that's gonna be a significant challenge for us to get get our hands around. So again, cybersecurity being brought in. And the very onset of these development thes thes decisions in these life cycles was certainly put us in a best better position to secure that data in our in our space missions. >>Yeah, E just pick up on that. You don't mind? Preston made such a really good point there. But you have to bake security in up front, and you know there's a challenge and there's an opportunity, you know, with a lot of our systems today. It was built in a pre cyber security environment, especially our government systems that were built, you know, in many cases 10 years ago, 15 years ago are still on orbit today, and we're thankful that they are. But as we look at this new environment and we understand the threats, if we bake cybersecurity in upfront weaken balance that open application versus the risk a long as we do it up front. And you know, that's one of the reasons that our company developed what we call govcloud, which is a secure cloud, that we use thio to manage data that our customers who want to do work with the federal government or other governments or the national security apparatus. They can operate in that space with the built in and baked in cybersecurity protocols. We have a secret region that both can handle secret and top secret information for the same reasons. But when you bake security into the upfront applications, that really allows you to balance that risk between making it available and accessible in sort of an open architecture way. But being sure that it's protected through things like ITAR certifications and fed ramp, uh, another ice T certifications that we have in place. So that's just a really important point. >>Let's stay high level for a man. You mentioned a little bit of those those govcloud, which made me think about you know, the tactical edge in the military analogy, but also with space similar theater. It's just another theater and you want to stand stuff up. Whether it's communications and have facilities, you gotta do it rapidly, and you gotta do it in a very agile, secure, I high availability secure way. So it's not the old waterfall planning. You gotta be fast is different. Cloud does things different? How do you talk to the young people out there, whether it's apparent with with kids in elementary and middle school to high school, college grad level or someone in the workforce? Because there are no previous jobs, that kind of map to the needs out there because you're talking about new skills, you could be an archaeologist and be the best cyber security guru on the planet. You don't have to have that. There's no degree for what, what we're talking about here. This >>is >>the big confusion around education. I mean, you gotta you like math and you could code you can Anything who wants to comment on that? Because I think this >>is the core issue. I'll say there are more and more programs growing around that educational need, and I could talk about a few things we're doing to, but I just wanna make an observation about what you just said about the need. And how do you get kids involved and interested? Interestingly, I think it's already happening, right. The good news. We're already developing that affinity. My four year old granddaughter can walk over, pick up my iPad, turn it on. Somehow she knows my account information, gets into my account, pulls up in application, starts playing a game. All before I really even realized she had my iPad. I mean, when when kids grow up on the cloud and in technology, it creates that natural proficiency. I think what we have to do is take that natural interest and give them the skill set the tools and capabilities that go with it so that we're managing, you know, the the interest with the technical skills. >>And also, like a fast I mean, just the the hackers are getting educated. Justus fast. Steve. I mean e mean Bucky. What do you do here? You CIt's the classic. Just keep chasing skills. I mean, there are new skills. What are some of those skills? >>Why would I amplify eloquent? Just said, First of all, the, uh, you know, cyber is one of those technology areas where commercial side not not the government is really kind of leading away and does a significant amount of research and development. Ah, billions of dollars are spent every year Thio to evolve new capabilities. And a lot of those companies are, you know, operated and and in some cases, led by folks in their early twenties. So the S O. This is definitely an era and a generation that is really poised in position. Well, uh, Thio take on this challenge. There's some unique aspects to space. Once we deploy a system, uh, it will be able to give me hard to service it, and we're developing capabilities now so that we could go up and and do system upgrades. But that's not a normal thing in space that just because the the technical means isn't there yet. So having software to find capabilities, I's gonna be really paramount being able to dio unique things. The cloud is huge. The cloud is centric to this or architectural, and it's kind of funny because d o d we joke because we just discovered the cloud, you know, a couple years ago. But the club has been around for a while and, uh, and it's going to give us scalability on and the growth potential for doing amazing things with a big Data Analytics. But as Preston said, it's all for not if if we can't trust the data that we receive. And so one of the concepts for future architectures is to evolve into a zero trust model where we trust nothing. We verify and authenticate everyone. And, uh, and that's that's probably a good, uh, point of departure as we look forward into our cybersecurity for space systems into the future. >>Block everyone. Preston. Your reaction to all this gaps, skills, What's needed. I mean it Z everyone's trying to squint through this >>absolutely. And I wanna want to shift gears a little bit and talk about the space agencies and organizations that are responsible for deploying these spaces into submission. So what is gonna take in this new era on, and what do we need from the workforce to be responsive to the challenges that we're seeing? First thing that comes to mind is creating a culture of security throughout aerospace right and ensuring that Azzawi mentioned before security isn't an afterthought. It's sort of baked into our models that we deploy and our rhetoric as well, right? And because again we hire our spaces in years to do it very highly. Specialized thing for a highly specialized, uh, it's topic. Our effort, if we start to incorporate rhetorically the importance of cybersecurity two missing success and missing assurance that's going to lend itself toe having more, more prepared on more capable system engineers that will be able to respond to the threats accordingly. Traditionally, what we see in organizational models it's that there's a cyber security team that's responsible for the for the whole kit kaboodle across the entire infrastructure, from enterprise systems to specialize, specialize, space systems and then a small pocket of spaces, years that that that are really there to perform their tasks on space systems. We really need to bridge that gap. We need to think about cybersecurity holistically, the skills that are necessary for your enterprise. I t security teams need to be the same skills that we need to look for for our system engineers on the flight side. So organizationally we need we need to address that issue and approach it, um todo responsive to the challenges we see our our space systems, >>new space, new culture, new skills. One of the things I want to bring up is looking for success formulas. You know, one of the things we've been seeing in the past 10 years of doing the Cube, which is, you know, we've been called the ESPN of Tech is that there's been kind of like a game ification. I want to. I don't wanna say sports because sports is different, but you're seeing robotics clubs pop up in some schools. It's like a varsity sport you're seeing, you know, twitch and you've got gamers out there, so you're seeing fun built into it. I think Cal Poly's got some challenges going on there, and then scholarships air behind it. So it's almost as if, you know, rather than going to a private sports training to get that scholarship, that never happens. There's so many more scholarship opportunities for are not scholarship, but just job opportunities and even scholarships we've covered as part of this conference. Uh, it's a whole new world of culture. It's much different than when I grew up, which was you know, you got math, science and English. You did >>it >>and you went into your track. Anyone want to comment on this new culture? Because I do believe that there is some new patterns emerging and some best practices anyone share any? >>Yeah, I do, because as you talked about robotics clubs and that sort of things, but those were great and I'm glad those air happening. And that's generating the interest, right? The whole gaming culture generating interest Robotic generates a lot of interest. Space right has captured the American in the world attention as well, with some recent NASA activities and all for the right reasons. But it's again, it's about taking that interested in providing the right skills along the way. So I'll tell you a couple of things. We're doing it a w s that we found success with. The first one is a program called A W s Academy. And this is where we have developed a cloud, uh, program a cloud certification. This is ah, cloud curriculum, if you will, and it's free and it's ready to teach. Our experts have developed this and we're ready to report it to a two year and four year colleges that they can use is part of the curriculum free of charge. And so we're seeing some real value there. And in fact, the governor's in Utah and Arizona recently adopted this program for their two year schools statewide again, where it's already to teach curriculum built by some of the best experts in the industry s so that we can try to get that skills to the people that are interested. We have another program called A W s educate, and this is for students to. But the idea behind this is we have 12 cracks and you can get up to 50 hours of free training that lead to A W s certification, that sort of thing. And then what's really interesting about that is all of our partners around the world that have tied into this program we manage what we call it ws educate Job board. And so if you have completed this educate program now, you can go to that job board and be linked directly with companies that want people with those skills we just helped you get. And it's a perfect match in a perfect marriage there. That one other piece real quickly that we're proud of is the aws Uh restart program. And that's where people who are unemployed, underemployed or transitioning can can go online. Self paced. We have over 500 courses they can take to try to develop those initial skills and get into the industry. And that's been very popular, too, So that those air a couple of things we're really trying to lean into >>anyone else want to react. Thio that question patterns success, best practices, new culture. >>I'd like Thio. The the wonderful thing about what you just touched on is problem solving, right, And there's some very, very good methodologies that are being taught in the universities and through programs like Hacking for Defense, which is sponsored by the National Security Innovation Network, a component of the I you where I work but the But whether you're using a lien methodologies or design school principals or any other method, the thing that's wonderful right now and not just, uh, where I work at the U. The Space force is doing this is well, but we're putting the problem out there for innovators to tackle, And so, rather than be prescriptive of the solutions that we want to procure, we want we want the best minds at all levels to be able to work on the problem. Uh, look at how they can leverage other commercial solutions infrastructure partnerships, uh, Thio to come up with a solution that we can that we can rapidly employ and scale. And if it's a dual use solution or whether it's, uh, civil military or or commercial, uh, in any of the other government solutions. Uh, that's really the best win for for the nation, because that commercial capability again allows us to scale globally and share those best practices with all of our friends and allies. People who share our values >>win win to this commercial. There's a business model potential financial benefits as well. Societal impact Preston. I want to come to you, JPL, NASA. I mean, you work in one of the most awesome places and you know, to me, you know, if you said to me, Hey, John, come working JP like I'm not smart enough to go there like I mean, like, it's a pretty It's intimidating, it might seem >>share folks out there, >>they can get there. I mean, it's you can get there if you have the right skills. I mean I'm just making that up. But, I mean, it is known to be super smart And is it attainable? So share your thoughts on this new culture because you could get the skills to get there. What's your take on all this >>s a bucket. Just missing something that really resonated with me, right? It's do it your love office. So if you put on the front engineer, the first thing you're gonna try to do is pick it apart. Be innovative, be creative and ways to solve that issue. And it has been really encouraging to me to see the ground welcome support an engagement that we've seen across our system. Engineers in space. I love space partners. A tackling the problem of cyber. Now that they know the West at risk on some of these cyber security threats that that they're facing with our space systems, they definitely want to be involved. They want to take the lead. They want to figure things out. They wanna be innovative and creative in that problem solving eso jpl We're doing a few things. Thio Raise the awareness Onda create a culture of security. Andi also create cyber advocates, cybersecurity advocates across our space engineers. We host events like hacked the lad, for example, and forgive me. Take a pause to think about the worst case scenarios that could that could result from that. But it certainly invites a culture of creative problem solving. Um, this is something that that kids really enjoy that are system engineers really enjoyed being a part off. Um, it's something that's new refreshing to them. Eso we were doing things like hosting a monthly cybersecurity advocacy group. When we talk about some of the cyber landscape of our space systems and invite our engineers into the conversation, we do outweighs programs specifically designed to to capture, um, our young folks, uh, young engineers to deceive. They would be interested and show them what this type of security has to offer by ways of data Analytic, since the engineering and those have been really, really successful identifying and bringing in new talent to address the skill gaps. >>Steve, I want to ask you about the d. O. D. You mentioned some of the commercial things. How are you guys engaging the commercial to solve the space issue? Because, um, the normalization in the economy with GPS just seeing spaces impacts everybody's lives. We we know that, um, it's been talked about. And and there's many, many examples. How are you guys the D o. D. From a security standpoint and or just from an advancement innovation standpoint, engaging with commercials, commercial entities and commercial folks? >>Well, I'll throw. I'll throw a, uh, I'll throw ah, compliment to Clint because he did such an outstanding job. The space forces already oriented, uh, towards ah, commercial where it's appropriate and extending the arms. Leveraging the half works on the Space Enterprise Consortium and other tools that allow for the entrepreneurs in the space force Thio work with their counterparts in a commercial community. And you see this with the, uh, you know, leveraging space X away to, uh, small companies who are doing extraordinary things to help build space situational awareness and, uh, s So it's it's the people who make this all happen. And what we do at at the D. O. D level, uh, work at the Office of Secretary defense level is we wanna make sure that they have the right tools to be able to do that in a way that allows these commercial companies to work with in this case of a space force or with cyber command and ways that doesn't redefine that. The nature of the company we want we want We want commercial companies to have, ah, great experience working with d o d. And we want d o d toe have the similar experience working, working with a commercial community, and and we actually work interagency projects to So you're going to see, uh, General Raymond, uh, hey, just recently signed an agreement with the NASA Esa, you're gonna see interagency collaborations on space that will include commercial capabilities as well. So when we speak as one government were not. You know, we're one voice, and that's gonna be tremendous, because if you're a commercial company on you can you can develop a capability that solves problems across the entire space enterprise on the government side. How great is that, Right. That's a scaling. Your solution, gentlemen. Let >>me pick you back on that, if you don't mind. I'm really excited about that. I mentioned new space, and Bucky talked about that too. You know, I've been flying satellites for 30 years, and there was a time where you know the U. S. Government national security. We wouldn't let anybody else look at him. Touch him. Plug into, um, anything else, right. And that probably worked at the time. >>But >>the world has changed. And more >>importantly, >>um, there is commercial technology and capability available today, and there's no way the U. S government or national security that national Intel community can afford economically >>to >>fund all that investment solely anymore. We don't have the manpower to do it anymore. So we have this perfect marriage of a burgeoning industry that has capabilities and it has re sources. And it has trained manpower. And we are seeing whether it's US Space Force, whether it's the intelligence community, whether it's NASA, we're seeing that opened up to commercial providers more than I've ever seen in my career. And I can tell you the customers I work with every day in a W s. We're building an entire ecosystem now that they understand how they can plug in and participate in that, and we're just seeing growth. But more importantly, we're seeing advanced capability at cheaper cost because of that hybrid model. So that really is exciting. >>Preston. You know you mentioned earlier supply chain. I don't think I think you didn't use the word supply chain. Maybe you did. But you know about the components. Um, you start opening things up and and your what you said baking it in to the beginning, which is well known. Uh, premise. It's complicated. So take me through again, Like how this all gonna work securely because And what's needed for skill sets because, you know, you're gonna open. You got open source software, which again, that's open. We live in a free society in the United States of America, so we can't lock everything down. You got components that are gonna be built anywhere all around the world from vendors that aren't just a certified >>or maybe >>certified. Um, it's pretty crazy. So just weigh in on this key point because I think Clint has it right. And but that's gonna be solved. What's your view on this? >>Absolutely. And I think it really, really start a top, right? And if you look back, you know, across, um in this country, particularly, you take the financial industry, for example, when when that was a burgeoning industry, what had to happen to ensure that across the board. Um, you know, your your finances were protected these way. Implemented regulations from the top, right? Yeah. And same thing with our health care industry. We implemented regulations, and I believe that's the same approach we're gonna need to take with our space systems in our space >>industry >>without being too directive or prescriptive. Instance she ating a core set of principles across the board for our manufacturers of space instruments for deployment and development of space systems on for how space data and scientific data is passed back and forth. Eso really? We're gonna need to take this. Ah, holistic approach. Thio, how we address this issue with cyber security is not gonna be easy. It's gonna be very challenging, but we need to set the guard rails for exactly what goes into our space systems, how they operate and how they communicate. >>Alright, so let's tie this back to the theme, um, Steve and Clint, because this is all about workforce gaps, opportunities. Um, Steve, you mentioned software defined. You can't do break fix in space. You can't just send a technician up in the space to fix a component. You gotta be software defined. We're talking about holistic approach, about commercial talk about business model technology with software and policy. We need people to think through, like you know. What the hell are you gonna do here, right? Do you just noticed road at the side of the road to drive on? There's no rules of engagement. So what I'm seeing is certainly software Check. If you wanna have a job for the next millennial software policy who solves two problems, what does freedom looked like in space Congestion Contention and then, obviously, business model. Can you guys comment on these three areas? Do you agree? And what specific person might be studying in grad school or undergraduate or in high school saying, Hey, I'm not a techie, but they can contribute your thoughts. I'll >>start off with, uh, speak on on behalf of the government today. I would just say that as policy goes, we need to definitely make sure that we're looking towards the future. Ah, lot of our policy was established in the past under different conditions, and, uh, and if there's anything that you cannot say today is that space is the same as it was even 10 years ago. So the so It's really important that our policy evolves and recognizes that that technology is going to enable not just a new ways of doing things, but also force us to maybe change or or get rid of obsolete policies that will inhibit our ability to innovate and grow and maintain peace with with a rapid, evolving threat. The for the for the audience today, Uh, you know, you want some job assurance, cybersecurity and space it's gonna be It's gonna be an unbelievable, uh, next, uh, few decades and I couldn't think of a more exciting for people to get into because, you know, spaces Ah, harsh environment. We're gonna have a hard time just dud being able differentiate, you know, anomalies that occur just because of the environment versus something that's being hacked. And so JPL has been doing this for years on they have Cem Cem great approaches, but but this is this is gonna be important if you put humans on the moon and you're going to sustain them there. Those life support systems are gonna be using, you know, state of the art computer technology, and which means, is also vulnerable. And so eso the consequences of us not being prepared? Uh, not just from our national security standpoint, but from our space exploration and our commercial, uh, economic growth in space over the long term all gonna be hinged on this cyber security environment. >>Clint, your thoughts on this too ill to get. >>Yeah. So I certainly agree with Bucky. But you said something a moment ago that Bucky was talking about as well. But that's the idea that you know in space, you can't just reach out and touch the satellite and do maintenance on the satellite the way you can't a car or a tank or a plane or a ship or something like that. And that is true. However, right, comma, I want to point out. You know, the satellite servicing industry is starting to develop where they're looking at robotic techniques in Cape abilities to go up in services satellite on orbit. And that's very promising off course. You got to think through the security policy that goes with that, of course. But the other thing that's really exciting is with artificial intelligence and machine learning and edge computing and database analytics and all those things that right on the cloud. You may not even need to send a robotic vehicle to a satellite, right? If you can upload and download software defined, fill in the blank right, maybe even fundamentally changing the mission package or the persona, if you will, of the satellite or the spacecraft. And that's really exciting to, ah, lot >>of >>security policy that you've gotta work through. But again, the cloud just opens up so many opportunities to continue to push the boundaries. You know, on the AWS team, the aerospace and satellite team, which is, you know, the new team that I'm leading. Now our motto is to the stars through the cloud. And there are just so many exciting opportunities right for for all those capabilities that I just mentioned to the stars through the cloud >>President, your thoughts on this? >>Yes, eso won >>a >>little bit of time talking about some of the business model implications and some of the challenges that exists there. Um, in my experience, we're still working through a bit of a language barrier of how we define risk management for our space systems. Traditionally traditionally risk management models is it is very clear what poses a risk to a flight mission. Our space mission, our space system. Um, and we're still finding ways to communicate cyber risk in the same terms that are system engineers are space engineers have traditionally understood. Um, this is a bit of a qualitative versus quantitative, a language barrier. But however adopting a risk management model that includes cybersecurity, a za way to express wish risk to miss the success, I think I think it would be a very good thing is something that that we have been focused on the J. P o as we Aziz, we look at the 34 years beyond. How do >>we >>risk that gap and not only skills but communication of cyber risk and the way that our space engineers and our project engineers and a space system managers understand >>Clinton, like Thio talk about space Force because this is the most popular new thing. It's only a couple of nine months in roughly not even a year, uh, already changing involving based on some of the reporting we've done even here at this symposium and on the Internet. Um, you know, when I was growing up, you know, I wasn't there when JFK said, you know, we're gonna get to the moon. I was born in the sixties, so, you know, when I was graduating my degree, you know, Draper Labs, Lincoln Lab, JPL, their pipeline and people wasn't like a surge of job openings. Um, so this kind of this new space new space race, you know, Kennedy also said that Torch has been passed to a new generation of Americans. So in a way that's happening right now with space force. A new generation is here is a digital generation. It's multi disciplinary generation. Could you take a minute and share, uh, for for our audience? And here at this symposium, um, the mission of Space Force and where you see it going because this truly is different. And I think anyone who's young e I mean, you know, if this was happening when I was in college would be like dropping everything. I'm in there, I think, cause there's so many areas thio jump into, um, it's >>intellectually challenging. >>It's intoxicating in some level. So can you share your thoughts? >>Yeah. Happy to do that. Of course. I I need to remind everybody that as a week ago I'm formally retired. So I'm not an official spokesman for US forces. But with that, you know, it said I did spend the last 18 months planning for it, designing and standing it up. And I'll tell you what's really exciting is you know, the commander of, uh, US Base Force General J. Raymond, who's the right leader at the right time. No question in my >>mind. But >>he said, I want to stand up the Space Force as the first fully digital service in the United States. Right? So he is trying >>to bake >>cloud baked cybersecurity, baked digital transformational processes and everything we did. And that was a guidance he gave us every day, every day. When we rolled in. He said, Remember, guys, I don't wanna be the same. I don't wanna be stale. I want new thinking, new capabilities and I want it all to be digital on. That's one of the reasons When we brought the first wave of people into the space force, we brought in space operations, right. People like me that flew satellites and launch rockets, we brought in cyber space experts, and we brought in intelligence experts. Those were the first three waves of people because of that, you know, perfect synergy between space and cyber and intel all wrapped in >>it. >>And so that was really, really smart. The other thing I'll say just about, you know, Kennedy's work. We're going to get to the moon. So here we are. Now we're going back to the Moon Project Artemus that NASA is working next man first woman on the moon by 2024 is the plan and >>then >>with designs to put a permanent presence on the moon and then lean off to march. So there was a lot to get excited about. I will tell you, as we were taking applications and looking at rounding out filling out the village in the U. S. Space Force, we were overwhelmed with the number of people that wanted, and that was a really, really good things. So they're off to a good start, and they're just gonna accomplishment major things. I know for sure. >>Preston, your thoughts on this new generation people out there were like I could get into this. This is a path. What's your what's your opinion on this? And what's your >>E could, uh, you so bold as to say >>that >>I feel like I'm a part of that new generation eso I grew up very much into space. Uh, looking at, um, listen to my, uh, folks I looked up to like Carl Sagan. Like like Neil Tyson. DeGrasse on did really feeling affinity for what What this country has done is for is a space program are focused on space exploration on bond. Through that, I got into our security, as it means from the military. And I just because I feel so fortunate that I could merge both of those worlds because of because of the generational, um, tailoring that we do thio promote space exploration and also the advent of cybersecurity expertise that is needed in this country. I feel like that. We are We are seeing a conversions of this too. I see a lot of young people really getting into space exploration. I see a lot of young people as well. Um uh, gravitating toward cybersecurity as a as a course of study. And to see those two worlds colliding and converse is something that's very near and dear to me. And again, I I feel like I'm a byproduct of that conversion, which is which, Really, Bothwell for space security in the future, >>we'll your great leader and inspiration. Certainly. Senior person as well. Congratulations, Steve. You know, young people motivational. I mean, get going. Get off the sidelines. Jump in Water is fine, Right? Come on in. What's your view on motivating the young workforce out there and anyone thinking about applying their skills on bringing something to the table? >>Well, look at the options today. You have civil space President represents you have military space. Uh, you have commercial space on and even, you know, in academia, the research, the potential as a as an aspiring cyber professional. All of you should be thinking about when we when we When? When we first invented the orbit, which eventually became the Internet, Uh, on Lee, we were, uh if all we had the insight to think Well, geez, you know whether the security implications 2030 years from now of this thing scaling on growing and I think was really good about today's era. Especially as Clint said, because we were building this space infrastructure with a cyber professionals at ground zero on dso the So the opportunity there is to look out into the future and say we're not just trying to secure independent her systems today and assure the free for all of of information for commerce. You know, the GPS signal, Uh, is Justus much in need of protection as anything else tied to our economy, But the would have fantastic mission. And you could do that. Uh, here on the ground. You could do it, uh, at a great companies like Amazon Web services. But you can also one of these states. Perhaps we go and be part of that contingency that goes and does the, uh, the se's oh job that that president has on the moon or on Mars and, uh, space will space will get boring within a generation or two because they'll just be seen as one continuum of everything we have here on Earth. And, uh, and that would be after our time. But in the meantime, is a very exciting place to be. And I know if I was in in my twenties, I wanna be, uh, jumping in with both feet into it. >>Yeah, great stuff. I mean, I think space is gonna be around for a long long time. It's super exciting and cybersecurity making it secure. And there's so many areas defeating on. Gentlemen, thank you very much for your awesome insight. Great panel. Um, great inspiration. Every one of you guys. Thank you very much for for sharing for the space and cybersecurity symposium. Appreciate it. Thank you very much. >>Thanks, John. Thank you. Thank you. Okay, >>I'm >>John for your host for the Space and Cybersecurity Symposium. Thanks for watching.

Published Date : Oct 2 2020

SUMMARY :

It's the Cube covering the purpose of this session is to spend the next hour talking about the future of workforce the adoption of commercial technology into the Department of Defense so that we can transform Thank you very much. the space systems that offer the great things that we see in today's world like GPS. Clint Closure with a W. S now heading up. as Preston mentioned, Um, depending on the projection that you Clint, I just wanna say thank you for all your hard work and the team and all the communications and all the technology and policy and, you It's not just one thing that speaks to the diversity of workforce needs. countries, all that have the ability, you know. outside of the technology, you know, flying in space. I mean, state of the right. in the modern era, we doom or operations with our friends and allies, So the question is, how do you share and talk about some the complexities and challenges we face with this advent of new space and and environment, especially our government systems that were built, you know, in many cases 10 years ago, You mentioned a little bit of those those govcloud, which made me think about you I mean, you gotta you like math and that we're managing, you know, the the interest with the technical skills. And also, like a fast I mean, just the the hackers are getting educated. And a lot of those companies are, you know, operated and and in some cases, Your reaction to all this gaps, skills, What's needed. I t security teams need to be the same skills that we need to look for for our system engineers on the flight One of the things I want to bring up is looking for success formulas. and you went into your track. But the idea behind this is we have 12 cracks and you can get up to Thio that question patterns success, best practices, And so, rather than be prescriptive of the solutions that we want to procure, if you said to me, Hey, John, come working JP like I'm not smart enough to go there like I mean, I mean, it's you can get there if you landscape of our space systems and invite our engineers into the conversation, we do outweighs programs Steve, I want to ask you about the d. O. D. You mentioned some of the commercial things. The nature of the company we You know, I've been flying satellites for 30 years, and there was a time where you the world has changed. and there's no way the U. S government or national security that national Intel community can afford And I can tell you the customers I work with every You got components that are gonna be built anywhere all around the world And but that's gonna be solved. We implemented regulations, and I believe that's the same approach we're gonna need to take with It's gonna be very challenging, but we need to set the guard rails for exactly what goes into our space systems, What the hell are you gonna do here, think of a more exciting for people to get into because, you know, spaces Ah, But that's the idea that you know in space, you can't just reach out and touch the satellite and do maintenance on the aerospace and satellite team, which is, you know, the new team that I'm leading. in the same terms that are system engineers are space engineers have traditionally understood. the mission of Space Force and where you see it going because this truly is different. So can you share your thoughts? But with that, you know, But in the United States. That's one of the reasons When we brought The other thing I'll say just about, you know, looking at rounding out filling out the village in the U. S. Space Force, And what's your and also the advent of cybersecurity expertise that is needed in this country. Get off the sidelines. to think Well, geez, you know whether the security implications 2030 years from now of Gentlemen, thank you very much for your awesome insight. Thank you. John for your host for the Space and Cybersecurity Symposium.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
StevePERSON

0.99+

Clint CrozierPERSON

0.99+

ClintPERSON

0.99+

JohnPERSON

0.99+

2015DATE

0.99+

AWSORGANIZATION

0.99+

KennedyPERSON

0.99+

NASAORGANIZATION

0.99+

JPLORGANIZATION

0.99+

Preston MillerPERSON

0.99+

National Security Innovation NetworkORGANIZATION

0.99+

UtahLOCATION

0.99+

Draper LabsORGANIZATION

0.99+

Lincoln LabORGANIZATION

0.99+

U. S. Air ForceORGANIZATION

0.99+

Cal PolyORGANIZATION

0.99+

San Luis ObispoLOCATION

0.99+

JFKPERSON

0.99+

last yearDATE

0.99+

EarthLOCATION

0.99+

BuckyPERSON

0.99+

United StatesLOCATION

0.99+

two yearQUANTITY

0.99+

PrestonPERSON

0.99+

21st centuryDATE

0.99+

30 yearsQUANTITY

0.99+

MillerPERSON

0.99+

two yearsQUANTITY

0.99+

U. S. GovernmentORGANIZATION

0.99+

two yearQUANTITY

0.99+

MarsLOCATION

0.99+

iPadCOMMERCIAL_ITEM

0.99+

ArizonaLOCATION

0.99+

Space Enterprise ConsortiumORGANIZATION

0.99+

United States of AmericaLOCATION

0.99+

U. S. Space ForceORGANIZATION

0.99+

Jet Propulsion LabORGANIZATION

0.99+

Neil TysonPERSON

0.99+

2024DATE

0.99+

todayDATE

0.99+

ThioPERSON

0.99+

ClintonPERSON

0.99+

OneQUANTITY

0.99+

U. S governmentORGANIZATION

0.99+

Cal PolyLOCATION

0.99+

US Space ForceORGANIZATION

0.99+

RaymondPERSON

0.99+

Ash CarterPERSON

0.99+

Space Portfolio Defense Innovation UnitORGANIZATION

0.99+

CapeLOCATION

0.99+

ESPNORGANIZATION

0.99+

one wordQUANTITY

0.99+

Keith AlexanderPERSON

0.99+

bothQUANTITY

0.99+

oneQUANTITY

0.99+

firstQUANTITY

0.99+

over 500 coursesQUANTITY

0.99+

John F Thompson V1


 

from around the globe it's thecube covering space and cyber security symposium 2020 hosted by cal poly hello everyone welcome to the space and cyber security symposium 2020 hosted by cal poly where the intersection of space and security are coming together i'm john furrier your host with thecube here in california i want to welcome our featured guest lieutenant general john f thompson with the united states space force approach to cyber security that's the topic of this session and of course he's the commander of the space and missile system center in los angeles air force base also heading up space force general thank you for coming on really appreciate you kicking this off welcome to the symposium hey so uh thank you very much john for that very kind introduction also uh very much thank you to cal poly uh for this opportunity to speak to this audience today also a special shout out to one of the organizers uh dustin brun for all of his work uh helping uh get us uh to this point uh ladies and gentlemen as uh as uh john mentioned uh i'm jt thompson uh i lead the 6 000 men and women of the united states space forces space and missile system center which is headquartered here at los angeles air force base in el segundo if you're not quite sure where that's at it's about a mile and a half from lax this is our main operating location but we do have a number of other operating locations around the country with about 500 people at kirtland air force base in albuquerque new mexico uh and about another 500 people on the front range of the rockies uh between colorado springs and uh and denver plus a smattering of other much smaller operating locations nationwide uh we're responsible for uh acquiring developing and sustaining the united states space force's critical space assets that includes the satellites in the space layer and also on the ground layer our ground segments to operate those satellites and we also are in charge of procuring launch services for the u.s space force and a number of our critical mission partners across the uh department of defense and the intelligence community um just as a couple of examples of some of the things we do if you're unfamiliar with our work we developed and currently sustained the 31 satellite gps constellation that satellite constellation while originally intended to help with global navigation those gps signals have provided trillions of dollars in unanticipated value to the global economy uh over the past three decades i mean gps is everywhere i think everybody realizes that agriculture banking the stock market the airline industry uh separate and distinct navigation systems it's really pervasive across both the capabilities for our department of defense and capabilities for our economy and and individuals billions of individuals across our country and the planet some of the other work we do for instance in the communications sector uh secure communications satellites that we design and build that link america's sons and daughters serving in the military around the world and really enable real-time support and comms for our deployed forces and those of our allies we also acquire uh infrared missile warning satellites uh that monitor the planet for missile launches and provide advanced warning uh to the u.s homeland and to our allies uh in case some of those missile launches are uh nefarious um on a note that's probably a lot closer to home maybe a lot closer to home than many of us want to think about here in the state of california in 2018 smc jumped through a bunch of red tape and bureaucracy uh to partner with the u.s forest service during the two of the largest wildfires in the state's history the camp and woolsey fires in northern california as those fires spread out of control we created processes on the fly to share data from our missile warning satellites those are satellites that are systems that are purpose built to see heat sources from thousands of miles above the planet and we collaborated with the us forest service so that firefighters on the ground uh could track those fires more in real time and better forecast fires and where they were spreading thereby saving lives and and property by identifying hot spots and flare-ups for firefighters that data that we were able to working with our contractors pass to the u.s forest service and authorities here in california was passed in less than an hour as it was collected to get it into the hands of the emergency responders the first responders as quickly as possible and doing that in an hour greatly surpassed what was available from some of the other assets in the airborne and ground-based fire spotters it was really instrumental in fighting those fires and stopping their spread we've continued uh that involvement in recent years using multiple systems to support firefighters across the western u.s this fall as they battled numerous wildfires that unfortunately continue working together with the u.s forest service and with other partners uh we like to make uh we like to think that we made a difference here but there's still a lot more work to go and i think that we should always be asking ourselves uh what else can space data be used for and how can we more rapidly get that space data to uh stakeholders so that they can use it for for purposes of good if you will how else can we protect our nation how else can we protect our friends and allies um i think a major component of the of the discussion that we will have throughout this conference is that the space landscape has changed rapidly and continues to change rapidly um just over the past few years uh john and i were talking before we went live here and 80 nations now have uh space programs 80 nearly 80 space faring nations on the planet um if you just look at one mission area that uh the department of defense is interested in and that's small launch there are currently over a hundred different small launch companies uh within the u.s industrial base vying for commercial dod and civil uh payload capabilities uh mostly to low earth orbit it's it's just truly a remarkable time if you factor in those things like artificial intelligence and machine learning um where we're revolutionary revolutionizing really uh the ways that we generate process and use data i mean it's really remarkable in 2016 so if you think about this four years ago uh nasa estimated that there were 28 terabytes of information transiting their space network each day and that was four years ago um uh obviously we've got a lot of desire to work with a lot of the people in the audience of this congress or in this conference uh we need to work with big thinkers like many of you to answer questions on how best we apply data analytics to extract value and meaning from that data we need new generations of thinkers to help apply cutting edge edge theories of data mining cyber behaviorism and internet of things 2.0 it's just truly a remarkable time uh to be in the space business and the cyber aspects of the states of the space business are truly truly daunting and important to uh to all of us um integrating cyber security into our space systems both commercial and government is a mandate um it's no longer just a nice to have as the us space force and department of the air force leadership has said many times over the past couple of years space is becoming congested and contested and that contested aspect means that we've got to focus on cyber security uh in the same way that the banking industry and cyber commerce focus on uh cyber security day in and day out the value of the data and services provided is really directly tied to the integrity and availability of that data and services from the space layer from the ground control segments associated with it and this value is not just military it's also economic and it's not just american it's also a value for the entire world particularly particularly our allies as we all depend upon space and space systems your neighbors and friends here in california that are employed at the space and missile system center uh work with network defenders we work with our commercial contractors and our systems developers um our international allies and partners to try and build as secure and resilient systems as we can from the ground up that keep the global commons of space free and open for exploration and for commerce um as john and i were talking earlier before we came online there's an aspect of cyber security for space systems especially for some of our legacy systems that's more how do we bolt this on because we fielded those space systems a number of years ago and the the challenges of cyber security in the space domain have grown so we have a part that we have to worry about bolting it on but then we have to worry about building it in as we as we field new systems and build in a flexibility that that realizes that the cyber threat or the cyber security landscape will evolve over time it's not just going to be stagnant there will always be new vulnerabilities and new threat vectors that we always have to look at look uh as secretary barrett who is our secretary of the air force likes to say most americans use space before they have their first cup of coffee in the morning the american way of life really depends on space and as part of the united states space force we work with defense leaders our congress joint and international military teammates and industry to ensure american leadership in space i really thank you for this opportunity to address the audience today john and thanks so much to cal poly for letting me be one of the speakers at this event i really look forward to this for uh several months and so with that i look forward to your questions as we kind of move along here general thank you very much for the awesome uh introductory statement uh for the folks watching on the stream brigadier general carthan is going to be in the chat answering any questions feel free to chat away he's the vice commander of space and missile systems center he'll be available um a couple comments from your keynote before i get to my questions because it just jumped in my head you mentioned the benefits of say space but the fires in california we're living that here that's really real time that's a benefit you also mentioned the ability for more people launching payloads into space and i only imagine moore's law smaller faster cheaper applies to rockets too so i'm imagining you have the benefits of space and you have now more potential objects flying out sanctioned and maybe unsanctioned so you know is it going to be more rules around that i mean this is an interesting question because it's exciting space force but for all the good there is potentially bad out there yeah so i i john i think the uh i think the basics of your question is as space becomes more congested and contested is there a need for more international norms of how satellites fly in space what kind of basic features satellites have to perhaps deorbit themselves what kind of basic protections does do all satellites should all satellites be afforded as part of a peaceful global commons of space i think those are all fantastic questions and i know that u.s and many uh allied policy makers are looking very very hard at those kinds of questions in terms of what are the norms of behavior and how we uh you know how how we field and field is the military term but you know how we uh populate uh using civil or uh commercial terms uh that space layer at different altitudes uh low earth orbit mid mid-earth orbit geosynchronous earth orbit different kinds of orbits uh what the kind of mission areas we accomplish from space that's all things that need to be definitely taken into account as uh as the place gets a little bit not a little bit as the place gets increasingly more popular day in and day out well i'm super excited for space force i know that a new generation of young folks are really interested in it's an emerging changing great space the focus here at this conference is space and cyber security intersection i'd like to get your thoughts on the approach that space force is taking to cyber security and how it impacts our national goals here in the united states yeah yeah so that's a that's a great question john let me let me talk about in two uh two basic ways but number one is and and i know um some people in the audience this might make them a little bit uncomfortable but i have to talk about the threat right um and then relative to that threat i really have to talk about the importance of uh of cyber and specifically cyber security as it relates to that threat um the threats that we face um really represent a new era of warfare and that new era of warfare involves both space and cyber uh we've seen a lot of action in recent months uh from certain countries notably china and russia uh that have threatened what i referred to earlier as the peaceful global commons of space for example uh it through many unclassified sources and media sources everybody should understand that um uh the russians have been testing on orbit uh anti-satellite capabilities it's been very clear if you were following just the week before last the department of defense released its uh 2020 military and security developments involving the people's republic of china um uh and uh it was very clear that china is developing asats electronic jammers directed energy weapons and most relevant to today's discussion offensive cyber uh capabilities there are kinetic threats uh that are very very easy to see but a cyber attack against a critical uh command and control site or against a particular spacecraft could be just as devastating to the system and our war fighters in the case of gps and important to note that that gps system also impacts many civilians who are dependent upon those systems from a first response perspective and emergency services a cyber attack against a ground control site could cause operators to lose control of a spacecraft or an attacker could feed spoofed data to a system to mislead operators so that they send emergency services personnel to the to the wrong address right attacks on spacecraft on orbit whether directly via a network of intrusion or enabled through malware introduced during the systems production uh while we're building the satellite can [ __ ] or corrupt the data denial of service type attacks on our global networks obviously would disrupt our data flow and interfere with ongoing operations and satellite control i mean if gps went down i you know i hesitate to say it this way because we might elicit some screams from the audience but if gps went down a starbucks wouldn't be able to handle your mobile order uber drivers wouldn't be able to find you and domino's certainly certainly wouldn't be able to get there in 30 minutes or less right so with a little bit of tongue-in-cheek there from a military operations perspective it's dead serious um uh we have become accustomed in the commercial world to threats like lance ransomware and malware and those things have unfortunately become commonplace in commercial terrestrial networks and computer systems however what we're seeing is that our adversaries with the increased competition in space these same techniques are being retooled if you will to use against our national security space systems uh day in and day out um as i said during my opening remarks on the importance of cyber the value of these systems is directly tied to their integrity if commanders in the field uh firefighters in california or baristas in in starbucks can't trust the data they see they're receiving then that really harms their decision-making capabilities one of the big trends we've recently seen is the mood move towards proliferated leo uh uh constellations obviously uh spacex's uh starlink uh on the commercial side and on the military side the work that darpa and my organization smc are doing on blackjack and casino as well as some space transport layer constellation work that the space development agency is designing are all really really important types of mesh network systems that will revolutionize how we plan and field warfighting systems and commercial communications and internet providing systems but they're also heavily reliant on cyber security uh we've got to make sure that they are secured to avoid an accident or international damage uh loss of control of these constellations really could be catastrophic from both a mission perspective or from uh you know satellites tumbling out of low earth orbit perspective another trend is introductions in artificial intelligence and machine learning on board spacecraft or at the edge our satellites are really not so much hardware systems with a little software anymore in the commercial sector and in the defense sector they're basically flying boxes full of software right and we need to ensure the data that we're getting out of those flying boxes full of software are helping us base our decisions on accurate data and algorithms govern governing the right actions and that those uh that those systems are impervious to the extent possible uh to nefarious uh modifications so in summation a cyber security is vital element of everything in our national security space goals and i would argue for our national uh goals uh writ large including uh economic and information uh uh dimensions uh the space force leadership at all levels uh from uh some of the brand new second lieutenants that general raymond uh swore into the space force this morning uh ceremonially from the uh air force association's air space and cyberspace conference uh to the various highest levels general raymond uh general d t thompson myself and a number of other senior leaders in this enterprise we've got to make sure that we're all working together to keep cyber security at the forefront of our space systems because it they absolutely depend on it you know you mentioned uh hardware software threats opportunities challenges i want to ask you because you you got me thinking of the minute there around infrastructure i mean we've heard critical infrastructure you know grids here on on earth you're talking about critical infrastructure a redefinition of what critical infrastructure is an extension of what we have so i'd love to get your thoughts about space force's view of that critical infrastructure vis-a-vis the threat vectors because you know the term threat vectors has been kicked around in the cyber space oh yeah threat vectors they're always increasing the surface area well if the surface area is from space it's an unlimited surface area so you got different vectors so you got new critical infrastructure developing real time really fast and you got an expanded threat vector landscape putting that in perspective for the folks that aren't really inside the ropes on these critical issues how would you explain this and how would you talk about those two things well so i tell you um i just like um uh just like uh i'm sure people in the security side or the cyber security side of the business in the banking industry feel they feel like it's uh all possible threat vectors represent a dramatic and protect potentially existential threat to all of the dollars that they have in the banking system to the financial sector on the department of defense side we've got to have sort of the same mindset um that threat vector from to and through space against critical space systems ground segments the launch enterprise or transportation uh to orbit and the various different uh domains within uh within space itself like i mentioned before uh leo mio and geo-based satellites with different orbits all of the different mission areas that are accomplished from space that i mentioned earlier some that i didn't mention like weather tactical or wide band communications uh various new features of space control all of those are things that we have to worry about from a cyber security uh threat perspective and it's a it's a daunting challenge right now right yeah it's awesome and one of the things we've been following on the hardware side here in the on the ground is the supply chain we've seen you know malware being you know really put into really obscure hardware who manufactures it as being outsourced obviously government has restrictions but with the private sector uh you mentioned china and and the us kind of working together across these these peaceful areas but you got to look at the supply chain how does the supply chain the security aspect impact the mission of the u.s space force yeah yeah so so um how about another um just in terms of an example another kind of california-based historical example right um the very first u.s satellite uh explorer one was built by uh the jet propulsion uh laboratory folks uh not far from here in el segundo up in uh up in pasadena um that satellite when it was first built in the late 50s uh weighed a little bit over 30 pounds and i'm sure that each and every part was custom made and definitely made by u.s companies fast forward to today the global supply chain is so tightly coupled and frankly many industries are so specialized almost specialized regionally around the planet we focus every day to guarantee the integrity of every component that we put in our space systems is absolutely critical to the operations of those satellites and we're dependent upon them but it becomes more difficult and more difficult to understand the the heritage if you will of some of the parts that are used the thousands of parts that are used in some of our satellites that are literally school bus sized right the space industry especially uh national security space sector um uh is relatively small compared to other commercial industries and we're moving to towards using more and more parts uh from non-us companies uh cyber security and cyber awareness have to be baked in from the beginning if we're going to be using parts that maybe we don't necessarily um understand 100 percent like an explorer one uh the the lineage of that particular part the environmental difficulties in space are well known the radiation environment the temperature extremes the vacuum those require specialized component and the us military is not the only uh customer in that space in fact we're definitely not the dominant customer uh in space anymore all those factors require us along with our other government partners and many different commercial space organizations to keep a very close eye on our supply chains from a quality perspective a security perspective and availability um there's open source reporting on supply training intrusions from um many different breaches of commercial retailers to the infectious spread of uh you know compromised patches if you will and our adversaries are aware of these techniques as i mentioned earlier with other forms of attack considering our supply chains and development networks really becomes fair game for our adversaries so we have to uh take that threat seriously um between the government and industry sectors here in the u.s we're also working with our industry partners to enact stronger defenses and assess our own vulnerabilities last fall we completed an extensive review of all of our major contracts here at space and missile system center to determine the levels of cyber security requirements we've implemented across our portfolio and it sounds really kind of you know businessy geeky if you will you know hey we looked at our contracts to make sure that we had the right clauses in our contracts to address cyber security as dynamically as we possibly could and so we found ourselves having to add new language to our contracts to require system developers to implement some more advanced uh protective measures in this evolving cyber security environment so that data handling and supply chain perspective uh protections um from contract inception to launch and operations were taken into account uh cyber security really is a key performance parameter for us now it's as important as the the mission performance of the system it's as important as cost it's as important as schedule because if we deliver the perfect system on time and on cost uh it can perform that missile warning or that communications mis mission perfectly but it's not cyber secure if it doesn't have cyber protections built into it or the ability to implement mitigations against cyber uh threats then we've essentially fielded a shoe box in space that doesn't do the k the the war fighter or the nation uh any good um supply chain risk management is a is a major challenge for us uh we're doing a lot to coordinate with our industry partners uh we're all facing it head on uh to try and build secure and trusted components uh that keep our confidence as leaders firefighters and baristas uh as the case may be uh but it is a challenge and we're trying to rise to that challenge you know this so exciting this new area because it really touches everything you know talk about geeking out on on the tech the hardware the systems but also you put your kind of mba hat on you go what's the roi of the extra development and how you how things get built because the always the exciting thing for space geeks is like you're building cool stuff people love it's it's exciting but you still have to build and cyber security has proven that security has to be baked in from the beginning and be thought as a system architecture so you're still building things which means you've got to acquire things you got to acquire parts you got to acquire build software and and sustain it how is security impacting the acquisition and the sustainment of these systems for space yeah from initial development uh through planning for the acquisition design development fielding or production fielding and sustainment it impacts all aspects of of the life cycle john uh we simply especially from the concept of baking in cyber security uh we can't wait until something is built and then try and figure out how to make it cyber secure so we've moved way further uh towards working side by side with our system developers to strengthen cyber security from the very beginning of a system's development cyber security and the resilience associated with it really have to be treated as a key system attribute as i mentioned earlier equivalent with data rates or other metrics of performance we like to talk in uh in the space world about uh mission assurance and mission assurance has always you know sort of taken us as we as we technically geek out right mission assurance has always taken us to the will this system work in space right can it work in a vacuum can it work in you know as it as it uh you know transfers through uh the van allen radiation belt or through the the um the southern hemisphere's electromagnetic anomaly right will it work out in space and now from a resiliency perspective yeah it has to work in space it's got to be functional in space but it's also got to be resistant to these cyber security threats it's it's not just i think uh general dt thompson quoted this term it's not just widget assurance anymore it's mission assurance um uh how does that satellite uh operator that ground control segment operate while under attack so let me break your question a little bit uh just for purposes of discussion into into really two parts uh cyber uh for cyber security for systems that are new and cyber security uh for systems that are in sustainment or kind of old and legacy um obviously there's cyber vulnerabilities that threaten both and we really have to employ different strategies for for defense of of each one for new systems uh we're desperately trying to implement across the department of defense in particular in the space world a kind of a devsecops methodology and practice to delivering software faster and with greater security for our space systems here at smc we have a program called enterprise ground services which is a tool kit basically a collection of tools for common command and control of different satellite systems egs as we call it has an integrated suite for defensive cyber capabilities network operators can use these tools to gain unprecedented insight to data flows and to monitor space network traffic for anomalies or other potential indicators of of bad behavior malicious behavior if you will um uh it's rudimentary at this point but because we're using devsecops and that incremental development approach as we scale it it just becomes more and more capable you know every every product increment that we field here at uh at uh la air force base uh uh we have the united space space forces west coast software factory which we've dubbed kobayashi maru they're using those agile devops uh software development practices uh to deliver uh space awareness software uh to the combined space operations center uh affectionately called the csp that c-spock is just down the road uh from cal poly uh there in san luis obispo at vandenberg air force base they've securely linked the c-spock with other space operation centers around the planet our allies australia canada and the uk uh we're partnering with all of them to enable secure and enhanced combined space operations so lots of new stuff going on as we bake in new development uh capabilities for our our space systems but as i mentioned earlier we've got large constellations on satellite of satellites on orbit right now some of them are well in excess of a decade or more old on orbit and so the design aspects of those satellites are several decades old and so but we still have to worry about them because they're critical to our space capabilities um we've been working with an air force materiel command organization uh called crows which stands for the cyber resiliency office for uh weapon systems to assess all of those legacy platforms from a cyber security perspective and develop defensive strategies and potential hardware and software upgrades to those systems to better enable them to to live through this increasingly cyber security uh concerned era that we currently live in our industry partners have been critical to to both of those different avenues both new systems and legacy systems we're working closely with them to defend and upgrade uh national assets and develop the capabilities to do similar with uh with new national assets coming online the vulnerabilities of our space systems really kind of threaten the way we've done business in the past both militarily and in the case of gps economically the impacts of that cyber security risk are clear in our acquisition and sustainment processes but i've got to tell you it that as the threat vectors change as the vulnerabilities change we've got to be nimble enough agile enough to be able to bounce back and forth we can't just say uh many people in the audience are probably familiar with the rmf or the risk management framework approach to um to reviewing uh the cyber security of a system we can't have program managers and engineers just accomplish an rmf on a system and then hey high five we're all good uh it's a journey not a destination that's cyber security and it's a constant battle rhythm throughout a weapon systems life cycle not just a single event i want to get to this commercial business needs and your needs on the next question but before i go there you mentioned the agile and i see that clearly because when you have accelerated innovation cycles you've got to be faster and we saw this in the computer industry mainframes mini computers and then when you started getting beyond me when the internet hit and pcs came out you saw the big enterprises the banks and and government start to work with startups it used to be a joke in the entrepreneurial circles is that you know there's no way if you're a startup you're ever going to get a contract with a big business enterprise now that used to be for public sector and certainly uh for you guys so as you see startups out there and there's acquisition involved i'm sure would love to love to have a contract with space force there's an roi calculation where if it's in space and you have a sustainment view edit software you might have a new kind of business model that could be attractive to startups could you share your thoughts on the folks who want to be a supplier to you uh whether they're a startup or an existing business that wants to be agile but they might not be that big company we are john that's a fantastic question we are desperately trying to reach out to to those new space advocates to those startups to those um what we sometimes refer to within the department of defense those non-traditional uh defense contractors a couple of things just for uh thinking purposes on some of the things that we're trying to highlight um uh three years ago we created here at uh space and missile system center uh the space enterprise consortium uh to provide a platform uh a contractual vehicle really to enable us to rapidly prototype uh development of space systems and to collaborate uh between the u.s space force uh traditional defense contractors non-traditional vendors like startups and even some academic institutions uh spec as we call it space enterprise consortium uses a specialized contracting tool to get contracts uh awarded quickly many in the audience may be familiar with other transaction agreements and that's what spec is based on and so far in just three years spec has awarded 75 different uh prototyping contracts worth over 800 million dollars with a 36 reduction in time to award and because it's a consortium based competition for um for these kinds of prototyping efforts the barrier to entry for small and non-traditional for startups even for academic institutions to be able to compete for these kinds of prototypings is really lowered right um uh these types of partnerships uh that we've been working through on spec uh have really helped us work with smaller companies who might not have the background or expertise in dealing with the government or in working with cyber security uh for their systems both their developmental systems and the systems that they're designing and trying to build we want to provide ways for companies large and small to partner together and support um uh kind of mutually beneficial uh relationships between all um recently uh at the annual air force association uh conference that i mentioned earlier i moderated a panel with several space industry leaders uh all from big traditional defense contractors by the way and they all stressed the importance of building bridges and partnerships uh between major contractors in the defense industry and new entrants uh and that helps us capture the benefits of speed and agility that come with small companies and startups as well as the expertise and specialized skill sets of some of those uh larger contractors uh that we rely on day in and day out advanced cyber security protections and utilization of secure facilities are just a couple of things that i think we could be prioritizing more so in those collaborations as i mentioned earlier the spec has been very successful in awarding a number of different prototyping contracts and large dollar values and it's just going to get better right there's over 400 members of the space enterprise consortium 80 of them are non-traditional kinds of vendors and we just love working with them another thing that many people in the audience may be familiar with in terms of our outreach to innovators uh if you will and innovators that include uh cyber security experts is our space pitch day events right so we held our first event last november in san francisco uh where we awarded over a two-day period about 46 million dollars to 30 different companies um that had potentially game-changing ideas these were phase two small business innovative research efforts uh that we awarded with cash on the spot uh we're planning on holding our second space pitch day in the spring of 2021. uh we're planning on doing it right here in los angeles uh covent 19 environment permitting um and we think that these are you know fantastic uh uh venues for identifying and working with high-speed startups startups and small businesses who are interested in uh really truly partnering with the us air force it's a as i said before it's a really exciting time to be a part of this business uh and working with the innovation economy uh is something that the department of defense uh really needs to do in that um the innovation that we used to think was ours you know that 80 percent of the industrial-based innovation that came from the department of defense uh the the script has been flipped there and so now more than 70 percent uh particularly in space innovation uh comes from the commercial sector not from uh not from the defense business itself and so um that's a tsunami of uh investment and a tsunami of uh capability and i need to figure out how to get my surfboard out and ride it you know what i mean yeah i mean it's one of those things where the flip the script has been flipped but it's exciting because it's impacting everything are you talking about systems architecture you're talking about software you're talking about a business model you talk about devsecops from a technical perspective but now you have a business model innovation all the theaters of uh are exploding in innovation technical business personnel this brings up the workforce challenge you've got the cyber needs for the u.s space force there's probably a great roi model for new kinds of software development that could be priced into contracts that's a entrepreneurial innovation you got the the business model theater you've got the personnel how does the industry adopt and change you guys are clearly driving this how does the industry adjust to you yeah so um i think a great way to answer that question is to just talk about the kind of people that we're trying to prioritize in the u.s space force from a from an acquisition perspective and in this particular case from a from a cyber security perspective as i mentioned earlier it's the most exciting time to be in space programs uh really since the days of apollo um uh you know just to put it in terms that you know maybe have an impact with the audience uh from 1957 until today approximately 9 000 satellites uh have been launched from the various space faring countries around the planet uh less than two thousand of those nine thousand are still up on orbit and operational and yet in the new space regime um players like spacex have plans to launch you know 12 000 satellites for some of their constellations alone it really is a remarkable time in terms of innovation and fielding of space capabilities and all of those space capabilities whether they're commercial civil or defense are going to require appropriate cyber security uh protections it's just a really exciting time uh to be working in stuff like this and so uh folks like the folks in this audience who have a passion about space and a passion about cyber security are just the kind of people that we want to work with because we need to make sure our systems are are secure and resilient we need folks that have technical and computing expertise engineering skills to be able to design cybersecure systems that can detect and mitigate attacks uh but we also as you alluded to we need people that have that business and um you know business acumen human networking background so that we can launch the startups and work with the non-traditional businesses uh help to bring them on board help to secure both their data and our data and uh and and make sure our processes and systems are are free as much as possible from uh uh from attack um for preparation for for audience members who are young and maybe thinking about getting into this uh trade space um you gotta be smart on digital networking uh you gotta understand basic internet protocols concepts uh programming languages uh database design uh learn what you can from penetration or vulnerability testing and and uh risk assessment i will tell you this and i don't think he will i know he will not mind me telling you this but you've got to be a lifelong learner and so two years ago i'm at home one evening and i get a phone call on my cell phone and it's my boss the commander of air force space command uh general j raymond who is now currently the chief of space operations and he is on temporary duty flying overseas he lands where he's going and he first thing he does when he lands is he calls me and he goes jt um while i was traveling um i noticed that there were e-books available on the commercial airliner i was traveling on and there was an e-book on something called scrumming and agile devsecops and i read it have you read it um and i said no sir but if you tell me what the title of the book is i will read it and so i got to go to my staff meeting um you know the very next week the next time we had a staff meeting and tell everybody in the stab meeting hey if the four star and the three star can read the book about scrumming then i'm pretty sure all of you around this table and all our lieutenants and our captains our gs13s all of our government employees can get smart on uh the scrumming development process and interestingly as another side i had a telephone call with him last year during the holidays where he was trying to take some leave and i said sir what are you up to today are you are you you know making eggnog for the event tonight or whatever and the chief of space operations told me no i'm trying to teach myself python i'm at lesson two and it's not going so well but i'm i'm gonna figure this out and so that kind of thing if the chief of staff or the you know the the the chief of space operations can prioritize scrumming and python language and innovation in his daily schedule then we're definitely looking for other people who can do that and we'll just say lower levels of rank uh throughout our entire space force enterprise um look i i we don't need to need people that can code a satellite from scratch but we need to know we need to have people that have a basic grasp of the programming basics and cyber security requirements and that can turn those things into into meaningful actions obviously in the space domain things like basic physics and orbital mechanics are also important uh space is not an intuitive uh domain so under understanding how things survive uh on orbit is really critical to making the right design and operational decisions and you know i know there's probably a lot because of this conference i know there's a probably a whole lot of high-speed cyber security experts out in the audience and i need those people in the u.s space force the the country is counting on it but i wouldn't discount having people that are just cyber aware or cyber savvy right i have contracting officers and logisticians and program managers and they don't have to be high-end cyber security experts but they have to be aware enough about it to be able to implement cyber security protections um into our space system so the skill set is is really really broad um our adversaries are pouring billions of dollars into uh define designing uh and fielding offensive and destructive space cyber security weapons right they've repeatedly shown really a blatant disregard of safety and international norms for good behavior on orbit and the cyber security aspects of our space systems is really a key battleground going forward so that we can maintain that as i mentioned before peaceful uh global commons of space we really need all hands on deck if you're interested in helping in uniform if you're interested in helping uh not in uniform uh but as a government employee a commercial or civil employee to help us make cyber security more important uh or more cape more able to be developed for our space systems then we'd really love to uh to work with you or have you on the team to build that safe and secure future for our space systems lieutenant general john thompson great insight thank you for sharing all that awesome stories too and motivation for the young next generation the united states space force approach of cyber security really amazing talk thank you for your time final parting question is as you look out and you had your magic wand what's your view for the next few years in terms of things that we could accomplish it's a super exciting time what do you hope for so um um first of all john thanks to you and and thanks to cal poly uh for the invitation and and thanks to everybody for uh for their interest in cyber security especially as it relates to space systems that's here at the conference um uh there's a quote and i'll read it here uh from uh bernard schriever who was the uh the founder if you will uh a legend in uh dod space the founder of the western development division which was a predecessor organization to space and missile systems center general shrever i think captures the essence of what how we see the next couple of years the world has an ample supply of people who can always come up with a dozen good reasons why new ideas will not work and should not be tried but the people who produce progress are breed apart they have the imagination the courage and the persistence to find solutions and so i think if you're hoping that the next few years of space innovation and cyber security innovation are going to be a pony ride at the county fair then perhaps you should look for another line of work because i think the next few years in space and cyber security innovation are going to be more like a rodeo um and a very dynamic rodeo as it goes it is a an awesome privilege to be part of this ecosystem it's really an honor for me to um to be able to play some small role uh in the space ecosystem and trying to improve it uh while i'm trying to improve the chances of uh of the united states of america in a uh in a space war fighting uh uh environment um and so i thank all of you for uh participating today and for this little bit of time that you've allowed me to share with you thank you sir thank you for your leadership and thank you for the for the time for this awesome event space and cyber security symposium 2020 i'm john furrier on behalf of cal poly thanks for watching [Music]

Published Date : Oct 1 2020

SUMMARY :

to the infectious spread of uh you know

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
2016DATE

0.99+

californiaLOCATION

0.99+

san franciscoLOCATION

0.99+

thousands of milesQUANTITY

0.99+

80 percentQUANTITY

0.99+

last yearDATE

0.99+

johnPERSON

0.99+

pythonTITLE

0.99+

three starQUANTITY

0.99+

last novemberDATE

0.99+

congressORGANIZATION

0.99+

albuquerqueLOCATION

0.99+

starbucksORGANIZATION

0.99+

john furrierPERSON

0.99+

John F ThompsonPERSON

0.99+

four starQUANTITY

0.99+

less than two thousandQUANTITY

0.99+

100 percentQUANTITY

0.99+

36QUANTITY

0.99+

el segundoLOCATION

0.99+

los angelesLOCATION

0.99+

trillions of dollarsQUANTITY

0.99+

less than an hourQUANTITY

0.99+

billions of dollarsQUANTITY

0.99+

1957DATE

0.99+

australiaLOCATION

0.99+

four years agoDATE

0.99+

more than 70 percentQUANTITY

0.99+

two years agoDATE

0.99+

twoQUANTITY

0.99+

cal polyORGANIZATION

0.99+

three years agoDATE

0.99+

first eventQUANTITY

0.98+

todayDATE

0.98+

john f thompsonPERSON

0.98+

approximately 9 000 satellitesQUANTITY

0.98+

12 000 satellitesQUANTITY

0.98+

tonightDATE

0.98+

three yearsQUANTITY

0.98+

over 800 million dollarsQUANTITY

0.98+

80QUANTITY

0.98+

los angelesLOCATION

0.98+

northern californiaLOCATION

0.98+

30 minutesQUANTITY

0.98+

about 500 peopleQUANTITY

0.98+

thousands of partsQUANTITY

0.98+

united statesLOCATION

0.98+

each dayQUANTITY

0.98+

2018DATE

0.98+

generalPERSON

0.98+

bernard schrieverPERSON

0.98+

over 400 membersQUANTITY

0.98+

bothQUANTITY

0.98+

next weekDATE

0.98+

two partsQUANTITY

0.98+

pasadenaLOCATION

0.97+

late 50sDATE

0.97+

2020DATE

0.97+

about a mile and a halfQUANTITY

0.97+

over 30 poundsQUANTITY

0.97+

j raymondPERSON

0.97+

two thingsQUANTITY

0.97+

darpaORGANIZATION

0.97+

department of defenseORGANIZATION

0.97+

denverLOCATION

0.97+

chinaLOCATION

0.97+

about 46 million dollarsQUANTITY

0.97+

barrettPERSON

0.96+

kirtlandLOCATION

0.96+

carthanPERSON

0.96+

spring of 2021DATE

0.96+

uberORGANIZATION

0.96+

over a hundred different small launchQUANTITY

0.96+

billions of individualsQUANTITY

0.96+

uh air force associationORGANIZATION

0.96+

raymondPERSON

0.96+

united space space forcesORGANIZATION

0.96+

500 peopleQUANTITY

0.95+

John F Thompson V1 FOR REVIEW


 

>> Narrator: From around the globe. It's theCUBE covering space in cybersecurity symposium 2020 hosted by Cal Poly. >> Hello, everyone. Welcome to the space and cybersecurity symposium, 2020 hosted by Cal Poly where the intersection of space and security are coming together. I'm John Furrier, your host with theCUBE here in California. I want to welcome our featured guest, Lieutenant General, John F. Thompson with the United States Space Force approach to cybersecurity. That's the topic of this session. And of course he's the commander of the space and missile system center in Los Angeles Air Force Base. Also heading up Space Force. General, thank you for coming on. I really appreciate to you kicking this off. Welcome to the symposium. >> Hey, so thank you very much, John, for that very kind introduction. Also very much thank you to Cal Poly for this opportunity to speak to this audience today. Also a special shout out to one of the organizers, Dustin Debrun, for all of his work, helping get us to this point. Ladies and gentlemen as a John mentioned, I'm JT Thompson. I lead the 6,000 men and women of the United States Space Force's Space and Missile System Center, which is headquartered here at Los Angeles Air Force Base and El Segundo. If you're not quite sure where that's at, it's about a mile and a half from LAX. This is our main operating location, but we do have a number of other operating locations around the country. We're about 500 people at Kirtland Air Force Base in Albuquerque, New Mexico, and an about another 500 people on the front range of the Rockies between Colorado Springs and Denver plus a smattering of other much smaller operating locations nationwide. We're responsible for acquiring, developing and sustaining the United States Space Force's, critical space assets. That includes the satellites in the space layer and also on the ground layer our ground segments to operate those satellites. And we also are in charge of procuring launch services for the US Space Force and a number of our critical mission partners across the Department of Defense and the intelligence community. Just as a couple of examples of some of the things we do, if you're unfamiliar with our work we developed and currently sustain the 31 satellite GPS constellation that satellite constellation, while originally intended to help with global navigation, those GPS signals have provided trillions of dollars in unanticipated value to the global economy over the past three decades. GPS is everywhere. I think everybody realizes that. Agriculture, banking, the stock market, the airline industry, separate and distinct navigation systems. It's really pervasive across both capabilities for our Department of Defense and capabilities for our economy and individuals, billions of individuals across our country and the planet. Some of the other work we do for instance, in the communications sector, secure communications satellites that we designed and build that link America's sons and daughters serving in the military around the world and really enable real time support and comms for our deployed forces. And those of our allies. We also acquire infrared missile warning satellites that monitor the planet for missile launches that provide advanced warning to the US Homeland and to our allies in case some of those missile launches are nefarious. On a note, that's probably a lot closer to home, maybe a lot closer to home than many of us want to think about here in the state of California. In 2018, SMC jumped through a bunch of red tape and bureaucracy to partner with the US Forest Service during two of the largest wildfires in the state's history, the Camp and Woolsey fires in Northern California. As those fires spread out of control, we created processes on the fly to share data from our missile warning satellites. Those are satellites that are systems that are purpose built to see heat sources from thousands of miles above the planet. And we collaborated with the US Forest Service so that firefighters on the ground could track those fires more in real time and better forecast fires and where they were spreading, thereby saving lives and property by identifying hotspots and flareups for firefighters. That data that we were able to working with our contractors pass to the US Forest Service and authorities here in California, was passed in less than an hour as it was collected to get it into the hands of the emergency responders, the first responders as quickly as possible and doing that in an hour greatly surpassed what was available from some of the other assets in the airborne and ground-based fire spotters. It was really instrumental in fighting those fires and stopping their spread. We've continued that involvement in recent years, using multiple systems to support firefighters across the Western US this fall, as they battled numerous wildfires that unfortunately continue. Working together with the US Forest Service and with other partners we'd like to think that we've made a difference here, but there's still a lot more work to go. And I think that we should always be asking ourselves what else can space data be used for and how can we more rapidly get that space data to stakeholders so that they can use it for purposes of good, if you will. How else can we protect our nation? How else can we protect our friends and allies? I think a major component of the discussion that we will have throughout this conference is that the space landscape has changed rapidly and continues to change rapidly. Just over the past few years, John and I were talking before we went live here and 80 nations now have space programs. Nearly 80 space faring nations on the planet. If you just look at one mission area that the Department of Defense is interested in, and that's small launch, there are currently over 100 different small launch companies within the US industrial base vying for commercial DoD and civil payload capabilities, mostly to lower earth orbit. It's truly a remarkable time. If you factor in those things like artificial intelligence and machine learning, where we're revolutionizing really, the ways that we generate process and use data. It's really remarkable. In 2016, so if you think about this four years ago, NASA estimated that there were 28 terabytes of information transiting their space network each day. And that was four years ago. Obviously we've got a lot of desire to work with a lot of the people in the audience in this conference, we need to work with big thinkers, like many of you to answer questions on how best we apply data analytics to extract value and meaning from that data. We need new generations of thinkers to help apply cutting edge theories of data mining, cyber behaviorism, and Internet of Things 2.0, it's just truly a remarkable time to be in the space business and the cyber aspects of the space business are truly, truly daunting and important to all of us. Integrating cyber security into our space systems, both commercial and government is a mandate. it's no longer just a nice to have as the US Space Force and Department of the Air Force leadership has said many times over the past couple of years, space is becoming congested and contested. And that contested aspect means that we've got to focus on cyber security in the same way that the banking industry and cyber commerce focus on cybersecurity day in and day out. The value of the data and services provided is really directly tied to the integrity and availability of that data and services from the space layer, from the ground control segments associated with it. And this value is not just military, it's also economic and it's not just American, it's also a value for the entire world, particularly our allies, as we all depend upon space and space systems. Your neighbors and friends here in California that are employed at the space and missile system center work with network defenders. We work with our commercial contractors and our systems developers, our international allies and partners to try and build as secure and resilient systems as we can from the ground up that keep the global comments of space free and open for exploration and for commerce as John and I were talking earlier, before we came online, there's an aspect of cybersecurity for space systems, especially for some of our legacy systems, that's more, how do we bolt this on? Cause we fielded those space systems a number of years ago, and the challenges of cybersecurity in the space domain have grown. So we have a part that we have to worry about, bolting it on, but then we have to worry about building it in as we field new systems and build in a flexibility that realizes that the cyber threat or the cybersecurity landscape will evolve over time. It's not just going to be stagnant. There will always be new vulnerabilities and new threat vectors that we all have to look at. Look, as Secretary Barrett, who is our secretary of the air force likes to say most Americans use space before they have their first cup of coffee in the morning. The American way of life really depends on space. And as part of the United States Space Force, we work with defense leaders, our Congress joint, and international military teammates and industry to ensure American leadership in space. I really thank you for this opportunity to address the audience today, John, and thanks so much to Cal Poly for letting me be one of the speakers at this event. I've really looked forward to this for several months. And so with that, I look forward to your questions as we kind of move along here. >> General, thank you very much for those awesome introductory statement. For the folks watching on the stream, Brigadier General Carthan's going to be in the chat, answering any questions, feel free to chat away. He's the vice commander of Space and Missile System Center, he'll be available. A couple of comments from your keynote before I get to my questions. Cause it just jumped into my head. You mentioned the benefits of say space with the fires in California. We're living that here. That's really realtime. That's a benefit. You also mentioned the ability for more people launching payloads into space. I'm only imagined Moore's law smaller, faster, cheaper applies to rockets too. So I'm imagining you have the benefits of space and you have now more potential objects flying out sanctioned and maybe unsanctioned. So is it going to be more rules around that? This is an interesting question cause it's exciting Space Force, but for all the good there is potentially bad out there. >> Yeah. So John, I think the basics of your question is as space becomes more congested and contested, is there a need for more international norms of how satellites fly in space? What kind of basic features satellites have to perhaps de orbit themselves? What kind of basic protections should all satellites be afforded as part of a peaceful global commons of space? I think those are all fantastic questions. And I know that US and many allied policy makers are looking very, very hard at those kinds of questions in terms of what are the norms of behavior and how we field, and field as the military term. But how we populate using civil or commercial terms that space layer at different altitudes, lower earth orbit, mid earth orbit, geosynchronous earth orbit, different kinds of orbits, what the kind of mission areas we accomplished from space. That's all things that need to be definitely taken into account as the place gets a little bit, not a little bit as the place gets increasingly more popular day in and day out. >> I'm super excited for Space Force. I know that a new generation of young folks are really interested in it's an emerging, changing great space. The focus here at this conference is space and cybersecurity, the intersection. I'd like to get your thoughts on the approach that a space force is taking to cybersecurity and how it impacts our national goals here in the United States. >> Yeah. So that's a great question John, let me talk about it in two basic ways. At number one is an and I know some people in the audience, this might make them a little bit uncomfortable, but I have to talk about the threat. And then relative to that threat, I really have to talk about the importance of cyber and specifically cyber security, as it relates to that threat. The threats that we face really represented a new era of warfare and that new era of warfare involves both space and cyber. We've seen a lot of action in recent months from certain countries, notably China and Russia that have threatened what I referred to earlier as the peaceful global commons of space. For example, it threw many unclassified sources and media sources. Everybody should understand that the Russians have been testing on orbit anti-satellite capabilities. It's been very clear if you were following just the week before last, the Department of Defense released its 2020 military and security developments involving the People's Republic of China. And it was very clear that China is developing ASATs, electronic jammers, directed energy weapons, and most relevant to today's discussion, offensive cyber capabilities. There are kinetic threats that are very, very easy to see, but a cyber attack against a critical command and control site or against a particular spacecraft could be just as devastating to the system and our war fighters in the case of GPS and important to note that that GPS system also impacts many civilians who are dependent on those systems from a first response perspective and emergency services, a cyber attack against a ground control site could cause operators to lose control of a spacecraft or an attacker could feed spoofed data to assist them to mislead operators so that they sent emergency services personnel to the wrong address. Attacks on spacecraft on orbit, whether directly via a network intrusion or enabled through malware introduced during the system's production while we're building the satellite can cripple or corrupt the data. Denial-of-service type attacks on our global networks obviously would disrupt our data flow and interfere with ongoing operations and satellite control. If GPS went down, I hesitate to say it this way, cause we might elicit some screams from the audience. But if GPS went down a Starbucks, wouldn't be able to handle your mobile order, Uber drivers wouldn't be able to find you. And Domino's certainly wouldn't be able to get there in 30 minutes or less. So with a little bit of tongue in cheek there from a military operations perspective, it's dead serious. We have become accustomed in the commercial world to threats like ransomware and malware. And those things have unfortunately become commonplace in commercial terrestrial networks and computer systems. However, what we're seeing is that our adversaries with the increased competition in space these same techniques are being retooled, if you will, to use against our national security space systems day in and day out. As I said, during my opening remarks on the importance of cyber, the value of these systems is directly tied to their integrity. If commanders in the field, firefighters in California or baristas in Starbucks, can't trust the data they're receiving, then that really harms their decision making capabilities. One of the big trends we've recently seen is the move towards proliferated LEO constellations, obviously Space X's Starlink on the commercial side and on the military side, the work that DARPA and my organization SMC are doing on Blackjack and Casino, as well as some space transport layer constellation work that the space development agency is designing are all really, really important types of mesh network systems that will revolutionaries how we plan and field war fighting systems and commercial communications and internet providing systems. But they're also heavily reliant on cybersecurity. We've got to make sure that they are secured to avoid an accident or international damage. Loss of control of these constellations really could be catastrophic from both a mission perspective or from a satellites tumbling out of low earth orbit perspective. Another trend is introductions in artificial intelligence and machine learning, onboard spacecraft are at the edge. Our satellites are really not so much hardware systems with a little software anymore in the commercial sector and in the defense sector, they're basically flying boxes full of software. And we need to ensure that data that we're getting out of those flying boxes full of software are helping us base our decisions on accurate data and algorithms, governing the right actions and that those systems are impervious to the extent possible to nefarious modifications. So in summation, cybersecurity is a vital element of everything in our national security space goals. And I would argue for our national goals, writ large, including economic and information dimensions, the Space Force leadership at all levels from some of the brand new second lieutenants that general Raymond swore in to the space force this morning, ceremonially from the air force associations, airspace and cyberspace conference to the various highest levels, General Raymond, General DT Thompson, myself, and a number of other senior leaders in this enterprise. We've got to make sure that we're all working together to keep cyber security at the forefront of our space systems cause they absolutely depend on it. >> You mentioned hardware, software threats, opportunities, challenges. I want to ask you because you got me thinking of the minute they're around infrastructure. We've heard critical infrastructure, grids here on earth. You're talking about critical infrastructure, a redefinition of what critical infrastructure is, an extension of what we have. So I'd love to get your thoughts about Space Force's view of that critical infrastructure vis-a-vis the threat vectors, because the term threat vectors has been kicked around in the cyberspace. Oh you have threat vectors. They're always increasing the surface area. If the surface area is from space, it's an unlimited service area. So you got different vectors. So you've got new critical infrastructure developing real time, really fast. And you got an expanded threat vector landscape. Putting that in perspective for the folks that aren't really inside the ropes on these critical issues. How would you explain this and how would you talk about those two things? >> So I tell you, just like, I'm sure people in the security side or the cybersecurity side of the business in the banking industry feel, they feel like it's all possible threat vectors represent a dramatic and protect potentially existential threat to all of the dollars that they have in the banking system, to the financial sector. On the Department of Defense side, we've got to have sort of the same mindset. That threat vector from, to, and through space against critical space systems, ground segments, the launch enterprise, or transportation to orbit and the various different domains within space itself. Like I mentioned before, LEO, MEO and GEO based satellites with different orbits, all of the different mission areas that are accomplished from space that I mentioned earlier, some that I did mention like a weather tactical or wide band communications, various new features of space control. All of those are things that we have to worry about from a cyber security threat perspective. And it's a daunting challenge right now. >> Yeah, that's awesome. And one of the things we've been falling on the hardware side on the ground is the supply chain. We've seen, malware being, really put in a really obscure hardware. Who manufactures it? Is it being outsourced? Obviously government has restrictions, but with the private sector, you mentioned China and the US kind of working together across these peaceful areas. But you got to look at the supply chain. How does the supply chain in the security aspect impact the mission of the US space Force? >> Yeah. Yeah. So how about another, just in terms of an example, another kind of California based historical example. The very first US Satellite, Explorer 1, was built by the jet propulsion laboratory folks, not far from here in El Segundo, up in Pasadena, that satellite, when it was first built in the late 50s weighing a little bit, over 30 pounds. And I'm sure that each and every part was custom made and definitely made by US companies. Fast forward to today. The global supply chain is so tightly coupled, and frankly many industries are so specialized, almost specialized regionally around the planet. We focus every day to guarantee the integrity of every component that we put in our space systems is absolutely critical to the operations of those satellites and we're dependent upon them, but it becomes more difficult and more difficult to understand the heritage, if you will, of some of the parts that are used, the thousands of parts that are used in some of our satellites that are literally school bus sized. The space industry, especially national security space sector is relatively small compared to other commercial industries. And we're moving towards using more and more parts from non US companies. Cybersecurity and cyber awareness have to be baked in from the beginning if we're going to be using parts that maybe we don't necessarily understand 100% like an Explorer one, the lineage of that particular part. The environmental difficulties in space are well known. The radiation environment, the temperature extremes, the vacuum, those require specialized component. And the US military is not the only customer in that space. In fact, we're definitely not the dominant customer in space anymore. All those factors require us along with our other government partners and many different commercial space organizations to keep a very close eye on our supply chains, from a quality perspective, a security perspective and availability. There's open source reporting on supply training intrusions from many different breaches of commercial retailers to the infectious spread of compromised patches, if you will. And our adversaries are aware of these techniques. As I mentioned earlier, with other forms of attack, considering our supply chains and development networks really becomes fair game for our adversaries. So we have to take that threat seriously. Between the government and industry sectors here in the US. We're also working with our industry partners to enact stronger defenses and assess our own vulnerabilities. Last fall, we completed an extensive review of all of our major contracts here at Space and Missile System Center to determine the levels of cyber security requirements we've implemented across our portfolio. And it sounds really kind of businessy geeky, if you will. Hey, we looked at our contracts to make sure that we had the right clauses in our contracts to address cybersecurity as dynamically as we possibly could. And so we found ourselves having to add new language to our contracts, to require system developers, to implement some more advanced protective measures in this evolving cyber security environment. So that data handling and supply chain protections from contract inception to launch and operations were taken into account. Cyber security really is a key performance parameter for us now. Performance of the system, It's as important as cost, it's as important as schedule, because if we deliver the perfect system on time and on cost, it can perform that missile warning or that communications mission perfectly, but it's not cyber secure. If it's doesn't have cyber protections built into it, or the ability to implement mitigations against cyber threats, then we've essentially fielded a shoe box in space that doesn't do the CA the war fighter or the nation any good. Supply chain risk management is a major challenge for us. We're doing a lot to coordinate with our industry partners. We're all facing it head on to try and build secure and trusted components that keep our confidence as leaders, firefighters, and baristas as the case may be. But it is a challenge. And we're trying to rise to that challenge. >> This is so exciting this new area, because it really touches everything. Talk about geeking out on the tech, the hardware, the systems but also you put your kind of MBA hat on you go, what's the ROI of extra development and how things get built. Because the always the exciting thing for space geeks is like, if you're building cool stuff, it's exciting, but you still have to build. And cybersecurity has proven that security has to be baked in from the beginning and be thought as a system architecture. So you're still building things, which means you got to acquire things, you got to acquire parts, you got acquire build software and sustain it. How is security impacting the acquisition and the sustainment of these systems for space? >> Yeah. From initial development, through planning for the acquisition, design, development, our production fielding and sustainment, it impacts all aspects of the life cycle, John. We simply, especially from the concept of baking in cybersecurity, we can't wait until something is built and then try and figure out how to make it cyber secure. So we've moved way further towards working side by side with our system developers to strengthen cybersecurity from the very beginning of a systems development, cyber security, and the resilience associated with it really have to be treated as a key system attribute. As I mentioned earlier, equivalent with data rates or other metrics of performance. We like to talk in the space world about mission assurance and mission assurance has always sort of taken us as we technically geek out. Mission assurance has always taken us to the will this system work in space. Can it work in a vacuum? Can it work in as it transfers through the Van Allen radiation belt or through the Southern hemisphere's electromagnetic anomaly? Will it work out in space? And now from a resiliency perspective, yeah, it has to work in space. It's got to be functional in space, but it's also got to be resistant to these cybersecurity threats. It's not just, I think a General D.T Thompson quoted this term. It's not just widget assurance anymore. It's mission assurance. How does that satellite operator that ground control segment operate while under attack? So let me break your question a little bit, just for purposes of discussion into really two parts, cybersecurity, for systems that are new and cybersecurity for systems that are in sustainment are kind of old and legacy. Obviously there's cyber vulnerabilities that threatened both, and we really have to employ different strategies for defensive of each one. For new systems. We're desperately trying to implement across the Department of Defense and particularly in the space world, a kind of a dev sec ops methodology and practice to delivering software faster and with greater security for our space systems. Here at SMC, we have a program called enterprise ground services, which is a toolkit, basically a collection of tools for common command and control of different satellite systems, EGS as we call it has an integrated suite for defensive cyber capabilities. Network operators can use these tools to gain unprecedented insight to data flows and to monitor space network traffic for anomalies or other potential indicators of a bad behavior, malicious behavior, if you will, it's rudimentary at this point, but because we're using DevSecOps and that incremental development approach, as we scale it, it just becomes more and more capable. Every product increment that we feel. Here at LA Air Force Base, we have the United Space Force's West Coast Software Factory, which we've dubbed the Kobayashi Maru. They're using those agile DevOps software development practices to deliver a space awareness software to the combined space operations center. Affectionately called the CSpock that CSpock is just on the road from Cal Poly there in San Luis Obispo at Vandenberg Air Force Base. They've so securely linked the sea Spock with other space operation centers around the planet, our allies, Australia, Canada, and the UK. We're partnering with all of them to enable secure and enhanced combined space operations. So lots of new stuff going on as we bake in new development capabilities for our space systems. But as I mentioned earlier, we've got large constellations of satellites on orbit right now. Some of them are well in excess of a decade or more or old on orbit. And so the design aspects of those satellites are several decades old. But we still have to worry about them cause they're critical to our space capabilities. We've been working with an air force material command organization called CROWS, which stands for the Cyber Resiliency Office for Weapon Systems to assess all of those legacy platforms from a cyber security perspective and develop defensive strategies and potential hardware and software upgrades to those systems to better enable them to live through this increasingly cybersecurity concerned era that we currently live in. Our industry partners have been critical to both of those different avenues. Both new systems and legacy systems. We're working closely with them to defend and upgrade national assets and develop the capabilities to do similar with new national assets coming online. The vulnerabilities of our space systems really kind of threatened the way we've done business in the past, both militarily and in the case of GPS economically. The impacts of that cybersecurity risk are clear in our acquisition and sustainment processes, but I've got to tell you, as the threat vectors change, as the vulnerabilities change, we've got to be nimble enough, agile enough, to be able to bounce back and forth. We can't just say, many people in the audience are probably familiar with the RMF or the Risk Management Framework approach to reviewing the cyber security of a system. We can't have program managers and engineers just accomplish an RMF on a system. And then, hey, high five, we're all good. It's a journey, not a destination, that's cybersecurity. And it's a constant battle rhythm through our weapon systems lifecycle, not just a single event. >> I want to get to this commercial business needs and your needs on the next question. But before I go there, you mentioned agile. And I see that clearly because when you have accelerated innovation cycles, you've got to be faster. And we saw this in the computer industry, mainframes, mini computers, and then we started getting beyond maybe when the internet hit and PCs came out, you saw the big enterprises, the banks and government start to work with startups. And it used to be a joke in the entrepreneurial circles is that, there's no way if you are a startup you're ever going to get a contract with a big business enterprise. Now that used to be for public sector and certainly for you guys. So as you see startups out there and there's acquisition involved, I'm sure would love to have a contract with Space Force. There's an ROI calculation where if it's in space and you have a sustainment view and it's software, you might have a new kind of business model that could be attractive to startups. Could you share your thoughts on the folks who want to be a supplier to you, whether they're a startup or an existing business that wants to be agile, but they might not be that big company. >> John, that's a fantastic question. We're desperately trying to reach out to those new space advocates, to those startups, to those what we sometimes refer to, within the Department of Defense, those non traditional defense contractors. A couple of things just for thinking purposes on some of the things that we're trying to highlight. Three years ago, we created here at Space and Missile System Center, the Space Enterprise Consortium to provide a platform, a contractual vehicle, really to enable us to rapidly prototype, development of space systems and to collaborate between the US Space Force, traditional defense contractors, non traditional vendors like startups, and even some academic institutions. SPEC, as we call it, Space Enterprise Consortium uses a specialized contracting tool to get contracts awarded quickly. Many in the audience may be familiar with other transaction agreements. And that's what SPEC is based on. And so far in just three years, SPEC has awarded 75 different prototyping contracts worth over $800 million with a 36% reduction in time to award. And because it's a consortium based competition for these kinds of prototyping efforts, the barrier to entry for small and nontraditional, for startups, even for academic institutions to be able to compete for these kinds of prototyping has really lowered. These types of partnerships that we've been working through on spec have really helped us work with smaller companies who might not have the background or expertise in dealing with the government or in working with cyber security for their systems, both our developmental systems and the systems that they're designing and trying to build. We want to provide ways for companies large and small to partner together in support kind of mutually beneficial relationships between all. Recently at the Annual Air Force Association conference that I mentioned earlier, I moderated a panel with several space industry leaders, all from big traditional defense contractors, by the way. And they all stressed the importance of building bridges and partnerships between major contractors in the defense industry and new entrance. And that helps us capture the benefits of speed and agility that come with small companies and startups, as well as the expertise and specialized skill sets of some of those larger contractors that we rely on day in and day out. Advanced cyber security protections and utilization of secure facilities are just a couple of things that I think we could be prioritizing more so in those collaborations. As I mentioned earlier, the SPEC has been very successful in awarding a number of different prototyping contracts and large dollar values. And it's just going to get better. There's over 400 members of the space enterprise consortium, 80% of them are non traditional kinds of vendors. And we just love working with them. Another thing that many people in the audience may be familiar with in terms of our outreach to innovators, if you will, and innovators that include cyber security experts is our space pitch day events. So we held our first event last November in San Francisco, where we awarded over a two day period about $46 million to 30 different companies that had potentially game changing ideas. These were phase two small business innovative research efforts that we awarded with cash on the spot. We're planning on holding our second space pitch day in the spring of 2021. We're planning on doing it right here in Los Angeles, COVID-19 environment permitting. And we think that these are fantastic venues for identifying and working with high-speed startups, and small businesses who are interested in really, truly partnering with the US Air Force. It's, as I said before, it's a really exciting time to be a part of this business. And working with the innovation economy is something that the Department of Defense really needs to do in that the innovation that we used to think was ours. That 80% of the industrial base innovation that came from the Department of Defense, the script has been flipped there. And so now more than 70%, particularly in space innovation comes from the commercial sector, not from the defense business itself. And so that's a tsunami of investment and a tsunami of a capability. And I need to figure out how to get my surfboard out and ride it, you know what I mean? >> Yeah, It's one of those things where the script has been flipped, but it's exciting because it's impacting everything. When you're talking about systems architecture? You're talking about software, you're talking about a business model. You're talking about dev sec opsx from a technical perspective, but now you have a business model innovation. All the theaters are exploding in innovation, technical, business, personnel. This brings up the workforce challenge. You've got the cyber needs for the US Space Force, It's probably great ROI model for new kinds of software development that could be priced into contracts. That's a entrepreneurial innovation, you've got the business model theater, you've got the personnel. How does the industry adopt and change? You guys are clearly driving this. How does the industry adjust to you? >> Yeah. So I think a great way to answer that question is to just talk about the kind of people that we're trying to prioritize in the US Space Force from an acquisition perspective, and in this particular case from a cybersecurity perspective. As I mentioned earlier, it's the most exciting time to be in space programs, really since the days of Apollo. Just to put it in terms that maybe have an impact with the audience. From 1957 until today, approximately 9,000 satellites have been launched from the various space varying countries around the planet. Less than 2000 of those 9,000 are still up on orbit and operational. And yet in the new space regime players like Space X have plans to launch, 12,000 satellites for some of their constellations alone. It really is a remarkable time in terms of innovation and fielding of space capabilities and all of those space capabilities, whether they're commercial, civil, or defense are going to require appropriate cybersecurity protections. It's just a really exciting time to be working in stuff like this. And so folks like the folks in this audience who have a passion about space and a passion about cybersecurity are just the kind of people that we want to work with. Cause we need to make sure our systems are secure and resilient. We need folks that have technical and computing expertise, engineering skills to be able to design cyber secure systems that can detect and mitigate attacks. But we also, as you alluded to, we need people that have that business and business acumen, human networking background, so that we can launch the startups and work with the non traditional businesses. Help to bring them on board help, to secure both their data and our data and make sure our processes and systems are free as much as possible from attack. For preparation, for audience members who are young and maybe thinking about getting into this trade space, you got to be smart on digital networking. You got to understand basic internet protocols, concepts, programming languages, database design. Learn what you can for penetration or vulnerability testing and a risk assessment. I will tell you this, and I don't think he will, I know he will not mind me telling you this, but you got to be a lifelong learner and so two years ago, I'm at home evening and I get a phone call on my cell phone and it's my boss, the commander of Air Force Space command, General, J. Raymond, who is now currently the Chief of Space Operations. And he is on temporary duty, flying overseas. He lands where he's going and first thing he does when he lands is he calls me and he goes JT, while I was traveling, I noticed that there were eBooks available on the commercial airliner I was traveling on and there was an ebook on something called scrumming and agile DevSecOps. And I read it, have you read it? And I said, no, sir. But if you tell me what the title of the book is, I will read it. And so I got to go to my staff meeting, the very next week, the next time we had a staff meeting and tell everybody in the staff meeting, hey, if the four star and the three star can read the book about scrumming, then I'm pretty sure all of you around this table and all our lieutenants and our captains our GS13s, All of our government employees can get smart on the scrumming development process. And interestingly as another side, I had a telephone call with him last year during the holidays, where he was trying to take some leave. And I said, sir, what are you up to today? Are you making eggnog for the event tonight or whatever. And the Chief of Space Operations told me no, I'm trying to teach myself Python. I'm at lesson two, and it's not going so well, but I'm going to figure this out. And so that kind of thing, if the chief of staff or the Chief of Space Operations can prioritize scrumming and Python language and innovation in his daily schedule, then we're definitely looking for other people who can do that. And we'll just say, lower levels of rank throughout our entire space force enterprise. Look, we don't need people that can code a satellite from scratch, but we need to know, we need to have people that have a basic grasp of the programming basics and cybersecurity requirements. And that can turn those things into meaningful actions, obviously in the space domain, things like basic physics and orbital mechanics are also important spaces, not an intuitive domain. So under understanding how things survive on orbit is really critical to making the right design and operational decisions. And I know there's probably a lot, because of this conference. I know there's probably a whole lot of high speed cybersecurity experts out in the audience. And I need those people in the US Space Force. The country is counting on it, but I wouldn't discount having people that are just cyber aware or cyber savvy. I have contracting officers and logisticians and program managers, and they don't have to be high end cybersecurity experts, but they have to be aware enough about it to be able to implement cyber security protections into our space systems. So the skill set is really, really broad. Our adversaries are pouring billions of dollars into designing and fielding offensive and destructive space, cybersecurity weapons. They repeatedly shown really a blatant disregard of safety and international norms for good behavior on orbit. And the cyber security aspects of our space systems is really a key battleground going forward so that we can maintain that. As I mentioned before, peaceful global comments of space, we really need all hands on deck. If you're interested in helping in uniform, if you're interested in helping, not in uniform, but as a government employee, a commercial or civil employee to help us make cyber security more important or more able to be developed for our space systems. And we'd really love to work with you or have you on the team to build that safe and secure future for our space systems. >> Lieutenant General John Thompson, great insight. Thank you for sharing all that awesome stories too, and motivation for the young next generation. The United States Space Force approach to cybersecurity. Really amazing talk, thank you for your time. Final parting question is, as you look out and you have your magic wand, what's your view for the next few years in terms of things that we could accomplish? It's a super exciting time. What do you hope for? >> So first of all, John, thanks to you and thanks to Cal Poly for the invitation and thanks to everybody for their interest in cybersecurity, especially as it relates to space systems, that's here at the conference. There's a quote, and I'll read it here from Bernard Schriever, who was the founder, if you will, a legend in a DoD space, the founder of the Western development division, which was a predecessor organization to Space and Missile System Center, General Schriever, I think captures the essence of how we see the next couple of years. "The world has an ample supply of people "who can always come up with a dozen good reasons "why new ideas will not work and should not be tried, "but the people who produce progress are breed apart. "They have the imagination, "the courage and the persistence to find solutions." And so I think if you're hoping that the next few years of space innovation and cybersecurity innovation are going to be upon a pony ride at the County fair, then perhaps you should look for another line of work, because I think the next few years in space and cybersecurity innovation are going to be more like a rodeo and a very dynamic rodeo as it goes. It is an awesome privilege to be part of this ecosystem. It's really an honor for me to be able to play some small role in the space ecosystem and trying to improve it while I'm trying to improve the chances of the United States of America in a space war fighting environment. And so I thank all of you for participating today and for this little bit of time that you've allowed me to share with you. Thank you. >> Sir, thank you for your leadership and thank you for the time for this awesome event, Space and Cyber Cybersecurity Symposium 2020, I'm John Furrier on behalf of Cal Poly, thanks for watching. (mellow music)

Published Date : Sep 16 2020

SUMMARY :

Narrator: From around the globe. And of course he's the and Department of the Air Force leadership but for all the good there and field as the military term. and cybersecurity, the intersection. in the case of GPS and important to note of the minute they're and the various different of the US space Force? or the ability to implement mitigations and the sustainment of and in the case of GPS economically. on the folks who want the barrier to entry How does the industry adjust to you? and they don't have to be high and motivation for the hoping that the next few years for the time for this awesome event,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dustin DebrunPERSON

0.99+

Bernard SchrieverPERSON

0.99+

JohnPERSON

0.99+

CaliforniaLOCATION

0.99+

JT ThompsonPERSON

0.99+

Cal PolyORGANIZATION

0.99+

Department of DefenseORGANIZATION

0.99+

PasadenaLOCATION

0.99+

Space ForceORGANIZATION

0.99+

SMCORGANIZATION

0.99+

El SegundoLOCATION

0.99+

2016DATE

0.99+

US Forest ServiceORGANIZATION

0.99+

NASAORGANIZATION

0.99+

John FurrierPERSON

0.99+

Space Enterprise ConsortiumORGANIZATION

0.99+

Department of DefenseORGANIZATION

0.99+

United Space ForceORGANIZATION

0.99+

Los AngelesLOCATION

0.99+

US Forest ServiceORGANIZATION

0.99+

San Luis ObispoLOCATION

0.99+

United States Space ForceORGANIZATION

0.99+

USLOCATION

0.99+

John F. ThompsonPERSON

0.99+

DenverLOCATION

0.99+

US Space ForceORGANIZATION

0.99+

LAXLOCATION

0.99+

United States Space ForceORGANIZATION

0.99+

28 terabytesQUANTITY

0.99+

Space and Missile System CenterORGANIZATION

0.99+

United States Space ForceORGANIZATION

0.99+

36%QUANTITY

0.99+

80%QUANTITY

0.99+

tonightDATE

0.99+

DARPAORGANIZATION

0.99+

Department of DefenseORGANIZATION

0.99+

2018DATE

0.99+

Cal PolyORGANIZATION

0.99+

twoQUANTITY

0.99+

US Air ForceORGANIZATION

0.99+

last yearDATE

0.99+

San FranciscoLOCATION

0.99+

thousands of milesQUANTITY

0.99+

Space Enterprise ConsortiumORGANIZATION

0.99+

United StatesLOCATION

0.99+

less than an hourQUANTITY

0.99+

UberORGANIZATION

0.99+

three starQUANTITY

0.99+

John F ThompsonPERSON

0.99+

CROWSORGANIZATION

0.99+

Northern CaliforniaLOCATION

0.99+

El SegundoLOCATION

0.99+

West Coast Software FactoryORGANIZATION

0.99+

more than 70%QUANTITY

0.99+

two partsQUANTITY

0.99+

J. RaymondPERSON

0.99+

GEOORGANIZATION

0.99+

over 30 poundsQUANTITY

0.99+

three yearsQUANTITY

0.99+

each dayQUANTITY

0.99+

Colorado SpringsLOCATION

0.99+

billions of dollarsQUANTITY

0.99+

over $800 millionQUANTITY

0.99+

BothQUANTITY

0.99+

PythonTITLE

0.99+

two thingsQUANTITY

0.99+

SPECORGANIZATION

0.99+

AlbuquerqueLOCATION

0.99+

Space XORGANIZATION

0.99+

MEOORGANIZATION

0.99+

trillions of dollarsQUANTITY

0.99+

100%QUANTITY

0.99+