Sanjay Poonen, CEO & President, Cohesity | VMware Explore 2022
>>Good afternoon, everyone. And welcome back to the VMware Explorer. 2022 live from San Francisco. Lisa Martin, here with Dave. Valante good to be sitting next to you, sir. >>Yeah. Yeah. The big set >>And we're very excited to be welcoming buck. One of our esteemed alumni Sanja poin joins us, the CEO and president of cohesive. Nice to see >>You. Thank you, Lisa. Thank you, Dave. It's great to meet with you all the time and the new sort of setting here, but first >>Time, first time we've been in west, is that right? We've been in north. We've been in south. We've been in Las Vegas, right. But west, >>I mean, it's also good to be back with live shows with absolutely, you know, after sort of the two or three or hiatus. And it was a hard time for the whole world, but I'm kind of driving a little bit of adrenaline just being here with people. So >>You've also got some adrenaline, sorry, Dave. Yeah, you're good because you are new in the role at cohesive. You wrote a great blog that you are identified. The four reasons I came to cohesive. Tell the audience, just give 'em a little bit of a teaser about that. >>Yeah, I think you should all read it. You can Google and, and Google find that article. I talked about the people Mohi is a fantastic founder. You know, he was the, you know, the architect of the Google file system. And you know, one of the senior Google executives was on my board. Bill Corrin said one of the smartest engineers. He was the true father of hyperconverge infrastructure. A lot of the code of Nutanix. He wrote, I consider him really the father of that technology, which brought computer storage. And when he took that same idea of bringing compute to secondary storage, which is really what made the scale out architect unique. And we were at your super cloud event talking about that, Dave. Yeah. Right. So it's a people I really got to respect his smarts, his integrity and the genius, what he is done. I think the customer base, I called a couple of customers. One of them, a fortune 100 customer. I, I can't tell you who it was, but a very important customer. I've known him. He said, I haven't seen tech like this since VMware, 20 years ago, Amazon 10 years ago and now Ko. So that's special league. We're winning very much in the enterprise and that type of segment, the partners, you know, we have HPE, Cisco as investors. Amazon's an investors. So, you know, and then finally the opportunity, I think this whole area of data management and data security now with threats, like ransomware big opportunity. >>Okay. So when you were number two at VMware, you would come on and say, we'd love all our partners and of course, okay. So you know, a little bit about how to work with, with VMware. So, so when you now think about the partnership between cohesive and VMware, what are the things that you're gonna stress to your constituents on the VMware side to convince them that Hey, partnering with cohesive is gonna gonna drive more value for customers, you know, put your thumb on the scale a little bit. You know, you gotta, you gotta unfair advantage somewhat, but you should use it. So what's the narrative gonna be like? >>Yeah, I think listen with VMware and Amazon, that probably their top two partners, Dave, you know, like one of the first calls I made was to Raghu and he knew about this decision before. That's the level of trust I have in him. I even called Michael Dell, you know, before I made the decision, there's a little bit of overlap with Dell, but it's really small compared to the overlap, the potential with Dell hardware that we could compliment. And then I called four CEOs. I was, as I was making this decision, Andy Jassey at Amazon, he was formerly AWS CEO sat Nadela at Microsoft Thomas cor at Google and Arvin Christian, IBM to say, I'm thinking about this making decision. They are many of the mentors and friends to me. So I believe in an ecosystem. And you know, even Chuck Robbins, who the CEO of Cisco is an investor, I texted him and said, Hey, finally, we can be friends. >>It was harder to us to be friends with Cisco, given the overlap of NSX. So I have a big tent towards everybody in our ecosystem with VMware. I think the simple answer is there's no overlap okay. With, with the kind of the primary storage capabilities with VSAN. And by the same thing with Nutanix, we will be friends and, and extend that to be the best data protection solution. But given also what we could do with security, I think this is gonna go a lot further. And then it's all about meet the field. We have common partners. I think, you know, sort of the narrative I talked about in that blog is just like snowflake was replacing Terada and ServiceNow replace remedy and CrowdStrike, replacing Symantec, we're replacing legacy vendors. We are viewed as the modern solution cloud optimized for private and public cloud. We can help you and make VMware and vs a and VCF very relevant to that part of the data management and data security continuum, which I think could end VMware. And by the way, the same thing into the public cloud. So most of the places where we're being successful is clearly withs, but increasingly there's this discussion also about playing into the cloud. So I think both with VMware and Amazon, and of course the other partners in the hyperscaler service, storage, networking place and security, we have some big plans. >>How, how much do you see this? How do you see this multi-cloud narrative that we're hearing here from, from VMware evolving? How much of an opportunity is it? How are customers, you know, we heard about cloud chaos yesterday at the keynote, are customers, do they, do they admit that there's cloud chaos? Some probably do some probably don't how much of an opportunity is that for cohesive, >>It's tremendous opportunity. And I think that's why you need a Switzerland type player in this space to be successful. And you know, and you can't explicitly rule out the fact that the big guys get into this space, but I think it's, if you're gonna back up office 365 or what they call now, Microsoft 365 into AWS or Google workspace into Azure or Salesforce into one of those clouds, you need a Switzerland player. It's gonna be hard. And in many cases, if you're gonna back up data or you protect that data into AWS banks need a second copy of that either on premise or Azure. So it's very hard, even if they have their own native data protection for them to be dual cloud. So I think a multi-cloud story and the fact that there's at least three big vendors of cloud in, in the us, you know, one in China, if include Alibaba creates a Switzerland opportunity for us, that could be fairly big. >>And I think, you know, what we have to do is make sure while we'll be optimized, our preferred cloud is AWS. Our control plane runs there. We can't take an all in AWS stack with the control plane and the data planes at AWS to Walmart. So what I've explained to both Microsoft and AWS is that data plane will need to be multi-cloud. So I can go to an, a Walmart and say, I can back up your data into Azure if you choose to, but the control plane's still gonna be an AWS, same thing with Google. Maybe they have another account. That's very Google centric. So that's how we're gonna believe the, the control plane will be in AWS. We'll optimize it there, but the data plane will be multicloud. >>Yeah. And that's what Mo had explained at Supercloud. You know, and I talked to him, he really helped me hone in on the deployment models. Yes. Where, where, where the cohesive deployment model is instantiating that technology stack into each cloud region and each cloud, which gives you latency advantages and other advantages >>And single code based same platform. >>And then bringing it, tying it together with a unified, you know, interface. That was he, he was, he was key. In fact, I, I wrote about it recently and, and gave him and the other 29 >>Quite a bit in that session, he went deep with you. I >>Mean, with Mohi, when you get a guy who developed a Google file system, you know, who can technically say, okay, this is technically correct or no, Dave, your way off be. So I that's why I had to >>Go. I, I thought you did a great job in that interview because you probed him pretty deep. And I'm glad we could do that together with him next time. Well, maybe do that together here too, but it was really helpful. He's the, he's the, he's the key reason I'm here. >>So you say data management is ripe for disrupt disruption. Talk about that. You talked about this Switzerland effect. That sounds to me like a massive differentiator for cohesive. Why is data management right for disruption and why is cohesive the right partner to do it? >>Yeah, I think, listen, everyone in this sort of data protection backup from years ago have been saying the S Switzerland argument 18 years ago, I was a at Veras an executive there. We used the Switzerland argument, but what's changed is the cloud. And what's changed as a threat vector in security. That's, what's changed. And in that the proposition of a, a Switzerland player has just become more magnified because you didn't have a sales force or Workday service now then, but now you do, you didn't have multi-cloud. You had hardware vendors, you know, Dell, HPE sun at the time. IBM, it's now Lenovo. So that heterogeneity of, of on-premise service, storage, networking, HyperCloud, and, and the apps world has gotten more and more diverse. And I think you really need scale out architectures. Every one of the legacy players were not built with scale out architectures. >>If you take that fundamental notion of bringing compute to storage, you could almost paralyze. Imagine you could paralyze backup recovery and bring so much scale and speed that, and that's what Mo invented. So he took that idea of how he had invented and built Nutanix and applied that to secondary storage. So now everything gets faster and cheaper at scale. And that's a disruptive technology ally. What snowflake did to ator? I mean, the advantage of snowflake is when you took that same concept data, warehousing is not a new concept it's existed from since Ralph Kimball and bill Inman and the people who are fathers of data warehousing, they took that to Webscale. And in that came a disruptive force toter data, right on snowflake. And then of course now data bricks and big query, similar things. So we're doing the same thing. We just have to showcase the customers, which we do. And when large customers see that they're replacing the legacy solutions, I have a lot of respect for legacy solutions, but at some point in time of a solution was invented in 1995 or 2000, 2005. It's right. For change. >>So you use snowflake as an example, Frank SL doesn't like when I say playbook, cuz I says, Dave, I'm a situational CEO, no playbook, but there are patterns here. And one of the things he did is to your point go after, you know, Terra data with a better data warehouse, simplify scale, et cetera. And now he's, he's a constructing a Tam expansion strategy, same way he did at ServiceNow. And I see you guys following a similar pattern. Okay. You get your foot in the door. Let's face it. I mean, a lot of this started with, you know, just straight back. Okay, great. Now it's extending into data management now extending to multi-cloud that's like concentric circles in a Tam expansion strategy. How, how do you, as, as a CEO, that's part of your job is Tam expansion. >>So yeah, I think the way to think about the Tam is, I mean, people say it's 20, 30 billion, but let me tell you how you can piece it apart in size, Dave and Lisa number one, I estimate there's probably about 10 to 20 exabytes of data managed by these legacy players of on-prem stores that they back up to. Okay. So you add them all up in the market shares that they respectively are. And by the way, at the peak, the biggest of these companies got to 2 billion and then shrunk. That was Verto when I was there in 2004, 2 billion, every one of them is small and they stopped growing. You look at the IDC charts. Many of them are shrinking. We are the fastest growing in the last two years, but I estimate there's about 20 exabytes of data that collectively among the legacy players, that's either gonna stay on prem or move to the cloud. Okay. So the opportunity as they replace one of those legacy tools with us is first off to manage that 20 X by cheaper, faster with the Webscale glass offer the cloud guys, we could tip that into the cloud. Okay. >>But you can't stop there. >>Okay. No, we are not doing just backup recovery. We have a platform that can do files. We can do test dev analytics and now security. Okay. That data is potentially at a risk, not so much in the past, but for ransomware, right? How do we classify that? How do we govern that data? How do we run potential? You know, the same way you did antivirus some kind of XDR algorithms on the data to potentially not just catch the recovery process, which is after fact, but maybe the predictive act of before to know, Hey, there's somebody loitering around this data. So if I'm basically managing in the exabytes of data and I can proactively tell you what, this is, one CIO described this very simply to me a few weeks ago that I, and she said, I have 3000 applications, okay. I wanna be prepared for a black Swan event, except it's not a nine 11 planes getting the, the buildings. >>It is an extortion event. And I want to know when that happens, which of my 3000 apps I recover within one hour within one day within one week, no later than one month. Okay. And I don't wanna pay the bad guys at penny. That's what we do. So that's security discussions. We didn't have that discussion in 2004 when I was at another company, because we were talking about flood floods and earthquakes as a disaster recovery. Now you have a lot more security opportunity to be able to describe that. And that's a boardroom discussion. She needs to have that >>Digital risk. O O okay, go ahead please. I >>Was just gonna say, ransomware attack happens every what? One, every 11, 9, 11 seconds. >>And the dollar amount are going up, you know, dollar are going up. Yep. >>And, and when you pay the ransom, you don't always get your data back. So you that's not. >>And listen, there's always an ethical component. Should you do it or not do it? If you, if you don't do it and you're threatened, they may have left an Easter egg there. Listen, I, I feel very fortunate that I've been doing a lot in security, right? I mean, I built the business at, at, at VMware. We got it to over a billion I'm on the board of sneak. I've been doing security and then at SAP ran. So I know a lot about security. So what we do in security and the ecosystem that supports us in security, we will have a very carefully crafted stay tuned. Next three weeks months, you'll see us really rolling out a very kind of disciplined aspect, but we're not gonna pivot this company and become a cyber security company. Some others in our space have done that. I think that's not who we are. We are a data management and a data security company. We're not just a pure security company. We're doing both. And we do it well, intelligently, thoughtfully security is gonna be built into our platform, not voted on. Okay. And there'll be certain security things that we do organically. There's gonna be a lot that we do through partnerships, this >>Security market that's coming to you. You don't have to go claim that you're now a security vendor, right? The market very naturally saying, wow, a comprehensive security strategy has to incorporate a data protection strategy and a recovery, you know, and the things that we've talking about Mount ransomware, I want to ask you, you I've been around a long time, longer than you actually Sanjay. So, but you you've, you've seen a lot. You look, >>Thank you. That's all good. Oh, >>Shucks. So the market, I've never seen a market like this, right? I okay. After the.com crash, we said, and I know you can't talk about IPO. That's not what I'm talking about, but everything was bad after that. Right. 2008, 2000, everything was bad. I've never seen a market. That's half full, half empty, you know, snowflake beats and raises the stock, goes through the roof. Dev if it, if the area announced today, Mongo, DB, beat and Ray, that things getting crushed and, and after market never seen anything like this. It's so fed, driven and, and hard to protect. And, and of course, I know it's a marathon, you know, it's not a sprint, but have you ever seen anything like this? >>Listen, I walk worked through 18 quarters as COO of VMware. You've seen where I've seen public quarters there and you know, was very fortunate. Thanks to the team. I don't think I missed my numbers in 18 quarters except maybe once close. But we, it was, it's tough. Being a public company of the company is tough. I did that also at SAP. So the journey from 10 to 20 billion at SAP, the journey from six to 12 at VMware, that I was able to be fortunate. It's humbling because you, you really, you know, we used to have this, we do the earnings call and then we kind of ask ourselves, what, what do you think the stock price was gonna be a day and a half later? And we'd all take bets as to where this, I think you just basically, as a, as a sea level executive, you try to build a culture of beaten, raise, beaten, raise, beaten, raise, and you wanna set expectations in a way that you're not setting them up for failure. >>And you know, it's you, there's, Dave's a wonderful CEO as is Frank Salman. So it's hard for me to dissect. And sometimes the market are fickle on some small piece of it. But I think also the, when I, I encourage people say, take the long term view. When you take the long term view, you're not bothered about the ups and downs. If you're building a great company over the length of time, now it will be very clear over the arc of many, many quarters that you're business is trouble. If you're starting to see a decay in growth. And like, for example, when you start to see a growth, start to decay significantly by five, 10 percentage points, okay, there's something macro going on at this company. And that's what you won't avoid. But these, you know, ups and downs, my view is like, if you've got both Mongo D and snowflake are fantastic companies, they're CEOs of people I respect. They've actually kind of an, a, you know, advisor to us as a company, you knows moat very well. So we respect him, respect Frank, and you, there have been other quarters where Frank's, you know, the Snowflake's had a down result after that. So you build a long term and they are on the right side of history, snowflake, and both of them in terms of being a modern cloud relevant in the case of MongoDB, open source, two data technology, that's, you know, winning, I, I, we would like to be like them one day >>As, as the new CEO of cohesive, what are you most ask? What are you most anxious about and what are you most excited about? >>I think, listen, you know, you know, everything starts with the employee. You, I always believe I wrote my first memo to all employees. There was an article in Harvard business review called service profit chains that had a seminal impact on my leadership, which is when they studied companies who had been consistently profitable over a long period of time. They found that not just did those companies serve their customers well, but behind happy engaged customers were happy, engaged employees. So I always believe you start with the employee and you ensure that they're engaged, not just recruiting new employees. You know, I put on a tweet today, we're hiring reps and engineers. That's okay. But retaining. So I wanna start with ensuring that everybody, sometimes we have to make some unfortunate decisions with employees. We've, we've got a part company with, but if we can keep the best and brightest retained first, then of course, you know, recruiting machine, I'm trying to recruit the best and brightest to this company, people all over the place. >>I want to get them here. It's been, so I mean, heartwarming to come Tom world and just see people from all walks, kind of giving me hugs. I feel incredibly blessed. And then, you know, after employees, it's customers and partners, I feel like the tech is in really good hands. I don't have to worry about that. Cuz Mo it's in charge. He's got this thing. I can go to bed knowing that he's gonna keep innovating the future. Maybe in some of the companies I've worried about the tech innovation piece, but most doing a great job there. I can kind of leave that in his cap of hands, but employees, customers, partners, that's kind of what I'm focused on. None of them are for me, like a keep up at night, but there are are opportunities, right? And sometimes there's somebody you're trying to salvage to make sure or somebody you're trying to convince to join. >>But you know, customers, I love pursuing customers. I love the win. I hate to lose. So fortune 1000 global, 2000 companies, small companies, big companies, I wanna win every one of them. And it's not, it's not like, I mean, I know all these CEOs in my competitors. I texted him the day I joined and said, listen, I'll compete, honorably, whatever have you, but it's like Kobe and LeBron Kobe's passed away now. So maybe it's Steph Curry. LeBron, whoever your favorite athlete is you put your best on the court and you win. And that's how I am. That's nothing I've known no other gear than to put my best on the court and win, but do it honorably. It should not be the one that you're doing it. Unethically. You're doing it personally. You're not calling people's names. You're competing honorably. And when you win the team celebrates, it's not a victory for me. It's a victory for the team. >>I always think I'm glad that you brought up the employee experience and we're almost out of time, but I always think the employee experience and the customer experience are inextricably linked. This employees have to be empowered. They have to have the data that they need to do their job so that they can deliver to the customer. You can't do one without the other. >>That's so true. I mean, I, it's my belief. And I've talked also on this show and others about servant leadership. You know, one of my favorite poems is Brenda Naor. I went to bed in life. I dreamt that life was joy. I woke up and realized life was service. I acted in service was joy. So when you have a leadership model, which is it's about, I mean, there's lots of layers between me and the individual contributor, but I really care about that sales rep and the engineer. That's the leaf level of the organization. What can I get obstacle outta their way? I love skipping levels of going right. That sales rep let's go and crack this deal. You know? So you have that mindset. Yeah. I mean, you, you empower, you invert the pyramid and you realize the power is at the leaf level of an organization. >>So that's what I'm trying to do. It's a little easier to do it with 2000 people than I dunno, either 20, 20, 2000 people or 35,000 reported me at VMware. And I mean a similar number at SAP, which was even bigger, but you can shape this. Now we are, we're not a startup anymore. We're a midsize company. We'll see. Maybe along the way, there's an IP on the path. We'll wait for that. When it comes, it's a milestone. It's not the destination. So we do that and we are, we, I told people we are gonna build this green company. Cohesive is gonna be a great company like VMware one day, like Amazon. And there's always a day of early beginnings, but we have to work harder. This is kind of like the, you know, eight year old version of your kid, as opposed to the 18 year old version of the kid. And you gotta work a little harder. So I love it. Yeah. >>Good luck. Awesome. Thank you. Best of luck. Congratulations. On the role, it sounds like there's a tremendous amount of adrenaline, a momentum carrying you forward Sanjay. We always appreciate having you. Thank >>You for having in your show. >>Thank you. Our pleasure, Lisa. Thank you for Sanja poin and Dave ante. I'm Lisa Martin. You're watching the cube live from VMware Explorer, 2022, stick around our next guest. Join us momentarily.
SUMMARY :
Valante good to be sitting next to you, sir. And we're very excited to be welcoming buck. It's great to meet with you all the time and the new sort of setting here, We've been in north. I mean, it's also good to be back with live shows with absolutely, you know, after sort of the two or three or hiatus. You wrote a great blog that you are identified. And you know, one of the senior Google executives was on my board. So you know, a little bit about how to work with, with VMware. And you know, even Chuck Robbins, who the CEO of I think, you know, sort of the narrative I talked about in that blog is And I think that's why you need a Switzerland type player in this space to And I think, you know, what we have to do is make sure while we'll be optimized, our preferred cloud is AWS. stack into each cloud region and each cloud, which gives you latency advantages and other advantages And then bringing it, tying it together with a unified, you know, interface. Quite a bit in that session, he went deep with you. Mean, with Mohi, when you get a guy who developed a Google file system, you know, who can technically Go. I, I thought you did a great job in that interview because you probed him pretty deep. So you say data management is ripe for disrupt disruption. And I think you really need scale out architectures. the advantage of snowflake is when you took that same concept data, warehousing is not a new concept it's existed from since And I see you guys following a similar pattern. So yeah, I think the way to think about the Tam is, I mean, people say it's 20, 30 billion, but let me tell you how you can piece it apart You know, the same way you did antivirus some kind of XDR And I want to know when that happens, which of my 3000 apps I I Was just gonna say, ransomware attack happens every what? And the dollar amount are going up, you know, dollar are going up. And, and when you pay the ransom, you don't always get your data back. I mean, I built the business at, at, at VMware. protection strategy and a recovery, you know, and the things that we've talking about Mount ransomware, Thank you. And, and of course, I know it's a marathon, you know, it's not a sprint, I think you just basically, as a, as a sea level executive, you try to build a culture of And you know, it's you, there's, Dave's a wonderful CEO as is Frank Salman. I think, listen, you know, you know, everything starts with the employee. And then, you know, And when you win the team celebrates, I always think I'm glad that you brought up the employee experience and we're almost out of time, but I always think the employee experience and the customer So when you have a leadership model, which is it's about, I mean, This is kind of like the, you know, eight year old version of your kid, as opposed to the 18 year old version of a momentum carrying you forward Sanjay. Thank you.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sanjay | PERSON | 0.99+ |
Chuck Robbins | PERSON | 0.99+ |
Andy Jassey | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
1995 | DATE | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
China | LOCATION | 0.99+ |
2004 | DATE | 0.99+ |
Bill Corrin | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Frank Salman | PERSON | 0.99+ |
Lenovo | ORGANIZATION | 0.99+ |
Sanjay Poonen | PERSON | 0.99+ |
2005 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Arvin Christian | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Steph Curry | PERSON | 0.99+ |
2000 | DATE | 0.99+ |
20 | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
2 billion | QUANTITY | 0.99+ |
3000 apps | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Sanja poin | PERSON | 0.99+ |
Nutanix | ORGANIZATION | 0.99+ |
35,000 | QUANTITY | 0.99+ |
LeBron | PERSON | 0.99+ |
Veras | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Frank | PERSON | 0.99+ |
eight year | QUANTITY | 0.99+ |
Mohi | PERSON | 0.99+ |
both | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
Kobe | PERSON | 0.99+ |
Switzerland | LOCATION | 0.99+ |
2008 | DATE | 0.99+ |
DB | ORGANIZATION | 0.99+ |
six | QUANTITY | 0.99+ |
Nadela | PERSON | 0.99+ |
3000 applications | QUANTITY | 0.99+ |
Symantec | ORGANIZATION | 0.99+ |
Ralph Kimball | PERSON | 0.99+ |
2000 people | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
Sanjay Poonen | VMware Explore 2022
>>Good afternoon, everyone. And welcome back to the Cube's day two coverage of VMware Explorer, 2022 live from San Francisco. Lisa Martin, here with Dave. Valante good to be sitting next to you, sir. >>Yeah, the big >>Set and we're very excited to be welcoming back. One of our esteemed alumni Sanja poin joins us, the CEO and president of cohesive. Nice to see >>You. Thank you, Lisa. Thank you, Dave. It's great to meet with you all the time and the new sort of setting here, but >>First time we've been in west, is that right? We've been in north. We've been in south. We've been in Las Vegas, right. But west >>Nice. Well, I mean, it's also good to be back with live shows with absolutely, you know, after sort of the two or three or high. And it was a hard time for the whole world, but I'm kind of driving a little bit of adrenaline just being here with people. So >>You've also got some adrenaline, sorry, Dave. Yeah, you're good because you are new in the role at cohesive. You wrote a great blog that you are identified. The four reasons I came to cohesive. Tell the audience, just give 'em a little bit of a teaser about that. >>Yeah, I think you should all read it. You can Google and, and Google find that article. I talked about the people Mohi is a fantastic founder. You know, he was the, you know, the architect of the Google file system. And you know, one of the senior Google executives who was on my board, bill Corrin said one of the smartest engineers. He was the true father of hyperconverge infrastructure. A lot of the code of Nutanix. He wrote, I consider him really the father of that technology, which brought computer storage. And when he took that same idea of bringing compute to secondary storage, which is really what made the scale out architect unique. And we were at your super cloud event talking about that, Dave. Yeah. Right. So it's a people I really got to respect his smarts, his integrity and the genius, what he is done. >>I think the customer base, I called a couple of customers. One of them, a fortune 100 customer. I, I can't tell you who it was, but a very important customer. I've known him. He said, I haven't seen tech like this since VMware, 20 years ago, Amazon 10 years ago. And now COER so that's special league. We're winning very much in the enterprise and that type of segment, the partners, you know, we have HPE, Cisco as investors, Amazon's an investors. So, you know, and then finally the opportunity, I think this whole area of data management and data security now with threats, like ransomware big opportunity. >>Sure. Okay. So when you were number two at VMware, you would come on and say, we'd love all our partners and of course, okay. So you know, a little bit about how to work with, with VMware. So, so when you now think about the partnership between cohesive and VMware, what are the things that you're gonna stress to your constituents on the VMware side to convince them that Hey, partnering with cohesive is gonna gonna drive more value for customers, you know, put your thumb on the scale a little bit. You know, you gotta, you gotta unfair advantage somewhat, but you should use it. So what's the narrative gonna be like? >>Yeah. I think listen with VMware and Amazon, that probably their top two partners, Dave, you know, like one of the first calls I made was to Raghu and he knew about this decision before. That's the level of trust I have in him. I even called Michael Dell, you know, before I made the decision, there's a little bit of an overlap with Dell, but it's really small compared to the overlap, the potential with Dell hardware that we could compliment. And then I called four CEOs. I was, as I was making this decision, Andy Jassy at Amazon, he was formerly AWS CEO sat Nadela at Microsoft Thomas cor at Google and Arvin Christian at IBM to say, I'm thinking about this making decision. They are many of the mentors and friends to me. So I believe in an ecosystem. And you know, even Chuck Robbins, who the CEO of Cisco is an investor, I texted him and said, Hey, finally, we can be friends. >>It was harder to us to be friends with Cisco, given the overlap of NEX. So I have a big tent towards everybody in our ecosystem with VMware. I think the simple answer is there's no overlap okay. With, with the kind of the primary storage capabilities with VSAN. And by the same thing with Nutanix, we will be friends and, and extend that to be the best data protection solution. But given also what we could do with security, I think this is gonna go a lot further. And then it's all about meet in the field. We have common partners. I think, you know, sort of the narrative I talked about in that blog is just like snowflake was replacing Terada and ServiceNow replace remedy and CrowdStrike, replacing Symantec, we're replacing legacy vendors. We are viewed as the modern solution cloud optimized for private and public cloud. We can help you and make VMware and VSAN and VCF very relevant to that part of the data management and data security continuum, which I think could enhance VMware. And by the way, the same thing into the public cloud. So most of the places where we're being successful is clearly withs, but increasingly there's this discussion also about playing into the cloud. So I think both with VMware and Amazon, and of course the other partners in the hyperscaler service, storage, networking place and security, we have some big plans. >>How, how much do you see this? How do you see this multi-cloud narrative that we're hearing here from, from VMware evolving? How much of an opportunity is it? How are customers, you know, we heard about cloud chaos yesterday at the keynote, are customers, do they, do they admit that there's cloud chaos? Some probably do some probably don't how much of an opportunity is that for cohesive, >>It's tremendous opportunity. And I think that's why you need a Switzerland type player in this space to be successful. And you know, and you can't explicitly rule out the fact that the big guys get into this space, but I think it's, if you're gonna back up office 365 or what they call now, Microsoft 365 into AWS or Google workspace into Azure or Salesforce into one of those clouds, you need a Switzerland player it's gonna be out. And in many cases, if you're gonna back up data or you protect that data into AWS banks need a second copy of that either on premise or Azure. So it's very hard, even if they have their own native data protection for them to be dual cloud. So I think a multi-cloud story and the fact that there's at least three big vendors of cloud in, in the us, you know, one in China, if include Alibaba creates a Switzerland opportunity for us, that could be fairly big. >>And I think, you know, what we have to do is make sure while we'll be optimized, our preferred cloud is AWS. Our control plane runs there. We can't take an all in AWS stack with the control plane and the data planes at AWS to Walmart. So what I've explained to both Microsoft and AWS is that data plane will need to be multicloud. So I can go to an a Walmart and say, I can back up your data into Azure if you choose to, but the control, plane's still gonna be an AWS, same thing with Google. Maybe they have another account. That's very Google centric. So that's how we're gonna play the, the control plane will be in AWS. We'll optimize it there, but the data plane will be multi-cloud. >>Yeah. And that's what Mo had explained at Supercloud. You know, and I talked to, he really helped me hone in on the deployment models. Yes. Where, where, where the cohesive deployment model is instantiating that technology stack into each cloud region and each cloud, which gives you latency advantages and other advantages >>And single code based same platform, >>And then bringing it, tying it together with a unified, you know, interface. That was he, he was, he was key. In fact, I, I wrote about it recently and, and gave him and the other 20, >>Quite a bit in that session. Yeah. So he went deep with you. I >>Mean, with Mohi, when you get a guy who developed a Google file system, you know, who can technically say, okay, this is technically correct or no, Dave, your way off be so I that's why I had to >>Go. I, I thought you did a great job in that interview because you probed him pretty deep and I'm glad we could do that together with him next time. Well, maybe do that together here too, but it was really helpful. He's the, he's the, he's the key reason I'm here. >>So you say data management is ripe for disrupt disruption. Talk about that. You talked about this Switzerland effect. That sounds to me like a massive differentiator for cohesive. Why is data management right. For disruption and why is cohesive the right partner to do it? >>Yeah, I think, listen, everyone in this sort of data protection backup from years ago have been saying the S Switzerland argument 18 years ago, I was a at Veras an executive there. We used the Switzerland argument, but what's changed is the cloud. And what's changed as a threat vector in security. That's, what's changed. And in that the proposition of a, a Switzerland player has just become more magnified because you didn't have a sales force or Workday service now then, but now you do, you didn't have multi-cloud. You had hardware vendors, you know, Dell, HPE sun at the time. IBM, it's now Lenovo. So that heterogeneity of, of on-premise service, storage, networking, HyperCloud, and, and the apps world has gotten more and more diverse. And I think you really need scale out architectures. Every one of the legacy players were not built with scale out architectures. >>If you take that fundamental notion of bringing compute to storage, you could almost paralyze. Imagine you could paralyze backup recovery and bring so much scale and speed that, and that's what Mo invented. So he took that idea of how he had invented and built Nutanix and applied that to secondary storage. So now everything gets faster and cheaper at scale. And that's a disruptive technology ally. What snowflake did to ator? I mean, the advantage of snowflake is when you took that same concept data, warehousing is not a new concept it's existed from since Ralph Kimble and bill Inman and the people who are fathers of data warehousing, they took that to Webscale. And in that came a disruptive force toter data, right? And snowflake. And then of course now data bricks and big query, similar things. So we're doing the same thing. We just have to showcase the customers, which we do. And when large customers see that they're replacing the legacy solutions, I have a lot of respect for legacy solutions, but at some point in time of a solution was invented in 1995 or 2000, 2005. It's right. For change. >>So you use snowflake as an example, Frank sluman doesn't like when I say playbook, cuz I says, Dave, I'm a situational. See you no playbook, but there are patterns here. And one of the things he did is to your point go after, you know, Terra data with a better data warehouse, simplify scale, et cetera. And now he's, he's a constructing a Tam expansion strategy, same way he did at ServiceNow. And I, you guys following a similar pattern. Okay. You get your foot in the door. Let's face it. I mean, a lot of this started with, you know, just straight back. Okay, great. Now it's extending into data management now extending to multi-cloud that's like concentric circles in a Tam expansion strategy. How, how do as, as a CEO, that's part of your job is Tam expansion. >>So yeah, I think the way to think about the Tam is, I mean, people say it's 20, 30 billion, but let me tell you how you can piece it apart in size, Dave and Lisa number one, I estimate there's probably about 10 to 20 exabytes of data managed by these legacy players of on-prem stores that they back up to. Okay. So you add them all up in the market shares that they respectively are. And by the way, at the peak, the biggest of these companies got to 2 billion and then shrunk. That was Verto when I was there in 2004, 2 billion, every one of them is small and they stopped growing. You look at the IDC charts. Many of them are shrinking. We are the fastest growing in the last two years, but I estimate there's about 20 exabytes of data that collectively among the legacy players, that's either gonna stay on prem or move to the cloud. Okay. So the opportunity as they replace one of those legacy tools with us is first off to manage that 20 X bike cheaper, faster with the Webscale, a glass or for the cloud guys, we could tip that into the cloud. Okay. >>But you can't stop there. >>Okay. No, we are not doing just back recovery. Right. We have a platform that can do files. We can do test dev analytics and now security. Okay. That data is potentially at a risk, not so much in the past, but for ransomware, right? How do we classify that? How do we govern that data? How do we run potential? You know, the same way you did antivirus some kind of XDR algorithms on the data to potentially not just catch the recovery process, which is after fact, but maybe the predictive act of before to know, Hey, there's somebody loitering around this data. So if I'm basically managing in the exabytes of data and I can proactively tell you what, this is, one CIO described this very simply to me a few weeks ago that I, and she said, I have 3000 applications, okay. I wanna be prepared for a black Swan event, except it's not a nine 11 planes hitting the, the buildings. >>It is an extortion event. And I want to know when that happens, which of my 3000 apps I recover within one hour within one day within one week, no lay than one month. Okay. And I don't wanna pay the bad guys of penny. That's what we do. So that's security discussions. We didn't have that discussion in 2004 when I was at another company, because we were talking about flood floods and earthquakes as a disaster recovery. Now you have a lot more security opportunity to be able to describe that. And that's a boardroom discussion. She needs to have that >>Digital risk. O O okay, go ahead please. I >>Was just gonna say, ransomware attack happens every what? One, every 11, 9, 11 seconds. >>And the dollar amount are going up, you know, dollar of what? >>Yep. And, and when you pay the ransom, you don't always get your data back. So you that's >>Not. And listen, there's always an ethical component. Should you do it or not do it? If you, if you don't do it and you're threatened, they may have left an Easter egg there. Listen, I, I feel very fortunate that I've been doing a lot in security, right? I mean, I built the business at, at, at VMware. We got it to over a billion I'm on the board of sneak. I've been doing security and then at SAP ran. So I know a lot about security. So what we do in security and the ecosystem that supports us in security, we will have a very carefully crafted stay tuned. Next three weeks months, you'll see us really rolling out a very kind of disciplined aspect, but we're not gonna pivot this company and become a cyber security company. Some others in our space have done that. I think that's not who we are. We are a data management and a data security company. We're not just a pure security company. We're doing both. And we do it well, intelligently, thoughtfully security is gonna be built into our platform, not bolted on, okay. And there'll be certain security things that we do organically. There's gonna be a lot that we do through partnerships, >>This security market that's coming to you. You don't have to go claim that you're now a security vendor, right? The market very naturally saying, wow, a comprehensive security strategy has to incorporate a data protection strategy and a recovery, you know, and the things we've talking about, Mount ransomware, I want to ask you, you know, I've been around a long time, longer than you actually Sanjay. So, but you you've, you've seen a lot. You look incredibly, >>Thank you. That's all good. Oh, >>Shocks. So the market, I've never seen a market like this, right? I okay. After the.com crash, we said, and I know you can't talk about IPO. That's not what I'm talking about, but everything was bad after that. Right. 2008, 2000, everything was bad. I've never seen a market. That's half full, half empty, you know, snowflake beats and raises the stock, goes through the roof. Dev if it, the area announced today, Mongo, DB, beat and Ray, that things getting crushed. And, and after market never seen anything like this. It's so fed, driven and, and hard to protect. And, and of course, I know it's a marathon, you know, it's not a sprint, but have you ever seen anything like this? >>Listen, I walk worked through 18 quarters as COO of VMware. You seen, I've seen public quarters there and you know, was very fortunate. Thanks to the team. I don't think I missed my numbers in 18 quarters except maybe once close. But we, it was, it's tough. Being a public company. Officer of the company is tough. I did that also at SAP. So the journey from 10 to 20 billion at SAP, the journey from six to 12 at VMware, that I was able to be fortunate. It's humbling because you, you really, you know, we used to have this, we do the earnings call and then we kind of ask ourselves, what, what do you think the stock price was gonna be a day and a half later? And we'd all take bets as to wear this. I think you just basically, as a, as a sea level executive, you try to build a culture of beaten, raise, beaten, raise, beaten, raise, and you wanna set expectations in a way that you're not setting them up for failure. >>And you know, it's you, there's, Dave's a wonderful CEO as is Frank movement. So it's hard for me to dissect. And sometimes the market are fickle on some small piece of it. But I think also the, when I, I encourage people say, take the long term view. When you take the long term view, you're not bothered about the ups and downs. If you're building a great company over the length of time, now it will be very clear over the arc of many, many quarters that you're business is trouble. If you're starting to see a decay in growth. And like, for example, when you start to see a growth, start to decay significantly by five, 10 percentage points, okay, there's something macro going on at this company. And that's what you won't avoid. But these, you know, ups and downs, my view is like, if you've got both Mongo, DIA and snowflake are fantastic companies, they're CEOs of people I respect. They've actually a kind of an, a, you know, advisor to us as a company, you knows mot very well. So we respect him, respect Frank, and you, there have been other quarters where Frank's, you know, the snowflakes had a down result after that. So you build a long term and they are on the right side of history, snowflake, and both of them in terms of being a modern cloud relevant in the case of MongoDB open source to data technology, that's, you know, winning, I, we would like to be like them one day >>As, as the new CEO of cohesive, what are you most, what are you most anxious about? And what are you most excited about? >>I think, listen, you know, you know, everything starts with the employee. You, I always believe I wrote my first memo to all employees. There was an article in Harvard business review called service profit chains that had a seminal impact on my leadership, which is when they studied companies who had been consistently profitable over a long period of time. They found that not just did those companies serve their customers well, but behind happy engaged customers were happy, engaged employees. So I always believe you start with the employee and you ensure that they're engaged, not just recruiting new employees. You know, I put on a tweet today, we're hiring reps and engineers. That's okay. But retaining. So I wanna start with ensuring that everybody, sometimes we have to make some unfortunate decisions with employees. We've, we've got a part company with, but if we can keep the best and brightest retained first, then of course, you know, recruiting machine, I'm trying to recruit the best and brightest to this company, people all over the place. >>I want to get them here. It's been, so I mean, heartwarming to come to world and just see people from all walks, kind of giving me hugs. I feel incredibly blessed. And then, you know, after employees, it's customers and partners, I feel like the tech is in really good hands. I don't have to worry about that. Cuz Mo it's in charge. He's got this thing. I can go to bed knowing that he's gonna keep innovating the future. Maybe in some of the companies, I would worried about the tech innovation piece, but most doing a great job there. I can kind of leave that in his cap of hands, but employees, customers, partners, that's kind of what I'm focused on. None of them are for me, like a keep up at night, but they're are opportunities, right? And sometimes there's somebody you're trying to salvage to make sure or somebody you're trying to convince to join. >>But you know, customers, I love pursuing customers. I love the win. I hate to lose. So fortune 1000 global, 2000 companies, small companies, big companies, I wanna win every one of 'em and it's not, it's not like, I mean, I know all these CEOs in my competitors. I texted him the day I joined and said, listen, I'll compete, honorably, whatever have you, but it's like Kobe and LeBron Kobe's passed away now. So maybe it's step Curry. LeBron, whoever your favorite athlete is you put your best on the court and you win. And that's how I am. That's nothing I've known no other gear than to put my best on the court and win, but do it honorably. It should not be the one that you're doing it. Unethically. You're doing it personally. You're not calling people's names. You're competing honorably. And when you win the team celebrates, it's not a victory for me, it's a victory for the team. >>I always think I'm glad that you brought out the employee experience and we're almost out of time, but I always think the employee experience and the customer experience are inextricably linked. This employees have to be empowered. They have to have the data that they need to do their job so that they can deliver to the customer. You can't do one without the other. >>That's so true. I mean, I, it's my belief. And I've talked also on this show and others about servant leadership. You know, one of my favorite poems is Brenda NA Tago. I went to bed in life. I dreamt that life was joy. I woke up and realized life was service. I acted in service was joy. So when you have a leadership model, which is it's about, I mean, there's lots of layers between me and the individual contributor, but I really care about that sales rep and the engineer. That's the leaf level of the organization. What can I get obstacle outta their way? I love skipping levels and going write that sales rep let's go and crack this deal. You know? So you have that mindset. Yeah. I mean, you, you empower, you invert the pyramid and you realize the power is at the leaf level of an organization. >>So that's what I'm trying to do. It's a little easier to do it with 2000 people than I dunno, either 20, 20, 2000 people or 35,000 reported me at VMware. And I mean a similar number at SAP, which was even bigger, but you can shape this. Now we are, we're not a startup anymore. We're a mid-size company. We'll see. Maybe along the way, there's an IP on the path. We'll wait for that. When it comes, it's a milestone. It's not the destination. So we do that and we are, we, I told people we are gonna build this green company. Cohesive is gonna be a great company like VMware one day, like Amazon. And there's always a day of early beginnings, but we have to work harder. This is kind of like the, you know, eight year old version of your kid, as opposed to the 18 year old version of the kid. And you gotta work a little harder. So I love it. Yeah. >>Good luck. Awesome. Thank you too. Best of luck. Congratulations on the role, it sounds like there's a tremendous amount of adrenaline, a momentum carrying you forward Sanja. We always appreciate having thank >>You for having in your show. >>Thank you. Our pleasure, Lisa. Thank you for Sanjay poin and Dave ante. I'm Lisa Martin. You're watching the cube live from VMware Explorer, 2022, stick around our next guest. Join us momentarily.
SUMMARY :
Valante good to be sitting next to you, sir. the CEO and president of cohesive. It's great to meet with you all the time and the new sort of setting here, We've been in north. And it was a hard time for the whole world, but I'm kind of driving a little bit of adrenaline just being You wrote a great blog that you are identified. And you know, one of the senior Google executives who was on my board, We're winning very much in the enterprise and that type of segment, the partners, you know, we have HPE, So you know, a little bit about how to work with, with VMware. And you know, even Chuck Robbins, who the CEO of I think, you know, sort of the narrative I talked about in that blog is and the fact that there's at least three big vendors of cloud in, in the us, you know, And I think, you know, what we have to do is make sure while we'll be optimized, our preferred cloud is AWS. stack into each cloud region and each cloud, which gives you latency advantages and other advantages And then bringing it, tying it together with a unified, you know, interface. So he went deep with you. Go. I, I thought you did a great job in that interview because you probed him pretty deep and I'm glad we could do that together with him So you say data management is ripe for disrupt disruption. And I think you really need scale out architectures. the advantage of snowflake is when you took that same concept data, warehousing is not a new concept it's existed from since I mean, a lot of this started with, you know, So yeah, I think the way to think about the Tam is, I mean, people say it's 20, 30 billion, but let me tell you how you can piece it apart You know, the same way you did antivirus some kind of XDR And I want to know when that happens, which of my 3000 apps I I Was just gonna say, ransomware attack happens every what? So you that's I mean, I built the business at, at, at VMware. a data protection strategy and a recovery, you know, and the things we've talking about, Mount ransomware, That's all good. And, and of course, I know it's a marathon, you know, it's not a sprint, I think you just basically, as a, as a sea level executive, you try to build a culture of And you know, it's you, there's, Dave's a wonderful CEO as is Frank movement. I think, listen, you know, you know, everything starts with the employee. And then, you know, And when you win the team celebrates, I always think I'm glad that you brought out the employee experience and we're almost out of time, but I always think the employee experience and the customer So when you have a leadership model, which is it's about, I mean, This is kind of like the, you know, eight year old version of your kid, as opposed to the 18 year old version of a momentum carrying you forward Sanja. Thank you.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Chuck Robbins | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Sanjay Poonen | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
1995 | DATE | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
2004 | DATE | 0.99+ |
China | LOCATION | 0.99+ |
Sanja | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Arvin Christian | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
20 | QUANTITY | 0.99+ |
Lenovo | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
2000 | DATE | 0.99+ |
Lisa | PERSON | 0.99+ |
Frank | PERSON | 0.99+ |
Sanjay poin | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
2005 | DATE | 0.99+ |
Nutanix | ORGANIZATION | 0.99+ |
Mohi | PERSON | 0.99+ |
35,000 | QUANTITY | 0.99+ |
2 billion | QUANTITY | 0.99+ |
2008 | DATE | 0.99+ |
3000 apps | QUANTITY | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
eight year | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Switzerland | LOCATION | 0.99+ |
Frank sluman | PERSON | 0.99+ |
Brenda NA Tago | PERSON | 0.99+ |
One | QUANTITY | 0.99+ |
LeBron | PERSON | 0.99+ |
Veras | ORGANIZATION | 0.99+ |
Symantec | ORGANIZATION | 0.99+ |
Michael Dell | PERSON | 0.99+ |
DIA | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
3000 applications | QUANTITY | 0.99+ |
each cloud | QUANTITY | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Nadela | PERSON | 0.99+ |
six | QUANTITY | 0.99+ |
four reasons | QUANTITY | 0.99+ |
Starburst Panel Q1
>>In 2011, early Facebook employee and Cloudera co-founder Jeff Ocker famously said the best minds of my generation are thinking about how to get people to click on ads. And that sucks. Let's face it more than a decade later organizations continue to be frustrated with how difficult it is to get value from data and build a truly agile data driven enterprise. What does that even mean? You ask? Well, it means that everyone in the organization has the data they need when they need it. In a context that's relevant to advance the mission of an organization. Now that could mean cutting costs could mean increasing profits, driving productivity, saving lives, accelerating drug discovery, making better diagnoses, solving, supply chain problems, predicting weather disasters, simplifying processes, and thousands of other examples where data can completely transform people's lives beyond manipulating internet users to behave a certain way. We've heard the prognostications about the possibilities of data before and in fairness we've made progress, but the hard truth is the original promises of master data management, enterprise data, warehouses, data, Mars, data hubs, and yes, even data lakes were broken and left us wanting for more welcome to the data doesn't lie, or does it a series of conversations produced by the cube and made possible by Starburst data. >>I'm your host, Dave Lanta and joining me today are three industry experts. Justin Borgman is this co-founder and CEO of Starburst. Richard Jarvis is the CTO at EMI health and Theresa tongue is cloud first technologist at Accenture. Today we're gonna have a candid discussion that will expose the unfulfilled and yes, broken promises of a data past we'll expose data lies, big lies, little lies, white lies, and hidden truths. And we'll challenge, age old data conventions and bust some data myths. We're debating questions like is the demise of a single source of truth. Inevitable will the data warehouse ever have feature parody with the data lake or vice versa is the so-called modern data stack simply centralization in the cloud, AKA the old guards model in new cloud close. How can organizations rethink their data architectures and regimes to realize the true promises of data can and will and open ecosystem deliver on these promises in our lifetimes, we're spanning much of the Western world today. Richard is in the UK. Teresa is on the west coast and Justin is in Massachusetts with me. I'm in the cube studios about 30 miles outside of Boston folks. Welcome to the program. Thanks for coming on. Thanks for having us. Let's get right into it. You're very welcome. Now here's the first lie. The most effective data architecture is one that is centralized with a team of data specialists serving various lines of business. What do you think Justin? >>Yeah, definitely a lie. My first startup was a company called hit adapt, which was an early SQL engine for IDU that was acquired by Teradata. And when I got to Teradata, of course, Terada is the pioneer of that central enterprise data warehouse model. One of the things that I found fascinating was that not one of their customers had actually lived up to that vision of centralizing all of their data into one place. They all had data silos. They all had data in different systems. They had data on-prem data in the cloud. You know, those companies were acquiring other companies and inheriting their data architecture. So, you know, despite being the industry leader for 40 years, not one of their customers truly had everything in one place. So I think definitely history has proven that to be a lie. >>So Richard, from a practitioner's point of view, you know, what, what are your thoughts? I mean, there, there's a lot of pressure to cut cost, keep things centralized, you know, serve the business as best as possible from that standpoint. What, what is your experience, Joe? >>Yeah, I mean, I think I would echo Justin's experience really that we, as a business have grown up through acquisition, through storing data in different places sometimes to do information governance in different ways to store data in, in a platform that's close to data experts, people who really understand healthcare data from pharmacies or from, from doctors. And so, although if you were starting from a Greenfield site and you were building something brand new, you might be able to centralize all the data and all of the tooling and teams in one place. The reality is that that businesses just don't grow up like that. And, and it's just really impossible to get that academic perfection of, of storing everything in one place. >>Y you know, Theresa, I feel like Sarbanes Oxley kinda saved the data warehouse, you know? Right. But you actually did have to have a single version of the truth for certain financial data, but really for those, some of those other use cases, I, I mentioned, I, I do feel like the industry has kinda let us down. What's your take on this? Where does it make sense to have that sort of centralized approach versus where does it make sense to maybe decentralized? >>I, I think you gotta have centralized governance, right? So from the central team, for things like swans Oxley, for things like security, for certain very core data sets, having a centralized set of roles, responsibilities to really QA, right. To serve as a design authority for your entire data estate, just like you might with security, but how it's implemented has to be distributed. Otherwise you're not gonna be able to scale. Right? So being able to have different parts of the business really make the right data investments for their needs. And then ultimately you're gonna collaborate with your partners. So partners that are not within the company, right. External partners, we're gonna see a lot more data sharing and model creation. And so you're definitely going to be decentralized. >>So, you know, Justin, you guys last, geez, I think it was about a year ago, had a session on, on data mesh. It was a great program. You invited JAK, Dani, of course, she's the creator of the data mesh. And her one of our fundamental premises is that you've got this hyper specialized team that you've gotta go through. And if you want anything, but at the same time, these, these individuals actually become a bottleneck, even though they're some of the most talented people in the organization. So I guess question for you, Richard, how do you deal with that? Do you, do you organize so that there are a few sort of rock stars that, that, you know, build cubes and, and the like, and, and, and, or have you had any success in sort of decentralizing with, you know, your, your constituencies, that data model? >>Yeah. So, so we absolutely have got rockstar, data scientists and data guardians. If you like people who understand what it means to use this data, particularly as the data that we use at emos is very private it's healthcare information. And some of the, the rules and regulations around using the data are very complex and, and strict. So we have to have people who understand the usage of the data, then people who understand how to build models, how to process the data effectively. And you can think of them like consultants to the wider business, because a pharmacist might not understand how to structure a SQL query, but they do understand how they want to process medication information to improve patient lives. And so that becomes a, a consulting type experience from a, a set of rock stars to help a, a more decentralized business who needs to, to understand the data and to generate some valuable output. >>Justin, what do you say to a, to a customer or prospect that says, look, Justin, I'm gonna, I got a centralized team and that's the most cost effective way to serve the business. Otherwise I got, I got duplication. What do you say to that? >>Well, I, I would argue it's probably not the most cost effective and, and the reason being really twofold. I think, first of all, when you are deploying a enterprise data warehouse model, the, the data warehouse itself is very expensive, generally speaking. And so you're putting all of your most valuable data in the hands of one vendor who now has tremendous leverage over you, you know, for many, many years to come, I think that's the story of Oracle or Terra data or other proprietary database systems. But the other aspect I think is that the reality is those central data warehouse teams is as much as they are experts in the technology. They don't necessarily understand the data itself. And this is one of the core tenets of data mash that that jam writes about is this idea of the domain owners actually know the data the best. >>And so by, you know, not only acknowledging that data is generally decentralized and to your earlier point about, so Oxley, maybe saving the data warehouse, I would argue maybe GDPR and data sovereignty will destroy it because data has to be decentralized for, for those laws to be compliant. But I think the reality is, you know, the data mesh model basically says, data's decentralized, and we're gonna turn that into an asset rather than a liability. And we're gonna turn that into an asset by empowering the people that know the data, the best to participate in the process of, you know, curating and creating data products for, for consumption. So I think when you think about it, that way, you're going to get higher quality data and faster time to insight, which is ultimately going to drive more revenue for your business and reduce costs. So I think that that's the way I see the two, the two models comparing and con contrasting. >>So do you think the demise of the data warehouse is inevitable? I mean, I mean, you know, there Theresa you work with a lot of clients, they're not just gonna rip and replace their existing infrastructure. Maybe they're gonna build on top of it, but the, what does that mean? Does that mean the ed w just becomes, you know, less and less valuable over time, or it's maybe just isolated to specific use cases. What's your take on that? >>Listen, I still would love all my data within a data warehouse would love it. Mastered would love it owned by essential team. Right? I think that's still what I would love to have. That's just not the reality, right? The investment to actually migrate and keep that up to date. I would say it's a losing battle. Like we've been trying to do it for a long time. Nobody has the budgets and then data changes, right? There's gonna be a new technology. That's gonna emerge that we're gonna wanna tap into. There's gonna be not enough investment to bring all the legacy, but still very useful systems into that centralized view. So you keep the data warehouse. I think it's a very, very valuable, very high performance tool for what it's there for, but you could have this, you know, new mesh layer that still takes advantage of the things. I mentioned, the data products in the systems that are meaningful today and the data products that actually might span a number of systems. Maybe either those that either source systems, the domains that know it best, or the consumer based systems and products that need to be packaged in a way that be really meaningful for that end user, right? Each of those are useful for a different part of the business and making sure that the mesh actually allows you to lose all of them. >>So, Richard, let me ask you, you take, take Gemma's principles back to those. You got, you know, the domain ownership and, and, and data as product. Okay, great. Sounds good. But it creates what I would argue or two, you know, challenges self-serve infrastructure let's park that for a second. And then in your industry, one of the high, most regulated, most sensitive computational governance, how do you automate and ensure federated governance in that mesh model that Theresa was just talking about? >>Well, it absolutely depends on some of the tooling and processes that you put in place around those tools to be, to centralize the security and the governance of the data. And, and I think, although a data warehouse makes that very simple, cause it's a single tool, it's not impossible with some of the data mesh technologies that are available. And so what we've done at EMI is we have a single security layer that sits on top of our data mesh, which means that no matter which user is accessing, which data source, we go through a well audited well understood security layer. That means that we know exactly who's got access to which data field, which data tables. And then everything that they do is, is audited in a very kind of standard way, regardless of the underlying data storage technology. So for me, although storing the data in one place might not be possible understanding where your source of truth is and securing that in a common way is still a valuable approach and you can do it without having to bring all that data into a single bucket so that it's all in one place. >>And, and so having done that and investing quite heavily in making that possible has paid dividends in terms of giving wider access to the platform and ensuring that only data that's available under GDPR and other regulations is being used by, by the data users. >>Yeah. So Justin mean Democrat, we always talk about data democratization and you know, up until recently, they really haven't been line of sight as to how to get there. But do you have anything to add to this because you're essentially taking, you know, doing analytic queries and with data, that's all dispersed all over the, how are you seeing your customers handle this, this challenge? >>Yeah, I mean, I think data products is a really interesting aspect of the answer to that. It allows you to, again, leverage the data domain owners, people know the data, the best to, to create, you know, data as a product ultimately to be consumed. And we try to represent that in our product as effectively, almost eCommerce, like experience where you go and discover and look for the data products that have been created in your organization. And then you can start to consume them as, as you'd like. And so really trying to build on that notion of, you know, data democratization and self-service, and making it very easy to discover and, and start to use with whatever BI tool you, you may like, or even just running, you know, SQL queries yourself. >>Okay. G guys grab a sip of water. After the short break, we'll be back to debate whether proprietary or open platforms are the best path to the future of data excellence. Keep it right there.
SUMMARY :
famously said the best minds of my generation are thinking about how to get people to Teresa is on the west coast and Justin is in Massachusetts with me. So, you know, despite being the industry leader for 40 years, not one of their customers truly had So Richard, from a practitioner's point of view, you know, what, what are your thoughts? you might be able to centralize all the data and all of the tooling and teams in one place. Y you know, Theresa, I feel like Sarbanes Oxley kinda saved the data warehouse, I, I think you gotta have centralized governance, right? of rock stars that, that, you know, build cubes and, and the like, And you can think of them like consultants Justin, what do you say to a, to a customer or prospect that says, look, Justin, I'm gonna, you know, for many, many years to come, I think that's the story of Oracle or Terra data or other proprietary But I think the reality is, you know, the data mesh model basically says, I mean, you know, there Theresa you work with a lot of clients, they're not just gonna rip and replace their existing you know, new mesh layer that still takes advantage of the things. But it creates what I would argue or two, you know, Well, it absolutely depends on some of the tooling and processes that you put in place around And, and so having done that and investing quite heavily in making that possible But do you have anything to add to this because you're essentially taking, you know, the best to, to create, you know, data as a product ultimately to be consumed. open platforms are the best path to the future of
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Lanta | PERSON | 0.99+ |
Dani | PERSON | 0.99+ |
Richard | PERSON | 0.99+ |
Justin Borgman | PERSON | 0.99+ |
Justin | PERSON | 0.99+ |
Jeff Ocker | PERSON | 0.99+ |
Theresa | PERSON | 0.99+ |
Richard Jarvis | PERSON | 0.99+ |
Teresa | PERSON | 0.99+ |
Massachusetts | LOCATION | 0.99+ |
Teradata | ORGANIZATION | 0.99+ |
40 years | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
UK | LOCATION | 0.99+ |
two | QUANTITY | 0.99+ |
Joe | PERSON | 0.99+ |
GDPR | TITLE | 0.99+ |
JAK | PERSON | 0.99+ |
2011 | DATE | 0.99+ |
Starburst | ORGANIZATION | 0.99+ |
Boston | LOCATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
two models | QUANTITY | 0.99+ |
EMI | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Gemma | PERSON | 0.99+ |
Terada | ORGANIZATION | 0.99+ |
Accenture | ORGANIZATION | 0.99+ |
Each | QUANTITY | 0.99+ |
first lie | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
first startup | QUANTITY | 0.98+ |
Cloudera | ORGANIZATION | 0.98+ |
Today | DATE | 0.98+ |
SQL | TITLE | 0.98+ |
first technologist | QUANTITY | 0.97+ |
one place | QUANTITY | 0.97+ |
Democrat | ORGANIZATION | 0.97+ |
single | QUANTITY | 0.97+ |
about 30 miles | QUANTITY | 0.97+ |
one | QUANTITY | 0.96+ |
three industry experts | QUANTITY | 0.95+ |
more than a decade later | DATE | 0.94+ |
One | QUANTITY | 0.94+ |
hit adapt | ORGANIZATION | 0.94+ |
Terra data | ORGANIZATION | 0.93+ |
Greenfield | LOCATION | 0.92+ |
single source | QUANTITY | 0.91+ |
single tool | QUANTITY | 0.91+ |
Oxley | PERSON | 0.91+ |
one vendor | QUANTITY | 0.9+ |
single bucket | QUANTITY | 0.9+ |
single version | QUANTITY | 0.88+ |
about a year ago | DATE | 0.85+ |
Theresa tongue | PERSON | 0.83+ |
emos | ORGANIZATION | 0.82+ |
Mars | ORGANIZATION | 0.8+ |
swans Oxley | PERSON | 0.77+ |
IDU | TITLE | 0.69+ |
first | QUANTITY | 0.59+ |
a second | QUANTITY | 0.55+ |
Sarbanes Oxley | ORGANIZATION | 0.53+ |
Mastered | PERSON | 0.45+ |
Q1 | QUANTITY | 0.37+ |
Sri Raghavan, Teradata - DataWorks Summit 2017
>> Announcer: Live, from San Jose, in the heart of Silicon Valley, it's theCUBE, covering DataWorks Summit 2017. Brought to you by Hortonworks. (electronic music fading) >> Hi everybody, this is George Gilbert. We're watching theCUBE. We're at DataWorks 2017 with my good friend Sri Raghavan from Teradata, and Sri, let's kick this off. Tell us, bring us up to date with what Teradata's been doing in the era of big data and advanced analytics. >> First of all, George, it's always great to be back with you. I've done this before with you, and it's a pleasure coming back, and I always have fun doing this. So thanks for having me and Teradata on theCUBE. So, a lot of things have been going on at Teradata. As you know, we are the pioneer in the enterprise data warehouse space. We've been so for the past 25 plus years, and, you know, we've got an incredible amount of goodwill in the marketplace with a lot of our key customers and all that. And as you also know, in the last, you know, five or seven years or so, between five and seven years, we've actually expanded our portfolio significantly to go well beyond the enterprise data warehouse into advanced analytics. We've got solutions for the quote-unquote the big data, advanced analytics space. We've acquired organizations which have significant amount of core competence with enormous numbers of years of experience of people who can deliver us solutions and services. So it's fair to say, as an understatement, that we have, we've come a long way in terms of being a very formidable competitor in the marketplace with the kinds of, not only our core enterprise data warehouse solutions, but also advanced analytics solutions, both as products and solutions and services that we have developed over time. >> So I was at the Influencer Summit, not this year but the year before, and the thing, what struck me was you guys articulated very consistently and clearly the solutions that people build with the technology as opposed to just the technology. Let's pick one, like Customer Journey that I remember that was used last year. >> Sri: Right. >> And tell us, sort of, what are the components in it, and, sort of, what are the outcomes you get using it? >> Sure. First of all, thanks for picking on that point because it's a very important point that you mentioned, right? It's not- in today's world, it can't just be about the technology. We just can't go on and articulate things around our technology and the core competence, but we also have to make a very legitimate case for delivering solutions to the business. So, our, in fact, our motto is: Business solutions that are technology-enabled. We have a strong technology underpinning to be able to deliver solutions like Customer Journey. Let me give you a view into what Customer Journey is all about, right? So the idea of the Customer Journey, it's actually pretty straightforward. It's about being able to determine the kind of experience a customer is having as she or he engages with you across the various channels that they do business with you at. So it could be directly they come into the store, it could be online, it could be through snail mail, email, what have you. The point is not to look at Customer Journey as a set of disparate channels through which they interact with you, but to look at it holistically. Across the various areas of encounters they have with you and engagements they have with you, how do you determine what their overall experience is, and, more importantly, once you determine what their overall experience is, how can you have certain kinds of treatments that are very specific to the different parts of the experience and make their experience and engagement even better? >> Okay, so let me jump in for a second there. >> We've seen a lot of marketing automation companies come by and say, you know, or come and go having said over many generations, "We can help you track that." And they all seem to, like, target either ads or email. >> Correct. >> There's like, the touchpoints are constrained. How do you capture a broader, you know, a broader journey? >> Yeah, to me it's not just the touchpoints being constrained, although all the touchpoints are constrained. To me, it's almost as if those touchpoints are looked at very independently, and it's very orthogonal too, right? I look at only my online experience versus a store experience versus something else, right? And the assumption in most cases is that they're all not related. You know, sometimes, I may not come directly to the store, right, but the reason why I'm not coming to the store is because, to buy things, because, you know, I have seen an advertisement somewhere which says, "Look, go online and purchase a product." So whatever the case might be, the point is each part of the journey is very interrelated, and you need to understand this is as well. Now, the question that you asked is, "How do you, for instance, collect all this information? "Where do you store it?" >> George: And how do you relate it ... >> And, exactly, and how do you connect the various points of interaction, right? So for one thing, and let me just, sort of, go a little bit tangential and go into some architecture, the marchitecture, if you will that allows us to be able to, first of all, access all of this data. As you can imagine, the types and the sources of data are quite a bit, are pretty disparate, particularly as the number of channels by which you can engage with me as an organization has expanded, so do the number of sources. So, you know, we have to go to place A, where there's a lot of CRM information for instance, or place B, where it's a lot of online information, weblogs and web servers and what have you, right? So, we have to go to, for instance, some of these guys would have put all this information in a big data lake. Or they could have stored it in an EDW, in an enterprise data warehouse. So we've put in place a technology, an architecture, which allows us to be able to connect to all these various sources, be it Teradata products, or non-Terada- third-party sources, we don't care. We have the capability to connect all to, to these different data sources to be able to access information. So that's number one. Number two is how do you normalize all of this information? So as you can well imagine, right, webs logs servers are very different in their data makeup as apposed to CRM solutions, highly structured information. So we need a way to be able to bring them together, to connect a singular user ID across the different sources, so we have filtering, you know, data filters in place that extracts information from weblogs, let's say it's a XML file. So we extract all that information, and we connect it. We, ultimately, all of that information comes to you in a structured manner. >> And can it, can it be realtime reactive? In other words when- >> Sri: Absolutely. >> someone comes to- >> Sri: Absolutely. >> you know, a channel where you need to anticipate and influence. >> Very good question. In fact, I think we will be doing a big disservice to our customers if we did not have realtime decisioning in place. I mean, the whole idea is for us to be able to provide certain treatments based on what we anticipate your reactions are going to be to certain, let's say if it's a retail store, let's say to certain product coupons we've placed, which says, you know, come online, and basically behavior we think there's a 90% chance that tomorrow morning you're going to come back, you know, through our online portal and buy the products. And because of the fact that our analytics allows us to be able to predict your behavior tomorrow morning, as soon as you land on the online portal, we will be able to provide certain treatment to you that takes advantage of that. Absolutely. >> Techy question: because you're anticipating, does that mean you've done the prediction runs, batch, >> Sri: Absolutely. >> And so you're just serving up the answer. >> Yeah, the business level answer is absolutely. In fact, we have, as part of our advanced analytics solution, we have pre-built algorithms that take all this information that I've talked to you about, where it's connected all that information across the different sources, and we apply algorithms on top of that to be able to deliver predictive models. Now, these models, once they are actually applied as and when the data comes in, you know, you can operationalize them. So the thing to be very clear here, a key part of the Teradata story, is that not only are we in a position to be able to provide the infrastructure which allows you to be able to collect all the information, but we provide the analytic capabilities to be able to connect all of the data across the various sources and at scale, to do the analytics on top of all that disparate data, to deliver the model, and, as an important point, to operationalize that model, and then to connect it back in the feedback loop. We do the whole thing. >> That's, there's a lot to unpack in there, and I called our last guest dense. What I was actually trying to say, we had to unpack a dense answer, so it didn't come out quite that, quite right. So I won't make that mistake. >> Sri: That's a very backhanded compliment there. (George laughing) >> So, explain to me though, the, I know from all the folks who are trying to embed predictive analytics in their solutions, the operationalizing of the model is very difficult, you know, to integrate it with the system of record. >> Yeah, yeah, yeah. >> How do, you know, how do you guys do that? >> So a good point. There are two ways by which we do it. One is we have something called the AppCenter. It's called Teradata AppCenter. The AppCenter is a core capability of some of the work we've done so far, in fact we've had it for the last, I don't know, four years or so. We've actually expanded it across, uh, to include a lot of the apps. So the idea behind the AppCenter is that it's a framework for us to be able to develop very specific apps for us to be able to deliver the model so that next time, as and when realtime data comes in, when you connect to a database for instance. So the way the app works is that you set up the app. There's a code that we've created, it's all prebuilt code that he put behind that app, and it runs, the app runs. Every time the data is refreshed, you can run the app, and it automatically comes up with visualizations which allow you to be able to see what's happening with your customers in realtime. So that's one way to operationalize. In fact, you know, if you come by to our booth, we can show you a demo as to how the AppCenter works. The other say by which we've done it is to develop a software development kit where we actually have created an operationalization. So, as an, I'll give you an example, right? We developed an app, a realtime operationalization app where the folks in the call center are assessing whether you should be given a loan to buy a certain kind of car, a used car, brand new car, what have you the case might be. So what happens is the call center person takes information from you, gets information about, you know, what your income level is, you know, how long you've been working in your existing job, what have you. And those are parameters that are passed into the screen- >> By the way, I should just say, on the income level, it's way too low for my taste. >> Those are, um, those are comments I'll take, uh, later. >> Off slide. >> But, I mean, you got a brand new Armani suit, so you're not doing badly. But, uh, so what happens is, you know, as and when the data goes into the parameters, right, the call center person just clicks on the button, and the model which sits behind the app picks up all the parameters, runs it, and spews out a likelihood score saying that this person is 88% likely- >> So an AppCenter is not just a full end to end app, it also can be a model. >> AppCenter can include the model which can be used to operationalize as and when the data comes in. >> George: Okay. >> It's a very core part of our offering. In fact, AppCenter is, I can't stress how important, I can't stress enough how important it is to our ability to operationalize our various analytic models. >> Okay, one more techy question in terms of how that's supported. Is the AppCenter running on Aster or the models, are they running on Aster, uh, the old Aster database or Teradata? >> Well, just to be clear, right, so the Aster solution is called Aster Analytics of which one foreign factor contains a database, but you have Aster which is in Hadoop, you have Aster in the Cloud, you have Aster software only, so there's a lot of difference between these two, right? So AppCenter sits on Aster, but right now, it's not just the Aster AppCenter. It's called the Teradata AppCenter which sits on, with the idea is that it will sit on Teradata products as well. >> George: Okay. >> So again, it's a really core part of our evolution that we've come up with. We're very proud of it. >> On that note, we have to wrap it up for today, but to be continued. >> Sri: Time flies when you're having fun. >> Yes. So this is George Gilbert. I am with Sri Raghavan from Teradata. We are at DataWorks 2017 in San Jose, and we will be back tomorrow with a whole lineup of exciting new guests. Tune in tomorrow morning. Thanks. (electronic music)
SUMMARY :
Brought to you by Hortonworks. in the era of big data and advanced analytics. And as you also know, in the last, you know, the solutions that people build with the technology Across the various areas of encounters they have with you come by and say, you know, or come and go having said How do you capture a broader, you know, a broader journey? is because, to buy things, because, you know, so we have filtering, you know, data filters in place you know, a channel where you need to which says, you know, come online, So the thing to be very clear here, That's, there's a lot to unpack in there, Sri: That's a very backhanded compliment there. you know, to integrate it with the system of record. So the way the app works is that you set up the app. By the way, I should just say, on the income level, But, uh, so what happens is, you know, So an AppCenter is not just a full end to end app, AppCenter can include the model which can be used to I can't stress enough how important it is to our Is the AppCenter running on Aster or the models, you have Aster in the Cloud, you have Aster software only, So again, it's a really core part of our evolution On that note, we have to wrap it up for today, and we will be back tomorrow with a whole lineup
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
George | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Sri Raghavan | PERSON | 0.99+ |
San Jose | LOCATION | 0.99+ |
Teradata | ORGANIZATION | 0.99+ |
tomorrow morning | DATE | 0.99+ |
88% | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
90% | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
two ways | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
today | DATE | 0.99+ |
seven years | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
DataWorks Summit 2017 | EVENT | 0.98+ |
four years | QUANTITY | 0.98+ |
each part | QUANTITY | 0.98+ |
Sri | PERSON | 0.97+ |
AppCenter | TITLE | 0.96+ |
Armani | ORGANIZATION | 0.96+ |
one thing | QUANTITY | 0.96+ |
DataWorks 2017 | EVENT | 0.96+ |
two | QUANTITY | 0.96+ |
First | QUANTITY | 0.96+ |
one | QUANTITY | 0.96+ |
both | QUANTITY | 0.95+ |
this year | DATE | 0.93+ |
Aster | TITLE | 0.92+ |
Aster Analytics | TITLE | 0.88+ |
Teradata - DataWorks Summit 2017 | EVENT | 0.88+ |
Number two | QUANTITY | 0.86+ |
Tune | DATE | 0.82+ |
Hortonworks | ORGANIZATION | 0.82+ |
one way | QUANTITY | 0.81+ |
Terada | ORGANIZATION | 0.8+ |
Hadoop | TITLE | 0.77+ |
Influencer Summit | EVENT | 0.77+ |
25 | QUANTITY | 0.68+ |
Aster AppCenter | COMMERCIAL_ITEM | 0.62+ |
year before | DATE | 0.55+ |
plus years | DATE | 0.52+ |
past | DATE | 0.51+ |
Teradata | TITLE | 0.47+ |
theCUBE | ORGANIZATION | 0.47+ |
second | QUANTITY | 0.47+ |
theCUBE | EVENT | 0.44+ |
Cloud | TITLE | 0.4+ |
AppCenter | COMMERCIAL_ITEM | 0.38+ |