Panel Discussion | IBM Fast Track Your Data 2017
>> Narrator: Live, from Munich, Germany, it's the CUBE. Covering IBM, Fast Track Your Data. Brought to you by IBM. >> Welcome to Munich everybody. This is a special presentation of the CUBE, Fast Track Your Data, brought to you by IBM. My name is Dave Vellante. And I'm here with my cohost, Jim Kobielus. Jim, good to see you. Really good to see you in Munich. >> Jim: I'm glad I made it. >> Thanks for being here. So last year Jim and I hosted a panel at New York City on the CUBE. And it was quite an experience. We had, I think it was nine or 10 data scientists and we felt like that was a lot of people to organize and talk about data science. Well today, we're going to do a repeat of that. With a little bit of twist on topics. And we've got five data scientists. We're here live, in Munich. And we're going to kick off the Fast Track Your Data event with this data science panel. So I'm going to now introduce some of the panelists, or all of the panelists. Then we'll get into the discussions. I'm going to start with Lillian Pierson. Lillian thanks very much for being on the panel. You are in data science. You focus on training executives, students, and you're really a coach but with a lot of data science expertise based in Thailand, so welcome. >> Thank you, thank you so much for having me. >> Dave: You're very welcome. And so, I want to start with sort of when you focus on training people, data science, where do you start? >> Well it depends on the course that I'm teaching. But I try and start at the beginning so for my Big Data course, I actually start back at the fundamental concepts and definitions they would even need to understand in order to understand the basics of what Big Data is, data engineering. So, terms like data governance. Going into the vocabulary that makes up the very introduction of the course, so that later on the students can really grasp the concepts I present to them. You know I'm teaching a deep learning course as well, so in that case I start at a lot more advanced concepts. So it just really depends on the level of the course. >> Great, and we're going to come back to this topic of women in tech. But you know, we looked at some CUBE data the other day. About 17% of the technology industry comprises women. And so we're a little bit over that on our data science panel, we're about 20% today. So we'll come back to that topic. But I don't know if there's anything you would add? >> I'm really passionate about women in tech and women who code, in particular. And I'm connected with a lot of female programmers through Instagram. And we're supporting each other. So I'd love to take any questions you have on what we're doing in that space. At least as far as what's happening across the Instagram platform. >> Great, we'll circle back to that. All right, let me introduce Chris Penn. Chris, Boston based, all right, SMI. Chris is a marketing expert. Really trying to help people understand how to get, turn data into value from a marketing perspective. It's a very important topic. Not only because we get people to buy stuff but also understanding some of the risks associated with things like GDPR, which is coming up. So Chris, tell us a little bit about your background and your practice. >> So I actually started in IT and worked at a start up. And that's where I made the transition to marketing. Because marketing has much better parties. But what's really interesting about the way data science is infiltrating marketing is the technology came in first. You know, everything went digital. And now we're at a point where there's so much data. And most marketers, they kind of got into marketing as sort of the arts and crafts field. And are realizing now, they need a very strong, mathematical, statistical background. So one of the things, Adam, the reason why we're here and IBM is helping out tremendously is, making a lot of the data more accessible to people who do not have a data science background and probably never will. >> Great, okay thank you. I'm going to introduce Ronald Van Loon. Ronald, your practice is really all about helping people extract value out of data, driving competitive advantage, business advantage, or organizational excellence. Tell us a little bit about yourself, your background, and your practice. >> Basically, I've three different backgrounds. On one hand, I'm a director at a data consultancy firm called Adversitement. Where we help companies to become data driven. Mainly large companies. I'm an advisory board member at Simply Learn, which is an e-learning platform, especially also for big data analytics. And on the other hand I'm a blogger and I host a series of webinars. >> Okay, great, now Dez, Dez Blanchfield, I met you on Twitter, you know, probably a couple of years ago. We first really started to collaborate last year. We've spend a fair amount of time together. You are a data scientist, but you're also a jack of all trades. You've got a technology background. You sit on a number of boards. You work very active with public policy. So tell us a little bit more about what you're doing these days, a little bit more about your background. >> Sure, I think my primary challenge these days is communication. Trying to join the dots between my technical background and deeply technical pedigree, to just plain English, every day language, and business speak. So bridging that technical world with what's happening in the boardroom. Toe to toe with the geeks to plain English to execs in boards. And just hand hold them and steward them through the journey of the challenges they're facing. Whether it's the enormous rapid of change and the pace of change, that's just almost exhaustive and causing them to sprint. But not just sprint in one race but in multiple lanes at the same time. As well as some of the really big things that are coming up, that we've seen like GDPR. So it's that communication challenge and just hand holding people through that journey and that mix of technical and commercial experience. >> Great, thank you, and finally Joe Caserta. Founder and president of Caserta Concepts. Joe you're a practitioner. You're in the front lines, helping organizations, similar to Ronald. Extracting value from data. Translate that into competitive advantage. Tell us a little bit about what you're doing these days in Caserta Concepts. >> Thanks Dave, thanks for having me. Yeah, so Caserta's been around. I've been doing this for 30 years now. And natural progressions have been just getting more from application development, to data warehousing, to big data analytics, to data science. Very, very organically, that's just because it's where businesses need the help the most, over the years. And right now, the big focus is governance. At least in my world. Trying to govern when you have a bunch of disparate data coming from a bunch of systems that you have no control over, right? Like social media, and third party data systems. Bringing it in and how to you organize it? How do you ingest it? How do you govern it? How do you keep it safe? And also help to define ownership of the data within an organization within an enterprise? That's also a very hot topic. Which ties back into GDPR. >> Great, okay, so we're going to be unpacking a lot of topics associated with the expertise that these individuals have. I'm going to bring in Jim Kobielus, to the conversation. Jim, the newest Wikibon analyst. And newest member of the SiliconANGLE Media Team. Jim, get us started off. >> Yeah, so we're at an event, at an IBM event where machine learning and data science are at the heart of it. There are really three core themes here. Machine learning and data science, on the one hand. Unified governance on the other. And hybrid data management. I want to circle back or focus on machine learning. Machine learning is the coin of the realm, right now in all things data. Machine learning is the heart of AI. Machine learning, everybody is going, hiring, data scientists to do machine learning. I want to get a sense from our panel, who are experts in this area, what are the chief innovations and trends right now on machine learning. Not deep learning, the core of machine learning. What's super hot? What's in terms of new techniques, new technologies, new ways of organizing teams to build and to train machine learning models? I'd like to open it up. Let's just start with Lillian. What are your thoughts about trends in machine learning? What's really hot? >> It's funny that you excluded deep learning from the response for this, because I think the hottest space in machine learning is deep learning. And deep learning is machine learning. I see a lot of collaborative platforms coming out, where people, data scientists are able to work together with other sorts of data professionals to reduce redundancies in workflows. And create more efficient data science systems. >> Is there much uptake of these crowd sourcing environments for training machine learning wells. Like CrowdFlower, or Amazon Mechanical Turk, or Mighty AI? Is that a huge trend in terms of the workflow of data science or machine learning, a lot of that? >> I don't see that crowdsourcing is like, okay maybe I've been out of the crowdsourcing space for a while. But I was working with Standby Task Force back in 2013. And we were doing a lot of crowdsourcing. And I haven't seen the industry has been increasing, but I could be wrong. I mean, because there's no, if you're building automation models, most of the, a lot of the work that's being crowdsourced could actually be automated if someone took the time to just build the scripts and build the models. And so I don't imagine that, that's going to be a trend that's increasing. >> Well, automation machine learning pipeline is fairly hot, in terms of I'm seeing more and more research. Google's doing a fair amount of automated machine learning. The panel, what do you think about automation, in terms of the core modeling tasks involved in machine learning. Is that coming along? Are data scientists in danger of automating themselves out of a job? >> I don't think there's a risk of data scientist's being put out of a job. Let's just put that on the thing. I do think we need to get a bit clearer about this meme of the mythical unicorn. But to your call point about machine learning, I think what you'll see, we saw the cloud become baked into products, just as a given. I think machine learning is already crossed this threshold. We just haven't necessarily noticed or caught up. And if we look at, we're at an IBM event, so let's just do a call out for them. The data science experience platform, for example. Machine learning's built into a whole range of things around algorithm and data classification. And there's an assisted, guided model for how you get to certain steps, where you don't actually have to understand how machine learning works. You don't have to understand how the algorithms work. It shows you the different options you've got and you can choose them. So you might choose regression. And it'll give you different options on how to do that. So I think we've already crossed this threshold of baking in machine learning and baking in the data science tools. And we've seen that with Cloud and other technologies where, you know, the Office 365 is not, you can't get a non Cloud Office 365 account, right? I think that's already happened in machine learning. What we're seeing though, is organizations even as large as the Googles still in catch up mode, in my view, on some of the shift that's taken place. So we've seen them write little games and apps where people do doodles and then it runs through the ML library and says, "Well that's a cow, or a unicorn, or a duck." And you get awards, and gold coins, and whatnot. But you know, as far as 12 years ago I was working on a project, where we had full size airplanes acting as drones. And we mapped with two and 3-D imagery. With 2-D high res imagery and LiDAR for 3-D point Clouds. We were finding poles and wires for utility companies, using ML before it even became a trend. And baking it right into the tools. And used to store on our web page and clicked and pointed on. >> To counter Lillian's point, it's not crowdsourcing but crowd sharing that's really powering a lot of the rapid leaps forward. If you look at, you know, DSX from IBM. Or you look at Node-RED, huge number of free workflows that someone has probably already done the thing that you are trying to do. Go out and find in the libraries, through Jupyter and R Notebooks, there's an ability-- >> Chris can you define before you go-- >> Chris: Sure. >> This is great, crowdsourcing versus crowd sharing. What's the distinction? >> Well, so crowdsourcing, kind of, where in the context of the question you ask is like I'm looking for stuff that other people, getting people to do stuff that, for me. It's like asking people to mine classifieds. Whereas crowd sharing, someone has done the thing already, it already exists. You're not purpose built, saying, "Jim, help me build this thing." It's like, "Oh Jim, you already "built this thing, cool. "So can I fork it and make my own from it?" >> Okay, I see what you mean, keep going. >> And then, again, going back to earlier. In terms of the advancements. Really deep learning, it probably is a good idea to just sort of define these things. Machine learning is how machines do things without being explicitly programmed to do them. Deep learning's like if you can imagine a stack of pancakes, right? Each pancake is a type of machine learning algorithm. And your data is the syrup. You pour the data on it. It goes from layer, to layer, to layer, to layer, and what you end up with at the end is breakfast. That's the easiest analogy for what deep learning is. Now imagine a stack of pancakes, 500 or 1,000 high, that's where deep learning's going now. >> Sure, multi layered machine learning models, essentially, that have the ability to do higher levels of abstraction. Like image analysis, Lillian? >> I had a comment to add about automation and data science. Because there are a lot of tools that are able to, or applications that are able to use data science algorithms and output results. But the reason that data scientists aren't in risk of losing their jobs, is because just because you can get the result, you also have to be able to interpret it. Which means you have to understand it. And that involves deep math and statistical understanding. Plus domain expertise. So, okay, great, you took out the coding element but that doesn't mean you can codify a person's ability to understand and apply that insight. >> Dave: Joe, you have something to add? >> I could just add that I see the trend. Really, the reason we're talking about it today is machine learning is not necessarily, it's not new, like Dez was saying. But what's different is the accessibility of it now. It's just so easily accessible. All of the tools that are coming out, for data, have machine learning built into it. So the machine learning algorithms, which used to be a black art, you know, years ago, now is just very easily accessible. That you can get, it's part of everyone's toolbox. And the other reason that we're talking about it more, is that data science is starting to become a core curriculum in higher education. Which is something that's new, right? That didn't exist 10 years ago? But over the past five years, I'd say, you know, it's becoming more and more easily accessible for education. So now, people understand it. And now we have it accessible in our tool sets. So now we can apply it. And I think that's, those two things coming together is really making it becoming part of the standard of doing analytics. And I guess the last part is, once we can train the machines to start doing the analytics, right? And get smarter as it ingests more data. And then we can actually take that and embed it in our applications. That's the part that you still need data scientists to create that. But once we can have standalone appliances that are intelligent, that's when we're going to start seeing, really, machine learning and artificial intelligence really start to take off even more. >> Dave: So I'd like to switch gears a little bit and bring Ronald on. >> Okay, yes. >> Here you go, there. >> Ronald, the bromide in this sort of big data world we live in is, the data is the new oil. You got to be a data driven company and many other cliches. But when you talk to organizations and you start to peel the onion. You find that most companies really don't have a good way to connect data with business impact and business value. What are you seeing with your clients and just generally in the community, with how companies are doing that? How should they do that? I mean, is that something that is a viable approach? You don't see accountants, for example, quantifying the value of data on a balance sheet. There's no standards for doing that. And so it's sort of this fuzzy concept. How are and how should organizations take advantage of data and turn it into value. >> So, I think in general, if you look how companies look at data. They have departments and within the departments they have tools specific for this department. And what you see is that there's no central, let's say, data collection. There's no central management of governance. There's no central management of quality. There's no central management of security. Each department is manages their data on their own. So if you didn't ask, on one hand, "Okay, how should they do it?" It's basically go back to the drawing table and say, "Okay, how should we do it?" We should collect centrally, the data. And we should take care for central governance. We should take care for central data quality. We should take care for centrally managing this data. And look from a company perspective and not from a department perspective what the value of data is. So, look at the perspective from your whole company. And this means that it has to be brought on one end to, whether it's from C level, where most of them still fail to understand what it really means. And what the impact can be for that company. >> It's a hard problem. Because data by its' very nature is now so decentralized. But Chris you have a-- >> The thing I want to add to that is, think about in terms of valuing data. Look at what it would cost you for data breach. Like what is the expensive of having your data compromised. If you don't have governance. If you don't have policy in place. Look at the major breaches of the last couple years. And how many billions of dollars those companies lost in market value, and trust, and all that stuff. That's one way you can value data very easily. "What will it cost us if we mess this up?" >> So a lot of CEOs will hear that and say, "Okay, I get it. "I have to spend to protect myself, "but I'd like to make a little money off of this data thing. "How do I do that?" >> Well, I like to think of it, you know, I think data's definitely an asset within an organization. And is becoming more and more of an asset as the years go by. But data is still a raw material. And that's the way I think about it. In order to actually get the value, just like if you're creating any product, you start with raw materials and then you refine it. And then it becomes a product. For data, data is a raw material. You need to refine it. And then the insight is the product. And that's really where the value is. And the insight is absolutely, you can monetize your insight. >> So data is, abundant insights are scarce. >> Well, you know, actually you could say that intermediate between insights and the data are the models themselves. The statistical, predictive, machine learning models. That are a crystallization of insights that have been gained by people called data scientists. What are your thoughts on that? Are statistical, predictive, machine learning models something, an asset, that companies, organizations, should manage governance of on a centralized basis or not? >> Well the models are essentially the refinery system, right? So as you're refining your data, you need to have process around how you exactly do that. Just like refining anything else. It needs to be controlled and it needs to be governed. And I think that data is no different from that. And I think that it's very undisciplined right now, in the market or in the industry. And I think maturing that discipline around data science, I think is something that's going to be a very high focus in this year and next. >> You were mentioning, "How do you make money from data?" Because there's all this risk associated with security breaches. But at the risk of sounding simplistic, you can generate revenue from system optimization, or from developing products and services. Using data to develop products and services that better meet the demands and requirements of your markets. So that you can sell more. So either you are using data to earn more money. Or you're using data to optimize your system so you have less cost. And that's a simple answer for how you're going to be making money from the data. But yes, there is always the counter to that, which is the security risks. >> Well, and my question really relates to, you know, when you think of talking to C level executives, they kind of think about running the business, growing the business, and transforming the business. And a lot of times they can't fund these transformations. And so I would agree, there's many, many opportunities to monetize data, cut costs, increase revenue. But organizations seem to struggle to either make a business case. And actually implement that transformation. >> Dave, I'd love to have a crack at that. I think this conversation epitomizes the type of things that are happening in board rooms and C suites already. So we've really quickly dived into the detail of data. And the detail of machine learning. And the detail of data science, without actually stopping and taking a breath and saying, "Well, we've "got lots of it, but what have we got? "Where is it? "What's the value of it? "Is there any value in it at all?" And, "How much time and money should we invest in it?" For example, we talk of being about a resource. I look at data as a utility. When I turn the tap on to get a drink of water, it's there as a utility. I counted it being there but I don't always sample the quality of the water and I probably should. It could have Giardia in it, right? But what's interesting is I trust the water at home, in Sydney. Because we have a fairly good experience with good quality water. If I were to go to some other nation. I probably wouldn't trust that water. And I think, when you think about it, what's happening in organizations. It's almost the same as what we're seeing here today. We're having a lot of fun, diving into the detail. But what we've forgotten to do is ask the question, "Well why is data even important? "What's the reasoning to the business? "Why are we in business? "What are we doing as an organization? "And where does data fit into that?" As opposed to becoming so fixated on data because it's a media hyped topic. I think once you can wind that back a bit and say, "Well, we have lot's of data, "but is it good data? "Is it quality data? "Where's it coming from? "Is it ours? "Are we allowed to have it? "What treatment are we allowed to give that data?" As you said, "Are we controlling it? "And where are we controlling it? "Who owns it?" There's so many questions to be asked. But the first question I like to ask people in plain English is, "Well is there any value "in data in the first place? "What decisions are you making that data can help drive? "What things are in your organizations, "KPIs and milestones you're trying to meet "that data might be a support?" So then instead of becoming fixated with data as a thing in itself, it becomes part of your DNA. Does that make sense? >> Think about what money means. The Economists' Rhyme, "Money is a measure for, "a systems for, a medium, a measure, and exchange." So it's a medium of exchange. A measure of value, a way to exchange something. And a way to store value. Data, good clean data, well governed, fits all four of those. So if you're trying to figure out, "How do we make money out of stuff." Figure out how money works. And then figure out how you map data to it. >> So if we approach and we start with a company, we always start with business case, which is quite clear. And defined use case, basically, start with a team on one hand, marketing people, sales people, operational people, and also the whole data science team. So start with this case. It's like, defining, basically a movie. If you want to create the movie, You know where you're going to. You know what you want to achieve to create the customer experience. And this is basically the same with a business case. Where you define, "This is the case. "And this is how we're going to derive value, "start with it and deliver value within a month." And after the month, you check, "Okay, where are we and how can we move forward? "And what's the value that we've brought?" >> Now I as well, start with business case. I've done thousands of business cases in my life, with organizations. And unless that organization was kind of a data broker, the business case rarely has a discreet component around data. Is that changing, in your experience? >> Yes, so we guide companies into be data driven. So initially, indeed, they don't like to use the data. They don't like to use the analysis. So that's why, how we help. And is it changing? Yes, they understand that they need to change. But changing people is not always easy. So, you see, it's hard if you're not involved and you're not guiding it, they fall back in doing the daily tasks. So it's changing, but it's a hard change. >> Well and that's where this common parlance comes in. And Lillian, you, sort of, this is what you do for a living, is helping people understand these things, as you've been sort of evangelizing that common parlance. But do you have anything to add? >> I wanted to add that for organizational implementations, another key component to success is to start small. Start in one small line of business. And then when you've mastered that area and made it successful, then try and deploy it in more areas of the business. And as far as initializing big data implementation, that's generally how to do it successfully. >> There's the whole issue of putting a value on data as a discreet asset. Then there's the issue, how do you put a value on a data lake? Because a data lake, is essentially an asset you build on spec. It's an exploratory archive, essentially, of all kinds of data that might yield some insights, but you have to have a team of data scientists doing exploration and modeling. But it's all on spec. How do you put a value on a data lake? And at what point does the data lake itself become a burden? Because you got to store that data and manage it. At what point do you drain that lake? At what point, do the costs of maintaining that lake outweigh the opportunity costs of not holding onto it? >> So each Hadoop note is approximately $20,000 per year cost for storage. So I think that there needs to be a test and a diagnostic, before even inputting, ingesting the data and storing it. "Is this actually going to be useful? "What value do we plan to create from this?" Because really, you can't store all the data. And it's a lot cheaper to store data in Hadoop then it was in traditional systems but it's definitely not free. So people need to be applying this test before even ingesting the data. Why do we need this? What business value? >> I think the question we need to also ask around this is, "Why are we building data lakes "in the first place? "So what's the function it's going to perform for you?" There's been a huge drive to this idea. "We need a data lake. "We need to put it all somewhere." But invariably they become data swamps. And we only half jokingly say that because I've seen 90 day projects turn from a great idea, to a really bad nightmare. And as Lillian said, it is cheaper in some ways to put it into a HDFS platform, in a technical sense. But when we look at all the fully burdened components, it's actually more expensive to find Hadoop specialists and Spark specialists to maintain that cluster. And invariably I'm finding that big data, quote unquote, is not actually so much lots of data, it's complex data. And as Lillian said, "You don't always "need to store it all." So I think if we go back to the question of, "What's the function of a data lake in the first place? "Why are we building one?" And then start to build some fully burdened cost components around that. We'll quickly find that we don't actually need a data lake, per se. We just need an interim data store. So we might take last years' data and tokenize it, and analyze it, and do some analytics on it, and just keep the meta data. So I think there is this rush, for a whole range of reasons, particularly vendor driven. To build data lakes because we think they're a necessity, when in reality they may just be an interim requirement and we don't need to keep them for a long term. >> I'm going to attempt to, the last few questions, put them all together. And I think, they all belong together because one of the reasons why there's such hesitation about progress within the data world is because there's just so much accumulated tech debt already. Where there's a new idea. We go out and we build it. And six months, three years, it really depends on how big the idea is, millions of dollars is spent. And then by the time things are built the idea is pretty much obsolete, no one really cares anymore. And I think what's exciting now is that the speed to value is just so much faster than it's ever been before. And I think that, you know, what makes that possible is this concept of, I don't think of a data lake as a thing. I think of a data lake as an ecosystem. And that ecosystem has evolved so much more, probably in the last three years than it has in the past 30 years. And it's exciting times, because now once we have this ecosystem in place, if we have a new idea, we can actually do it in minutes not years. And that's really the exciting part. And I think, you know, data lake versus a data swamp, comes back to just traditional data architecture. And if you architect your data lake right, you're going to have something that's substantial, that's you're going to be able to harness and grow. If you don't do it right. If you just throw data. If you buy Hadoop cluster or a Cloud platform and just throw your data out there and say, "We have a lake now." yeah, you're going to create a mess. And I think taking the time to really understand, you know, the new paradigm of data architecture and modern data engineering, and actually doing it in a very disciplined way. If you think about it, what we're doing is we're building laboratories. And if you have a shabby, poorly built laboratory, the best scientist in the world isn't going to be able to prove his theories. So if you have a well built laboratory and a clean room, then, you know a scientist can get what he needs done very, very, very efficiently. And that's the goal, I think, of data management today. >> I'd like to just quickly add that I totally agree with the challenge between on premise and Cloud mode. And I think one of the strong themes of today is going to be the hybrid data management challenge. And I think organizations, some organizations, have rushed to adopt Cloud. And thinking it's a really good place to dump the data and someone else has to manage the problem. And then they've ended up with a very expensive death by 1,000 cuts in some senses. And then others have been very reluctant as a result of not gotten access to rapid moving and disruptive technology. So I think there's a really big challenge to get a basic conversation going around what's the value using Cloud technology as in adopting it, versus what are the risks? And when's the right time to move? For example, should we Cloud Burst for workloads? Do we move whole data sets in there? You know, moving half a petabyte of data into a Cloud platform back is a non-trivial exercise. But moving a terabyte isn't actually that big a deal anymore. So, you know, should we keep stuff behind the firewalls? I'd be interested in seeing this week where 80% of the data, supposedly is. And just push out for Cloud tools, machine learning, data science tools, whatever they might be, cognitive analytics, et cetera. And keep the bulk of the data on premise. Or should we just move whole spools into the Cloud? There is no one size fits all. There's no silver bullet. Every organization has it's own quirks and own nuances they need to think through and make a decision themselves. >> Very often, Dez, organizations have zonal architectures so you'll have a data lake that consists of a no sequel platform that might be used for say, mobile applications. A Hadoop platform that might be used for unstructured data refinement, so forth. A streaming platform, so forth and so on. And then you'll have machine learning models that are built and optimized for those different platforms. So, you know, think of it in terms of then, your data lake, is a set of zones that-- >> It gets even more complex just playing on that theme, when you think about what Cisco started, called Folk Computing. I don't really like that term. But edge analytics, or computing at the edge. We've seen with the internet coming along where we couldn't deliver everything with a central data center. So we started creating this concept of content delivery networks, right? I think the same thing, I know the same thing has happened in data analysis and data processing. Where we've been pulling social media out of the Cloud, per se, and bringing it back to a central source. And doing analytics on it. But when you think of something like, say for example, when the Dreamliner 787 from Boeing came out, this airplane created 1/2 a terabyte of data per flight. Now let's just do some quick, back of the envelope math. There's 87,400 fights a day, just in the domestic airspace in the USA alone, per day. Now 87,400 by 1/2 a terabyte, that's 43 point five petabytes a day. You physically can't copy that from quote unquote in the Cloud, if you'll pardon the pun, back to the data center. So now we've got the challenge, a lot of our Enterprise data's behind a firewall, supposedly 80% of it. But what's out at the edge of the network. Where's the value in that data? So there are zonal challenges. Now what do I do with my Enterprise versus the open data, the mobile data, the machine data. >> Yeah, we've seen some recent data from IDC that says, "About 43% of the data "is going to stay at the edge." We think that, that's way understated, just given the examples. We think it's closer to 90% is going to stay at the edge. >> Just on the airplane topic, right? So Airbus wasn't going to be outdone. Boeing put 4,000 sensors or something in their 787 Dreamliner six years ago. Airbus just announced an 83, 81,000 with 10,000 sensors in it. Do the same math. Now the FAA in the US said that all aircraft and all carriers have to be, by early next year, I think it's like March or April next year, have to be at the same level of BIOS. Or the same capability of data collection and so forth. It's kind of like a mini GDPR for airlines. So with the 83, 81,000 with 10,000 sensors, that becomes two point five terabytes per flight. If you do the math, it's 220 petabytes of data just in one day's traffic, domestically in the US. Now, it's just so mind boggling that we're going to have to completely turn our thinking on its' head, on what do we do behind the firewall? What do we do in the Cloud versus what we might have to do in the airplane? I mean, think about edge analytics in the airplane processing data, as you said, Jim, streaming analytics in flight. >> Yeah that's a big topic within Wikibon, so, within the team. Me and David Floyer, and my other colleagues. They're talking about the whole notion of edge architecture. Not only will most of the data be persisted at the edge, most of the deep learning models like TensorFlow will be executed at the edge. To some degree, the training of those models will happen in the Cloud. But much of that will be pushed in a federated fashion to the edge, or at least I'm predicting. We're already seeing some industry moves in that direction, in terms of architectures. Google has a federated training, project or initiative. >> Chris: Look at TensorFlow Lite. >> Which is really fascinating for it's geared to IOT, I'm sorry, go ahead. >> Look at TensorFlow Lite. I mean in the announcement of having every Android device having ML capabilities, is Google's essential acknowledgment, "We can't do it all." So we need to essentially, sort of like a setting at home. Everyone's smartphone top TV box just to help with the processing. >> Now we're talking about this, this sort of leads to this IOT discussion but I want to underscore the operating model. As you were saying, "You can't just "lift and shift to the Cloud." You're not going to, CEOs aren't going to get the billion dollar hit by just doing that. So you got to change the operating model. And that leads to, this discussion of IOT. And an entirely new operating model. >> Well, there are companies that are like Sisense who have worked with Intel. And they've taken this concept. They've taken the business logic and not just putting it in the chip, but actually putting it in memory, in the chip. So as data's going through the chip it's not just actually being processed but it's actually being baked in memory. So level one, two, and three cache. Now this is a game changer. Because as Chris was saying, even if we were to get the data back to a central location, the compute load, I saw a real interesting thing from I think it was Google the other day, one of the guys was doing a talk. And he spoke about what it meant to add cognitive and voice processing into just the Android platform. And they used some number, like that had, double the amount of compute they had, just to add voice for free, to the Android platform. Now even for Google, that's a nontrivial exercise. So as Chris was saying, I think we have to again, flip it on its' head and say, "How much can we put "at the edge of the network?" Because think about these phones. I mean, even your fridge and microwave, right? We put a man on the moon with something that these days, we make for $89 at home, on the Raspberry Pie computer, right? And even that was 1,000 times more powerful. When we start looking at what's going into the chips, we've seen people build new, not even GPUs, but deep learning and stream analytics capable chips. Like Google, for example. That's going to make its' way into consumer products. So that, now the compute capacity in phones, is going to, I think transmogrify in some ways because there is some magic in there. To the point where, as Chris was saying, "We're going to have the smarts in our phone." And a lot of that workload is going to move closer to us. And only the metadata that we need to move is going to go centrally. >> Well here's the thing. The edge isn't the technology. The edge is actually the people. When you look at, for example, the MIT language Scratch. This is kids programming language. It's drag and drop. You know, kids can assemble really fun animations and make little movies. We're training them to build for IOT. Because if you look at a system like Node-RED, it's an IBM interface that is drag and drop. Your workflow is for IOT. And you can push that to a device. Scratch has a converter for doing those. So the edge is what those thousands and millions of kids who are learning how to code, learning how to think architecturally and algorithmically. What they're going to create that is beyond what any of us can possibly imagine. >> I'd like to add one other thing, as well. I think there's a topic we've got to start tabling. And that is what I refer to as the gravity of data. So when you think about how planets are formed, right? Particles of dust accrete. They form into planets. Planets develop gravity. And the reason we're not flying into space right now is that there's gravitational force. Even though it's one of the weakest forces, it keeps us on our feet. Oftentimes in organizations, I ask them to start thinking about, "Where is the center "of your universe with regard to the gravity of data." Because if you can follow the center of your universe and the gravity of your data, you can often, as Chris is saying, find where the business logic needs to be. And it could be that you got to think about a storage problem. You can think about a compute problem. You can think about a streaming analytics problem. But if you can find where the center of your universe and the center of your gravity for your data is, often you can get a really good insight into where you can start focusing on where the workloads are going to be where the smarts are going to be. Whether it's small, medium, or large. >> So this brings up the topic of data governance. One of the themes here at Fast Track Your Data is GDPR. What it means. It's one of the reasons, I think IBM selected Europe, generally, Munich specifically. So let's talk about GDPR. We had a really interesting discussion last night. So let's kind of recreate some of that. I'd like somebody in the panel to start with, what is GDPR? And why does it matter, Ronald? >> Yeah, maybe I can start. Maybe a little bit more in general unified governance. So if i talk to companies and I need to explain to them what's governance, I basically compare it with a crime scene. So in a crime scene if something happens, they start with securing all the evidence. So they start sealing the environment. And take care that all the evidence is collected. And on the other hand, you see that they need to protect this evidence. There are all kinds of policies. There are all kinds of procedures. There are all kinds of rules, that need to be followed. To take care that the whole evidence is secured well. And once you start, basically, investigating. So you have the crime scene investigators. You have the research lab. You have all different kind of people. They need to have consent before they can use all this evidence. And the whole reason why they're doing this is in order to collect the villain, the crook. To catch him and on the other hand, once he's there, to convict him. And we do this to have trust in the materials. Or trust in basically, the analytics. And on the other hand to, the public have trust in everything what's happened with the data. So if you look to a company, where data is basically the evidence, this is the value of your data. It's similar to like the evidence within a crime scene. But most companies don't treat it like this. So if we then look to GDPR, GDPR basically shifts the power and the ownership of the data from the company to the person that created it. Which is often, let's say the consumer. And there's a lot of paradox in this. Because all the companies say, "We need to have this customer data. "Because we need to improve the customer experience." So if you make it concrete and let's say it's 1st of June, so GDPR is active. And it's first of June 2018. And I go to iTunes, so I use iTunes. Let's go to iTunes said, "Okay, Apple please "give me access to my data." I want to see which kind of personal information you have stored for me. On the other end, I want to have the right to rectify all this data. I want to be able to change it and give them a different level of how they can use my data. So I ask this to iTunes. And then I say to them, okay, "I basically don't like you anymore. "I want to go to Spotify. "So please transfer all my personal data to Spotify." So that's possible once it's June 18. Then I go back to iTunes and say, "Okay, I don't like it anymore. "Please reduce my consent. "I withdraw my consent. "And I want you to remove all my "personal data for everything that you use." And I go to Spotify and I give them, let's say, consent for using my data. So this is a shift where you can, as a person be the owner of the data. And this has a lot of consequences, of course, for organizations, how to manage this. So it's quite simple for the consumer. They get the power, it's maturing the whole law system. But it's a big consequence of course for organizations. >> This is going to be a nightmare for marketers. But fill in some of the gaps there. >> Let's go back, so GDPR, the General Data Protection Regulation, was passed by the EU in 2016, in May of 2016. It is, as Ronald was saying, it's four basic things. The right to privacy. The right to be forgotten. Privacy built into systems by default. And the right to data transfer. >> Joe: It takes effect next year. >> It is already in effect. GDPR took effect in May of 2016. The enforcement penalties take place the 25th of May 2018. Now here's where, there's two things on the penalty side that are important for everyone to know. Now number one, GDPR is extra territorial. Which means that an EU citizen, anywhere on the planet has GDPR, goes with them. So say you're a pizza shop in Nebraska. And an EU citizen walks in, orders a pizza. Gives her the credit card and stuff like that. If you for some reason, store that data, GDPR now applies to you, Mr. Pizza shop, whether or not you do business in the EU. Because an EU citizen's data is with you. Two, the penalties are much stiffer then they ever have been. In the old days companies could simply write off penalties as saying, "That's the cost of doing business." With GDPR the penalties are up to 4% of your annual revenue or 20 million Euros, whichever is greater. And there may be criminal sanctions, charges, against key company executives. So there's a lot of questions about how this is going to be implemented. But one of the first impacts you'll see from a marketing perspective is all the advertising we do, targeting people by their age, by their personally identifiable information, by their demographics. Between now and May 25th 2018, a good chunk of that may have to go away because there's no way for you to say, "Well this person's an EU citizen, this person's not." People give false information all the time online. So how do you differentiate it? Every company, regardless of whether they're in the EU or not will have to adapt to it, or deal with the penalties. >> So Lillian, as a consumer this is designed to protect you. But you had a very negative perception of this regulation. >> I've looked over the GDPR and to me it actually looks like a socialist agenda. It looks like (panel laughs) no, it looks like a full assault on free enterprise and capitalism. And on its' face from a legal perspective, its' completely and wholly unenforceable. Because they're assigning jurisdictional rights to the citizen. But what are they going to do? They're going to go to Nebraska and they're going to call in the guy from the pizza shop? And call him into what court? The EU court? It's unenforceable from a legal perspective. And if you write a law that's unenforceable, you know, it's got to be enforceable in every element. It can't be just, "Oh, we're only "going to enforce it for Facebook and for Google. "But it's not enforceable for," it needs to be written so that it's a complete and actionable law. And it's not written in that way. And from a technological perspective it's not implementable. I think you said something like 652 EU regulators or political people voted for this and 10 voted against it. But what do they know about actually implementing it? Is it possible? There's all sorts of regulations out there that aren't possible to implement. I come from an environmental engineering background. And it's absolutely ridiculous because these agencies will pass laws that actually, it's not possible to implement those in practice. The cost would be too great. And it's not even needed. So I don't know, I just saw this and I thought, "You know, if the EU wants to," what they're essentially trying to do is regulate what the rest of the world does on the internet. And if they want to build their own internet like China has and police it the way that they want to. But Ronald here, made an analogy between data, and free enterprise, and a crime scene. Now to me, that's absolutely ridiculous. What does data and someone signing up for an email list have to do with a crime scene? And if EU wants to make it that way they can police their own internet. But they can't go across the world. They can't go to Singapore and tell Singapore, or go to the pizza shop in Nebraska and tell them how to run their business. >> You know, EU overreach in the post Brexit era, of what you're saying has a lot of validity. How far can the tentacles of the EU reach into other sovereign nations. >> What court are they going to call them into? >> Yeah. >> I'd like to weigh in on this. There are lots of unknowns, right? So I'd like us to focus on the things we do know. We've already dealt with similar situations before. In Australia, we introduced a goods and sales tax. Completely foreign concept. Everything you bought had 10% on it. No one knew how to deal with this. It was a completely new practice in accounting. There's a whole bunch of new software that had to be written. MYRB had to have new capability, but we coped. No one actually went to jail yet. It's decades later, for not complying with GST. So what it was, was a framework on how to shift from non sales tax related revenue collection. To sales tax related revenue collection. I agree that there are some egregious things built into this. I don't disagree with that at all. But I think if I put my slightly broader view of the world hat on, we have well and truly gone past the point in my mind, where data was respected, data was treated in a sensible way. I mean I get emails from companies I've never done business with. And when I follow it up, it's because I did business with a credit card company, that gave it to a service provider, that thought that I was going to, when I bought a holiday to come to Europe, that I might want travel insurance. Now some might say there's value in that. And other's say there's not, there's the debate. But let's just focus on what we're talking about. We're talking about a framework for governance of the treatment of data. If we remove all the emotive component, what we are talking about is a series of guidelines, backed by laws, that say, "We would like you to do this," in an ideal world. But I don't think anyone's going to go to jail, on day one. They may go to jail on day 180. If they continue to do nothing about it. So they're asking you to sort of sit up and pay attention. Do something about it. There's a whole bunch of relief around how you approach it. The big thing for me, is there's no get out of jail card, right? There is no get out of jail card for not complying. But there's plenty of support. I mean, we're going to have ambulance chasers everywhere. We're going to have class actions. We're going to have individual suits. The greatest thing to do right now is get into GDPR law. Because you seem to think data scientists are unicorn? >> What kind of life is that if there's ambulance chasers everywhere? You want to live like that? >> Well I think we've seen ad blocking. I use ad blocking as an example, right? A lot of organizations with advertising broke the internet by just throwing too much content on pages, to the point where they're just unusable. And so we had this response with ad blocking. I think in many ways, GDPR is a regional response to a situation where I don't think it's the exact right answer. But it's the next evolutional step. We'll see things evolve over time. >> It's funny you mentioned it because in the United States one of the things that has happened, is that with the change in political administrations, the regulations on what companies can do with your data have actually been laxened, to the point where, for example, your internet service provider can resell your browsing history, with or without your consent. Or your consent's probably buried in there, on page 47. And so, GDPR is kind of a response to saying, "You know what? "You guys over there across the Atlantic "are kind of doing some fairly "irresponsible things with what you allow companies to do." Now, to Lillian's point, no one's probably going to go after the pizza shop in Nebraska because they don't do business in the EU. They don't have an EU presence. And it's unlikely that an EU regulator's going to get on a plane from Brussels and fly to Topeka and say, or Omaha, sorry, "Come on Joe, let's get the pizza shop in order here." But for companies, particularly Cloud companies, that have offices and operations within the EU, they have to sit up and pay attention. So if you have any kind of EU operations, or any kind of fiscal presence in the EU, you need to get on board. >> But to Lillian's point it becomes a boondoggle for lawyers in the EU who want to go after deep pocketed companies like Facebook and Google. >> What's the value in that? It seems like regulators are just trying to create work for themselves. >> What about the things that say advertisers can do, not so much with the data that they have? With the data that they don't have. In other words, they have people called data scientists who build models that can do inferences on sparse data. And do amazing things in terms of personalization. What do you do about all those gray areas? Where you got machine learning models and so forth? >> But it applies-- >> It applies to personally identifiable information. But if you have a talented enough data scientist, you don't need the PII or even the inferred characteristics. If a certain type of behavior happens on your website, for example. And this path of 17 pages almost always leads to a conversion, it doesn't matter who you are or where you're coming from. If you're a good enough data scientist, you can build a model that will track that. >> Like you know, target, infer some young woman was pregnant. And they inferred correctly even though that was never divulged. I mean, there's all those gray areas that, how can you stop that slippery slope? >> Well I'm going to weigh in really quickly. A really interesting experiment for people to do. When people get very emotional about it I say to them, "Go to Google.com, "view source, put it in seven point Courier "font in Word and count how many pages it is." I guess you can't guess how many pages? It's 52 pages of seven point Courier font, HTML to render one logo, and a search field, and a click button. Now why do we need 52 pages of HTML source code and Java script just to take a search query. Think about what's being done in that. It's effectively a mini operating system, to figure out who you are, and what you're doing, and where you been. Now is that a good or bad thing? I don't know, I'm not going to make a judgment call. But what I'm saying is we need to stop and take a deep breath and say, "Does anybody need a 52 page, "home page to take a search query?" Because that's just the tip of the iceberg. >> To that point, I like the results that Google gives me. That's why I use Google and not Bing. Because I get better search results. So, yeah, I don't mind if you mine my personal data and give me, our Facebook ads, those are the only ads, I saw in your article that GDPR is going to take out targeted advertising. The only ads in the entire world, that I like are Facebook ads. Because I actually see products I'm interested in. And I'm happy to learn about that. I think, "Oh I want to research that. "I want to see this new line of products "and what are their competitors?" And I like the targeted advertising. I like the targeted search results because it's giving me more of the information that I'm actually interested in. >> And that's exactly what it's about. You can still decide, yourself, if you want to have this targeted advertising. If not, then you don't give consent. If you like it, you give consent. So if a company gives you value, you give consent back. So it's not that it's restricting everything. It's giving consent. And I think it's similar to what happened and the same type of response, what happened, we had the Mad Cow Disease here in Europe, where you had the whole food chain that needed to be tracked. And everybody said, "No, it's not required." But now it's implemented. Everybody in Europe does it. So it's the same, what probably going to happen over here as well. >> So what does GDPR mean for data scientists? >> I think GDPR is, I think it is needed. I think one of the things that may be slowing data science down is fear. People are afraid to share their data. Because they don't know what's going to be done with it. If there are some guidelines around it that should be enforced and I think, you know, I think it's been said but as long as a company could prove that it's doing due diligence to protect your data, I think no one is going to go to jail. I think when there's, you know, we reference a crime scene, if there's a heinous crime being committed, all right, then it's going to become obvious. And then you do go directly to jail. But I think having guidelines and even laws around privacy and protection of data is not necessarily a bad thing. You can do a lot of data, really meaningful data science, without understanding that it's Joe Caserta. All of the demographics about me. All of the characteristics about me as a human being, I think are still on the table. All that they're saying is that you can't go after Joe, himself, directly. And I think that's okay. You know, there's still a lot of things. We could still cure diseases without knowing that I'm Joe Caserta, right? As long as you know everything else about me. And I think that's really at the core, that's what we're trying to do. We're trying to protect the individual and the individual's data about themselves. But I think as far as how it affects data science, you know, a lot of our clients, they're afraid to implement things because they don't exactly understand what the guideline is. And they don't want to go to jail. So they wind up doing nothing. So now that we have something in writing that, at least, it's something that we can work towards, I think is a good thing. >> In many ways, organizations are suffering from the deer in the headlight problem. They don't understand it. And so they just end up frozen in the headlights. But I just want to go back one step if I could. We could get really excited about what it is and is not. But for me, the most critical thing there is to remember though, data breaches are happening. There are over 1,400 data breaches, on average, per day. And most of them are not trivial. And when we saw 1/2 a billion from Yahoo. And then one point one billion and then one point five billion. I mean, think about what that actually means. There were 47,500 Mongodbs breached in an 18 hour window, after an automated upgrade. And they were airlines, they were banks, they were police stations. They were hospitals. So when I think about frameworks like GDPR, I'm less worried about whether I'm going to see ads and be sold stuff. I'm more worried about, and I'll give you one example. My 12 year old son has an account at a platform called Edmodo. Now I'm not going to pick on that brand for any reason but it's a current issue. Something like, I think it was like 19 million children in the world had their username, password, email address, home address, and all this social interaction on this Facebook for kids platform called Edmodo, breached in one night. Now I got my hands on a copy. And everything about my son is there. Now I have a major issue with that. Because I can't do anything to undo that, nothing. The fact that I was able to get a copy, within hours on a dark website, for free. The fact that his first name, last name, email, mobile phone number, all these personal messages from friends. Nobody has the right to allow that to breach on my son. Or your children, or our children. For me, GDPR, is a framework for us to try and behave better about really big issues. Whether it's a socialist issue. Whether someone's got an issue with advertising. I'm actually not interested in that at all. What I'm interested in is companies need to behave much better about the treatment of data when it's the type of data that's being breached. And I get really emotional when it's my son, or someone else's child. Because I don't care if my bank account gets hacked. Because they hedge that. They underwrite and insure themselves and the money arrives back to my bank. But when it's my wife who donated blood and a blood donor website got breached and her details got lost. Even things like sexual preferences. That they ask questions on, is out there. My 12 year old son is out there. Nobody has the right to allow that to happen. For me, GDPR is the framework for us to focus on that. >> Dave: Lillian, is there a comment you have? >> Yeah, I think that, I think that security concerns are 100% and definitely a serious issue. Security needs to be addressed. And I think a lot of the stuff that's happening is due to, I think we need better security personnel. I think we need better people working in the security area where they're actually looking and securing. Because I don't think you can regulate I was just, I wanted to take the microphone back when you were talking about taking someone to jail. Okay, I have a background in law. And if you look at this, you guys are calling it a framework. But it's not a framework. What they're trying to do is take 4% of your business revenues per infraction. They want to say, "If a person signs up "on your email list and you didn't "like, necessarily give whatever "disclaimer that the EU said you need to give. "Per infraction, we're going to take "4% of your business revenue." That's a law, that they're trying to put into place. And you guys are talking about taking people to jail. What jail are you? EU is not a country. What jurisdiction do they have? Like, you're going to take pizza man Joe and put him in the EU jail? Is there an EU jail? Are you going to take them to a UN jail? I mean, it's just on its' face it doesn't hold up to legal tests. I don't understand how they could enforce this. >> I'd like to just answer the question on-- >> Security is a serious issue. I would be extremely upset if I were you. >> I personally know, people who work for companies who've had data breaches. And I respect them all. They're really smart people. They've got 25 plus years in security. And they are shocked that they've allowed a breach to take place. What they've invariably all agreed on is that a whole range of drivers have caused them to get to a bad practice. So then, for example, the donate blood website. The young person who was assist admin with all the right skills and all the right experience just made a basic mistake. They took a db dump of a mysql database before they upgraded their Wordpress website for the business. And they happened to leave it in a folder that was indexable by Google. And so somebody wrote a radio expression to search in Google to find sql backups. Now this person, I personally respect them. I think they're an amazing practitioner. They just made a mistake. So what does that bring us back to? It brings us back to the point that we need a safety net or a framework or whatever you want to call it. Where organizations have checks and balances no matter what they do. Whether it's an upgrade, a backup, a modification, you know. And they all think they do, but invariably we've seen from the hundreds of thousands of breaches, they don't. Now on the point of law, we could debate that all day. I mean the EU does have a remit. If I was caught speeding in Germany, as an Australian, I would be thrown into a German jail. If I got caught as an organization in France, breaching GDPR, I would be held accountable to the law in that region, by the organization pursuing me. So I think it's a bit of a misnomer saying I can't go to an EU jail. I don't disagree with you, totally, but I think it's regional. If I get a speeding fine and break the law of driving fast in EU, it's in the country, in the region, that I'm caught. And I think GDPR's going to be enforced in that same approach. >> All right folks, unfortunately the 60 minutes flew right by. And it does when you have great guests like yourselves. So thank you very much for joining this panel today. And we have an action packed day here. So we're going to cut over. The CUBE is going to have its' interview format starting in about 1/2 hour. And then we cut over to the main tent. Who's on the main tent? Dez, you're doing a main stage presentation today. Data Science is a Team Sport. Hillary Mason, has a breakout session. We also have a breakout session on GDPR and what it means for you. Are you ready for GDPR? Check out ibmgo.com. It's all free content, it's all open. You do have to sign in to see the Hillary Mason and the GDPR sessions. And we'll be back in about 1/2 hour with the CUBE. We'll be running replays all day on SiliconAngle.tv and also ibmgo.com. So thanks for watching everybody. Keep it right there, we'll be back in about 1/2 hour with the CUBE interviews. We're live from Munich, Germany, at Fast Track Your Data. This is Dave Vellante with Jim Kobielus, we'll see you shortly. (electronic music)
SUMMARY :
Brought to you by IBM. Really good to see you in Munich. a lot of people to organize and talk about data science. And so, I want to start with sort of can really grasp the concepts I present to them. But I don't know if there's anything you would add? So I'd love to take any questions you have how to get, turn data into value So one of the things, Adam, the reason I'm going to introduce Ronald Van Loon. And on the other hand I'm a blogger I met you on Twitter, you know, and the pace of change, that's just You're in the front lines, helping organizations, Trying to govern when you have And newest member of the SiliconANGLE Media Team. and data science are at the heart of it. It's funny that you excluded deep learning of the workflow of data science And I haven't seen the industry automation, in terms of the core And baking it right into the tools. that's really powering a lot of the rapid leaps forward. What's the distinction? It's like asking people to mine classifieds. to layer, and what you end up with the ability to do higher levels of abstraction. get the result, you also have to And I guess the last part is, Dave: So I'd like to switch gears a little bit and just generally in the community, And this means that it has to be brought on one end to, But Chris you have a-- Look at the major breaches of the last couple years. "I have to spend to protect myself, And that's the way I think about it. and the data are the models themselves. And I think that it's very undisciplined right now, So that you can sell more. And a lot of times they can't fund these transformations. But the first question I like to ask people And then figure out how you map data to it. And after the month, you check, kind of a data broker, the business case rarely So initially, indeed, they don't like to use the data. But do you have anything to add? and deploy it in more areas of the business. There's the whole issue of putting And it's a lot cheaper to store data And then start to build some fully is that the speed to value is just the data and someone else has to manage the problem. So, you know, think of it in terms on that theme, when you think about from IDC that says, "About 43% of the data all aircraft and all carriers have to be, most of the deep learning models like TensorFlow geared to IOT, I'm sorry, go ahead. I mean in the announcement of having "lift and shift to the Cloud." And only the metadata that we need And you can push that to a device. And it could be that you got to I'd like somebody in the panel to And on the other hand, you see that But fill in some of the gaps there. And the right to data transfer. a good chunk of that may have to go away So Lillian, as a consumer this is designed to protect you. I've looked over the GDPR and to me You know, EU overreach in the post Brexit era, But I don't think anyone's going to go to jail, on day one. And so we had this response with ad blocking. And so, GDPR is kind of a response to saying, a boondoggle for lawyers in the EU What's the value in that? With the data that they don't have. leads to a conversion, it doesn't matter who you are And they inferred correctly even to figure out who you are, and what you're doing, And I like the targeted advertising. And I think it's similar to what happened I think no one is going to go to jail. and the money arrives back to my bank. "disclaimer that the EU said you need to give. I would be extremely upset if I were you. And I think GDPR's going to be enforced in that same approach. And it does when you have great guests like yourselves.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim Kobielus | PERSON | 0.99+ |
Chris | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Ronald | PERSON | 0.99+ |
Lillian Pierson | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Lillian | PERSON | 0.99+ |
Jim | PERSON | 0.99+ |
Joe Caserta | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Dez | PERSON | 0.99+ |
Nebraska | LOCATION | 0.99+ |
Adam | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Hillary Mason | PERSON | 0.99+ |
87,400 | QUANTITY | 0.99+ |
Topeka | LOCATION | 0.99+ |
Airbus | ORGANIZATION | 0.99+ |
Thailand | LOCATION | 0.99+ |
Brussels | LOCATION | 0.99+ |
Australia | LOCATION | 0.99+ |
EU | ORGANIZATION | 0.99+ |
10% | QUANTITY | 0.99+ |
Dez Blanchfield | PERSON | 0.99+ |
Chris Penn | PERSON | 0.99+ |
Omaha | LOCATION | 0.99+ |
Munich | LOCATION | 0.99+ |
May of 2016 | DATE | 0.99+ |
May 25th 2018 | DATE | 0.99+ |
Sydney | LOCATION | 0.99+ |
nine | QUANTITY | 0.99+ |
Germany | LOCATION | 0.99+ |
17 pages | QUANTITY | 0.99+ |
Joe | PERSON | 0.99+ |
80% | QUANTITY | 0.99+ |
$89 | QUANTITY | 0.99+ |
Yahoo | ORGANIZATION | 0.99+ |
France | LOCATION | 0.99+ |
June 18 | DATE | 0.99+ |
83, 81,000 | QUANTITY | 0.99+ |
30 years | QUANTITY | 0.99+ |
Ronald Van Loon | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
USA | LOCATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
2013 | DATE | 0.99+ |
one point | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |