Image Title

Search Results for Venetian Conference Center:

Kevin Miller and Ed Walsh | AWS re:Invent 2022 - Global Startup Program


 

hi everybody welcome back to re invent 2022. this is thecube's exclusive coverage we're here at the satellite set it's up on the fifth floor of the Venetian Conference Center and this is part of the global startup program the AWS startup showcase series that we've been running all through last year and and into this year with AWS and featuring some of its its Global Partners Ed wallson series the CEO of chaos search many times Cube Alum and Kevin Miller there's also a cube Alum vice president GM of S3 at AWS guys good to see you again yeah great to see you Dave hi Kevin this is we call this our Super Bowl so this must be like your I don't know uh World Cup it's a pretty big event yeah it's the World Cup for sure yeah so a lot of S3 talk you know I mean that's what got us all started in 2006 so absolutely what's new in S3 yeah it's been a great show we've had a number of really interesting launches over the last few weeks and a few at the show as well so you know we've been really focused on helping customers that are running Mass scale data Lakes including you know whether it's structured or unstructured data we actually announced just a few just an hour ago I think it was a new capability to give customers cross-account access points for sharing data securely with other parts of the organization and that's something that we'd heard from customers is as they are growing and have more data sets and they're looking to to get more out of their data they are increasingly looking to enable multiple teams across their businesses to access those data sets securely and that's what we provide with cross-count access points we also launched yesterday our multi-region access point failover capabilities and so again this is where customers have data sets and they're using multiple regions for certain critical workloads they're now able to to use that to fail to control the failover between different regions in AWS and then one other launch I would just highlight is some improvements we made to storage lens which is our really a very novel and you need capability to help customers really understand what storage they have where who's accessing it when it's being accessed and we added a bunch of new metrics storage lens has been pretty exciting for a lot of customers in fact we looked at the data and saw that customers who have adopted storage lens typically within six months they saved more than six times what they had invested in turning storage lens on and certainly in this environment right now we have a lot of customers who are it's pretty top of mind they're looking for ways to optimize their their costs in the cloud and take some of those savings and be able to reinvest them in new innovation so pretty exciting with the storage lens launch I think what's interesting about S3 is that you know pre-cloud Object Store was this kind of a niche right and then of course you guys announced you know S3 in 2006 as I said and okay great you know cheap and deep storage simple get put now the conversations about how to enable value from from data absolutely analytics and it's just a whole new world and Ed you've talked many times I love the term yeah we built chaos search on the on the shoulders of giants right and so the under underlying that is S3 but the value that you can build on top of that has been key and I don't think we've talked about his shoulders and Giants but we've talked about how we literally you know we have a big Vision right so hard to kind of solve the challenge to analytics at scale we really focus on the you know the you know Big Data coming environment get analytics so we talk about the on the shoulders Giants obviously Isaac Newton's you know metaphor of I learned from everything before and we layer on top so really when you talk about all the things come from S3 like I just smile because like we picked it up naturally we went all in an S3 and this is where I think you're going Dave but everyone is so let's just cut the chase like so any of the data platforms you're using S3 is what you're building but we did it a little bit differently so at first people using a cold storage like you said and then they ETL it up into a different platforms for analytics of different sorts now people are using it closer they're doing caching layers and cashing out and they're that's where but that's where the attributes of a scale or reliability are what we did is we actually make S3 a database so literally we have no persistence outside that three and that kind of comes in so it's working really well with clients because most of the thing is we pick up all these attributes of scale reliability and it shows up in the clients environments and so when you launch all these new scalable things we just see it like our clients constantly comment like one of our biggest customers fintech in uh Europe they go to Black Friday again black Friday's not one days and they lose scale from what is it 58 terabytes a day and they're going up to 187 terabytes a day and we don't Flinch they say how do you do that well we built our platform on S3 as long as you can stream it to S3 so they're saying I can't overrun S3 and it's a natural play so it's it's really nice that but we take out those attributes but same thing that's why we're able to you know help clients get you know really you know Equifax is a good example maybe they're able to consolidate 12 their divisions on one platform we couldn't have done that without the scale and the performance of what you can get S3 but also they saved 90 I'm able to do that but that's really because the only persistence is S3 and what you guys are delivering but and then we really for focus on shoulders Giants we're doing on top of that innovating on top of your platforms and bringing that out so things like you know we have a unique data representation that makes it easy to ingest this data because it's kind of coming at you four v's of big data we allow you to do that make it performant on s3h so now you're doing hot analytics on S3 as if it's just a native database in memory but there's no memory SSC caching and then multi-model once you get it there don't move it leverage it in place so you know elasticsearch access you know Cabana grafana access or SQL access with your tools so we're seeing that constantly but we always talk about on the shoulders of giants but even this week I get comments from our customers like how did you do that and most of it is because we built on top of what you guys provided so it's really working out pretty well and you know we talk a lot about digital transformation of course we had the pleasure sitting down with Adam solipski prior John Furrier flew to Seattle sits down his annual one-on-one with the AWS CEO which is kind of cool yeah it was it's good it's like study for the test you know and uh and so but but one of the interesting things he said was you know we're one of our challenges going forward is is how do we go Beyond digital transformation into business transformation like okay well that's that's interesting I was talking to a customer today AWS customer and obviously others because they're 100 year old company and they're basically their business was they call them like the Uber for for servicing appliances when your Appliance breaks you got to get a person to serve it a service if it's out of warranty you know these guys do that so they got to basically have a you know a network of technicians yeah and they gotta deal with the customers no phone right so they had a completely you know that was a business transformation right they're becoming you know everybody says they're coming a software company but they're building it of course yeah right on the cloud so wonder if you guys could each talk about what's what you're seeing in terms of changing not only in the sort of I.T and the digital transformation but also the business transformation yeah I know I I 100 agree that I think business transformation is probably that one of the top themes I'm hearing from customers of all sizes right now even in this environment I think customers are looking for what can I do to drive top line or you know improve bottom line or just improve my customer experience and really you know sort of have that effect where I'm helping customers get more done and you know it is it is very tricky because to do that successfully the customers that are doing that successfully I think are really getting into the lines of businesses and figuring out you know it's probably a different skill set possibly a different culture different norms and practices and process and so it's it's a lot more than just a like you said a lot more than just the technology involved but when it you know we sort of liquidate it down into the data that's where absolutely we see that as a critical function for lines of businesses to become more comfortable first off knowing what data sets they have what data they they could access but possibly aren't today and then starting to tap into those data sources and then as as that progresses figuring out how to share and collaborate with data sets across a company to you know to correlate across those data sets and and drive more insights and then as all that's being done of course it's important to measure the results and be able to really see is this what what effect is this having and proving that effect and certainly I've seen plenty of customers be able to show you know this is a percentage increase in top or bottom line and uh so that pattern is playing out a lot and actually a lot of how we think about where we're going with S3 is related to how do we make it easier for customers to to do everything that I just described to have to understand what data they have to make it accessible and you know it's great to have such a great ecosystem of partners that are then building on top of that and innovating to help customers connect really directly with the businesses that they're running and driving those insights well and customers are hours today one of the things I loved that Adam said he said where Amazon is strategically very very patient but tactically we're really impatient and the customers out there like how are you going to help me increase Revenue how are you going to help me cut costs you know we were talking about how off off camera how you know software can actually help do that yeah it's deflationary I love the quote right so software's deflationary as costs come up how do you go drive it also free up the team and you nail it it's like okay everyone wants to save money but they're not putting off these projects in fact the digital transformation or the business it's actually moving forward but they're getting a little bit bigger but everyone's looking for creative ways to look at their architecture and it becomes larger larger we talked about a couple of those examples but like even like uh things like observability they want to give this tool set this data to all the developers all their sres same data to all the security team and then to do that they need to find a way an architect should do that scale and save money simultaneously so we see constantly people who are pairing us up with some of these larger firms like uh or like keep your data dog keep your Splunk use us to reduce the cost that one and one is actually cheaper than what you have but then they use it either to save money we're saving 50 to 80 hard dollars but more importantly to free up your team from the toil and then they they turn around and make that budget neutral and then allowed to get the same tools to more people across the org because they're sometimes constrained of getting the access to everyone explain that a little bit more let's say I got a Splunk or data dog I'm sifting through you know logs how exactly do you help so it's pretty simple I'll use dad dog example so let's say using data dog preservability so it's just your developers your sres managing environments all these platforms are really good at being a monitoring alerting type of tool what they're not necessarily great at is keeping the data for longer periods like the log data the bigger data that's where we're strong what you see is like a data dog let's say you're using it for a minister for to keep 30 days of logs which is not enough like let's say you're running environment you're finding that performance issue you kind of want to look to last quarter in last month in or maybe last Black Friday so 30 days is not enough but will charge you two eighty two dollars and eighty cents a gigabyte don't focus on just 280 and then if you just turn the knob and keep seven days but keep two years of data on us which is on S3 it goes down to 22 cents plus our list price of 80 cents goes to a dollar two compared to 280. so here's the thing what they're able to do is just turn a knob get more data we do an integration so you can go right from data dog or grafana directly into our platform so the user doesn't see it but they save money A lot of times they don't just save the money now they use that to go fund and get data dog to a lot more people make sense so it's a creativity they're looking at it and they're looking at tools we see the same thing with a grafana if you look at the whole grafana play which is hey you can't put it in one place but put Prometheus for metrics or traces we fit well with logs but they're using that to bring down their costs because a lot of this data just really bogs down these applications the alerting monitoring are good at small data they're not good at the big data which is what we're really good at and then the one and one is actually less than you paid for the one so it and it works pretty well so things are really unpredictable right now in the economy you know during the pandemic we've sort of lockdown and then the stock market went crazy we're like okay it's going to end it's going to end and then it looked like it was going to end and then it you know but last year it reinvented just just in that sweet spot before Omicron so we we tucked it in which which was awesome right it was a great great event we really really missed one physical reinvent you know which was very rare so that's cool but I've called it the slingshot economy it feels like you know you're driving down the highway and you got to hit the brakes and then all of a sudden you're going okay we're through it Oh no you're gonna hit the brakes again yeah so it's very very hard to predict and I was listening to jassy this morning he was talking about yeah consumers they're still spending but what they're doing is they're they're shopping for more features they might be you know buying a TV that's less expensive you know more value for the money so okay so hopefully the consumer spending will get us out of this but you don't really know you know and I don't yeah you know we don't seem to have the algorithms we've never been through something like this before so what are you guys seeing in terms of customer Behavior given that uncertainty well one thing I would highlight that I think particularly going back to what we were just talking about as far as business and digital transformation I think some customers are still appreciating the fact that where you know yesterday you may have had to to buy some Capital put out some capital and commit to something for a large upfront expenditure is that you know today the value of being able to experiment and scale up and then most importantly scale down and dynamically based on is the experiment working out am I seeing real value from it and doing that on a time scale of a day or a week or a few months that is so important right now because again it gets to I am looking for a ways to innovate and to drive Top Line growth but I I can't commit to a multi-year sort of uh set of costs to to do that so and I think plenty of customers are finding that even a few months of experimentation gives them some really valuable insight as far as is this going to be successful or not and so I think that again just of course with S3 and storage from day one we've been elastic pay for what you use if you're not using the storage you don't get charged for it and I think that particularly right now having the applications and the rest of the ecosystem around the storage and the data be able to scale up and scale down is is just ever more important and when people see that like typically they're looking to do more with it so if they find you usually find these little Department projects but they see a way to actually move faster and save money I think it is a mix of those two they're looking to expand it which can be a nightmare for sales Cycles because they take longer but people are looking well why don't you leverage this and go across division so we do see people trying to leverage it because they're still I don't think digital transformation is slowing down but a lot more to be honest a lot more approvals at this point for everything it is you know Adam and another great quote in his in his keynote he said if you want to save money the Cloud's a place to do it absolutely and I read an article recently and I was looking through and I said this is the first time you know AWS has ever seen a downturn because the cloud was too early back then I'm like you weren't paying attention in 2008 because that was the first major inflection point for cloud adoption where CFO said okay stop the capex we're going to Opex and you saw the cloud take off and then 2010 started this you know amazing cycle that we really haven't seen anything like it where they were doubling down in Investments and they were real hardcore investment it wasn't like 1998 99 was all just going out the door for no clear reason yeah so that Foundation is now in place and I think it makes a lot of sense and it could be here for for a while where people are saying Hey I want to optimize and I'm going to do that on the cloud yeah no I mean I've obviously I certainly agree with Adam's quote I think really that's been in aws's DNA from from day one right is that ability to scale costs with with the actual consumption and paying for what you use and I think that you know certainly moments like now are ones that can really motivate change in an organization in a way that might not have been as palatable when it just it didn't feel like it was as necessary yeah all right we got to go give you a last word uh I think it's been a great event I love all your announcements I think this is wonderful uh it's been a great show I love uh in fact how many people are here at reinvent north of 50 000. yeah I mean I feel like it was it's as big if not bigger than 2019. people have said ah 2019 was a record when you count out all the professors I don't know it feels it feels as big if not bigger so there's great energy yeah it's quite amazing and uh and we're thrilled to be part of it guys thanks for coming on thecube again really appreciate it face to face all right thank you for watching this is Dave vellante for the cube your leader in Enterprise and emerging Tech coverage we'll be right back foreign

Published Date : Dec 7 2022

SUMMARY :

across a company to you know to

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Ed WalshPERSON

0.99+

Kevin MillerPERSON

0.99+

two yearsQUANTITY

0.99+

2006DATE

0.99+

2008DATE

0.99+

seven daysQUANTITY

0.99+

AdamPERSON

0.99+

AmazonORGANIZATION

0.99+

30 daysQUANTITY

0.99+

AWSORGANIZATION

0.99+

John FurrierPERSON

0.99+

50QUANTITY

0.99+

Adam solipskiPERSON

0.99+

Dave vellantePERSON

0.99+

twoQUANTITY

0.99+

eighty centsQUANTITY

0.99+

EuropeLOCATION

0.99+

22 centsQUANTITY

0.99+

KevinPERSON

0.99+

80 centsQUANTITY

0.99+

SeattleLOCATION

0.99+

12QUANTITY

0.99+

2010DATE

0.99+

Isaac NewtonPERSON

0.99+

DavePERSON

0.99+

Super BowlEVENT

0.99+

a dayQUANTITY

0.99+

Venetian Conference CenterLOCATION

0.99+

fifth floorQUANTITY

0.99+

UberORGANIZATION

0.99+

World CupEVENT

0.99+

last yearDATE

0.99+

last quarterDATE

0.99+

yesterdayDATE

0.99+

S3TITLE

0.99+

last monthDATE

0.99+

more than six timesQUANTITY

0.99+

2019DATE

0.98+

PrometheusTITLE

0.98+

six monthsQUANTITY

0.98+

280QUANTITY

0.98+

pandemicEVENT

0.98+

Black FridayEVENT

0.97+

an hour agoDATE

0.97+

todayDATE

0.97+

58 terabytes a dayQUANTITY

0.97+

100 year oldQUANTITY

0.97+

this morningDATE

0.97+

a weekQUANTITY

0.97+

Ed wallsonPERSON

0.97+

threeQUANTITY

0.96+

EquifaxORGANIZATION

0.96+

jassyPERSON

0.96+

one platformQUANTITY

0.96+

this yearDATE

0.96+

grafanaTITLE

0.96+

one daysQUANTITY

0.95+

first timeQUANTITY

0.95+

oneQUANTITY

0.95+

black FridayEVENT

0.93+

this weekDATE

0.92+

first major inflectionQUANTITY

0.91+

one placeQUANTITY

0.91+

SQLTITLE

0.9+

lastDATE

0.89+

StoreTITLE

0.89+

Dr. Edward Challis, UiPath & Ted Kummert, UiPath | UiPath Forward 5


 

(upbeat music) >> Announcer: theCUBE presents UiPath Forward5. Brought to you by UiPath. >> Hi everybody, we're back in Las Vegas. We're live with Cube's coverage of Forward 5 2022. Dave Vellante with Dave Nicholson Ted Kumer this year is the Executive Vice President, product and engineering at UiPath. Brought on to do a lot of the integration and bring on new capabilities for the platform and we've seen that over the last several years. And he's joined by Dr. Edward Challis, who's the co-founder of the recent acquisition that UiPath made, company called Re:infer. We're going to learn about those guys. Gents, welcome to theCUBE. Ted, good to see you again. Ed, welcome. >> Good to be here. >> First time. >> Thank you. >> Yeah, great to be here with you. >> Yeah, so we have seen, as I said, this platform expanding. I think you used the term business automation platform. It's kind of a new term you guys introduced at the conference. Where'd that come from? What is that? What are the characteristics that are salient to the platform? >> Well, I see the, the evolution of our platform in three chapters. You understand the first chapter, we call that the RPA chapter. And that's where we saw the power of UI automation applied to the old problems of how do I integrate apps? How do I automate processes? That was chapter one. You know, chapter two gets us to Forward3 in 2019, and the definition of this end-to-end automation platform you know, with the capabilities from discover to measure, and building out that core platform. And as the platform's progressed, what we've seen happen with our customers is the use of it goes from being very heavy in automating the repetitive and routine to being more balanced, to now where they're implementing new brought business process, new capability for their organization. So that's where the name, Business Automation Platform, came from. Reflecting now that it's got this central role, as a strategic tool, sitting between their application landscape, their processes, their people, helping that move forward at the rate that it needs to. >> And process mining and task mining, that was sort of the enabler of chapter two, is that right? >> Well, I'd say chapter two was, you know, first the robots got bigger in terms of what they could cover and do. API integration, long running workflows, AI and ML skills integrated document processing, citizen development in addition to professional development, engaging end users with things like user interfaces built with UiPath apps. And then the discovery. >> So, more robustness of the? Yeah, okay. >> Yeah. Just an expansion of the whole surface area which opened up a lot of things for our customers to do. That went much broader than where core RPA started. And so, and the other thing about this progression to the business automation platform is, you know, we see customers now talking more about outcomes. Early on they talk a lot about hours saved and that's great, but then what about the business outcomes it's enabling? The transformations in their business. And the other thing we're doing in the platform is thinking about, well, where can we land with solutions capabilities that more directly land on business, measurable business outcomes? And so we had started, for example, offering an email automation solution, big business problem for a lot of our customers last year. And we'd started encountering this company Re:infer as we were working with customers. And then, and we encountered Re:infer being used with our platform together. And we saw we can accelerate this. And what that is giving us now is a solution now that aligns with a very defined business outcome. And this way, you know, we can help you process communications and do it efficiently and provide better service for your customers. And that's beginning of another important progression for us in our platform. >> So that's a nice segue, Ed. Tell about Re:infer. Why did you start the company? >> Right, yeah, so my whole career has been in machine learning and AI and I finished my PhD around 2013, it was a very exciting time in AI. And me and my co-founders come from UCL, this university in London, and Deep Mind, this company which Google acquired a few years later, came from our same university. So very exciting time amongst the people that really knew about machine learning and AI. And everyone was thinking, you know, how do we, these are just really big breakthroughs. And you could just see there was going to be a whole bunch of subsequent breakthroughs and we thought NLP would be the next breakthrough. So we were really focused on machine reading problems. And, but we also knew as people that had like built machine learning production systems. 'Cause I'd also worked in industry that built that journey from having a hypothesis that machine learning can solve a problem to getting machine learning into production. That journey is of painful, painful journey and that, you know, you can see that you've got these advances, but getting into broad is just way too hard. >> So where do you fit in the platform? >> Yeah, so I think when you look in the enterprise just so many processes start with a message start with a no, start with a case ticket or, you know, some other kind of request from a colleague or a customer. And so it's super exciting to be able to, you know, take automation one step higher in that process chain. So, you could automatically read that request, interpret it, get all the structured data you need to drive that process forward. So it's about bringing automation into these human channels. >> So I want to give the audience a sense here. So we do a lot of events at the Venetian Conference Center, and it's usually very booth heavy, you know, brands and big giant booths. And here the booths are all very small. They're like kiosks, and they're all pretty much the same size. So it's not like one vendor trying to compete with the other. And there are all these elements, you know I feel like there's clouds and there's, you know, of course orange is the color here. And one of the spots is, it has this really kind of cool sitting area around customer stories. And I was in there last night reading about Deutsche Bank. Deutsche Bank was also up on stage. Deutsche Bank, you guys were talking about a Re:infer. So share with our audience what Deutsche Bank are doing with UiPath and Re:infer. >> Yeah, so I mean, you know, before we automate something, we often like to do what we call communications mining. Which is really understanding what all of these messages are about that might be hitting a part of the business. And at Deutsche Bank and in many, you know, like many large financial services businesses, huge volumes of messages coming in from the clients. We analyze those, interpret the high volume query types and then it's about automating against those to free up capacity. Which ultimately means you can provide faster, higher quality service because you've got more time to do it. And you're not dealing with all of those mundane tasks. So it's that whole journey of mining to automation of the coms that come into the corporate bank. >> So how do I invoke the service? So is it mother module or what's the customer onboarding experience like? >> So, I think the first thing that we do is we generate some understanding of actually the communications data they want to observe, right? And we call it mining, but you know, what we're trying to understand is like what are these communications about? What's the intent? What are they trying to accomplish? Tone can be interesting, like what's the sentiment of this customer? And once you understand that, you essentially then understand categories of conversations you're having and then you apply automations to that. And so then essentially those individual automations can be pointed to sets of emails for them to automate the processing of. And so what we've seen is customers go from things they're handling a hundred percent manual to now 95% of them are handled basically with completely automated processing. The other thing I think is super interesting here and why communications mining and automation are so powerful together is communications about your business can be very, very dynamic. So like, new conversations can emerge, something happens right in your business, you have an outage, whatever, and the automation platform, being a very rapid development platform, can help you adapt quickly to that in an automated way. Which is another reason why this is such a powerful thing to put the two things together. >> So, you can build that event into the automation very quickly you're saying? >> Speaker 1: Yeah. >> Speaker 2: That's totally right. >> Cool. >> So Ed, on the subject of natural language processing and machine learning versus machine teaching. If I text my wife and ask her would you like to go to an Italian restaurant tonight? And she replies, fine. Okay, how smart is your machine? And, of course, context usually literally denotes things within the text, and a short response like that's very difficult to do this. But how do you go through this process? Let's say you're implementing this for a given customer. And we were just talking about, you know, the specific customer requirements that they might have. What does that process look like? Do you have an auditor that goes through? And I mean do you get like 20% accuracy, and then you do a pass, and now you're at 80% accuracy, and you do a pass? What does that look? >> Yeah, so I mean, you know when I was talking about the pain of getting a machine learning model into production one of the principle drivers of that is this process of training the machine learning model. And so what we use is a technique called active learning which is effectively where the AI and ML model queries the user to say, teach me about this data point, teach me about this sentence. And that's a dynamic iterative process. And by doing it in that way you make that training process much, much faster. But critically that means that the user has, when you train the model the user defines how you want to encode that interpretation. So when you were training it you would say fine from my wife is not good, right? >> Sure, so it might be fine, do you have a better suggestion? >> Yeah, but that's actually a very serious point because one of the things we do is track the quality of service. Our customers use us to attract the quality of service they deliver to their clients. And in many industries people don't use flowery language, like, thank you so much, or you know, I'm upset with you, you know. What they might say is fine, and you know, the person that manages that client, that is not good, right? Or they might say I'd like to remind you that we've been late the last three times, you know. >> This is urgent. >> Yeah, you know, so it's important that the client, our client, the user of Re:infer, can encode what their notions of good and bad are. >> Sorry, quick follow up on that. Differences between British English and American English. In the U.K., if you're thinking about becoming an elected politician, you stand for office, right? Here in the U.S., you run for office. That's just the beginning of the vagaries and differences. >> Yeah, well, I've now got a lot more American colleagues and I realize my English phrasing often goes amiss. So I'm really aware of the problem. We have customers that have contact centers, some of them are in the U.K., some of them are in America, and they see big differences in the way that the customers get treated based on where the customer is based. So we've actually done analysis in Re:infer to look at how agents and customers interact and how you should route customers to the contact centers to be culturally matched. Because sometimes there can be a little bit of friction just for that cultural mapping. >> Ted, what's the what's the general philosophy when you make an acquisition like this and you bring in new features? Do you just wake up one day and all of a sudden there's this new capability? Is it a separate sort of for pay module? Does it depend? >> I think it depends. You know, in this case we were really led here by customers. We saw a very high value opportunity and the beginnings of a strategy and really being able to mine all forms of communication and drive automated processing of all forms of communication. And in this case we found a fantastic team and a fantastic piece of software that we can move very quickly to get in the hands of our customer's via UiPath. We're in private preview now, we're going to be GA in the cloud right after the first of the year and it's going to continue forward from there. But it's definitely not one size fits all. Every single one of 'em is different and it's important to approach 'em that way. >> Right, right. So some announcements, StudioWeb was one that I think you could. So I think it came out today. Can't remember what was today. I think we talked about it yesterday on the keynotes anyway. Why is that important? What is it all about? >> Well we talked, you know, at a very top level. I think every development platform thinks about two things for developers. They think, how do I make it more expressive so you can do other things, richer scenarios. And how do I make it simpler? 'Cause fast is always better, and lower learning curves is always better, and those sorts of things. So, Re:infer's a great example of look the runtime is becoming more and more expressive and now you can buy in communications state as part of your automation, which is super cool. And then, you know StudioWeb is about kind of that second point and Studios and Studio X are already low code visual, but they're desktop. And part of our strategy here is to elevate all of that experience into the web. Now we didn't elevate all of studio there, it's a subset. It is API integration and web based application automation, Which is a great foundation for a lot of apps. It's a complete reimagining of the studio user interface and most importantly it's our first cross-platform developer strategy. And so that's been another piece of our strategy, is to say to the customers we want to be everywhere you need us to be. We did cross-platform deployment with the automation suite. We got cross-platform robots with linear robots, serverless robots, Mac support and now we got a cross-platform devs story. So we're starting out with a subset of capabilities maybe oriented toward what you would associate with citizen scenarios. But you're going to see more roadmap, bringing more and more of that. But it's pretty exciting for us. We've been working on this thing for a couple years now and like this is a huge milestone for the team to get to this, this point. >> I think my first conversation on theCUBE with a customer was six years ago maybe at one of the earlier Forwards, I think Forward2. And the pattern that I saw was basically people taking existing processes and making them better, you know taking the mundane away. I remember asking customers, yeah, aren't you kind of paving the cow path? Aren't there sort of new things that you can do, new process? And they're like, yeah, that's sort of the next wave. So what are you seeing in terms of automating existing processes versus new processes? I would see Re:infer is going to open up a whole new vector of new processes. How should we think about that? >> Yeah, I think, you know, I mean in some ways RPA has this reputation because there's so much value that's been provided in the automating of the repetitive and routine. But I'd say in my whole time, I've been at the company now for two and a half years, I've seen lots of new novel stuff stood up. I mean just in Covid we saw the platform being used in PPP loan processing. We saw it in new clinical workflows for COVID testing. We see it and we've just seen more and more progression and it's been exciting that the conference, to see customers now talking about things they built with UiPath apps. So app experiences they've been delivering, you know. I talked about one in healthcare yesterday and basically how they've improved their patient intake processing and that sort of thing. And I think this is just the front end. I truly believe that we are seeing the convergence happen and it's happening already of categories we've talked about separately, iPass, BPM, low-code, RPA. It's happening and it's good for customers 'cause they want one thing to cover more stuff and you know, I think it just creates more opportunity for developers to do more things. >> Your background at Microsoft probably well prepared you for a company that you know, was born on-prem and then went all in on the cloud and had, you know, multiple code bases to deal with. UiPath has gone through a similar transformation and we talked to Daniel last night about this and you're now cloud first. So how is that going just in terms of managing multiple code bases? >> Well it's actually not multiple Code bases. >> Oh, it's the same one, Right, deployment models I should say. >> Is the first thing, Yeah, the deployment models. Another thing we did along the way was basically replatform at an infrastructure level. So we now can deploy into a Kubernetes Docker world, what you'd call the cloud native platform. And that allows us to have much more of a shared infrastructure layer as we look to deliver to the automation cloud. The same workload to the automation cloud that we now deliver in the automation suite for deployment on-prem or deploying a public cloud for a customer to manage. Interesting and enough, that's how Re:infer was built, which is it was built also in the cloud native platform. So it's going to be pretty easy. Well, pretty easy, there's some work to do, but it's going to be pretty easy for us to then bring that into the platform 'cause they're already working on that same platform and provide those same services both on premises and in the cloud without having your developers have to think too much about both. >> Okay, I got to ask you, so I could wrap my stack in a container and put it into AWS or Azure or Google and it'll run great. As well, I could tap some of the underlying primitives of those respective clouds, which are different and I could run them just fine. Or/and I could create an abstraction layer that could hide those underlying primitives and then take the best of each and create an automation cloud, my own cloud. Does that resonate? Is that what you're doing architecturally? Is that a roadmap, or? >> Certainly going forward, you know, in the automation cloud. The automation cloud, we announced a great partnership or a continued partnership with Microsoft. And just Azure and our platform. We obviously take advantage of anything we can to make that great and native capabilities. And I think you're going to see in the Automation Suite us doing more and more to be in a deployment model on Azure, be more and more optimized to using those infrastructure services. So if you deploy automation suite on-prem we'll use our embedded distro then when we deploy it say on Azure, we'll use some of their higher level managed services instead of our embedded distro. And that will just give customers a better optimized experience. >> Interesting to see how that'll develop. Last question is, you know what should we expect going forward? Can you show us a little leg on on the future? >> Well, we've talked about a number of directions. This idea of semantic automation is a place where you know, you're going to, I think, continue to see things, shoots, green shoots, come up in our platform. And you know, it's somewhat of an abstract idea but the idea that the platform is just going to become semantically smarter. You know, I had to serve Re:infer as a way, we're semantically smarter now about communications data and forms of communications data. We're getting semantically smarter about documents, screens you know, so developers aren't dealing with, like, this low level stuff. They can focus on business problem and get out of having to deal with all this lower level mechanism. That is one of many areas I'm excited about, but I think that's an area you're going to see a lot from us in the next coming years. >> All right guys, hey, thanks so much for coming to theCUBE. Really appreciate you taking us through this. Awesome >> Yeah Always a pleasure. >> Platform extension. Ed. All right, keep it right there, everybody. Dave Nicholson, I will be back right after this short break from UiPath Forward5, Las Vegas. (upbeat music)

Published Date : Sep 30 2022

SUMMARY :

Brought to you by UiPath. Ted, good to see you again. Yeah, great to be here I think you used the term and the definition of this two was, you know, So, more robustness of the? And this way, you know, Why did you start the company? And everyone was thinking, you know, to be able to, you know, and there's, you know, and in many, you know, And we call it mining, but you know, And we were just talking about, you know, the user defines how you want and you know, the person Yeah, you know, so it's Here in the U.S., you run for office. and how you should route and the beginnings of a strategy StudioWeb was one that I think you could. and now you can buy in and making them better, you that the conference, for a company that you know, Well it's actually not multiple Oh, it's the same one, that into the platform of the underlying primitives So if you deploy automation suite on-prem Last question is, you know And you know, it's somewhat Really appreciate you Always a pleasure. right after this short break

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

MicrosoftORGANIZATION

0.99+

UiPathORGANIZATION

0.99+

LondonLOCATION

0.99+

Deutsche BankORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

AmericaLOCATION

0.99+

Dave VellantePERSON

0.99+

95%QUANTITY

0.99+

U.K.LOCATION

0.99+

Edward ChallisPERSON

0.99+

U.S.LOCATION

0.99+

yesterdayDATE

0.99+

EdPERSON

0.99+

Ted KummertPERSON

0.99+

tonightDATE

0.99+

Ted KumerPERSON

0.99+

80%QUANTITY

0.99+

todayDATE

0.99+

last yearDATE

0.99+

Las VegasLOCATION

0.99+

TedPERSON

0.99+

2019DATE

0.99+

two and a half yearsQUANTITY

0.99+

AWSORGANIZATION

0.99+

UCLORGANIZATION

0.99+

first chapterQUANTITY

0.99+

UiPathTITLE

0.99+

DanielPERSON

0.99+

three chaptersQUANTITY

0.99+

EnglishOTHER

0.99+

six years agoDATE

0.99+

bothQUANTITY

0.99+

two thingsQUANTITY

0.99+

Edward ChallisPERSON

0.98+

last nightDATE

0.98+

oneQUANTITY

0.98+

Deep MindORGANIZATION

0.98+

StudioWebORGANIZATION

0.98+

CubeORGANIZATION

0.98+

Studio XTITLE

0.98+

this yearDATE

0.97+

hundred percentQUANTITY

0.97+

eachQUANTITY

0.97+

first conversationQUANTITY

0.96+

Forward 5TITLE

0.95+

first thingQUANTITY

0.95+

First timeQUANTITY

0.95+

one dayQUANTITY

0.94+

theCUBEORGANIZATION

0.94+

one vendorQUANTITY

0.93+

secondQUANTITY

0.93+

Venetian Conference CenterLOCATION

0.93+

2013DATE

0.92+

NLPORGANIZATION

0.91+

UiPathPERSON

0.9+

three timesQUANTITY

0.9+

iPassTITLE

0.88+

AzureTITLE

0.88+

firstQUANTITY

0.88+

few years laterDATE

0.86+

one thingQUANTITY

0.86+

AmericanOTHER

0.85+

yearsDATE

0.84+

AzureORGANIZATION

0.84+

Re:inferORGANIZATION

0.83+

singleQUANTITY

0.82+