Image Title

Search Results for STRATCOM:

John Shaw and Roland Coelho V1


 

>> Announcer: From around the globe, it's "theCUBE" covering Space and Cybersecurity Symposium 2020 hosted by Cal Poly. >> I want to welcome to theCUBE's coverage, we're here hosting with Cal Poly an amazing event, space and the intersection of cyber security. This session is Defending Satellite and Space Infrastructure from Cyber Threats. We've got two great guests. We've got Major General John Shaw of combined force space component commander, U.S. space command at Vandenberg Air Force Base in California and Roland Coelho, who's the CEO of Maverick Space Systems. Gentlemen, thank you for spending the time to come on to this session for the Cal Poly Space and Cybersecurity Symposium. Appreciate it. >> Absolutely. >> Guys defending satellites and space infrastructure is the new domain, obviously it's a war-fighting domain. It's also the future of the world. And this is an important topic because we rely on space now for our everyday life and it's becoming more and more critical. Everyone knows how their phones work and GPS, just small examples of all the impacts. I'd like to discuss with this hour, this topic with you guys. So if we can have you guys do an opening statement. General if you can start with your opening statement, we'll take it from there. >> Thanks John and greetings from Vandenberg Air Force Base. We are just down the road from Cal Poly here on the central coast of California, and very proud to be part of this effort and part of the partnership that we have with Cal Poly on a number of fronts. In my job here, I actually have two hats that I wear and it's I think, worth talking briefly about those to set the context for our discussion. You know, we had two major organizational events within our Department of Defense with regard to space last year in 2019. And probably the one that made the most headlines was the standup of the United States Space Force. That happened December 20th, last year, and again momentous, the first new branch in our military since 1947. And it's just over nine months old now, as we're makin' this recording. And already we're seein' a lot of change with regard to how we are approaching organizing, training, and equipping on a service side for space capabilities. And so, with regard to the Space Force, the hat I wear there is Commander of Space Operations Command. That was what was once 14th Air Force, when we were still part of the Air Force here at Vandenberg. And in that role, I'm responsible for the operational capabilities that we bring to the joint warfighter and to the world from a space perspective. Didn't make quite as many headlines, but another major change that happened last year was the reincarnation, I guess I would say, of United States Space Command. And that is a combatant command. It's how our Department of Defense organizes to actually conduct war-fighting operations. Most people are more familiar perhaps with Central Command, CENTCOM or Northern Command, NORTHCOM, or even Strategic Command, STRATCOM. Well, now we have a SPACECOM. We actually had one from 1985 until 2002, and then stood it down in the wake of the 9/11 attacks and a reorganization of Homeland Security. But we've now stood up a separate command again operationally, to conduct joint space operations. And in that organization, I wear a hat as a component commander, and that's the combined force-based component command working with other, all the additional capabilities that other services bring, as well as our allies. The combined in that title means that under certain circumstances, I would lead in an allied effort in space operations. And so it's actually a terrific job to have here on the central coast of California. Both working how we bring space capabilities to the fight on the Space Force side, and then how we actually operate those capabilities in support of joint warfighters around the world and national security interests. So that's the context. Now what also I should mention and you kind of alluded to John at your beginning, we're kind of in a changed situation than we were a number of years ago, in that we now see space as a war-fighting domain. For most of my career, goin' back a little ways, most of my focus in my jobs was making sure I could bring space capabilities to those that needed them. Bringing GPS to that special operations soldier on the ground somewhere in the world, bringing satellite communications for our nuclear command and control, bringing those capabilities for other uses. But I didn't have to worry in most of my career, about actually defending those space capabilities themselves. Well, now we do. We've actually gone to a point where we're are being threatened in space. We now are treating it more like any other domain, normalizing in that regard as a war-fighting domain. And so we're going through some relatively emergent efforts to protect and defend our capabilities in space, to design our capabilities to be defended, and perhaps most of all, to train our people for this new mission set. So it's a very exciting time, and I know we'll get into it, but you can't get very far into talking about all these space capabilities and how we want to protect and defend them and how we're going to continue their ability to deliver to warfighters around the globe, without talking about cyber, because they fit together very closely. So anyway, thanks for the chance to be here today. And I look forward to the discussion. >> General, thank you so much for that opening statement. And I would just say that not only is it historic with the Space Force, it's super exciting because it opens up so much more challenges and opportunities to do more and to do things differently. So I appreciate that statement. Roland in your opening statement. Your job is to put stuff in space, faster, cheaper, smaller, better, your opening statement, please. >> Yes, thank you, John. And yes, to General Shaw's point with the space domain and the need to protect it now is incredibly important. And I hope that we are more of a help than a thorn in your side in terms of building satellites smaller, faster, cheaper. Definitely looking forward to this discussion and figuring out ways where the entire space domain can work together, from industry to U.S. government, even to the academic environment as well. So first, I would like to say, and preface this by saying, I am not a cybersecurity expert. We build satellites and we launch them into orbit, but we are by no means cybersecurity experts. And that's why we like to partner with organizations like the California Cybersecurity Institute because they help us navigate these requirements. So I'm the CEO of Maverick Space Systems. We are a small aerospace business in San Luis Obispo, California. And we provide small satellite hardware and service solutions to a wide range of customers. All the way from the academic environment to the U.S. government and everything in between. We support customers through an entire program life cycle, from mission architecture and formulation, all the way to getting these customer satellites in orbit. And so what we try to do is provide hardware and services that basically make it easier for customers to get their satellites into orbit and to operate. So whether it be reducing mass or volume, creating greater launch opportunities, or providing the infrastructure and the technology to help those innovations mature in orbit, that's what we do. Our team has experience over the last 20 years, working with small satellites. And I'm definitely fortunate to be part of the team that invented the CubeSat standard by Cal Poly and Stanford back in 2000. And so, we are in VandenBerg's backyard. We came from Cal Poly San Luis Obispo and our hearts are fond of this area, and working with the local community. A lot of that success that we have had is directly attributable to the experiences that we learned as students, working on satellite programs from our professors and mentors. And that's all thanks to Cal Poly. So just wanted to tell a quick story. So back in 2000, just imagine a small group of undergraduate students, myself included, with the daunting task of launching multiple satellites from five different countries on a Russian launch vehicle. Many of us were only 18 or 19, not even at the legal age to drink yet, but as essentially teenagers we were managing million-dollar budgets. And we were coordinating groups from around the world. And we knew what we needed to accomplish, yet we didn't really know what we were doing when we first started. The university was extremely supportive and that's the Cal Poly learn-by-doing philosophy. I remember the first time we had a meeting with our university chief legal counsel, and we were discussing the need to register with the State Department for ITAR. Nobody really knew what ITAR was back then. And discussing this with the chief legal counsel, she was asking, "What is ITAR?" And we essentially had to explain, this is, launching satellites is part of the U.S. munitions list. And essentially we had a similar situation exporting munitions. We are in similar categories as weapons. And so, after that initial shock, everybody jumped in both feet forward, the university, our head legal counsel, professors, mentors, and the students knew we needed to tackle this problem because the need was there to launch these small satellites. And the reason this is important to capture the entire spectrum of users of the community, is that the technology and the innovation of the small satellite industry occurs at all levels, so we have academia, commercial, national governments. We even have high schools and middle schools getting involved and building satellite hardware. And the thing is the importance of cybersecurity is incredibly important because it touches all of these programs and it touches people at a very young age. And so, we hope to have a conversation today to figure out how do we create an environment where we allow these programs to thrive, but we also protect and keep their data safe as well. >> Thank you very much Roland. Appreciate that a story too as well. Thanks for your opening statement. Gentlemen, I mean I love this topic because defending the assets in space is obvious, if you look at it. But there's a bigger picture going on in our world right now. And general, you kind of pointed out the historic nature of Space Force and how it's changing already, operationally, training, skills, tools, all that stuff is evolving. You know in the tech world that I live in, change the world is a topic they use, gets thrown around a lot, you can change the world. A lot of young people, and we have other panels on this where we're talkin' about how to motivate young people, changing the world is what it's all about technology, for the better. Evolution is just an extension of another domain. In this case, space is just an extension of other domains, similar things are happening, but it's different. There's huge opportunity to change the world, so it's faster. There's an expanded commercial landscape out there. Certainly government space systems are moving and changing. How do we address the importance of cybersecurity in space? General, we'll start with you because this is real, it's exciting. If you're a young person, there's touch points of things to jump into, tech, building hardware, to changing laws, and everything in between is an opportunity, and it's exciting. And it is truly a chance to change the world. How does the commercial government space systems teams, address the importance of cybersecurity? >> So, John, I think it starts with the realization that as I like to say, that cyber and space are BFFs. There's nothing that we do on the cutting edge of space that isn't heavily reliant on the cutting edge of cyber. And frankly, there's probably nothing on the cutting edge of cyber that doesn't have a space application. And when you realize that and you see how closely those are intertwined as we need to move forward at speed, it becomes fundamental to answering your question. Let me give a couple examples. One of the biggest challenges I have on a daily basis is understanding what's going on in the space domain. Those on the surface of the planet talk about tyranny of distance across the oceans or across large land masses. And I talk about the tyranny of volume. And right now, we're looking out as far as the lunar sphere. There's activity that's extending out there. We expect NASA to be conducting perhaps human operations in the lunar environment in the next few years. So it extends out that far. When you do the math that's a huge volume. How do you do that? How do you understand what's happening in real time within that volume? It is a big data problem by the very definition of that kind of effort and that kind of challenge. And to do it successfully in the years ahead, it's going to require many, many sensors and the fusion of data of all kinds, to present a picture and then analytics and predictive analytics that are going to deliver an idea of what's going on in the space arena. And that's just if people are not up to mischief. Once you have threats introduced into that environment, it is even more challenging. So I'd say it's a big data problem that we'll enjoy tackling in the years ahead. Now, a second example is, if we had to take a vote of what were the most amazing robots that have ever been designed by humans, I think that spacecraft would have to be up there on the list. Whether it's the NASA spacecraft that explore other planets, or GPS satellites that amazingly provide a wonderful service to the entire globe and beyond. They are amazing technological machines. That's not going to stop. I mean, all the work that Roland talked about, even that we're doin' at the kind of the microsat level is putting cutting-edge technology into small a package as you can to get some sort of capability out of that. As we expand our activities further and further into space for national security purposes, or for exploration or commercial or civil, the cutting-edge technologies of artificial intelligence and machine-to-machine engagements and machine learning are going to be part of that design work moving forward. And then there's the threat piece. As we operate these capabilities, as these constellations grow, that's going to be done via networks. And as I've already pointed out space is a war-fighting domain. That means those networks will come under attack. We expect that they will and that may happen early on in a conflict. It may happen during peace time in the same way that we see cyber attacks all the time, everywhere in many sectors of activity. And so by painting that picture, we start to see how it's intertwined at the very, very most basic level, the cutting edge of cyber and cutting edge of space. With that then comes the need to, any cutting edge cybersecurity capability that we have is naturally going to be needed as we develop space capabilities. And we're going to have to bake that in from the very beginning. We haven't done that in the past as well as we should, but moving forward from this point on, it will be an essential ingredient that we work into all of our capability. >> Roland, we're talkin' about now, critical infrastructure. We're talkin' about new capabilities being addressed really fast. So, it's kind of chaotic now there's threats. So it's not as easy as just having capabilities, 'cause you've got to deal with the threats the general just pointed out. But now you've got critical infrastructure, which then will enable other things down the line. How do you protect it? How do we address this? How do you see this being addressed from a security standpoint? Because malware, these techniques can be mapped in, extended into space and takeovers, wartime, peace time, these things are all going to be under threat. That's pretty well understood, and I think people kind of get that. How do we address it? What's your take? >> Yeah, yeah, absolutely. And I couldn't agree more with General Shaw, with cybersecurity and space being so intertwined. And, I think with fast and rapid innovation comes the opportunity for threats, especially if you have bad actors that want to cause harm. And so, as a technology innovator and you're pushing the bounds, you kind of have a common goal of doing the best you can, and pushing the technology bounds, making it smaller, faster, cheaper. But a lot of times what entrepreneurs and small businesses and supply chains are doing, and don't realize it, is a lot of these components are dual use. I mean, you could have a very benign commercial application, but then a small modification to it, can turn it into a military application. And if you do have these bad actors, they can exploit that. And so, I think that the big thing is creating a organization that is non-biased, that just wants to kind of level the playing field for everybody to create a set standard for cybersecurity in space. I think one group that would be perfect for that is CCI. They understand both the cybersecurity side of things, and they also have at Cal Poly the small satellite group. And just having kind of a clearing house or an agency where can provide information that is free, you don't need a membership for. And to be able to kind of collect that, but also reach out to the entire value chain for a mission, and making them aware of what potential capabilities are and then how it might be potentially used as a weapon. And keeping them informed, because I think the vast majority of people in the space industry just want to do the right thing. And so, how do we get that information free flowing to the U.S. government so that they can take that information, create assessments, and be able to, not necessarily stop threats from occurring presently, but identify them long before that they would ever even happen. Yeah, that's- >> General, I want to follow up on that real quick before we move to the next top track. Critical infrastructure you mentioned, across the oceans long distance, volume. When you look at the physical world, you had power grids here in the United States, you had geography, you had perimeters, the notion of a perimeter and a moat, and then you had digital comes in. Then you have, we saw software open up, and essentially take down this idea of a perimeter, and from a defense standpoint, and everything changed. And we have to fortify those critical assets in the U.S. Space increases the same problem statement significantly, because you can't just have a perimeter, you can't have a moat, it's open, it's everywhere. Like what digital's done, and that's why we've seen a surge of cyber in the past two decades, attacks with software. So, this isn't going to go away. You need the critical infrastructure, you're putting it up there, you're formulating it, and you got to protect it. How do you view that? Because it's going to be an ongoing problem statement. What's the current thinking? >> Yeah, I think my sense is that a mindset that you can build a firewall, or a defense, or some other system that isn't dynamic in its own right, is probably not headed in the right direction. I think cybersecurity in the future, whether it's for space systems, or for other critical infrastructure is going to be a dynamic fight that happens at a machine-to-machine speed and dynamic. I don't think that it's too far off where we will have machines writing their own code in real time to fight off attacks that are coming at them. And by the way, the offense will probably be doing the same kind of thing. And so, I guess I would not want to think that the answer is something that you just build it and you leave it alone and it's good enough. It's probably going to be a constantly-evolving capability, constantly reacting to new threats and staying ahead of those threats. >> That's the kind of use case, you know as you were, kind of anecdotal example is the exciting new software opportunities for computer science majors. I mean, I tell my young kids and everyone, man it's more exciting now. I wish I was 18 again, it's so exciting with AI. Roland, I want to get your thoughts. We were joking on another panel with the DoD around space and the importance of it obviously, and we're going to have that here. And then we had a joke. It's like, oh software's defined everything. Software's everything, AI. And I said, "Well here in the United States, companies had data centers and then they went to the cloud." And then he said, "You can do break, fix, it's hard to do break, fix in space. You can't just send a tech up." I get that today, but soon maybe robotics. The general mentions robotics technologies, in referencing some of the accomplishments. Fixing things is almost impossible in space. But maybe form factors might get better. Certainly software will play a role. What's your thoughts on that landscape? >> Yeah, absolutely. You know, for software in orbit, there's a push for software-defined radios to basically go from hardware to software. And that's a critical link. If you can infiltrate that and a small satellite has propulsion on board, you could take control of that satellite and cause a lot of havoc. And so, creating standards and that kind of initial threshold of security, for let's say these radios, or communications and making that available to the entire supply chain, to the satellite builders, and operators is incredibly key. And that's again, one of the initiatives that CCI is tackling right now as well. >> General, I want to get your thoughts on best practices around cybersecurity, state-of-the-art today, and then some guiding principles, and kind of how the, if you shoot the trajectory forward, what might happen around supply chain? There's been many stories where, we outsource the chips and there's a little chip sittin' in a thing and it's built by someone else in China, and the software is written from someone in Europe, and the United States assembles it, it gets shipped and it's corrupt, and it has some cyber, I'm making it up, I'm oversimplifying the statement. But this is what when you have space systems that involve intellectual property from multiple partners, whether it's from software to creation and then deployment. You got supply chain tiers. What are some of best practices that you see involving, that don't stunt the innovation, but continues to innovate, but people can operate safely. What's your thoughts? >> Yeah, so on supply chain, I think the symposium here is going to get to hear from General JT Thompson from space and missile system center down in Los Angeles, and he's just down the road from us there on the coast. And his team is the one that we look to to really focus on, as he fires and develops to again bake in cybersecurity from the beginning and knowing where the components are coming from, and properly assessing those as you put together your space systems, is a key piece of what his team is focused on. So I expect, we'll hear him talk about that. When it talks to, I think, so you asked the question a little more deeply about how do the best practices in terms of how we now develop moving forward. Well, another way that we don't do it right, is if we take a long time to build something and then General JT Thompson's folks take a while to build something, and then they hand it over to me, and my team operate and then they go hands free. And then that's what I have for years to operate until the next thing comes along. That's a little old school. What we're going to have to do moving forward with our space capabilities, and with the cyber piece baked in is continually developing new capability sets as we go. We actually have partnership between General Thompson's team and mine here at Vandenberg on our ops floor, or our combined space operation center, that are actually working in real time together, better tools that we can use to understand what's going on in the space environment to better command and control our capabilities anywhere from military satellite communications, to space domain awareness, sensors, and such. And we're developing those capabilities in real time. And with the security pieces. So DevSecOps is we're practicing that in real time. I think that is probably the standard today that we're trying to live up to as we continue to evolve. But it has to be done again, in close partnership all the time. It's not a sequential, industrial-age process. While I'm on the subject of partnerships. So, General Thompson's team and mine have good partnerships. It's partnerships across the board are going to be another way that we are successful. And that it means with academia and some of the relationships that we have here with Cal Poly. It's with the commercial sector in ways that we haven't done before. The old style business was to work with just a few large companies that had a lot of space experience. Well, we need a lot of kinds of different experience and technologies now in order to really field good space capabilities. And I expect we'll see more and more non-traditional companies being part of, and organizations, being part of that partnership that will work goin' forward. I mentioned at the beginning that allies are important to us. So everything that Roland and I have been talking about I think you have to extrapolate out to allied partnerships. It doesn't help me as a combined force component commander, which is again, one of my jobs. It doesn't help me if the United States capabilities are cybersecure, but I'm tryin' to integrate them with capabilities from an ally that are not cybersecure. So that partnership has to be dynamic and continually evolving together. So again, close partnering, continually developing together from the acquisition to the operational sectors, with as many different sectors of our economy as possible, are the ingredients to success. >> General, I'd love to just follow up real quick. I was having just a quick reminder for a conversation I had with last year with General Keith Alexander, who does a lot of cybersecurity work, and he was talking about the need to share faster. And the new school is you got to share faster to get the data, you mentioned observability earlier, you need to see what everything's out there. He's a real passionate person around getting the data, getting it fast and having trusted partners. So that's not, it's kind of evolving as, I mean, sharing's a well known practice, but with cyber it's sensitive data potentially. So there's a trust relationship. There's now a new ecosystem. That's new for government. How do you view all that and your thoughts on that trend of the sharing piece of it on cyber? >> So, I don't know if it's necessarily new, but it's at a scale that we've never seen before. And by the way, it's vastly more complicated and complex when you overlay from a national security perspective, classification of data and information at various levels. And then that is again complicated by the fact you have different sharing relationships with different actors, whether it's commercial, academic, or allies. So it gets very, very complex web very quickly. So that's part of the challenge we're workin' through. How can we effectively share information at multiple classification levels with multiple partners in an optimal fashion? It is certainly not optimal today. It's very difficult, even with maybe one industry partner for me to be able to talk about data at an unclassified level, and then various other levels of classification to have the traditional networks in place to do that. I could see a solution in the future where our cybersecurity is good enough that maybe I only really need one network and the information that is allowed to flow to the players within the right security environment to make that all happen as quickly as possible. So you've actually, John you've hit on yet another big challenge that we have, is evolving our networks to properly share, with the right people, at the right clearance levels at the speed of war, which is what we're going to need. >> Yeah, and I wanted to call that out because this is an opportunity, again, this discussion here at Cal Poly and around the world is for new capabilities and new people to solve the problems. It's again, it's super exciting if you're geeking out on this. If you have a tech degree or you're interested in changin' the world, there's so many new things that could be applied right now. Roland, I want to get your thoughts on this, because one of the things in the tech trends we're seeing, and this is a massive shift, all the theaters of the tech industry are changing rapidly at the same time. And it affects policy law, but also deep tech. The startup communities are super important in all this too. We can't forget them. Obviously, the big trusted players that are partnering certainly on these initiatives, but your story about being in the dorm room. Now you've got the boardroom and now you got everything in between. You have startups out there that want to and can contribute. You know, what's an ITAR? I mean, I got all these acronym certifications. Is there a community motion to bring startups in, in a safe way, but also give them ability to contribute? Because you look at open source, that proved everyone wrong on software. That's happening now with this now open network concept, the general was kind of alluding to. Which is, it's a changing landscape. Your thoughts, I know you're passionate about this. >> Yeah, absolutely. And I think as General Shaw mentioned, we need to get information out there faster, more timely and to the right people, and involving not only just stakeholders in the U.S., but internationally as well. And as entrepreneurs, we have this very lofty vision or goal to change the world. And oftentimes, entrepreneurs, including myself, we put our heads down and we just run as fast as we can. And we don't necessarily always kind of take a breath and take a step back and kind of look at what we're doing and how it's touching other folks. And in terms of a community, I don't know of any formal community out there, it's mostly ad hoc. And, these ad hoc communities are folks who let's say was a student working on a satellite in college. And they loved that entrepreneurial spirit. And so they said, "Well, I'm going to start my own company." And so, a lot of these ad hoc networks are just from relationships that have been built over the last two decades from colleagues at the university. I do think formalizing this and creating kind of a clearing house to handle all of this is incredibly important. >> And there's going to be a lot of entrepreneurial activity, no doubt, I mean there's too many things to work on and not enough time. I mean this brings up the question that I'm going to, while we're on this topic, you got the remote work with COVID, everyone's workin' remotely, we're doin' this remote interview rather than being on stage. Work's changing, how people work and engage. Certainly physical will come back. But if you looked at historically the space industry and the talent, they're all clustered around the bases. And there's always been these areas where you're a space person. You kind of work in there and the job's there. And if you were cyber, you were generally in other areas. Over the past decade, there's been a cross-pollination of talent and location. As you see the intersection of space, general we'll start with you, first of all, central coast is a great place to live. I know that's where you guys live. But you can start to bring together these two cultures. Sometimes they're not the same. Maybe they're getting better. We know they're being integrated. So general, can you just share your thoughts because this is one of those topics that everyone's talkin' about, but no one's actually kind of addressed directly. >> Yeah, John, I think so. I think I want to answer this by talkin' about where I think the Space Force is going. Because I think if there was ever an opportunity or an inflection point in our Department of Defense to sort of change culture and try to bring in non-traditional kinds of thinking and really kind of change maybe some of the ways that the Department of Defense does things that are probably archaic, Space Force is an inflection point for that. General Raymond, our Chief of Space Operations, has said publicly for awhile now, he wants the U.S. Space Force to be the first truly digital service. And what we mean by that is we want the folks that are in the Space Force to be the ones that are the first adopters, the early adopters of technology. To be the ones most fluent in the cutting edge, technologic developments on space and cyber and other sectors of the economy that are technologically focused. And I think there's some, that can generate some excitement, I think. And it means that we'll probably ended up recruiting people into the Space Force that are not from the traditional recruiting areas that the rest of the Department of Defense looks to. And I think it allows us to bring in a diversity of thought and diversity of perspective and a new kind of motivation into the service, that I think is frankly really exciting. So if you put together everything I mentioned about how space and cyber are going to be best friends forever. And I think there's always been an excitement from the very beginning in the American psyche about space. You start to put all these ingredients together, and I think you see where I'm goin' with this. That this is a chance to really change that cultural mindset that you were describing. >> It's an exciting time for sure. And again, changing the world. And this is what you're seeing today. People do want to change the world. They want a modern world that's changing. Roland, I'll get your thoughts on this. I was having an interview a few years back with a technology entrepreneur, a techie, and we were joking, we were just kind of riffing. And I said, "Everything that's on "Star Trek" will be invented." And we're almost there actually, if you think about it, except for the transporter room. You got video, you got communicators. So, not to bring in the "Star Trek" reference with Space Force, this is digital. And you start thinking about some of the important trends, it's going to be up and down the stack, from hardware to software, to user experience, everything. Your thoughts and reaction. >> Yeah, absolutely. And so, what we're seeing is timelines shrinking dramatically because of the barrier to entry for new entrants and even your existing aerospace companies is incredibly low, right? So if you take previously where you had a technology on the ground and you wanted it in orbit, it would take years. Because you would test it on the ground. You would verify that it can operate in a space environment. And then you would go ahead and launch it. And we're talking tens, if not hundreds of millions of dollars to do that. Now, we've cut that down from years to months. When you have a prototype on the ground and you want to get it launched, you don't necessarily care if it fails on orbit the first time, because you're getting valuable data back. And so, we're seeing technology being developed for the first time on the ground and in orbit in a matter of a few months. And the whole kind of process that we're doing as a small business is trying to enable that. And so, allowing these entrepreneurs and small companies to get their technology in orbit at a price that is sometimes even cheaper than testing on the ground. >> You know this is a great point. I think this is really an important point to call out because we mentioned partnerships earlier, the economics and the business model of space is doable. I mean, you do a mission study. You get paid for that. You have technology that you get stuff up quickly, and there's a cost structure there. And again, the alternative was waterfall planning, years and millions. Now the form factors are doing, now, again, there may be different payloads involved, but you can standardize payloads. You've got robotic arms. This is all available. This brings up the congestion problem. This is going to be on the top of mind of the generals of course, but you've got the proliferation of these constellation systems. You're going to have more and more tech vectors. I mean, essentially that's malware. I mean, that's a probe. You throw something up in space that could cause some interference. Maybe a takeover. General, this is the real elephant in the room, the threat matrix from new stuff and new configurations. So general, how does the proliferation of constellation systems change the threat matrix? >> So I think the, you know I guess I'm going to be a little more optimistic John than I think you pitched that. I'm actually excited about these new mega constellations in LEO. I'm excited about the growing number of actors that are going into space for various reasons. And why is that? It's because we're starting to realize a new economic engine for the nation and for human society. So the question is, so I think we want that to happen. When we could go to almost any other domain in history and when air travel started to become much, much more commonplace with many kinds of actors from private pilots flying their small planes, all the way up to large airliners, there was a problem with congestion. There was a problem about, challenges about behavior, and are we going to be able to manage this? And yes we did. And it was for the great benefit of society. I could probably look to the maritime domain for similar kinds of things. And so this is actually exciting about space. We are just going to have to find the ways as a society, and it's not just the Department of Defense, it's going to be civil, it's going to be international, find the mechanisms to encourage this continued investment in the space domain. I do think that Space Force will play a role in providing security in the space environment, as we venture further out, as economic opportunities emerge, wherever they are in the lunar, Earth, lunar system, or even within the solar system. Space Force is going to play a role in that. But I'm actually really excited about those possibilities. Hey, by the way, I got to say, you made me think of this when you talked about "Star Trek" and Space Force and our technologies, I remember when I was younger watchin' the Next Generation series. I thought one of the coolest things, 'cause bein' a musician in my spare time, I thought one of the coolest things was when Commander Riker would walk into his quarters and say, "Computer play soft jazz." And there would just be, the computer would just play music. And this was an age when we had hard media. Like how will that, that is awesome. Man, I can't wait for the 23rd century when I can do that. And where we are today is so incredible on those lines. The things that I can ask Alexa or Siri to play. >> Well that's the thing, everything that's on "Star Trek," think about it, it's almost invented. I mean, you got the computers, you got, the only thing really is, holograms are startin' to come in, you got, now the transporter room. Now that's physics. We'll work on that. >> So there is this balance between physics and imagination, but we have not exhausted either. >> Well, firstly, everyone that knows me knows I'm a huge "Star Trek" fan, all the series. Of course, I'm an original purist, but at that level. But this is about economic incentive as well. Roland, I want to get your thoughts, 'cause the gloom and doom, we got to think about the bad stuff to make it good. If I put my glass half full on the table, this economic incentives, just like the example of the plane and the air traffic. There's more actors that are incented to have a secure system. What's your thoughts to general's comments around the optimism and the potential threat matrix that needs to be managed. >> Absolutely, so one of the things that we've seen over the years, as we build these small satellites is a lot of that technology that the General's talking about, voice recognition, miniaturized chips, and sensors, started on the ground. And I mean, you have your iPhone, that, about 15 years ago before the first iPhone came out, we were building small satellites in the lab and we were looking at cutting-edge, state-of-the-art magnetometers and sensors that we were putting in our satellites back then. We didn't know if they were going to work. And then a few years later, as these students graduate, they go off and they go out to other industries. And so, some of the technology that was first kind of put in these CubeSats in the early 2000s, kind of ended up in the first generation iPhone, smartphones. And so being able to take that technology, rapidly incorporate that into space and vice versa gives you an incredible economic advantage. Because not only are your costs going down because you're mass producing these types of terrestrial technologies, but then you can also increase revenue and profit by having smaller and cheaper systems. >> General, let's talk about that real quickly, that's a good point, I want to just shift it into the playbook. I mean, everyone talks about playbooks for management, for tech, for startups, for success. I mean, one of the playbooks that's clear from your history is investment in R&D around military and/or innovation that has a long view, spurs innovation, commercially. I mean, just there's a huge, many decades of history that shows that, hey we got to start thinking about these challenges. And next thing you know it's in an iPhone. This is history, this is not like a one off. And now with Space Force you're driving the main engine of innovation to be all digital. You know, we riff about "Star Trek" which is fun, the reality is you're going to be on the front lines of some really new, cool, mind-blowing things. Could you share your thoughts on how you sell that to the people who write the checks or recruit more talent? >> First, I totally agree with your thesis that national security, well, could probably go back an awful long way, hundreds to thousands of years, that security matters tend to drive an awful lot of innovation and creativity. You know I think probably the two things that drive people the most are probably an opportunity to make money, but beating that out are trying to stay alive. And so, I don't think that's going to go away. And I do think that Space Force can play a role as it pursues security structures, within the space domain to further encourage economic investment and to protect our space capabilities for national security purposes, are going to be at the cutting edge. This isn't the first time. I think we can point back to the origins of the internet, really started in the Department of Defense, with a partnership I should add, with academia. That's how the internet got started. That was the creativity in order to meet some needs there. Cryptography has its roots in security, in national security, but now we use it for economic reasons and a host of other kinds of reasons. And then space itself, I mean, we still look back to Apollo era as an inspiration for so many things that inspired people to either begin careers in technical areas or in space and so on. So I think in that same spirit, you're absolutely right. I guess I'm totally agreeing with your thesis. The Space Force will have a positive, inspirational influence in that way. And we need to realize that. So when we are asking for, when we're looking for how we need to meet capability needs, we need to spread that net very far, look for the most creative solutions and partner early and often with those that can work on those. >> When you're on the new frontier, you got to have a team sport, it's a team effort. And you mentioned the internet, just anecdotally I'm old enough to remember this 'cause I remember the days that it was goin' on, is that the policy decisions that the U.S. made at that time was to let it go a little bit invisible hand. They didn't try to commercialize it too fast. But there was some policy work that was done, that had a direct effect to the innovation. Versus take it over, and the next thing you know it's out of control. So I think there's this cross-disciplinary skillset becomes a big thing where you need to have more people involved. And that's one of the big themes of this symposium. So it's a great point. Thank you for sharing that. Roland, your thoughts on this because you got policy decisions. We all want to run faster. We want to be more innovative, but you got to have some ops view. Now, most of the ops view people want things very tight, very buttoned up, secure. The innovators want to go faster. It's the ying and yang. That's the world we live in. How's it all balance in your mind? >> Yeah, one of the things that may not be apparently obvious is that the U.S. government and Department of Defense is one of the biggest investors in technology in the aerospace sector. They're not the traditional venture capitalists, but they're the ones that are driving technology innovation because there's funding. And when companies see that the U.S. government is interested in something, businesses will revector to provide that capability. And, I would say the more recent years, we've had a huge influx of private equity, venture capital coming into the markets to kind of help augment the government investment. And I think having a good partnership and a relationship with these private equity, venture capitalists and the U.S. government is incredibly important because the two sides can help collaborate and kind of see a common goal. But then also too, on the other side there's that human element. And as General Shaw was saying, not only do companies obviously want to thrive and do really well, some companies just want to stay alive to see their technology kind of grow into what they've always dreamed of. And oftentimes entrepreneurs are put in a very difficult position because they have to make payroll, they have to keep the lights on. And so, sometimes they'll take investment from places where they may normally would not have, from potentially foreign investment that could potentially cause issues with the U.S. supply chain. >> Well, my final question is the best I wanted to save for last, because I love the idea of human space flight. I'd love to be on Mars. I'm not sure I'm able to make it someday, but how do you guys see the possible impacts of cybersecurity on expanding human space flight operations? I mean, general, this is your wheelhouse. This is your in command, putting humans in space and certainly robots will be there because they're easy to go 'cause they're not human. But humans in space. I mean, you startin' to see the momentum, the discussion, people are scratchin' that itch. What's your take on that? How do we see makin' this more possible? >> Well, I think we will see commercial space tourism in the future. I'm not sure how wide and large a scale it will become, but we will see that. And part of the, I think the mission of the Space Force is going to be probably to again, do what we're doin' today is have really good awareness of what's going on in the domain to ensure that that is done safely. And I think a lot of what we do today will end up in civil organizations to do space traffic management and safety in that arena. And, it is only a matter of time before we see humans going, even beyond the, NASA has their plan, the Artemis program to get back to the moon and the gateway initiative to establish a space station there. And that's going to be a NASA exploration initiative. But it is only a matter of time before we have private citizens or private corporations putting people in space and not only for tourism, but for economic activity. And so it'll be really exciting to watch. It'll be really exciting and Space Force will be a part of it. >> General, Roland, I want to thank you for your valuable time to come on this symposium. Really appreciate it. Final comment, I'd love you to spend a minute to share your personal thoughts on the importance of cybersecurity to space and we'll close it out. We'll start with you Roland. >> Yeah, so I think the biggest thing I would like to try to get out of this from my own personal perspective is creating that environment that allows the aerospace supply chain, small businesses like ourselves, be able to meet all the requirements to protect and safeguard our data, but also create a way that we can still thrive and it won't stifle innovation. I'm looking forward to comments and questions, from the audience to really kind of help, basically drive to that next step. >> General final thoughts, the importance of cybersecurity to space. >> I'll go back to how I started I think John and say that space and cyber are forever intertwined, they're BFFs. And whoever has my job 50 years from now, or a hundred years from now, I predict they're going to be sayin' the exact same thing. Cyber and space are intertwined for good. We will always need the cutting edge, cybersecurity capabilities that we develop as a nation or as a society to protect our space capabilities. And our cyber capabilities are going to need space capabilities in the future as well. >> General John Shaw, thank you very much. Roland Coelho, thank you very much for your great insight. Thank you to Cal Poly for puttin' this together. I want to shout out to the team over there. We couldn't be in-person, but we're doing a virtual remote event. I'm John Furrier with "theCUBE" and SiliconANGLE here in Silicon Valley, thanks for watching. (upbeat music)

Published Date : Sep 25 2020

SUMMARY :

the globe, it's "theCUBE" space and the intersection is the new domain, obviously and that's the combined and opportunities to do more and the need to protect it You know in the tech world that I live in, And I talk about the tyranny of volume. the general just pointed out. of doing the best you can, in the past two decades, And by the way, the offense kind of anecdotal example is the exciting And that's again, one of the initiatives and the United States assembles it, And his team is the one that we look to the need to share faster. and the information that is and around the world over the last two decades from and the talent, they're all that are in the Space Force to be the ones And again, changing the world. on the ground and you wanted it in orbit, And again, the alternative and it's not just the Well that's the thing, but we have not exhausted either. and the air traffic. And so, some of the technology I mean, one of the playbooks that's clear that drive people the most is that the policy is that the U.S. government is the best I wanted to save for last, and the gateway initiative of cybersecurity to space from the audience to really kind of help, the importance of cybersecurity to space. I predict they're going to be the team over there.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

Cal PolyORGANIZATION

0.99+

EuropeLOCATION

0.99+

Roland CoelhoPERSON

0.99+

Homeland SecurityORGANIZATION

0.99+

NASAORGANIZATION

0.99+

RolandPERSON

0.99+

Maverick Space SystemsORGANIZATION

0.99+

2000DATE

0.99+

ChinaLOCATION

0.99+

Star TrekTITLE

0.99+

Department of DefenseORGANIZATION

0.99+

1985DATE

0.99+

Silicon ValleyLOCATION

0.99+

tensQUANTITY

0.99+

last yearDATE

0.99+

SiriTITLE

0.99+

United StatesLOCATION

0.99+

December 20thDATE

0.99+

two sidesQUANTITY

0.99+

StanfordORGANIZATION

0.99+

California Cybersecurity InstituteORGANIZATION

0.99+

Los AngelesLOCATION

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

United States Space CommandORGANIZATION

0.99+

Department of DefenseORGANIZATION

0.99+

19QUANTITY

0.99+

NORTHCOMORGANIZATION

0.99+

hundredsQUANTITY

0.99+

United States Space ForceORGANIZATION

0.99+

CENTCOMORGANIZATION

0.99+

2002DATE

0.99+

John ShawPERSON

0.99+

CCIORGANIZATION

0.99+

first timeQUANTITY

0.99+

two thingsQUANTITY

0.99+

OneQUANTITY

0.99+

MarsLOCATION

0.99+

LEOLOCATION

0.99+

EarthLOCATION

0.99+

ITARORGANIZATION

0.99+

FirstQUANTITY

0.99+

John FurrierPERSON

0.99+

18QUANTITY

0.99+

million-dollarQUANTITY

0.99+

RaymondPERSON

0.99+

firstQUANTITY

0.99+

23rd centuryDATE

0.99+

todayDATE

0.99+

U.S. governmentORGANIZATION

0.99+

both feetQUANTITY

0.99+

STRATCOMORGANIZATION

0.99+

Keith AlexanderPERSON

0.99+