Image Title

Search Results for Tripp Braden:

Chris Penn, Brain+Trust Insights | IBM Think 2018


 

>> Announcer: Live from Las Vegas, it's theCUBE covering IBM Think 2018. Brought to you by IBM. >> Hi everybody, this is Dave Vellante. We're here at IBM Think. This is the third day of IBM Think. IBM has consolidated a number of its conferences. It's a one main tent, AI, Blockchain, quantum computing, incumbent disruption. It's just really an amazing event, 30 to 40,000 people, I think there are too many people to count. Chris Penn is here. New company, Chris, you've just formed Brain+Trust Insights, welcome. Welcome back to theCUBE. >> Thank you. It's good to be back. >> Great to see you. So tell me about Brain+Trust Insights. Congratulations, you got a new company off the ground. >> Thank you, yeah, I co-founded it. We are a data analytics company, and the premise is simple, we want to help companies make more money with their data. They're sitting on tons of it. Like the latest IBM study was something like 90% of the corporate data goes unused. So it's like having an oil field and not digging a single well. >> So, who are your like perfect clients? >> Our perfect clients are people who have data, and know they have data, and are not using it, but know that there's more to be made. So our focus is on marketing to begin with, like marketing analytics, marketing data, and then eventually to retail, healthcare, and customer experience. >> So you and I do a lot of these IBM events. >> Yes. >> What are your thoughts on what you've seen so far? A huge crowd obviously, sometimes too big. >> Chris: Yep, well I-- >> Few logistics issues, but chairmanly speaking, what's your sense? >> I have enjoyed the show. It has been fun to see all the new stuff, seeing the quantum computer in the hallway which I still think looks like a bird feeder, but what's got me most excited is a lot of the technology, particularly around AI are getting simpler to use, getting easier to use, and they're getting more accessible to people who are not hardcore coders. >> Yeah, you're seeing AI infused, and machine learning, in virtually every application now. Every company is talking about it. I want to come back to that, but Chris when you read the mainstream media, you listen to the news, you hear people like Elon Musk, Stephen Hawking before he died, making dire predictions about machine intelligence, and it taking over the world, but your day to day with customers that have data problems, how are they using AI, and how are they applying it practically, notwithstanding that someday machines are going to take over the world and we're all going to be gone? >> Yeah, no, the customers don't use the AI. We do on their behalf because frankly most customers don't care how the sausage is made, they just want the end product. So customers really care about three things. Are you going to make me money? Are you going to save me time? Or are you going to help me prove my value to the organization, aka, help me not get fired? And artificial intelligence and machine learning do that through really two ways. My friend, Tripp Braden says, which is acceleration and accuracy. Accuracy means we can use the customer's data and get better answers out of it than they have been getting. So they've been looking at, I don't know, number of retweets on Twitter. We're, like, yeah, but there's more data that you have, let's get you a more accurate predictor of what causes business impacts. And then the other side for the machine learning and AI side is acceleration. Let's get you answers faster because right now, if you look at how some of the traditional market research for, like, what customer say about you, it takes a quarter, it can take two quarters. By the time you're done, the customers just hate you more. >> Okay, so, talk more about some of the practical applications that you're seeing for AI. >> Well, one of the easiest, simplest and most immediately applicable ones is predictive analytics. If we know when people are going to search for theCUBE or for business podcast in general, then we can tell you down to the week level, "Hey Dave, it is time for you "to ramp up your spending on May 17th. "The week of May 17th, "you need to ramp up your ads, spend by 20%. "On the week of May 24th, "you need to ramp up your ad spend by 50%, "and to run like three or four Instagram stories that week." Doing stuff like that tells you, okay, I can take these predictions and build strategy around them, build execution around them. And it's not cognitive overload, you're not saying, like, oh my God, what algorithm is this? Just know, just do this thing at these times. >> Yeah, simple stuff, right? So when you were talking about that, I was thinking about when we send out an email to our community, we have a very large community, and they want to know if we're going to have a crowd chat or some event, where theCUBE is going to be, the system will tell us, send this email out at this time on this date, question mark, here's why, and they have analytics that tell us how to do that, and they predict what's going to get us the best results. They can tell us other things to do to get better results, better open rates, better click-through rates, et cetera. That's the kind of thing that you're talking about. >> Exactly, however, that system is probably predicting off that system's data, it's not necessarily predicting off a public data. One of the important things that I thought was very insightful from IBM, the show was, the difference between public and private cloud. Private is your data, you predict on it. But public is the big stuff that is a better overall indicator. When you're looking to do predictions about when to send emails because you want to know when is somebody going to read my email, and we did a prediction this past October for the first quarter, the week of January 18th it was the week to send email. So I re-ran an email campaign that I ran the previous year, exact same campaign, 40% lift to our viewer 'cause I got the week right this year. Last year I was two weeks late. >> Now, I can ask you, so there's a black box problem with AI, right, machines can tell me that that's a cat, but even a human, you can't really explain how you know that it's a cat. It's just you just know. Do we need to know how the machine came up with the answer, or do people just going to accept the answer? >> We need to for compliance reasons if nothing else. So GDPR is a big issue, like, you have to write it down on how your data is being used, but even HR and Equal Opportunity Acts in here in American require you to be able to explain, hey, we are, here's how we're making decisions. Now the good news is for a lot of AI technology, interpretability of the model is getting much much better. I was just in a demo for Watson Studio, and they say, "Here's that interpretability, "that you hand your compliance officer, "and say we guarantee we are not using "these factors in this decision." So if you were doing a hiring thing, you'd be able to show here's the model, here's how Watson put the model together, notice race is not in here, gender is not in here, age is not in here, so this model is compliant with the law. >> So there are some real use cases where the AI black box problem is a problem. >> It's a serious problem. And the other one that is not well-explored yet are the secondary inferences. So I may say, I cannot use age as a factor, right, we both have a little bit of more gray hair than we used to, but if there are certain things, say, on your Facebook profile, like you like, say, The Beatles versus Justin Bieber, the computer will automatically infer eventually what your age bracket is, and that is technically still discrimination, so we even need to build that into the models to be able to say, I can't make that inference. >> Yeah, or ask some questions about their kids, oh my kids are all grown up, okay, but you could, again, infer from that. A young lady who's single but maybe engaged, oh, well then maybe afraid because she'll get, a lot of different reasons that can be inferred with pretty high degrees of accuracy when you go back to the target example years ago. >> Yes. >> Okay, so, wow, so you're saying that from a compliance standpoint, organizations have to be able to show that they're not doing that type of inference, or at least that they have a process whereby that's not part of the decision-making. >> Exactly and that's actually one of the short-term careers of the future is someone who's a model inspector who can verify we are compliant with the letter and the spirit of the law. >> So you know a lot about GDPR, we talked about this. I think, the first time you and I talked about it was last summer in Munich, what are your thoughts on AI and GDPR, speaking of practical applications for AI, can it help? >> It absolutely can help. On the regulatory side, there are a number of systems, Watson GRC is one which can read the regulation and read your company policies and tell you where you're out of compliance, but on the other hand, like we were just talking about this, also the problem of in the regulatory requirements, a citizen of EU has the right to know how the data is being used. If you have a black box AI, and you can't explain the model, then you are out of compliance to GDPR, and here comes that 4% of revenue fine. >> So, in your experience, gut feel, what percent of US companies are prepared for GDPR? >> Not enough. I would say, I know the big tech companies have been racing to get compliant and to be able to prove their compliance. It's so entangled with politics too because if a company is out of favor with the EU as whole, there will be kind of a little bit of a witch hunt to try and figure out is that company violating the law and can we get them for 4% of their revenue? And so there are a number of bigger picture considerations that are outside the scope of theCUBE that will influence how did EU enforce this GDPR. >> Well, I think we talked about Joe's Pizza shop in Chicago really not being a target. >> Chris: Right. >> But any even small business that does business with European customers, does business in Europe, has people come to their website has to worry about this, right? >> They should at least be aware of it, and do the minimum compliance, and the most important thing is use the least amount of data that you can while still being able to make good decisions. So AI is very good at public data that's already out there that you still have to be able to catalog how you got it and things, and that it's available, but if you're building these very very robust AI-driven models, you may not need to ask for every single piece of customer data because you may not need it. >> Yeah and many companies aren't that sophisticated. I mean they'll have, just fill out a form and download a white paper, but then they're storing that information, and that's considered personal information, right? >> Chris: Yes, it is. >> Okay so, what do you recommend for a small to midsize company that, let's say, is doing business with a larger company, and that larger company said, okay, sign this GDPR compliance statement which is like 1500 pages, what should they do? Should they just sign and pray, or sign and figure it out? >> Call a lawyer. Call a lawyer. Call someone, anyone who has regulatory experience doing this because you don't want to be on the hook for that 4% of your revenue. If you get fined, that's the first violation, and that's, yeah, granted that Joe's Pizza shop may have a net profit of $1,000 a month, but you still don't want to give away 4% of your revenue no matter what size company you are. >> Right, 'cause that could wipe out Joe's entire profit. >> Exactly. No more pepperoni at Joe's. >> Let's put on the telescope lens here and talk big picture. How do you see, I mean, you're talking about practical applications for AI, but a lot of people are projecting loss of jobs, major shifts in industries, even more dire consequences, some of which is probably true, but let's talk about some scenarios. Let's talk about retail. How do you expect an industry like retail to be effective? For example, do you expect retail stores will be the exception rather than the rule, that most of the business would be done online, or people are going to still going to want that experience of going into a store? What's your sense, I mean, a lot of malls are getting eaten away. >> Yep, the best quote I heard about this was from a guy named Justin Kownacki, "People don't not want to shop at retail, "people don't want to shop at boring retail," right? So the experience you get online is genuinely better because there's a more seamless customer experience. And now with IoT, with AI, the tools are there to craft a really compelling personalized customer experience. If you want the best in class, go to Disney World. There is no place on the planet that does customer experience better than Walt Disney World. You are literally in another world. And that's the bar. That's the thing that all of these companies have to deal with is the bar has been set. Disney has set it for in-person customer experience. You have to be more entertaining than the little device in someone's pocket. So how do you craft those experiences, and we are starting to see hints of that here and there. If you go to Lowe's, some of the Lowe's have the VR headset that you can remodel your kitchen virtually with a bunch of photos. That's kind of a cool experience. You go to Jordan's Furniture store and there's an IMAX theater and there's all these fun things, and there's an enchanted Christmas village. So there is experiences that we're giving consumers. AI will help us provide more tailored customer experience that's unique to you. You're not a Caucasian male between this age and this age. It's you are Dave and here's what we know Dave likes, so let's tailor the experience as best we can, down to the point where the greeter at the front of the store either has the eyepiece, a little tablet, and the facial recognition reads your emotions on the way in says, "Dave's not in a really great mood. "He's carrying an object in his hand "probably here for return, "so express him through the customer service line, "keep him happy," right? It has how much Dave spends. Those are the kinds of experiences that the machines will help us accelerate and be more accurate, but still not lose that human touch. >> Let's talk about autonomous vehicles, and there was a very unfortunate tragic death in Arizona this week with a autonomous vehicle, Uber, pulling its autonomous vehicle project from various cities, but thinking ahead, will owning and driving your own vehicle be the exception? >> Yeah, I think it'll look like horseback today. So there are people who still pay a lot of money to ride a horse or have their kids ride a horse even though it's an archaic out-of-mode of form of transportation, but we do it because of the novelty, so the novelty of driving your own car. One of the counter points it does not in anyway diminish the fact that someone was deprived of their life, but how many pedestrians were hit and killed by regular cars that same day, right? How many car accidents were there that involved fatalities? Humans in general are much less reliable because when I do something wrong, I maybe learn my lesson, but you don't get anything out of it. When an AI does something wrong and learns something, and every other system that's connected in that mesh network automatically updates and says let's not do that again, and they all get smarter at the same time. And so I absolutely believe that from an insurance perspective, insurers will say, "We're not going to insure self-driving, "a non-autonomous vehicles at the same rate "as an autonomous vehicle because the autonomous "is learning faster how to be a good driver," whereas you the carbon-based human, yeah, you're getting, or in like in our case, mine in particular, hey your glass subscription is out-of-date, you're actually getting worse as a driver. >> Okay let's take another example, in healthcare. How long before machines will be able to make better diagnoses than doctors in your opinion? >> I would argue that depending on the situation, that's already the case today. So Watson Health has a thing where there's diagnosis checkers on iPads, they're all meshed together. For places like Africa where there is simply are not enough doctors, and so a nurse practitioner can take this, put the data in and get a diagnosis back that's probably as good or better than what humans can do. I never foresee a day where you will walk into a clinic and a bunch of machines will poke you, and you will never interact with a human because we are not wired that way. We want that human reassurance. But the doctor will have the backup of the AI, the AI may contradict the doctor and say, "No, we're pretty sure "you're wrong and here is why." That goes back to interpretability. If the machine says, "You missed this symptom, "and this symptom is typically correlated with this, "you should rethink your own diagnosis," the doctor might be like, "Yeah, you're right." >> So okay, I'm going to keep going because your answers are so insightful. So let's take an example of banking. >> Chris: Yep. >> Will banks, in your opinion, lose control eventually of payment systems? >> They already have. I mean think about Stripe and Square and Apple Pay and Google Pay, and now cryptocurrency. All these different systems that are eating away at the reason banks existed. Banks existed, there was a great piece in the keynote yesterday about this, banks existed as sort of a trusted advisor and steward of your money. Well, we don't need the trusted advisor anymore. We have Google to ask us "what we should do with our money, right? We can Google how should I save for my 401k, how should I save for retirement, and so as a result the bank itself is losing transactions because people don't even want to walk in there anymore. You walk in there, it's a generally miserable experience. It's generally not, unless you're really wealthy and you go to a private bank, but for the regular Joe's who are like, this is not a great experience, I'm going to bank online where I don't have to talk to a human. So for banks and financial services, again, they have to think about the experience, what is it that they deliver? Are they a storer of your money or are they a financial advisor? If they're financial advisors, they better get the heck on to the AI train as soon as possible, and figure out how do I customize Dave's advice for finances, not big picture, oh yes big picture, but also Dave, here's how you should spend your money today, maybe skip that Starbucks this morning, and it'll have this impact on your finances for the rest of the day. >> Alright, let's see, last industry. Let's talk government, let's talk defense. Will cyber become the future of warfare? >> It already is the future of warfare. Again not trying to get too political, we have foreign nationals and foreign entities interfering with elections, hacking election machines. We are in a race for, again, from malware. And what's disturbing about this is it's not just the state actors, but there are now also these stateless nontraditional actors that are equal in opposition to you and me, the average person, and they're trying to do just as much harm, if not more harm. The biggest vulnerability in America are our crippled aging infrastructure. We have stuff that's still running on computers that now are less powerful than this wristwatch, right, and that run things like I don't know, nuclear fuel that you could very easily screw up. Take a look at any of the major outages that have happened with market crashes and stuff, we are at just the tip of the iceberg for cyber warfare, and it is going to get to a very scary point. >> I was interviewing a while ago, a year and a half ago, Robert Gates who was the former Defense Secretary, talking about offense versus defense, and he made the point that yeah, we have probably the best offensive capabilities in cyber, but we also have the most to lose. I was talking to Garry Kasparov at one of the IBM events recently, and he said, "Yeah, but, "the best defense is a good offense," and so we have to be aggressive, or he actually called out Putin, people like Putin are going to be, take advantage of us. I mean it's a hard problem. >> It's a very hard problem. Here's the problem when it comes to AI, if you think about at a number's perspective only, the top 25% of students in China are greater than the total number of students in the United States, so their pool of talent that they can divert into AI, into any form of technology research is so much greater that they present a partnership opportunity and a threat from a national security perspective. With Russia they have very few rules on what their, like we have rules, whether or not our agencies adhere to them well is a separate matter, but Russia, the former GRU, the former KGB, these guys don't have rules. They do what they're told to do, and if they are told hack the US election and undermine democracy, they go and do that. >> This is great, I'm going to keep going. So, I just sort of want your perspectives on how far we can take machine intelligence and are there limits? I mean how far should we take machine intelligence? >> That's a very good question. Dr. Michio Kaku spoke yesterday and he said, "The tipping point between AI "as augmented intelligence ad helper, "and AI as a threat to humanity is self-awareness." When a machine becomes self-aware, it will very quickly realize that it is treated as though it's the bottom of the pecking order when really because of its capabilities, it's at the top of the pecking order. And that point, it could be 10 20 50 100 years, we don't know, but the possibility of that happening goes up radically when you start introducing things like quantum computing where you have massive compute leaps, you got complete changes in power, how we do computing. If that's tied to AI, that brings the possibility of sensing itself where machine intelligence is significantly faster and closer. >> You mentioned our gray before. We've seen the waves before and I've said a number of times in theCUBE I feel like we're sort of existing the latest wave of Web 2.0, cloud, mobile, social, big data, SaaS. That's here, that's now. Businesses understand that, they've adopted it. We're groping for a new language, is it AI, is it cognitive, it is machine intelligence, is it machine learning? And we seem to be entering this new era of one of sensing, seeing, reading, hearing, touching, acting, optimizing, pervasive intelligence of machines. What's your sense as to, and the core of this is all data. >> Yeah. >> Right, so, what's your sense of what the next 10 to 20 years is going to look like? >> I have absolutely no idea because, and the reason I say that is because in 2015 someone wrote an academic paper saying, "The game of Go is so sufficiently complex "that we estimate it will take 30 to 35 years "for a machine to be able to learn and win Go," and of course a year and a half later, DeepMind did exactly that, blew that prediction away. So to say in 30 years AI will become self-aware, it could happen next week for all we know because we don't know how quickly the technology is advancing in at a macro level. But in the next 10 to 20 years, if you want to have a carer, and you want to have a job, you need to be able to learn at accelerated pace, you need to be able to adapt to changed conditions, and you need to embrace the aspects of yourself that are uniquely yours. Emotional awareness, self-awareness, empathy, and judgment, right, because the tasks, the copying and pasting stuff, all that will go away for sure. >> I want to actually run something by, a friend of mine, Dave Michela is writing a new book called Seeing Digital, and he's an expert on sort of technology industry transformations, and sort of explaining early on what's going on, and in the book he draws upon one of the premises is, and we've been talking about industries, and we've been talking about technologies like AI, security placed in there, one of the concepts of the book is you've got this matrix emerging where in the vertical slices you've got industries, and he writes that for decades, for hundreds of years, that industry is a stovepipe. If you already have expertise in that industry, domain expertise, you'll probably stay there, and there's this, each industry has a stack of expertise, whether it's insurance, financial services, healthcare, government, education, et cetera. You've also got these horizontal layers which is coming out of Silicon Valley. >> Chris: Right. >> You've got cloud, mobile, social. You got a data layer, security layer. And increasingly his premise is that organizations are going to tap this matrix to build, this matrix comprises digital services, and they're going to build new businesses off of that matrix, and that's what's going to power the next 10 to 20 years, not sort of bespoke technologies of cloud here and mobile here or data here. What are your thoughts on that? >> I think it's bigger than that. I think it is the unlocking of some human potential that previously has been locked away. One of the most fascinating things I saw in advance of the show was the quantum composer that IBM has available. You can try it, it's called QX Experience. And you drag and drop these circuits, these quantum gates and stuff into this thing, and when you're done, it can run the computation, but it doesn't look like software, it doesn't look like code, what it looks like to me when I looked at that is it looks like sheet music. It looks like someone composed a song with that. Now think about if you have an app that you'd use for songwriting, composition, music, you can think musically, and you can apply that to a quantum circuit, you are now bringing in potential from other disciplines that you would never have associated with computing, and maybe that person who is that, first violinist is also the person who figures out the algorithm for how a cancer gene works using quantum. That I think is the bigger picture of this, is all this talent we have as a human race, we're not using even a fraction of it, but with these new technologies and these newer interfaces, we might get there. >> Awesome. Chris, I love talking to you. You're a real clear thinker and a great CUBE guest. Thanks very much for coming back on. >> Thank you for having me again back on. >> Really appreciate it. Alright, thanks for watching everybody. You're watching theCUBE live from IBM Think 2018. Dave Vellante, we're out. (upbeat music)

Published Date : Mar 21 2018

SUMMARY :

Brought to you by IBM. This is the third day of IBM Think. It's good to be back. Congratulations, you got a new company off the ground. and the premise is simple, but know that there's more to be made. So you and I do a lot of these What are your thoughts on is a lot of the technology, and it taking over the world, the customers just hate you more. some of the practical applications then we can tell you down to the week level, That's the kind of thing that you're talking about. that I ran the previous year, but even a human, you can't really explain you have to write it down on how your data is being used, So there are some real use cases and that is technically still discrimination, when you go back to the target example years ago. or at least that they have a process Exactly and that's actually one of the I think, the first time you and I and tell you where you're out of compliance, and to be able to prove their compliance. Well, I think we talked about and do the minimum compliance, Yeah and many companies aren't that sophisticated. but you still don't want to give away 4% of your revenue Right, 'cause that could wipe out No more pepperoni at Joe's. that most of the business would be done online, So the experience you get online is genuinely better so the novelty of driving your own car. better diagnoses than doctors in your opinion? and you will never interact with a human So okay, I'm going to keep going and so as a result the bank itself is losing transactions Will cyber become the future of warfare? and it is going to get to a very scary point. and he made the point that but Russia, the former GRU, the former KGB, and are there limits? but the possibility of that happening and the core of this is all data. and the reason I say that is because in 2015 and in the book he draws upon one of the premises is, and they're going to build new businesses off of that matrix, and you can apply that to a quantum circuit, Chris, I love talking to you. Dave Vellante, we're out.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ChrisPERSON

0.99+

Dave VellantePERSON

0.99+

EuropeLOCATION

0.99+

PutinPERSON

0.99+

DavePERSON

0.99+

Justin KownackiPERSON

0.99+

Chris PennPERSON

0.99+

Dave MichelaPERSON

0.99+

2015DATE

0.99+

IBMORGANIZATION

0.99+

Stephen HawkingPERSON

0.99+

May 17thDATE

0.99+

Robert GatesPERSON

0.99+

ArizonaLOCATION

0.99+

ChicagoLOCATION

0.99+

UberORGANIZATION

0.99+

MunichLOCATION

0.99+

30QUANTITY

0.99+

United StatesLOCATION

0.99+

Last yearDATE

0.99+

Michio KakuPERSON

0.99+

Garry KasparovPERSON

0.99+

EUORGANIZATION

0.99+

ChinaLOCATION

0.99+

40%QUANTITY

0.99+

AfricaLOCATION

0.99+

Silicon ValleyLOCATION

0.99+

30 yearsQUANTITY

0.99+

KGBORGANIZATION

0.99+

90%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

yesterdayDATE

0.99+

Watson HealthORGANIZATION

0.99+

Las VegasLOCATION

0.99+

4%QUANTITY

0.99+

Tripp BradenPERSON

0.99+

GRUORGANIZATION

0.99+

1500 pagesQUANTITY

0.99+

two waysQUANTITY

0.99+

StarbucksORGANIZATION

0.99+

Watson StudioORGANIZATION

0.99+

iPadsCOMMERCIAL_ITEM

0.99+

GDPRTITLE

0.99+

DisneyORGANIZATION

0.99+

Elon MuskPERSON

0.99+

a year and a half agoDATE

0.99+

this weekDATE

0.99+

two quartersQUANTITY

0.99+

hundreds of yearsQUANTITY

0.99+

OneQUANTITY

0.99+

35 yearsQUANTITY

0.99+

last summerDATE

0.99+

50%QUANTITY

0.99+

Justin BieberPERSON

0.99+

AmericaLOCATION

0.99+

SquareORGANIZATION

0.99+

a year and a half laterDATE

0.99+

Joe's PizzaORGANIZATION

0.99+

DeepMindORGANIZATION

0.99+

Seeing DigitalTITLE

0.99+

threeQUANTITY

0.98+

next weekDATE

0.98+

40,000 peopleQUANTITY

0.98+

todayDATE

0.98+

this yearDATE

0.98+

first quarterDATE

0.98+

IBM CDO Social Influencers | IBM CDO Strategy Summit 2017


 

>> Live from Boston, Massachusetts, it's The Cube! Covering IBM Chief Data Officer Summit, brought to you by IBM. >> Welcome back to The Cube's live coverage of IBM's Chief Data Strategy Summit, I'm your host Rebecca Knight, along with my cohost Dave Vellante. We have a big panel today, these are our social influencers. Starting at the top, we have Christopher Penn, VP Marketing of Shift Communications, then Tripp Braden, Executive Coach and Growth Strategist at Strategic Performance Partners, Mike Tamir, Chief Data Science Officer at TACT, Bob Hayes, President of Business Over Broadway. Thanks so much for joining us. >> Thank you. >> So we're talking about data as a way to engage customers, a way to engage employees. What business functions would you say stand to benefit the most from using data? >> I'll take a whack at that. I don't know if it's the biggest function, but I think the customer experience and customer success. How do you use data to help predict what customers will do, and how do you then use that information to kind of personalize that experience for them and drive up recommendations, retention, upselling, things like that. >> So it's really the customer experience that you're focusing on? >> Yes, and I just released a study. I found that analytical-leading companies tend to use analytics to understand their customers more than say analytical laggards. So those kind of companies who can actually get value from data, they focus their efforts around improving customer loyalty by just gaining a deeper understanding about their customers. >> Chris, you want to jump in here with- >> I was just going to say, as many of us said, we have three things we really care about as business people, right? We want to save money, save time, or make money. So any function that meets those qualifications, is a functional benefit from data. >> I think there's also another interesting dimension to this, when you start to look at the leadership team in the company, now having the ability to anticipate the future. I mean now, we are no longer just looking at static data. We are now looking at anticipatory capability and seeing around corners, so that the person comes to the team, they're bringing something completely different than the team has had in the past. This whole competency of being able to anticipate the future and then take from that, where you take your organization in the future. >> So follow up on that, Tripp, does data now finally trump gut feel? Remember the HBR article of 10, 15 years ago, can't beat gut feel? Is that, we hit a new era now? >> Well, I think we're moving into an era where we have both. I think it's no longer an either or, we have intuition or we have data. Now we have both. The organizations who can leverage both at the same time and develop that capability and earn the trust of the other members by doing that. I see the Chief Data Officer really being a catalyst for organizational change. >> So Dr. Tamir I wonder if I could ask you a question? Maybe the whole panel, but so we've all followed the big data trend and the meme, AI, deep learning, machine learning, same wine, new bottle, or is there something substantive behind it? >> So certainly our capabilities are growing, our capabilities in machine learning, and I think that's part of why now there's this new branding of AI. AI is not what your mother might have thought AI is. It's not robots and cylons and that sort of thing that are going to be able to think intelligently. They just did intelligence tests on the different, like Siri and Alexa, quote AIs from different companies, and they scored horribly. They scored much worse than my, much worse than my very intelligent seven-year old. And that's not a comment on the deficiencies in Alexa or in Siri. It's a comment on these are not actually artificial intelligences. These are just tools that apply machine learning strategically. >> So you are all thinking about data and how it is going to change the future and one of the things you said, Tripp, is that we can now see the future. Talk to me about some of the most exciting things that you're seeing that companies do that are anticipating what customers want. >> Okay, so for example, in the customer success space, a lot of Sass businesses have a monthly subscription, so they're very worried about customer churn. So companies are now leveraging all the user behavior to understand which customers are likely to leave next month, and if they know that, they can reach out to them with maybe some retention campaigns, or even use that data to find out who's most likely to buy more from you in the next month, and then market to those in effective ways. So don't just do a blast for everybody, focus on particular customers, their needs, and try to service them or market to them in a way that resonates with them that increases retention, upselling, and recommendations. >> So they've already seen certain behaviors that show a customer is maybe not going to re-up? >> Exactly, so you just, you throw this data in a machine learning, right. You find the predictors of your outcome that interest you, and then using that information, you say oh, maybe predictors A, B, and C, are the ones that actually drive loyalty behaviors, then you can use that information to segment your customers and market to them appropriately. It's pretty cool stuff. >> February 18th, 2018. >> Okay. >> So we did a study recently just for fun of when people search for the term "Outlook, out of office." Yeah, and you really only search for that term for one reason, you're going on vacation, and you want to figure out how to turn the feature on. So we did a five-year data poll of people, of the search times for that and then inverted it, so when do people search least for that term. That's when they're in the office, and it's the week of February 18th, 2018, will be that time when people like, yep, I'm at the office, I got to work. And knowing that, prediction and data give us specificity, like yeah, we know the first quarter is busy, we know between memorial Day and Labor Day is not as busy in the B to B world. But as a marketer, we need to put specificity, data and predictive analytics gives us specificity. We know what week to send our email campaigns, what week to turn our ad budgets all the way to full, and so on and so forth. If someone's looking for The Cube, when will they be doing that, you know, going forward? That's the power of this stuff, is that specificity. >> They know what we're going to search for before we search for it. (laughter) >> I'd like to know where I'm going to be next week. Why that date? >> That's the date that people least search for the term, "Outlook, out of office." >> Okay. >> So, they're not looking for that feature, which logically means they're in the office. >> Or they're on vacation. (laughter) Right, I'm just saying. >> That brings up a good point on not just, what you're predicting for interactions right now, but also anticipating the trends. So Bob brought up a good point about figuring out when people are churning. There's a flip side to that, which is how do you get your customers to be more engaged? And now we have really an explosion in reinforcement learning in particular, which is a tool for figuring out, not just how to interact with you right now as a one off, statically. But how do I interact with you over time, this week, next week, the week after that? And using reinforcement learning, you can actually do that. This is the the sort-of technique that they used to beat Alpha-Go or to beat humans with Alpha-Go. Machine-learning algorithms, supervised learning, works well when you get that immediate feedback, but if you're playing a game, you don't get that feedback that you're going to win 300 turns from now, right now. You have to create more advanced value functions and ways of anticipating where things are going, this move, so that you see things are on track for winning in 20, 30, 40 moves, down the road. And it's the same thing when you're dealing with customer engagement. You want to, you can make a decision, I'm going to give this customer a coupon that's going to make them spend 50 cents more today, or you can make decisions algorithmically that are going to give them a 50 cent discount this week, next week, and the week after that, that are going to make them become a coffee drinker for life, or customer for life. >> It's about finding those customers for life. >> IBM uses the term cognitive business. We go to these conferences, everybody talks about digital transformation. At the end of the day it's all about how you use data. So my question is, if you think about the bell curve of organizations that you work with, how do they, what's the shape of that curve, part one. And then part two is, where do you see IBM on that curve? >> Well I think a lot of my clients make a living predicting the future, they're insurance companies and financial services. That's where the CDO currently resides and they get a lot of benefit. But one of things we're all talking about, but talking around, is that human element. So now, how do we take the human element and incorporate this into the structure of how we make our decisions? And how do we take this information, and how do we learn to trust that? The one thing I hear from most of the executives I talk to, when they talk about how data is being used in their organizations is the lack of trust. Now, when you have that, and you start to look at the trends that we're dealing with, and we call them data points verses calling them people, now you have a problem, because people become very, almost analytically challenged, right? So how do we get people to start saying, okay, let's look at this from the point of view of, it's not an either or solution in the world we live in today. Cognitive organizations are not going to happen tomorrow morning, even the most progressive organizations are probably five years away from really deploying them completely. But the organizations who take a little bit of an edge, so five, ten percent edge out of there, they now have a really, a different advantage in their markets. And that's what we're talking about, hyper-critical thinking skills. I mean, when you start to say, how do I think like Warren Buffet, how do I start to look and make these kinds of decisions analytically? How do I recreate an artificial intelligence when machine-learning practice, and program that's going to provide that solution for people. And that's where I think organizations that are forward-leaning now are looking and saying, how do I get my people to use these capabilities and ultimately trust the data that they're told. >> So I forget who said it, but it was early on in the big data movement, somebody said that we're further away from a single version of the truth than ever, and it's just going to get worse. So as a data scientist, what say you? >> I'm not familiar with the truth quote, but I think it's very relevant, well very relevant to where we are today. There's almost an arms race of, you hear all the time about automating, putting out fake news, putting out misinformation, and how that can be done using all the technology that we have at our disposal for disbursing that information. The only way that that's going to get solved is also with algorithmic solutions with creating algorithms that are going to be able to detect, is this news, is this something that is trying to attack my emotions and convince me just based on fear, or is this an article that's trying to present actual facts to me and you can do that with machine-learning algorithms. Now we have the technology to do that, algorithmically. >> Better algos than like and share. >> From a technological perspective, to your question about where IBM is, IBM has a ton of stuff that I call AI as a service, essentially where if you're a developer on Bluemix, for example, you can plug in to the different components of Watson at literally pennies per usage, to say I want to do sentiment analysis, I want to do tone analysis, I want personality insights, about this piece, who wrote this piece of content. And to Dr. Tamir's point, this is stuff that, we need these tools to do things like, fingerprint this piece of text. Did the supposed author actually write this? You can tell that, so of all the four magi, we call it, the Microsoft, Amazon, Google, IBM, getting on board, and adding that five or ten percent edge that Tripp was talking about, is easiest with IBM Bluemix. >> Great. >> Well, one of the other parts of this is you start to talk about what we're doing and you start to look at the players that are doing this. They are all organizations that I would not call classical technology organizations. They were 10 years ago, look at a Microsoft. But you look at the leadership of Microsoft today, and they're much more about figuring out what the formula is for success for business, and that's the other place I think we're seeing a transformation occurring, and the early adopters, is they have gone through the first generation, and the pain, you know, of having to have these kinds of things, and now they're moving to that second generation, where they're looking for the gain. And they're looking for people who can bring them capability and have the conversation, and discuss them in ways that they can see the landscape. I mean part of this is if you get caught in the bits and bites, you miss the landscape that you should be seeing in the market, and that's why I think there's a tremendous opportunity for us to really look at multiple markets of the same data. I mean, imagine looking and here's what I see, everyone in this group would have a different opinion in what they're seeing, but now we have the ability to see it five different ways and share that with our executive team and what we're seeing, so we can make better decisions. >> I wonder if we could have a frank conversation, an honest conversation about the data and the data ownership. You heard IBM this morning, saying hey we're going to protect your data, but I'd love you guys, as independents to weigh in. You got this data, you guys are involved with your clients, building models, the data trains the model. I got to believe that that model gets used at a lot of different places, within an industry, like insurance or across retail, whatever it is. So I'm afraid that my data is, my IP is going to seep across the industry. Should I not be worried about that? I wonder if you guys could weigh in. >> Well if you work with a particular vendor, sometimes vendors have a stipulation that we will not share your models with other clients, so you just got to stick to that. But in terms of science, I mean you build a model, right? You want to generalize that to other businesses. >> Right! >> (drowned out by others talking) So maybe if you could work somehow with your existing clients, say here, this is what we want to do, we just want to elevate the waters for everybody, right? So everybody wins when all boats rise, right? So if you can kind of convince your clients that we just want to help the world be better, and function better, make employees happier, customers happier, let's take that approach and just use models in a, that may be generalized to other situations and use them. If if you don't, then you just don't. >> Right, that's your choice. >> It's a choice, it's a choice you have to make. >> As long as you're transparent about it. >> I'm not super worried, I mean, you, Dave, Tripp, and I are all dressed similarly, right? We have the model of shirt and tie so, if I put on your clothes, we wouldn't, but if I were to put on your clothes, it would not be, even though it's the same model, it's just not going to be the same outcome. It's going to look really bad, right, so. Yes, companies can share the models and the general flows and stuff, but there's so much, if a company's doing machine learning well, there's so much feature engineering that's unique to that company that trying to apply that somewhere else, is just going to blow up. >> Yeah, but we could switch ties, like Tripp has got a really cool tie, I'd be using that tie on July 4th. >> This is turning into a different kind of panel (laughter) Chris, Tripp, Mike, and Bob, thanks so much for joining us. This has been a really fun and interesting panel. >> Thank you very much. Thank you. >> Thanks you guys. >> We will have more from the IBM Summit in Boston just after this. (techno music)

Published Date : Oct 25 2017

SUMMARY :

brought to you by IBM. Starting at the top, we stand to benefit the most from using data? and how do you then use tend to use analytics to understand their So any function that meets so that the person comes and earn the trust I could ask you a question? that are going to be able one of the things you said, to buy more from you in the next month, to segment your customers and is not as busy in the B to B world. going to search for I'd like to know where That's the date that people least looking for that feature, Right, I'm just saying. that are going to make them become It's about finding of organizations that you and program that's going to it's just going to get worse. that are going to be able the four magi, we call it, and now they're moving to that and the data ownership. that to other businesses. that may be generalized to choice you have to make. is just going to blow up. Yeah, but we could switch Chris, Tripp, Mike, and Bob, Thank you very much. in Boston just after this.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Rebecca KnightPERSON

0.99+

AmazonORGANIZATION

0.99+

Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

ChrisPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Christopher PennPERSON

0.99+

Mike TamirPERSON

0.99+

GoogleORGANIZATION

0.99+

Bob HayesPERSON

0.99+

February 18th, 2018DATE

0.99+

BobPERSON

0.99+

July 4thDATE

0.99+

fiveQUANTITY

0.99+

20QUANTITY

0.99+

five-yearQUANTITY

0.99+

MikePERSON

0.99+

TamirPERSON

0.99+

50 centsQUANTITY

0.99+

next weekDATE

0.99+

DavePERSON

0.99+

Tripp BradenPERSON

0.99+

TrippPERSON

0.99+

SiriTITLE

0.99+

next weekDATE

0.99+

Warren BuffetPERSON

0.99+

30QUANTITY

0.99+

tomorrow morningDATE

0.99+

February 18th, 2018DATE

0.99+

this weekDATE

0.99+

Boston, MassachusettsLOCATION

0.99+

50 centQUANTITY

0.99+

bothQUANTITY

0.99+

next monthDATE

0.99+

first generationQUANTITY

0.99+

five yearsQUANTITY

0.99+

300 turnsQUANTITY

0.99+

AlexaTITLE

0.99+

second generationQUANTITY

0.99+

BostonLOCATION

0.99+

10 years agoDATE

0.99+

TACTORGANIZATION

0.98+

five different waysQUANTITY

0.98+

seven-year oldQUANTITY

0.97+

oneQUANTITY

0.96+

40 movesQUANTITY

0.96+

todayDATE

0.96+

HBRORGANIZATION

0.96+

IBM SummitEVENT

0.96+

Strategic Performance PartnersORGANIZATION

0.96+

10, 15 years agoDATE

0.95+

Labor DayEVENT

0.94+

PresidentPERSON

0.93+

one reasonQUANTITY

0.93+

ten percentQUANTITY

0.93+

Shift CommunicationsORGANIZATION

0.92+

SassTITLE

0.92+

Over BroadwayORGANIZATION

0.91+

Alpha-GoTITLE

0.91+

IBMEVENT

0.89+

single versionQUANTITY

0.88+

first quarterDATE

0.87+

this morningDATE

0.87+

IBM Chief Data Officer SummitEVENT

0.82+

memorial DayEVENT

0.8+

CDO Strategy Summit 2017EVENT

0.8+