Image Title

Search Results for Quantifind:

Christian Keynote with Disclaimer


 

(upbeat music) >> Hi everyone, thank you for joining us at the Data Cloud Summit. The last couple of months have been an exciting time at Snowflake. And yet, what's even more compelling to all of us at Snowflake is what's ahead. Today I have the opportunity to share new product developments that will extend the reach and impact of our Data Cloud and improve the experience of Snowflake users. Our product strategy is focused on four major areas. First, Data Cloud content. In the Data Cloud silos are eliminated and our vision is to bring the world's data within reach of every organization. You'll hear about new data sets and data services available in our data marketplace and see how previous barriers to sourcing and unifying data are eliminated. Second, extensible data pipelines. As you gain frictionless access to a broader set of data through the Data Cloud, Snowflakes platform brings additional capabilities and extensibility to your data pipelines, simplifying data ingestion, and transformation. Third, data governance. The Data Cloud eliminates silos and breaks down barriers and in a world where data collaboration is the norm, the importance of data governance is ratified and elevated. We'll share new advancements to support how the world's most demanding organizations mobilize your data while maintaining high standards of compliance and governance. Finally, our fourth area focuses on platform performance and capabilities. We remain laser focused on continuing to lead with the most performant and capable data platform. We have some exciting news to share about the core engine of Snowflake. As always, we love showing you Snowflake in action, and we prepared some demos for you. Also, we'll keep coming back to the fact that one of the characteristics of Snowflake that we're proud as staff is that we offer a single platform from which you can operate all of your data workloads, across clouds and across regions, which workloads you may ask, specifically, data warehousing, data lake, data science, data engineering, data applications, and data sharing. Snowflake makes it possible to mobilize all your data in service of your business without the cost, complexity and overhead of managing multiple systems, tools and vendors. Let's dive in. As you heard from Frank, the Data Cloud offers a unique capability to connect organizations and create collaboration and innovation across industries fueled by data. The Snowflake data marketplace is the gateway to the Data Cloud, providing visibility for organizations to browse and discover data that can help them make better decisions. For data providers on the marketplace, there is a new opportunity to reach new customers, create new revenue streams, and radically decrease the effort and time to data delivery. Our marketplace dramatically reduces the friction of sharing and collaborating with data opening up new possibilities to all participants in the Data Cloud. We introduced the Snowflake data marketplace in 2019. And it is now home to over 100 data providers, with half of them having joined the marketplace in the last four months. Since our most recent product announcements in June, we have continued broadening the availability of the data marketplace, across regions and across clouds. Our data marketplace provides the opportunity for data providers to reach consumers across cloud and regional boundaries. A critical aspect of the Data Cloud is that we envisioned organizations collaborating not just in terms of data, but also data powered applications and services. Think of instances where a provider doesn't want to open access to the entirety of a data set, but wants to provide access to business logic that has access and leverages such data set. That is what we call data services. And we want Snowflake to be the platform of choice for developing discovering and consuming such rich building blocks. To see How the data marketplace comes to live, and in particular one of these data services, let's jump into a demo. For all of our demos today, we're going to put ourselves in the shoes of a fictional global insurance company. We've called it Insureco. Insurance is a data intensive and highly regulated industry. Having the right access control and insight from data is core to every insurance company's success. I'm going to turn it over to Prasanna to show how the Snowflake data marketplace can solve a data discoverability and access problem. >> Let's look at how Insureco can leverage data and data services from the Snowflake data marketplace and use it in conjunction with its own data in the Data Cloud to do three things, better detect fraudulent claims, arm its agents with the right information, and benchmark business health against competition. Let's start with detecting fraudulent claims. I'm an analyst in the Claims Department. I have auto claims data in my account. I can see there are 2000 auto claims, many of these submitted by auto body shops. I need to determine if they are valid and legitimate. In particular, could some of these be insurance fraud? By going to the Snowflake data marketplace where numerous data providers and data service providers can list their offerings, I find the quantifying data service. It uses a combination of external data sources and predictive risk typology models to inform the risk level of an organization. Quantifying external sources include sanctions and blacklists, negative news, social media, and real time search engine results. That's a wealth of data and models built on that data which we don't have internally. So I'd like to use Quantifind to determine a fraud risk score for each auto body shop that has submitted a claim. First, the Snowflake data marketplace made it really easy for me to discover a data service like this. Without the data marketplace, finding such a service would be a lengthy ad hoc process of doing web searches and asking around. Second, once I find Quantifind, I can use Quantifind service against my own data in three simple steps using data sharing. I create a table with the names and addresses of auto body shops that have submitted claims. I then share the table with Quantifind to start the risk assessment. Quantifind does the risk scoring and shares the data back with me. Quantifind uses external functions which we introduced in June to get results from their risk prediction models. Without Snowflake data sharing, we would have had to contact Quantifind to understand what format they wanted the data in, then extract this data into a file, FTP the file to Quantifind, wait for the results, then ingest the results back into our systems for them to be usable. Or I would have had to write code to call Quantifinds API. All of that would have taken days. In contrast, with data sharing, I can set this up in minutes. What's more, now that I have set this up, as new claims are added in the future, they will automatically leverage Quantifind's data service. I view the scores returned by Quantifind and see the two entities in my claims data have a high score for insurance fraud risk. I open up the link returned by Quantifind to read more, and find that this organization has been involved in an insurance crime ring. Looks like that is a claim that we won't be approving. Using the Quantifind data service through the Snowflake data marketplace gives me access to a risk scoring capability that we don't have in house without having to call custom APIs. For a provider like Quantifind this drives new leads and monetization opportunities. Now that I have identified potentially fraudulent claims, let's move on to the second part. I would like to share this fraud risk information with the agents who sold the corresponding policies. To do this, I need two things. First, I need to find the agents who sold these policies. Then I need to share with these agents the fraud risk information that we got from Quantifind. But I want to share it such that each agent only sees the fraud risk information corresponding to claims for policies that they wrote. To find agents who sold these policies, I need to look up our Salesforce data. I can find this easily within Insureco's internal data exchange. I see there's a listing with Salesforce data. Our sales Ops team has published this listing so I know it's our officially blessed data set, and I can immediately access it from my Snowflake account without copying any data or having to set up ETL. I can now join Salesforce data with my claims to identify the agents for the policies that were flagged to have fraudulent claims. I also have the Snowflake account information for each agent. Next, I create a secure view that joins on an entitlements table, such that each agent can only see the rows corresponding to policies that they have sold. I then share this directly with the agents. This share contains the secure view that I created with the names of the auto body shops, and the fraud risk identified by Quantifind. Finally, let's move on to the third and last part. Now that I have detected potentially fraudulent claims, I'm going to move on to building a dashboard that our executives have been asking for. They want to see how Insureco compares against other auto insurance companies on key metrics, like total claims paid out for the auto insurance line of business nationwide. I go to the Snowflake data marketplace and find SNL U.S. Insurance Statutory Data from SNP. This data is included with Insureco's existing subscription with SMP so when I request access to it, SMP can immediately share this data with me through Snowflake data sharing. I create a virtual database from the share, and I'm ready to query this data, no ETL needed. And since this is a virtual database, pointing to the original data in SNP Snowflake account, I have access to the latest data as it arrives in SNPs account. I see that the SNL U.S. Insurance Statutory Data from SNP has data on assets, premiums earned and claims paid out by each us insurance company in 2019. This data is broken up by line of business and geography and in many cases goes beyond the data that would be available from public financial filings. This is exactly the data I need. I identify a subset of comparable insurance companies whose net total assets are within 20% of Insureco's, and whose lines of business are similar to ours. I can now create a Snow site dashboard that compares Insureco against similar insurance companies on key metrics, like net earned premiums, and net claims paid out in 2019 for auto insurance. I can see that while we are below median our net earned premiums, we are doing better than our competition on total claims paid out in 2019, which could be a reflection of our improved claims handling and fraud detection. That's a good insight that I can share with our executives. In summary, the Data Cloud enabled me to do three key things. First, seamlessly fine data and data services that I need to do my job, be it an external data service like Quantifind and external data set from SNP or internal data from Insureco's data exchange. Second, get immediate live access to this data. And third, control and manage collaboration around this data. With Snowflake, I can mobilize data and data services across my business ecosystem in just minutes. >> Thank you Prasanna. Now I want to turn our focus to extensible data pipelines. We believe there are two different and important ways of making Snowflakes platform highly extensible. First, by enabling teams to leverage services or business logic that live outside of Snowflake interacting with data within Snowflake. We do this through a feature called external functions, a mechanism to conveniently bring data to where the computation is. We announced this feature for calling regional endpoints via AWS gateway in June, and it's currently available in public preview. We are also now in public preview supporting Azure API management and will soon support Google API gateway and AWS private endpoints. The second extensibility mechanism does the converse. It brings the computation to Snowflake to run closer to the data. We will do this by enabling the creation of functions and procedures in SQL, Java, Scala or Python ultimately providing choice based on the programming language preference for you or your organization. You will see Java, Scala and Python available through private and public previews in the future. The possibilities enabled by these extensibility features are broad and powerful. However, our commitment to being a great platform for data engineers, data scientists and developers goes far beyond programming language. Today, I am delighted to announce Snowpark a family of libraries that will bring a new experience to programming data in Snowflake. Snowpark enables you to write code directly against Snowflake in a way that is deeply integrated into the languages I mentioned earlier, using familiar concepts like DataFrames. But the most important aspect of Snowpark is that it has been designed and optimized to leverage the Snowflake engine with its main characteristics and benefits, performance, reliability, and scalability with near zero maintenance. Think of the power of a declarative SQL statements available through a well known API in Scala, Java or Python, all these against data governed in your core data platform. We believe Snowpark will be transformative for data programmability. I'd like to introduce Sri to showcase how our fictitious insurance company Insureco will be able to take advantage of the Snowpark API for data science workloads. >> Thanks Christian, hi, everyone? I'm Sri Chintala, a product manager at Snowflake focused on extensible data pipelines. And today, I'm very excited to show you a preview of Snowpark. In our first demo, we saw how Insureco could identify potentially fraudulent claims. Now, for all the valid claims InsureCo wants to ensure they're providing excellent customer service. To do that, they put in place a system to transcribe all of their customer calls, so they can look for patterns. A simple thing they'd like to do is detect the sentiment of each call so they can tell which calls were good and which were problematic. They can then better train their claim agents for challenging calls. Let's take a quick look at the work they've done so far. InsureCo's data science team use Snowflakes external functions to quickly and easily train a machine learning model in H2O AI. Snowflake has direct integrations with H2O and many other data science providers giving Insureco the flexibility to use a wide variety of data science libraries frameworks or tools to train their model. Now that the team has a custom trained sentiment model tailored to their specific claims data, let's see how a data engineer at Insureco can use Snowpark to build a data pipeline that scores customer call logs using the model hosted right inside of Snowflake. As you can see, we have the transcribed call logs stored in the customer call logs table inside Snowflake. Now, as a data engineer trained in Scala, and used to working with systems like Spark and Pandas, I want to use familiar programming concepts to build my pipeline. Snowpark solves for this by letting me use popular programming languages like Java or Scala. It also provides familiar concepts in APIs, such as the DataFrame abstraction, optimized to leverage and run natively on the Snowflake engine. So here I am in my ID, where I've written a simple scalar program using the Snowpark libraries. The first step in using the Snowpark API is establishing a session with Snowflake. I use the session builder object and specify the required details to connect. Now, I can create a DataFrame for the data in the transcripts column of the customer call logs table. As you can see, the Snowpark API provides native language constructs for data manipulation. Here, I use the Select method provided by the API to specify the column names to return rather than writing select transcripts as a string. By using the native language constructs provided by the API, I benefit from features like IntelliSense and type checking. Here you can see some of the other common methods that the DataFrame class offers like filters like join and others. Next, I define a get sentiment user defined function that will return a sentiment score for an input string by using our pre trained H2O model. From the UDF, we call the score method that initializes and runs the sentiment model. I've built this helper into a Java file, which along with the model object and license are added as dependencies that Snowpark will send to Snowflake for execution. As a developer, this is all programming that I'm familiar with. We can now call our get sentiment function on the transcripts column of the DataFrame and right back the results of the score transcripts to a new target table. Let's run this code and switch over to Snowflake to see the score data and also all the work that Snowpark has done for us on the back end. If I do a select star from scored logs, we can see the sentiment score of each call right alongside the transcript. With Snowpark all the logic in my program is pushed down into Snowflake. I can see in the query history that Snowpark has created a temporary Java function to host the pre trained H20 model, and that the model is running right in my Snowflake warehouse. Snowpark has allowed us to do something completely new in Snowflake. Let's recap what we saw. With Snowpark, Insureco was able to use their preferred programming language, Scala and use the familiar DataFrame constructs to score data using a machine learning model. With support for Java UDFs, they were able to run a train model natively within Snowflake. And finally, we saw how Snowpark executed computationally intensive data science workloads right within Snowflake. This simplifies Insureco's data pipeline architecture, as it reduces the number of additional systems they have to manage. We hope that extensibility with Scala, Java and Snowpark will enable our users to work with Snowflake in their preferred way while keeping the architecture simple. We are very excited to see how you use Snowpark to extend your data pipelines. Thank you for watching and with that back to you, Christian. >> Thank you Sri. You saw how Sri could utilize Snowpark to efficiently perform advanced sentiment analysis. But of course, if this use case was important to your business, you don't want to fully automate this pipeline and analysis. Imagine being able to do all of the following in Snowflake, your pipeline could start far upstream of what you saw in the demo. By storing your actual customer care call recordings in Snowflake, you may notice that this is new for Snowflake. We'll come back to the idea of storing unstructured data in Snowflake at the end of my talk today. Once you have the data in Snowflake, you can use our streams and past capabilities to call an external function to transcribe these files. To simplify this flow even further, we plan to introduce a serverless execution model for tasks where Snowflake can automatically size and manage resources for you. After this step, you can use the same serverless task to execute sentiment scoring of your transcript as shown in the demo with incremental processing as each transcript is created. Finally, you can surface the sentiment score either via snow side, or through any tool you use to share insights throughout your organization. In this example, you see data being transformed from a raw asset into a higher level of information that can drive business action, all fully automated all in Snowflake. Turning back to Insureco, you know how important data governance is for any major enterprise but particularly for one in this industry. Insurance companies manage highly sensitive data about their customers, and have some of the strictest requirements for storing and tracking such data, as well as managing and governing it. At Snowflake, we think about governance as the ability to know your data, manage your data and collaborate with confidence. As you saw in our first demo, the Data Cloud enables seamless collaboration, control and access to data via the Snowflake data marketplace. And companies may set up their own data exchanges to create similar collaboration and control across their ecosystems. In future releases, we expect to deliver enhancements that create more visibility into who has access to what data and provide usage information of that data. Today, we are announcing a new capability to help Snowflake users better know and organize your data. This is our new tagging framework. Tagging in Snowflake will allow user defined metadata to be attached to a variety of objects. We built a broad and robust framework with powerful implications. Think of the ability to annotate warehouses with cost center information for tracking or think of annotating tables and columns with sensitivity classifications. Our tagging capability will enable the creation of companies specific business annotations for objects in Snowflakes platform. Another key aspect of data governance in Snowflake is our policy based framework where you specify what you want to be true about your data, and Snowflake enforces those policies. We announced one such policy earlier this year, our dynamic data masking capability, which is now available in public preview. Today, we are announcing a great complimentary a policy to achieve row level security to see how role level security can enhance InsureCo's ability to govern and secure data. I'll hand it over to Artin for a demo. >> Hello, I'm Martin Avanes, Director of Product Management for Snowflake. As Christian has already mentioned, the rise of the Data Cloud greatly accelerates the ability to access and share diverse data leading to greater data collaboration across teams and organizations. Controlling data access with ease and ensuring compliance at the same time is top of mind for users. Today, I'm thrilled to announce our new row access policies that will allow users to define various rules for accessing data in the Data Cloud. Let's check back in with Insureco to see some of these in action and highlight how those work with other existing policies one can define in Snowflake. Because Insureco is a multinational company, it has to take extra measures to ensure data across geographic boundaries is protected to meet a wide range of compliance requirements. The Insureco team has been asked to segment what data sales team members have access to based on where they are regionally. In order to make this possible, they will use Snowflakes row access policies to implement row level security. We are going to apply policies for three Insureco's sales team members with different roles. Alice, an executive must be able to view sales data from both North America and Europe. Alex in North America sales manager will be limited to access sales data from North America only. And Jordan, a Europe sales manager will be limited to access sales data from Europe only. As a first step, the security administrator needs to create a lookup table that will be used to determine which data is accessible based on each role. As you can see, the lookup table has the row and their associated region, both of which will be used to apply policies that we will now create. Row access policies are implemented using standard SQL syntax to make it easy for administrators to create policies like the one our administrators looking to implement. And similar to masking policies, row access policies are leveraging our flexible and expressive policy language. In this demo, our admin users to create a row access policy that uses the row and region of a user to determine what row level data they have access to when queries are executed. When users queries are executed against the table protected by such a row access policy, Snowflakes query engine will dynamically generate and apply the corresponding predicate to filter out rows the user is not supposed to see. With the policy now created, let's log in as our Sales Users and see if it worked. Recall that as a sales executive, Alice should have the ability to see all rows from North America and Europe. Sure enough, when she runs her query, she can see all rows so we know the policy is working for her. You may also have noticed that some columns are showing masked data. That's because our administrator's also using our previously announced data masking capabilities to protect these data attributes for everyone in sales. When we look at our other users, we should notice that the same columns are also masked for them. As you see, you can easily combine masking and row access policies on the same data sets. Now let's look at Alex, our North American sales manager. Alex runs to st Korea's Alice, row access policies leverage the lookup table to dynamically generate the corresponding predicates for this query. The result is we see that only the data for North America is visible. Notice too that the same columns are still masked. Finally, let's try Jordan, our European sales manager. Jordan runs the query and the result is only the data for Europe with the same columns also masked. And you reintroduced masking policies, today you saw row access policies in action. And similar to our masking policies, row access policies in Snowflake will be accepted Hands of capability integrated seamlessly across all of Snowflake everywhere you expect it to work it does. If you're accessing data stored in external tables, semi structured JSON data, or building data pipelines via streams or plan to leverage Snowflakes data sharing functionality, you will be able to implement complex row access policies for all these diverse use cases and workloads within Snowflake. And with Snowflakes unique replication feature, you can instantly apply these new policies consistently to all of your Snowflake accounts, ensuring governance across regions and even across different clouds. In the future, we plan to demonstrate how to combine our new tagging capabilities with Snowflakes policies, allowing advanced audit and enforcing those policies with ease. And with that, let's pass it back over to Christian. >> Thank you Artin. We look forward to making this new tagging and row level security capabilities available in private preview in the coming months. One last note on the broad area of data governance. A big aspect of the Data Cloud is the mobilization of data to be used across organizations. At the same time, privacy is an important consideration to ensure the protection of sensitive, personal or potentially identifying information. We're working on a set of product capabilities to simplify compliance with privacy related regulatory requirements, and simplify the process of collaborating with data while preserving privacy. Earlier this year, Snowflake acquired a company called Crypto Numerix to accelerate our efforts on this front, including the identification and anonymization of sensitive data. We look forward to sharing more details in the future. We've just shown you three demos of new and exciting ways to use Snowflake. However, I want to also remind you that our commitment to the core platform has never been greater. As you move workloads on to Snowflake, we know you expect exceptional price performance and continued delivery of new capabilities that benefit every workload. On price performance, we continue to drive performance improvements throughout the platform. Let me give you an example comparing an identical set of customers submitted queries that ran both in August of 2019, and August of 2020. If I look at the set of queries that took more than one second to compile 72% of those improved by at least 50%. When we make these improvements, execution time goes down. And by implication, the required compute time is also reduced. Based on our pricing model to charge for what you use, performance improvements not only deliver faster insights, but also translate into cost savings for you. In addition, we have two new major announcements on performance to share today. First, we announced our search optimization service during our June event. This service currently in public preview can be enabled on a table by table basis, and is able to dramatically accelerate lookup queries on any column, particularly those not used as clustering columns. We initially support equality comparisons only, and today we're announcing expanded support for searches in values, such as pattern matching within strings. This will unlock a number of additional use cases such as analytics on logs data for performance or security purposes. This expanded support is currently being validated by a few customers in private preview, and will be broadly available in the future. Second, I'd like to introduce a new service that will be in private preview in a future release. The query acceleration service. This new feature will automatically identify and scale out parts of a query that could benefit from additional resources and parallelization. This means that you will be able to realize dramatic improvements in performance. This is especially impactful for data science and other scan intensive workloads. Using this feature is pretty simple. You define a maximum amount of additional resources that can be recruited by a warehouse for acceleration, and the service decides when it would be beneficial to use them. Given enough resources, a query over a massive data set can see orders of magnitude performance improvement compared to the same query without acceleration enabled. In our own usage of Snowflake, we saw a common query go 15 times faster without changing the warehouse size. All of these performance enhancements are extremely exciting, and you will see continued improvements in the future. We love to innovate and continuously raise the bar on what's possible. More important, we love seeing our customers adopt and benefit from our new capabilities. In June, we announced a number of previews, and we continue to roll those features out and see tremendous adoption, even before reaching general availability. Two have those announcements were the introduction of our geospatial support and policies for dynamic data masking. Both of these features are currently in use by hundreds of customers. The number of tables using our new geography data type recently crossed the hundred thousand mark, and the number of columns with masking policies also recently crossed the same hundred thousand mark. This momentum and level of adoption since our announcements in June is phenomenal. I have one last announcement to highlight today. In 2014, Snowflake transformed the world of data management and analytics by providing a single platform with first class support for both structured and semi structured data. Today, we are announcing that Snowflake will be adding support for unstructured data on that same platform. Think of the abilities of Snowflake used to store access and share files. As an example, would you like to leverage the power of SQL to reason through a set of image files. We have a few customers as early adopters and we'll provide additional details in the future. With this, you will be able to leverage Snowflake to mobilize all your data in the Data Cloud. Our customers rely on Snowflake as the data platform for every part of their business. However, the vision and potential of Snowflake is actually much bigger than the four walls of any organization. Snowflake has created a Data Cloud a data connected network with a vision where any Snowflake customer can leverage and mobilize the world's data. Whether it's data sets, or data services from traditional data providers for SaaS vendors, our marketplace creates opportunities for you and raises the bar in terms of what is possible. As examples, you can unify data across your supply chain to accelerate your time and quality to market. You can build entirely new revenue streams, or collaborate with a consortium on data for good. The possibilities are endless. Every company has the opportunity to gain richer insights, build greater products and deliver better services by reaching beyond the data that he owns. Our vision is to enable every company to leverage the world's data through seamless and governing access. Snowflake is your window into this data network into this broader opportunity. Welcome to the Data Cloud. (upbeat music)

Published Date : Nov 19 2020

SUMMARY :

is the gateway to the Data Cloud, FTP the file to Quantifind, It brings the computation to Snowflake and that the model is running as the ability to know your data, the ability to access is the mobilization of data to

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
InsurecoORGANIZATION

0.99+

ChristianPERSON

0.99+

AlicePERSON

0.99+

August of 2020DATE

0.99+

August of 2019DATE

0.99+

JuneDATE

0.99+

InsureCoORGANIZATION

0.99+

Martin AvanesPERSON

0.99+

EuropeLOCATION

0.99+

QuantifindORGANIZATION

0.99+

PrasannaPERSON

0.99+

15 timesQUANTITY

0.99+

2019DATE

0.99+

AlexPERSON

0.99+

SNPORGANIZATION

0.99+

2014DATE

0.99+

JordanPERSON

0.99+

AWSORGANIZATION

0.99+

ScalaTITLE

0.99+

JavaTITLE

0.99+

72%QUANTITY

0.99+

SQLTITLE

0.99+

TodayDATE

0.99+

North AmericaLOCATION

0.99+

each agentQUANTITY

0.99+

SMPORGANIZATION

0.99+

second partQUANTITY

0.99+

FirstQUANTITY

0.99+

SecondQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

SnowflakeTITLE

0.99+

PythonTITLE

0.99+

each callQUANTITY

0.99+

Sri ChintalaPERSON

0.99+

each roleQUANTITY

0.99+

todayDATE

0.99+

TwoQUANTITY

0.99+

twoQUANTITY

0.99+

BothQUANTITY

0.99+

Crypto NumerixORGANIZATION

0.99+

two entitiesQUANTITY

0.99+