Image Title

Search Results for Marc Staimer:

Marc Staimer, Dragon Slayer Consulting & David Floyer, Wikibon | December 2020


 

>> Announcer: From theCUBE studios in Palo Alto, in Boston, connecting with thought leaders all around the world. This is theCUBE conversation. >> Hi everyone, this is Dave Vellante and welcome to this CUBE conversation where we're going to dig in to this, the area of cloud databases. And Gartner just published a series of research in this space. And it's really a growing market, rapidly growing, a lot of new players, obviously the big three cloud players. And with me are three experts in the field, two long time industry analysts. Marc Staimer is the founder, president, and key principal at Dragon Slayer Consulting. And he's joined by David Floyer, the CTO of Wikibon. Gentlemen great to see you. Thanks for coming on theCUBE. >> Good to be here. >> Great to see you too Dave. >> Marc, coming from the great Northwest, I think first time on theCUBE, and so it's really great to have you. So let me set this up, as I said, you know, Gartner published these, you know, three giant tomes. These are, you know, publicly available documents on the web. I know you guys have been through them, you know, several hours of reading. And so, night... (Dave chuckles) Good night time reading. The three documents where they identify critical capabilities for cloud database management systems. And the first one we're going to talk about is, operational use cases. So we're talking about, you know, transaction oriented workloads, ERP financials. The second one was analytical use cases, sort of an emerging space to really try to, you know, the data warehouse space and the like. And, of course, the third is the famous Gartner Magic Quadrant, which we're going to talk about. So, Marc, let me start with you, you've dug into this research just at a high level, you know, what did you take away from it? >> Generally, if you look at all the players in the space they all have some basic good capabilities. What I mean by that is ultimately when you have, a transactional or an analytical database in the cloud, the goal is not to have to manage the database. Now they have different levels of where that goes to as how much you have to manage or what you have to manage. But ultimately, they all manage the basic administrative, or the pedantic tasks that DBAs have to do, the patching, the tuning, the upgrading, all of that is done by the service provider. So that's the number one thing they all aim at, from that point on every database has different capabilities and some will automate a whole bunch more than others, and will have different primary focuses. So it comes down to what you're looking for or what you need. And ultimately what I've learned from end users is what they think they need upfront, is not what they end up needing as they implement. >> David, anything you'd add to that, based on your reading of the Gartner work. >> Yes. It's a thorough piece of work. It's taking on a huge number of different types of uses and size of companies. And I think those are two parameters which really change how companies would look at it. If you're a Fortune 500 or Fortune 2000 type company, you're going to need a broader range of features, and you will need to deal with size and complexity in a much greater sense, and a lot of probably higher levels of availability, and reliability, and recoverability. Again, on the workload side, there are different types of workload and there're... There is as well as having the two transactional and analytic workloads, I think there's an emerging type of workload which is going to be very important for future applications where you want to combine transactional with analytic in real time, in order to automate business processes at a higher level, to make the business processes synchronous as opposed to asynchronous. And that degree of granularity, I think is missed, in a broader view of these companies and what they offer. It's in my view trying in some ways to not compare like with like from a customer point of view. So the very nuance, what you talked about, let's get into it, maybe that'll become clear to the audience. So like I said, these are very detailed research notes. There were several, I'll say analysts cooks in the kitchen, including Henry Cook, whom I don't know, but four other contributing analysts, two of whom are CUBE alum, Don Feinberg, and Merv Adrian, both really, you know, awesome researchers. And Rick Greenwald, along with Adam Ronthal. And these are public documents, you can go on the web and search for these. So I wonder if we could just look at some of the data and bring up... Guys, bring up the slide one here. And so we'll first look at the operational side and they broke it into four use cases. The traditional transaction use cases, the augmented transaction processing, stream/event processing and operational intelligence. And so we're going to show you there's a lot of data here. So what Gartner did is they essentially evaluated critical capabilities, or think of features and functions, and gave them a weighting, or a weighting, and then a rating. It was a weighting and rating methodology. On a s... The rating was on a scale of one to five, and then they weighted the importance of the features based on their assessment, and talking to the many customers they talk to. So you can see here on the first chart, we're showing both the traditional transactions and the augmented transactions and, you know, the thing... The first thing that jumps out at you guys is that, you know, Oracle with Autonomous is off the charts, far ahead of anybody else on this. And actually guys, if you just bring up slide number two, we'll take a look at the stream/event processing and operational intelligence use cases. And you can see, again, you know, Oracle has a big lead. And I don't want to necessarily go through every vendor here, but guys, if you don't mind going back to the first slide 'cause I think this is really, you know, the core of transaction processing. So let's look at this, you've got Oracle, you've got SAP HANA. You know, right there interestingly Amazon Web Services with the Aurora, you know, IBM Db2, which, you know, it goes back to the good old days, you know, down the list. But so, let me again start with Marc. So why is that? I mean, I guess this is no surprise, Oracle still owns the Mission-Critical for the database space. They earned that years ago. One that, you know, over the likes of Db2 and, you know, Informix and Sybase, and, you know, they emerged as number one there. But what do you make of this data Marc? >> If you look at this data in a vacuum, you're looking at specific functionality, I think you need to look at all the slides in total. And the reason I bring that up is because I agree with what David said earlier, in that the use case that's becoming more prevalent is the integration of transaction and analytics. And more importantly, it's not just your traditional data warehouse, but it's AI analytics. It's big data analytics. It's users are finding that they need more than just simple reporting. They need more in-depth analytics so that they can get more actionable insights into their data where they can react in real time. And so if you look at it just as a transaction, that's great. If you're going to just as a data warehouse, that's great, or analytics, that's fine. If you have a very narrow use case, yes. But I think today what we're looking at is... It's not so narrow. It's sort of like, if you bought a streaming device and it only streams Netflix and then you need to get another streaming device 'cause you want to watch Amazon Prime. You're not going to do that, you want one, that does all of it, and that's kind of what's missing from this data. So I agree that the data is good, but I don't think it's looking at it in a total encompassing manner. >> Well, so before we get off the horses on the track 'cause I love to do that. (Dave chuckles) I just kind of let's talk about that. So Marc, you're putting forth the... You guys seem to agree on that premise that the database that can do more than just one thing is of appeal to customers. I suppose that makes, certainly makes sense from a cost standpoint. But, you know, guys feel free to flip back and forth between slides one and two. But you can see SAP HANA, and I'm not sure what cloud that's running on, it's probably running on a combination of clouds, but, you know, scoring very strongly. I thought, you know, Aurora, you know, given AWS says it's one of the fastest growing services in history and they've got it ahead of Db2 just on functionality, which is pretty impressive. I love Google Spanner, you know, love the... What they're trying to accomplish there. You know, you go down to Microsoft is, they're kind of the... They're always good enough a database and that's how they succeed and et cetera, et cetera. But David, it sounds like you agree with Marc. I would say, I would think though, Amazon kind of doesn't agree 'cause they're like a horses for courses. >> I agree. >> Yeah, yeah. >> So I wonder if you could comment on that. >> Well, I want to comment on two vectors. The first vector is that the size of customer and, you know, a mid-sized customer versus a global $2,000 or global 500 customer. For the smaller customer that's the heart of AWS, and they are taking their applications and putting pretty well everything into their cloud, the one cloud, and Aurora is a good choice. But when you start to get to a requirements, as you do in larger companies have very high levels of availability, the functionality is not there. You're not comparing apples and... Apples with apples, it's two very different things. So from a tier one functionality point of view, IBM Db2 and Oracle have far greater capability for recovery and all the features that they've built in over there. >> Because of their... You mean 'cause of the maturity, right? maturity and... >> Because of their... Because of their focus on transaction and recovery, et cetera. >> So SAP though HANA, I mean, that's, you know... (David talks indistinctly) And then... >> Yeah, yeah. >> And then I wanted your comments on that, either of you or both of you. I mean, SAP, I think has a stated goal of basically getting its customers off Oracle that's, you know, there's always this urinary limping >> Yes, yes. >> between the two companies by 2024. Larry has said that ain't going to happen. You know, Amazon, we know still runs on Oracle. It's very hard to migrate Mission-Critical, David, you and I know this well, Marc you as well. So, you know, people often say, well, everybody wants to get off Oracle, it's too expensive, blah, blah, blah. But we talked to a lot of Oracle customers there, they're very happy with the reliability, availability, recoverability feature set. I mean, the core of Oracle seems pretty stable. >> Yes. >> But I wonder if you guys could comment on that, maybe Marc you go first. >> Sure. I've recently done some in-depth comparisons of Oracle and Aurora, and all their other RDS services and Snowflake and Google and a variety of them. And ultimately what surprised me is you made a statement it costs too much. It actually comes in half of Aurora for in most cases. And it comes in less than half of Snowflake in most cases, which surprised me. But no matter how you configure it, ultimately based on a couple of things, each vendor is focused on different aspects of what they do. Let's say Snowflake, for example, they're on the analytical side, they don't do any transaction processing. But... >> Yeah, so if I can... Sorry to interrupt. Guys if you could bring up the next slide that would be great. So that would be slide three, because now we get into the analytical piece Marc that you're talking about that's what Snowflake specialty is. So please carry on. >> Yeah, and what they're focused on is sharing data among customers. So if, for example, you're an automobile manufacturer and you've got a huge supply chain, you can supply... You can share the data without copying the data with any of your suppliers that are on Snowflake. Now, can you do that with the other data warehouses? Yes, you can. But the focal point is for Snowflake, that's where they're aiming it. And whereas let's say the focal point for Oracle is going to be performance. So their performance affects cost 'cause the higher the performance, the less you're paying for the performing part of the payment scale. Because you're paying per second for the CPUs that you're using. Same thing on Snowflake, but the performance is higher, therefore you use less. I mean, there's a whole bunch of things to come into this but at the end of the day what I've found is Oracle tends to be a lot less expensive than the prevailing wisdom. So let's talk value for a second because you said something, that yeah the other databases can do that, what Snowflake is doing there. But my understanding of what Snowflake is doing is they built this global data mesh across multiple clouds. So not only are they compatible with Google or AWS or Azure, but essentially you sign up for Snowflake and then you can share data with anybody else in the Snowflake cloud, that I think is unique. And I know, >> Marc: Yes. >> Redshift, for instance just announced, you know, Redshift data sharing, and I believe it's just within, you know, clusters within a customer, as opposed to across an ecosystem. And I think that's where the network effect is pretty compelling for Snowflake. So independent of costs, you and I can debate about costs and, you know, the tra... The lack of transparency of, because AWS you don't know what the bill is going to be at the end of the month. And that's the same thing with Snowflake, but I find that... And by the way guys, you can flip through slides three and four, because we've got... Let me just take a quick break and you have data warehouse, logical data warehouse. And then the next slide four you got data science, deep learning and operational intelligent use cases. And you can see, you know, Teradata, you know, law... Teradata came up in the mid 1980s and dominated in that space. Oracle does very well there. You can see Snowflake pop-up, SAP with the Data Warehouse, Amazon with Redshift. You know, Google with BigQuery gets a lot of high marks from people. You know, Cloud Data is in there, you know, so you see some of those names. But so Marc and David, to me, that's a different strategy. They're not trying to be just a better data warehouse, easier data warehouse. They're trying to create, Snowflake that is, an incremental opportunity as opposed to necessarily going after, for example, Oracle. David, your thoughts. >> Yeah, I absolutely agree. I mean, ease of use is a primary benefit for Snowflake. It enables you to do stuff very easily. It enables you to take data without ETL, without any of the complexity. It enables you to share a number of resources across many different users and know... And be able to bring in what that particular user wants or part of the company wants. So in terms of where they're focusing, they've got a tremendous ease of use, tremendous focus on what the customer wants. And you pointed out yourself the restrictions there are of doing that both within Oracle and AWS. So yes, they have really focused very, very hard on that. Again, for the future, they are bringing in a lot of additional functions. They're bringing in Python into it, not Python, JSON into the database. They can extend the database itself, whether they go the whole hog and put in transaction as well, that's probably something they may be thinking about but not at the moment. >> Well, but they, you know, they obviously have to have TAM expansion designs because Marc, I mean, you know, if they just get a 100% of the data warehouse market, they're probably at a third of their stock market valuation. So they had better have, you know, a roadmap and plans to extend there. But I want to come back Marc to this notion of, you know, the right tool for the right job, or, you know, best of breed for a specific, the right specific, you know horse for course, versus this kind of notion of all in one, I mean, they're two different ends of the spectrum. You're seeing, you know, Oracle obviously very successful based on these ratings and based on, you know their track record. And Amazon, I think I lost count of the number of data stores (Dave chuckles) with Redshift and Aurora and Dynamo, and, you know, on and on and on. (Marc talks indistinctly) So they clearly want to have that, you know, primitive, you know, different APIs for each access, completely different philosophies it's like Democrats or Republicans. Marc your thoughts as to who ultimately wins in the marketplace. >> Well, it's hard to say who is ultimately going to win, but if I look at Amazon, Amazon is an all-cart type of system. If you need time series, you go with their time series database. If you need a data warehouse, you go with Redshift. If you need transaction, you go with one of the RDS databases. If you need JSON, you go with a different database. Everything is a different, unique database. Moving data between these databases is far from simple. If you need to do a analytics on one database from another, you're going to use other services that cost money. So yeah, each one will do what they say it's going to do but it's going to end up costing you a lot of money when you do any kind of integration. And you're going to add complexity and you're going to have errors. There's all sorts of issues there. So if you need more than one, probably not your best route to go, but if you need just one, it's fine. And if, and on Snowflake, you raise the issue that they're going to have to add transactions, they're going to have to rewrite their database. They have no indexes whatsoever in Snowflake. I mean, part of the simplicity that David talked about is because they had to cut corners, which makes sense. If you're focused on the data warehouse you cut out the indexes, great. You don't need them. But if you're going to do transactions, you kind of need them. So you're going to have to do some more work there. So... >> Well... So, you know, I don't know. I have a different take on that guys. I think that, I'm not sure if Snowflake will add transactions. I think maybe, you know, their hope is that the market that they're creating is big enough. I mean, I have a different view of this in that, I think the data architecture is going to change over the next 10 years. As opposed to having a monolithic system where everything goes through that big data platform, the data warehouse and the data lake. I actually see what Snowflake is trying to do and, you know, I'm sure others will join them, is to put data in the hands of product builders, data product builders or data service builders. I think they're betting that that market is incremental and maybe they don't try to take on... I think it would maybe be a mistake to try to take on Oracle. Oracle is just too strong. I wonder David, if you could comment. So it's interesting to see how strong Gartner rated Oracle in cloud database, 'cause you don't... I mean, okay, Oracle has got OCI, but you know, you think a cloud, you think Google, or Amazon, Microsoft and Google. But if I have a transaction database running on Oracle, very risky to move that, right? And so we've seen that, it's interesting. Amazon's a big customer of Oracle, Salesforce is a big customer of Oracle. You know, Larry is very outspoken about those companies. SAP customers are many, most are using Oracle. I don't, you know, it's not likely that they're going anywhere. My question to you, David, is first of all, why do they want to go to the cloud? And if they do go to the cloud, is it logical that the least risky approach is to stay with Oracle, if you're an Oracle customer, or Db2, if you're an IBM customer, and then move those other workloads that can move whether it's more data warehouse oriented or incremental transaction work that could be done in a Aurora? >> I think the first point, why should Oracle go to the cloud? Why has it gone to the cloud? And if there is a... >> Moreso... Moreso why would customers of Oracle... >> Why would customers want to... >> That's really the question. >> Well, Oracle have got Oracle Cloud@Customer and that is a very powerful way of doing it. Where exactly the same Oracle system is running on premise or in the cloud. You can have it where you want, you can have them joined together. That's unique. That's unique in the marketplace. So that gives them a very special place in large customers that have data in many different places. The second point is that moving data is very expensive. Marc was making that point earlier on. Moving data from one place to another place between two different databases is a very expensive architecture. Having the data in one place where you don't have to move it where you can go directly to it, gives you enormous capabilities for a single database, single database type. And I'm sure that from a transact... From an analytic point of view, that's where Snowflake is going, to a large single database. But where Oracle is going to is where, you combine both the transactional and the other one. And as you say, the cost of migration of databases is incredibly high, especially transaction databases, especially large complex transaction databases. >> So... >> And it takes a long time. So at least a two year... And it took five years for Amazon to actually succeed in getting a lot of their stuff over. And five years they could have been doing an awful lot more with the people that they used to bring it over. So it was a marketing decision as opposed to a rational business decision. >> It's the holy grail of the vendors, they all want your data in their database. That's why Amazon puts so much effort into it. Oracle is, you know, in obviously a very strong position. It's got growth and it's new stuff, it's old stuff. It's, you know... The problem with Oracle it has like many of the legacy vendors, it's the size of the install base is so large and it's shrinking. And the new stuff is.... The legacy stuff is shrinking. The new stuff is growing very, very fast but it's not large enough yet to offset that, you see that in all the learnings. So very positive news on, you know, the cloud database, and they just got to work through that transition. Let's bring up slide number five, because Marc, this is to me the most interesting. So we've just shown all these detailed analysis from Gartner. And then you look at the Magic Quadrant for cloud databases. And, you know, despite Amazon being behind, you know, Oracle, or Teradata, or whomever in every one of these ratings, they're up to the right. Now, of course, Gartner will caveat this and say, it doesn't necessarily mean you're the best, but of course, everybody wants to be in the upper, right. We all know that, but it doesn't necessarily mean that you should go by that database, I agree with what Gartner is saying. But look at Amazon, Microsoft and Google are like one, two and three. And then of course, you've got Oracle up there and then, you know, the others. So that I found that very curious, it is like there was a dissonance between the hardcore ratings and then the positions in the Magic Quadrant. Why do you think that is Marc? >> It, you know, it didn't surprise me in the least because of the way that Gartner does its Magic Quadrants. The higher up you go in the vertical is very much tied to the amount of revenue you get in that specific category which they're doing the Magic Quadrant. It doesn't have to do with any of the revenue from anywhere else. Just that specific quadrant is with that specific type of market. So when I look at it, Oracle's revenue still a big chunk of the revenue comes from on-prem, not in the cloud. So you're looking just at the cloud revenue. Now on the right side, moving to the right of the quadrant that's based on functionality, capabilities, the resilience, other things other than revenue. So visionary says, hey how far are you on the visionary side? Now, how they weight that again comes down to Gartner's experts and how they want to weight it and what makes more sense to them. But from my point of view, the right side is as important as the vertical side, 'cause the vertical side doesn't measure the growth rate either. And if we look at these, some of these are growing much faster than the others. For example, Snowflake is growing incredibly fast, and that doesn't reflect in these numbers from my perspective. >> Dave: I agree. >> Oracle is growing incredibly fast in the cloud. As David pointed out earlier, it's not just in their cloud where they're growing, but it's Cloud@Customer, which is basically an extension of their cloud. I don't know if that's included these numbers or not in the revenue side. So there's... There're a number of factors... >> Should it be in your opinion, Marc, would you include that in your definition of cloud? >> Yeah. >> The things that are hybrid and on-prem would that cloud... >> Yes. >> Well especially... Well, again, it depends on the hybrid. For example, if you have your own license, in your own hardware, but it connects to the cloud, no, I wouldn't include that. If you have a subscription license and subscription hardware that you don't own, but it's owned by the cloud provider, but it connects with the cloud as well, that I would. >> Interesting. Well, you know, to your point about growth, you're right. I mean, it's probably looking at, you know, revenues looking, you know, backwards from guys like Snowflake, it will be double, you know, the next one of these. It's also interesting to me on the horizontal axis to see Cloud Data and Databricks further to the right, than Snowflake, because that's kind of the data lake cloud. >> It is. >> And then of course, you've got, you know, the other... I mean, database used to be boring, so... (David laughs) It's such a hot market space here. (Marc talks indistinctly) David, your final thoughts on all this stuff. What does the customer take away here? What should I... What should my cloud database management strategy be? >> Well, I was positive about Oracle, let's take some of the negatives of Oracle. First of all, they don't make it very easy to rum on other platforms. So they have put in terms and conditions which make it very difficult to run on AWS, for example, you get double counts on the licenses, et cetera. So they haven't played well... >> Those are negotiable by the way. Those... You bring it up on the customer. You can negotiate that one. >> Can be, yes, They can be. Yes. If you're big enough they are negotiable. But Aurora certainly hasn't made it easy to work with other plat... Other clouds. What they did very... >> How about Microsoft? >> Well, no, that is exactly what I was going to say. Oracle with adjacent workloads have been working very well with Microsoft and you can then use Microsoft Azure and use a database adjacent in the same data center, working with integrated very nicely indeed. And I think Oracle has got to do that with AWS, it's got to do that with Google as well. It's got to provide a service for people to run where they want to run things not just on the Oracle cloud. If they did that, that would in my term, and my my opinion be a very strong move and would make make the capabilities available in many more places. >> Right. Awesome. Hey Marc, thanks so much for coming to theCUBE. Thank you, David, as well, and thanks to Gartner for doing all this great research and making it public on the web. You can... If you just search critical capabilities for cloud database management systems for operational use cases, that's a mouthful, and then do the same for analytical use cases, and the Magic Quadrant. There's the third doc for cloud database management systems. You'll get about two hours of reading and I learned a lot and I learned a lot here too. I appreciate the context guys. Thanks so much. >> My pleasure. All right, thank you for watching everybody. This is Dave Vellante for theCUBE. We'll see you next time. (upbeat music)

Published Date : Dec 18 2020

SUMMARY :

leaders all around the world. Marc Staimer is the founder, to really try to, you know, or what you have to manage. based on your reading of the Gartner work. So the very nuance, what you talked about, You're not going to do that, you I thought, you know, Aurora, you know, So I wonder if you and, you know, a mid-sized customer You mean 'cause of the maturity, right? Because of their focus you know... either of you or both of you. So, you know, people often say, But I wonder if you But no matter how you configure it, Guys if you could bring up the next slide and then you can share And by the way guys, you can And you pointed out yourself to have that, you know, So if you need more than one, I think maybe, you know, Why has it gone to the cloud? Moreso why would customers of Oracle... on premise or in the cloud. And as you say, the cost in getting a lot of their stuff over. and then, you know, the others. to the amount of revenue you in the revenue side. The things that are hybrid and on-prem that you don't own, but it's Well, you know, to your point got, you know, the other... you get double counts Those are negotiable by the way. hasn't made it easy to work and you can then use Microsoft Azure and the Magic Quadrant. We'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

David FloyerPERSON

0.99+

Rick GreenwaldPERSON

0.99+

DavePERSON

0.99+

Marc StaimerPERSON

0.99+

MarcPERSON

0.99+

Dave VellantePERSON

0.99+

MicrosoftORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Adam RonthalPERSON

0.99+

Don FeinbergPERSON

0.99+

GoogleORGANIZATION

0.99+

LarryPERSON

0.99+

AWSORGANIZATION

0.99+

OracleORGANIZATION

0.99+

December 2020DATE

0.99+

IBMORGANIZATION

0.99+

Henry CookPERSON

0.99+

Palo AltoLOCATION

0.99+

twoQUANTITY

0.99+

five yearsQUANTITY

0.99+

GartnerORGANIZATION

0.99+

Merv AdrianPERSON

0.99+

100%QUANTITY

0.99+

second pointQUANTITY

0.99+

AMD Oracle Partnership Elevates MySQLHeatwave


 

(upbeat music) >> For those of you who've been following the cloud database space, you know that MySQL HeatWave has been on a technology tear over the last 24 months with Oracle claiming record breaking benchmarks relative to other database platforms. So far, those benchmarks remain industry leading as competitors have chosen not to respond, perhaps because they don't feel the need to, or maybe they don't feel that doing so would serve their interest. Regardless, the HeatWave team at Oracle has been very aggressive about its performance claims, making lots of noise, challenging the competition to respond, publishing their scripts to GitHub. But so far, there are no takers, but customers seem to be picking up on these moves by Oracle and it's likely the performance numbers resonate with them. Now, the other area we want to explore, which we haven't thus far, is the engine behind HeatWave and that is AMD. AMD's epic processors have been the powerhouse on OCI, running MySQL HeatWave since day one. And today we're going to explore how these two technology companies are working together to deliver these performance gains and some compelling TCO metrics. In fact, a recent Wikibon analysis from senior analyst Marc Staimer made some TCO comparisons in OLAP workloads relative to AWS, Snowflake, GCP, and Azure databases, you can find that research on wikibon.com. And with that, let me introduce today's guest, Nipun Agarwal senior vice president of MySQL HeatWave and Kumaran Siva, who's the corporate vice president for strategic business development at AMD. Welcome to theCUBE gentlemen. >> Welcome. Thank you. >> Thank you, Dave. >> Hey Nipun, you and I have talked a lot about this. You've been on theCUBE a number of times talking about MySQL HeatWave. But for viewers who may not have seen those episodes maybe you could give us an overview of HeatWave and how it's different from competitive cloud database offerings. >> Sure. So MySQL HeatWave is a fully managed MySQL database service offering from Oracle. It's a single database, which can be used to run transactional processing, analytics and machine learning workloads. So, in the past, MySQL has been designed and optimized for transaction processing. So customers of MySQL when they had to run, analytics machine learning, would need to extract the data out of MySQL, into some other database or service, to run analytics or machine learning. MySQL HeatWave offers a single database for running all kinds of workloads so customers don't need to extract data into some of the database. In addition to having a single database, MySQL HeatWave is also very performant compared to one up databases and also it is very price competitive. So the advantages are; single database, very performant, and very good price performance. >> Yes. And you've published some pretty impressive price performance numbers against competitors. Maybe you could describe those benchmarks and highlight some of the results, please. >> Sure. So one thing to notice that the performance of any database is going to like vary, the performance advantage is going to vary based on, the size of the data and the specific workloads, so the mileage varies, that's the first thing to know. So what we have done is, we have published multiple benchmarks. So we have benchmarks on PPCH or PPCDS and we have benchmarks on different data sizes because based on the customer's workload, the mileage is going to vary, so we want to give customers a broad range of comparisons so that they can decide for themselves. So in a specific case, where we are running on a 30 terabyte PPCH workload, HeatWave is about 18 times better price performance compared to Redshift. 18 times better compared to Redshift, about 33 times better price performance, compared to Snowflake, and 42 times better price performance compared to Google BigQuery. So, this is on 30 Terabyte PPCH. Now, if the data size is different, or the workload is different, the characteristics may vary slightly but this is just to give a flavor of the kind of performance advantage MySQL HeatWave offers. >> And then my last question before we bring in Kumaran. We've talked about the secret sauce being the tight integration between hardware and software, but would you add anything to that? What is that secret sauce in HeatWave that enables you to achieve these performance results and what does it mean for customers? >> So there are three parts to this. One is HeatWave has been designed with a scale out architecture in mind. So we have invented and implemented new algorithms for skill out query processing for analytics. The second aspect is that HeatWave has been really optimized for cloud, commodity cloud, and that's where AMD comes in. So for instance, many of the partitioning schemes we have for processing HeatWave, we optimize them for the L3 cache of the AMD processor. The thing which is very important to our customers is not just the sheer performance but the price performance, and that's where we have had a very good partnership with AMD because not only does AMD help us provide very good performance, but the price performance, right? And that all these numbers which I was showing, big part of it is because we are running on AMD which provides very good price performance. So that's the second aspect. And the third aspect is, MySQL autopilot, which provides machine learning based automation. So it's really these three things, a combination of new algorithms, design for scale out query processing, optimized for commodity cloud hardware, specifically AMD processors, and third, MySQL auto pilot which gives us this performance advantage. >> Great, thank you. So that's a good segue for AMD and Kumaran. So Kumaran, what is AMD bringing to the table? What are the, like, for instance, relevance specs of the chips that are used in Oracle cloud infrastructure and what makes them unique? >> Yeah, thanks Dave. That's a good question. So, OCI is a great customer of ours. They use what we call the top of stack devices meaning that they have the highest core count and they also are very, very fast cores. So these are currently Zen 3 cores. I think the HeatWave product is right now deployed on Zen 2 but will shortly be also on the Zen 3 core as well. But we provide in the case of OCI 64 cores. So that's the largest devices that we build. What actually happens is, because these large number of CPUs in a single package and therefore increasing the density of the node, you end up with this fantastic TCO equation and the cost per performance, the cost per for deployed services like HeatWave actually ends up being extraordinarily competitive and that's a big part of the contribution that we're bringing in here. >> So Zen 3 is the AMD micro architecture which you introduced, I think in 2017, and it's the basis for EPIC, which is sort of the enterprise grade that you really attacked the enterprise with. Maybe you could elaborate a little bit, double click on how your chips contribute specifically to HeatWave's, price performance results. >> Yeah, absolutely. So in the case of HeatWave, so as Nipun alluded to, we have very large L3 caches, right? So in our very, very top end parts just like the Milan X devices, we can go all the way up to like 768 megabytes of L3 cache. And that gives you just enormous performance and performance gains. And that's part of what we're seeing with HeatWave today and that not that they're currently on the second generation ROM based product, 'cause it's a 7,002 based product line running with the 64 cores. But as time goes on, they'll be adopting the next generation Milan as well. And the other part of it too is, as our chip led architecture has evolved, we know, so from the first generation Naples way back in 2017, we went from having multiple memory domains and a sort of NUMA architecture at the time, today we've really optimized that architecture. We use a common I/O Die that has all of the memory channels attached to it. And what that means is that, these scale out applications like HeatWave, are able to really scale very efficiently as they go from a small domain of CPUs to, for example the entire chip, all 64 cores that scaling, is been a key focus for AMD and being able to design and build architectures that can take advantage of that and then have applications like HeatWave that scale so well on it, has been, a key aim of ours. >> And Gen 3 moving up the Italian countryside. Nipun, you've taken the somewhat unusual step of posting the benchmark parameters, making them public on GitHub. Now, HeatWave is relatively new. So people felt that when Oracle gained ownership of MySQL it would let it wilt on the vine in favor of Oracle database, so you lost some ground and now, you're getting very aggressive with HeatWave. What's the reason for publishing those benchmark parameters on GitHub? >> So, the main reason for us to publish price performance numbers for HeatWave is to communicate to our customers a sense of what are the benefits they're going to get when they use HeatWave. But we want to be very transparent because as I said the performance advantages for the customers may vary, based on the data size, based on the specific workloads. So one of the reasons for us to publish, all these scripts on GitHub is for transparency. So we want customers to take a look at the scripts, know what we have done, and be confident that we stand by the numbers which we are publishing, and they're very welcome, to try these numbers themselves. In fact, we have had customers who have downloaded the scripts from GitHub and run them on our service to kind of validate. The second aspect is in some cases, they may be some deviations from what we are publishing versus what the customer would like to run in the production deployments so it provides an easy way, for customers to take the scripts, modify them in some ways which may suit their real world scenario and run to see what the performance advantages are. So that's the main reason, first, is transparency, so the customers can see what we are doing, because of the comparison, and B, if they want to modify it to suit their needs, and then see what is the performance of HeatWave, they're very welcome to do so. >> So have customers done that? Have they taken the benchmarks? And I mean, if I were a competitor, honestly, I wouldn't get into that food fight because of the impressive performance, but unless I had to, I mean, have customers picked up on that, Nipun? >> Absolutely. In fact, we have had many customers who have benchmarked the performance of MySQL HeatWave, with other services. And the fact that the scripts are available, gives them a very good starting point, and then they've also tweaked those queries in some cases, to see what the Delta would be. And in some cases, customers got back to us saying, hey the performance advantage of HeatWave is actually slightly higher than what was published and what is the reason. And the reason was, when the customers were trying, they were trying on the latest version of the service, and our benchmark results were posted let's say, two months back. So the service had improved in those two to three months and customers actually saw better performance. So yes, absolutely. We have seen customers download the scripts, try them and also modify them to some extent and then do the comparison of HeatWave with other services. >> Interesting. Maybe a question for both of you how is the competition responding to this? They haven't said, "Hey, we're going to come up "with our own benchmarks." Which is very common, you oftentimes see that. Although, for instance, Snowflake hasn't responded to data bricks, so that's not their game, but if the customers are actually, putting a lot of faith in the benchmarks and actually using that for buying decisions, then it's inevitable. But how have you seen the competition respond to the MySQL HeatWave and AMD combo? >> So maybe I can take the first track from the database service standpoint. When customers have more choice, it is invariably advantages for the customer because then the competition is going to react, right? So the way we have seen the reaction is that we do believe, that the other database services are going to take a closer eye to the price performance, right? Because if you're offering such good price performance, the vendors are already looking at it. And, you know, instances where they have offered let's say discount to the customers, to kind of at least like close the gap to some extent. And the second thing would be in terms of the capability. So like one of the things which I should have mentioned even early on, is that not only does MySQL HeatWave on AMD, provide very good price performance, say on like a small cluster, but it's all the way up to a cluster size of 64 nodes, which has about 1000 cores. So the point is, that HeatWave performs very well, both on a small system, as well as a huge scale out. And this is again, one of those things which is a differentiation compared to other services so we expect that even other database services will have to improve their offerings to provide the same good scale factor, which customers are now starting to expectancy, with MySQL HeatWave. >> Kumaran, anything you'd add to that? I mean, you guys are an arms dealer, you love all your OEMs, but at the same time, you've got chip competitors, Silicon competitors. How do you see the competitive-- >> I'd say the broader answer and the big picture for AMD, we're very maniacally focused on our customers, right? And OCI and Oracle are huge and important customers for us, and this particular use cases is extremely interesting both in that it takes advantage, very well of our architecture and it pulls out some of the value that AMD bring. I think from a big picture standpoint, our aim is to execute, to build to bring out generations of CPUs, kind of, you know, do what we say and say, sorry, say what we do and do what we say. And from that point of view, we're hitting, the schedules that we say, and being able to bring out the latest technology and bring it in a TCO value proposition that generationally keeps OCI and HeatWave ahead. That's the crux of our partnership here. >> Yeah, the execution's been obvious for the last several years. Kumaran, staying with you, how would you characterize the collaboration between, the AMD engineers and the HeatWave engineering team? How do you guys work together? >> No, I'd say we're in a very, very deep collaboration. So, there's a few aspects where, we've actually been working together very closely on the code and being able to optimize for both the large L3 cache that AMD has, and so to be able to take advantage of that. And then also, to be able to take advantage of the scaling. So going between, you know, our architecture is chip like based, so we have these, the CPU cores on, we call 'em CCDs and the inter CCD communication, there's opportunities to optimize an application level and that's something we've been engaged with. In the broader engagement, we are going back now for multiple generations with OCI, and there's a lot of input that now, kind of resonates in the product line itself. And so we value this very close collaboration with HeatWave and OCI. >> Yeah, and the cadence, Nip, and you and I have talked about this quite a bit. The cadence has been quite rapid. It's like this constant cycle every couple of months I turn around, is something new on HeatWave. But for question again, for both of you, what new things do you think that organizations, customers, are going to be able to do with MySQL HeatWave if you could look out next 12 to 18 months, is there anything you can share at this time about future collaborations? >> Right, look, 12 to 18 months is a long time. There's going to be a lot of innovation, a lot of new capabilities coming out on in MySQL HeatWave. But even based on what we are currently offering, and the trend we are seeing is that customers are bringing, more classes of workloads. So we started off with OLTP for MySQL, then it went to analytics. Then we increased it to mixed workloads, and now we offer like machine learning as alike. So one is we are seeing, more and more classes of workloads come to MySQL HeatWave. And the second is a scale, that kind of data volumes people are using HeatWave for, to process these mixed workloads, analytics machine learning OLTP, that's increasing. Now, along the way we are making it simpler to use, we are making it more cost effective use. So for instance, last time, when we talked about, we had introduced this real time elasticity and that's something which is a very, very popular feature because customers want the ability to be able to scale out, or scale down very efficiently. That's something we provided. We provided support for compression. So all of these capabilities are making it more efficient for customers to run a larger part of their workloads on MySQL HeatWave, and we will continue to make it richer in the next 12 to 18 months. >> Thank you. Kumaran, anything you'd add to that, we'll give you the last word as we got to wrap it. >> No, absolutely. So, you know, next 12 to 18 months we will have our Zen 4 CPUs out. So this could potentially go into the next generation of the OCI infrastructure. This would be with the Genoa and then Bergamo CPUs taking us to 96 and 128 cores with 12 channels at DDR five. This capability, you know, when applied to an application like HeatWave, you can see that it'll open up another order of magnitude potentially of use cases, right? And we're excited to see what customers can do do with that. It certainly will make, kind of the, this service, and the cloud in general, that this cloud migration, I think even more attractive. So we're pretty excited to see how things evolve in this period of time. >> Yeah, the innovations are coming together. Guys, thanks so much, we got to leave it there really appreciate your time. >> Thank you. >> All right, and thank you for watching this special Cube conversation, this is Dave Vellante, and we'll see you next time. (soft calm music)

Published Date : Sep 14 2022

SUMMARY :

and it's likely the performance Thank you. and how it's different from So the advantages are; single and highlight some of the results, please. the first thing to know. We've talked about the secret sauce So for instance, many of the relevance specs of the chips that are used and that's a big part of the contribution and it's the basis for EPIC, So in the case of HeatWave, of posting the benchmark parameters, So one of the reasons for us to publish, So the service had improved how is the competition responding to this? So the way we have seen the but at the same time, and the big picture for AMD, for the last several years. and so to be able to Yeah, and the cadence, and the trend we are seeing is we'll give you the last and the cloud in general, Yeah, the innovations we'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Marc StaimerPERSON

0.99+

Dave VellantePERSON

0.99+

NipunPERSON

0.99+

OracleORGANIZATION

0.99+

2017DATE

0.99+

DavePERSON

0.99+

OCIORGANIZATION

0.99+

Zen 3COMMERCIAL_ITEM

0.99+

7,002QUANTITY

0.99+

KumaranPERSON

0.99+

second aspectQUANTITY

0.99+

Nipun AgarwalPERSON

0.99+

AMDORGANIZATION

0.99+

12QUANTITY

0.99+

64 coresQUANTITY

0.99+

768 megabytesQUANTITY

0.99+

twoQUANTITY

0.99+

MySQLTITLE

0.99+

third aspectQUANTITY

0.99+

12 channelsQUANTITY

0.99+

Kumaran SivaPERSON

0.99+

HeatWaveORGANIZATION

0.99+

96QUANTITY

0.99+

18 timesQUANTITY

0.99+

BergamoORGANIZATION

0.99+

three partsQUANTITY

0.99+

DeltaORGANIZATION

0.99+

three monthsQUANTITY

0.99+

MySQL HeatWaveTITLE

0.99+

42 timesQUANTITY

0.99+

bothQUANTITY

0.99+

18 monthsQUANTITY

0.99+

Zen 2COMMERCIAL_ITEM

0.99+

oneQUANTITY

0.99+

GitHubORGANIZATION

0.99+

OneQUANTITY

0.98+

second generationQUANTITY

0.98+

single databaseQUANTITY

0.98+

128 coresQUANTITY

0.98+

18 monthsQUANTITY

0.98+

three thingsQUANTITY

0.98+

Power Panel: Does Hardware Still Matter


 

(upbeat music) >> The ascendancy of cloud and SAS has shown new light on how organizations think about, pay for, and value hardware. Once sought after skills for practitioners with expertise in hardware troubleshooting, configuring ports, tuning storage arrays, and maximizing server utilization has been superseded by demand for cloud architects, DevOps pros, developers with expertise in microservices, container, application development, and like. Even a company like Dell, the largest hardware company in enterprise tech touts that it has more software engineers than those working in hardware. Begs the question, is hardware going the way of Coball? Well, not likely. Software has to run on something, but the labor needed to deploy, and troubleshoot, and manage hardware infrastructure is shifting. At the same time, we've seen the value flow also shifting in hardware. Once a world dominated by X86 processors value is flowing to alternatives like Nvidia and arm based designs. Moreover, other componentry like NICs, accelerators, and storage controllers are becoming more advanced, integrated, and increasingly important. The question is, does it matter? And if so, why does it matter and to whom? What does it mean to customers, workloads, OEMs, and the broader society? Hello and welcome to this week's Wikibon theCUBE Insights powered by ETR. In this breaking analysis, we've organized a special power panel of industry analysts and experts to address the question, does hardware still matter? Allow me to introduce the panel. Bob O'Donnell is president and chief analyst at TECHnalysis Research. Zeus Kerravala is the founder and principal analyst at ZK Research. David Nicholson is a CTO and tech expert. Keith Townson is CEO and founder of CTO Advisor. And Marc Staimer is the chief dragon slayer at Dragon Slayer Consulting and oftentimes a Wikibon contributor. Guys, welcome to theCUBE. Thanks so much for spending some time here. >> Good to be here. >> Thanks. >> Thanks for having us. >> Okay before we get into it, I just want to bring up some data from ETR. This is a survey that ETR does every quarter. It's a survey of about 1200 to 1500 CIOs and IT buyers and I'm showing a subset of the taxonomy here. This XY axis and the vertical axis is something called net score. That's a measure of spending momentum. It's essentially the percentage of customers that are spending more on a particular area than those spending less. You subtract the lesses from the mores and you get a net score. Anything the horizontal axis is pervasion in the data set. Sometimes they call it market share. It's not like IDC market share. It's just the percentage of activity in the data set as a percentage of the total. That red 40% line, anything over that is considered highly elevated. And for the past, I don't know, eight to 12 quarters, the big four have been AI and machine learning, containers, RPA and cloud and cloud of course is very impressive because not only is it elevated in the vertical access, but you know it's very highly pervasive on the horizontal. So what I've done is highlighted in red that historical hardware sector. The server, the storage, the networking, and even PCs despite the work from home are depressed in relative terms. And of course, data center collocation services. Okay so you're seeing obviously hardware is not... People don't have the spending momentum today that they used to. They've got other priorities, et cetera, but I want to start and go kind of around the horn with each of you, what is the number one trend that each of you sees in hardware and why does it matter? Bob O'Donnell, can you please start us off? >> Sure Dave, so look, I mean, hardware is incredibly important and one comment first I'll make on that slide is let's not forget that hardware, even though it may not be growing, the amount of money spent on hardware continues to be very, very high. It's just a little bit more stable. It's not as subject to big jumps as we see certainly in other software areas. But look, the important thing that's happening in hardware is the diversification of the types of chip architectures we're seeing and how and where they're being deployed, right? You refer to this in your opening. We've moved from a world of x86 CPUs from Intel and AMD to things like obviously GPUs, DPUs. We've got VPU for, you know, computer vision processing. We've got AI-dedicated accelerators, we've got all kinds of other network acceleration tools and AI-powered tools. There's an incredible diversification of these chip architectures and that's been happening for a while but now we're seeing them more widely deployed and it's being done that way because workloads are evolving. The kinds of workloads that we're seeing in some of these software areas require different types of compute engines than traditionally we've had. The other thing is (coughs), excuse me, the power requirements based on where geographically that compute happens is also evolving. This whole notion of the edge, which I'm sure we'll get into a little bit more detail later is driven by the fact that where the compute actually sits closer to in theory the edge and where edge devices are, depending on your definition, changes the power requirements. It changes the kind of connectivity that connects the applications to those edge devices and those applications. So all of those things are being impacted by this growing diversity in chip architectures. And that's a very long-term trend that I think we're going to continue to see play out through this decade and well into the 2030s as well. >> Excellent, great, great points. Thank you, Bob. Zeus up next, please. >> Yeah, and I think the other thing when you look at this chart to remember too is, you know, through the pandemic and the work from home period a lot of companies did put their office modernization projects on hold and you heard that echoed, you know, from really all the network manufacturers anyways. They always had projects underway to upgrade networks. They put 'em on hold. Now that people are starting to come back to the office, they're looking at that now. So we might see some change there, but Bob's right. The size of those market are quite a bit different. I think the other big trend here is the hardware companies, at least in the areas that I look at networking are understanding now that it's a combination of hardware and software and silicon that works together that creates that optimum type of performance and experience, right? So some things are best done in silicon. Some like data forwarding and things like that. Historically when you look at the way network devices were built, you did everything in hardware. You configured in hardware, they did all the data for you, and did all the management. And that's been decoupled now. So more and more of the control element has been placed in software. A lot of the high-performance things, encryption, and as I mentioned, data forwarding, packet analysis, stuff like that is still done in hardware, but not everything is done in hardware. And so it's a combination of the two. I think, for the people that work with the equipment as well, there's been more shift to understanding how to work with software. And this is a mistake I think the industry made for a while is we had everybody convinced they had to become a programmer. It's really more a software power user. Can you pull things out of software? Can you through API calls and things like that. But I think the big frame here is, David, it's a combination of hardware, software working together that really make a difference. And you know how much you invest in hardware versus software kind of depends on the performance requirements you have. And I'll talk about that later but that's really the big shift that's happened here. It's the vendors that figured out how to optimize performance by leveraging the best of all of those. >> Excellent. You guys both brought up some really good themes that we can tap into Dave Nicholson, please. >> Yeah, so just kind of picking up where Bob started off. Not only are we seeing the rise of a variety of CPU designs, but I think increasingly the connectivity that's involved from a hardware perspective, from a kind of a server or service design perspective has become increasingly important. I think we'll get a chance to look at this in more depth a little bit later but when you look at what happens on the motherboard, you know we're not in so much a CPU-centric world anymore. Various application environments have various demands and you can meet them by using a variety of components. And it's extremely significant when you start looking down at the component level. It's really important that you optimize around those components. So I guess my summary would be, I think we are moving out of the CPU-centric hardware model into more of a connectivity-centric model. We can talk more about that later. >> Yeah, great. And thank you, David, and Keith Townsend I really interested in your perspectives on this. I mean, for years you worked in a data center surrounded by hardware. Now that we have the software defined data center, please chime in here. >> Well, you know, I'm going to dig deeper into that software-defined data center nature of what's happening with hardware. Hardware is meeting software infrastructure as code is a thing. What does that code look like? We're still trying to figure out but servicing up these capabilities that the previous analysts have brought up, how do I ensure that I can get the level of services needed for the applications that I need? Whether they're legacy, traditional data center, workloads, AI ML, workloads, workloads at the edge. How do I codify that and consume that as a service? And hardware vendors are figuring this out. HPE, the big push into GreenLake as a service. Dale now with Apex taking what we need, these bare bone components, moving it forward with DDR five, six CXL, et cetera, and surfacing that as cold or as services. This is a very tough problem. As we transition from consuming a hardware-based configuration to this infrastructure as cold paradigm shift. >> Yeah, programmable infrastructure, really attacking that sort of labor discussion that we were having earlier, okay. Last but not least Marc Staimer, please. >> Thanks, Dave. My peers raised really good points. I agree with most of them, but I'm going to disagree with the title of this session, which is, does hardware matter? It absolutely matters. You can't run software on the air. You can't run it in an ephemeral cloud, although there's the technical cloud and that's a different issue. The cloud is kind of changed everything. And from a market perspective in the 40 plus years I've been in this business, I've seen this perception that hardware has to go down in price every year. And part of that was driven by Moore's law. And we're coming to, let's say a lag or an end, depending on who you talk to Moore's law. So we're not doubling our transistors every 18 to 24 months in a chip and as a result of that, there's been a higher emphasis on software. From a market perception, there's no penalty. They don't put the same pressure on software from the market to reduce the cost every year that they do on hardware, which kind of bass ackwards when you think about it. Hardware costs are fixed. Software costs tend to be very low. It's kind of a weird thing that we do in the market. And what's changing is we're now starting to treat hardware like software from an OPEX versus CapEx perspective. So yes, hardware matters. And we'll talk about that more in length. >> You know, I want to follow up on that. And I wonder if you guys have a thought on this, Bob O'Donnell, you and I have talked about this a little bit. Marc, you just pointed out that Moore's laws could have waning. Pat Gelsinger recently at their investor meeting said that he promised that Moore's law is alive and well. And the point I made in breaking analysis was okay, great. You know, Pat said, doubling transistors every 18 to 24 months, let's say that Intel can do that. Even though we know it's waning somewhat. Look at the M1 Ultra from Apple (chuckles). In about 15 months increased transistor density on their package by 6X. So to your earlier point, Bob, we have this sort of these alternative processors that are really changing things. And to Dave Nicholson's point, there's a whole lot of supporting components as well. Do you have a comment on that, Bob? >> Yeah, I mean, it's a great point, Dave. And one thing to bear in mind as well, not only are we seeing a diversity of these different chip architectures and different types of components as a number of us have raised the other big point and I think it was Keith that mentioned it. CXL and interconnect on the chip itself is dramatically changing it. And a lot of the more interesting advances that are going to continue to drive Moore's law forward in terms of the way we think about performance, if perhaps not number of transistors per se, is the interconnects that become available. You're seeing the development of chiplets or tiles, people use different names, but the idea is you can have different components being put together eventually in sort of a Lego block style. And what that's also going to allow, not only is that going to give interesting performance possibilities 'cause of the faster interconnect. So you can share, have shared memory between things which for big workloads like AI, huge data sets can make a huge difference in terms of how you talk to memory over a network connection, for example, but not only that you're going to see more diversity in the types of solutions that can be built. So we're going to see even more choices in hardware from a silicon perspective because you'll be able to piece together different elements. And oh, by the way, the other benefit of that is we've reached a point in chip architectures where not everything benefits from being smaller. We've been so focused and so obsessed when it comes to Moore's law, to the size of each individual transistor and yes, for certain architecture types, CPUs and GPUs in particular, that's absolutely true, but we've already hit the point where things like RF for 5g and wifi and other wireless technologies and a whole bunch of other things actually don't get any better with a smaller transistor size. They actually get worse. So the beauty of these chiplet architectures is you could actually combine different chip manufacturing sizes. You know you hear about four nanometer and five nanometer along with 14 nanometer on a single chip, each one optimized for its specific application yet together, they can give you the best of all worlds. And so we're just at the very beginning of that era, which I think is going to drive a ton of innovation. Again, gets back to my comment about different types of devices located geographically different places at the edge, in the data center, you know, in a private cloud versus a public cloud. All of those things are going to be impacted and there'll be a lot more options because of this silicon diversity and this interconnect diversity that we're just starting to see. >> Yeah, David. David Nicholson's got a graphic on that. They're going to show later. Before we do that, I want to introduce some data. I actually want to ask Keith to comment on this before we, you know, go on. This next slide is some data from ETR that shows the percent of customers that cited difficulty procuring hardware. And you can see the red is they had significant issues and it's most pronounced in laptops and networking hardware on the far right-hand side, but virtually all categories, firewalls, peripheral servers, storage are having moderately difficult procurement issues. That's the sort of pinkish or significant challenges. So Keith, I mean, what are you seeing with your customers in the hardware supply chains and bottlenecks? And you know we're seeing it with automobiles and appliances but so it goes beyond IT. The semiconductor, you know, challenges. What's been the impact on the buyer community and society and do you have any sense as to when it will subside? >> You know, I was just asked this question yesterday and I'm feeling the pain. People question, kind of a side project within the CTO advisor, we built a hybrid infrastructure, traditional IT data center that we're walking with the traditional customer and modernizing that data center. So it was, you know, kind of a snapshot of time in 2016, 2017, 10 gigabit, ARISTA switches, some older Dell's 730 XD switches, you know, speeds and feeds. And we said we would modern that with the latest Intel stack and connected to the public cloud and then the pandemic hit and we are experiencing a lot of the same challenges. I thought we'd easily migrate from 10 gig networking to 25 gig networking path that customers are going on. The 10 gig network switches that I bought used are now double the price because you can't get legacy 10 gig network switches because all of the manufacturers are focusing on the more profitable 25 gig for capacity, even the 25 gig switches. And we're focused on networking right now. It's hard to procure. We're talking about nine to 12 months or more lead time. So we're seeing customers adjust by adopting cloud. But if you remember early on in the pandemic, Microsoft Azure kind of gated customers that didn't have a capacity agreement. So customers are keeping an eye on that. There's a desire to abstract away from the underlying vendor to be able to control or provision your IT services in a way that we do with VMware VP or some other virtualization technology where it doesn't matter who can get me the hardware, they can just get me the hardware because it's critically impacting projects and timelines. >> So that's a great setup Zeus for you with Keith mentioned the earlier the software-defined data center with software-defined networking and cloud. Do you see a day where networking hardware is monetized and it's all about the software, or are we there already? >> No, we're not there already. And I don't see that really happening any time in the near future. I do think it's changed though. And just to be clear, I mean, when you look at that data, this is saying customers have had problems procuring the equipment, right? And there's not a network vendor out there. I've talked to Norman Rice at Extreme, and I've talked to the folks at Cisco and ARISTA about this. They all said they could have had blowout quarters had they had the inventory to ship. So it's not like customers aren't buying this anymore. Right? I do think though, when it comes to networking network has certainly changed some because there's a lot more controls as I mentioned before that you can do in software. And I think the customers need to start thinking about the types of hardware they buy and you know, where they're going to use it and, you know, what its purpose is. Because I've talked to customers that have tried to run software and commodity hardware and where the performance requirements are very high and it's bogged down, right? It just doesn't have the horsepower to run it. And, you know, even when you do that, you have to start thinking of the components you use. The NICs you buy. And I've talked to customers that have simply just gone through the process replacing a NIC card and a commodity box and had some performance problems and, you know, things like that. So if agility is more important than performance, then by all means try running software on commodity hardware. I think that works in some cases. If performance though is more important, that's when you need that kind of turnkey hardware system. And I've actually seen more and more customers reverting back to that model. In fact, when you talk to even some startups I think today about when they come to market, they're delivering things more on appliances because that's what customers want. And so there's this kind of app pivot this pendulum of agility and performance. And if performance absolutely matters, that's when you do need to buy these kind of turnkey, prebuilt hardware systems. If agility matters more, that's when you can go more to software, but the underlying hardware still does matter. So I think, you know, will we ever have a day where you can just run it on whatever hardware? Maybe but I'll long be retired by that point. So I don't care. >> Well, you bring up a good point Zeus. And I remember the early days of cloud, the narrative was, oh, the cloud vendors. They don't use EMC storage, they just run on commodity storage. And then of course, low and behold, you know, they've trot out James Hamilton to talk about all the custom hardware that they were building. And you saw Google and Microsoft follow suit. >> Well, (indistinct) been falling for this forever. Right? And I mean, all the way back to the turn of the century, we were calling for the commodity of hardware. And it's never really happened because you can still drive. As long as you can drive innovation into it, customers will always lean towards the innovation cycles 'cause they get more features faster and things. And so the vendors have done a good job of keeping that cycle up but it'll be a long time before. >> Yeah, and that's why you see companies like Pure Storage. A storage company has 69% gross margins. All right. I want to go jump ahead. We're going to bring up the slide four. I want to go back to something that Bob O'Donnell was talking about, the sort of supporting act. The diversity of silicon and we've marched to the cadence of Moore's law for decades. You know, we asked, you know, is Moore's law dead? We say it's moderating. Dave Nicholson. You want to talk about those supporting components. And you shared with us a slide that shift. You call it a shift from a processor-centric world to a connect-centric world. What do you mean by that? And let's bring up slide four and you can talk to that. >> Yeah, yeah. So first, I want to echo this sentiment that the question does hardware matter is sort of the answer is of course it matters. Maybe the real question should be, should you care about it? And the answer to that is it depends who you are. If you're an end user using an application on your mobile device, maybe you don't care how the architecture is put together. You just care that the service is delivered but as you back away from that and you get closer and closer to the source, someone needs to care about the hardware and it should matter. Why? Because essentially what hardware is doing is it's consuming electricity and dollars and the more efficiently you can configure hardware, the more bang you're going to get for your buck. So it's not only a quantitative question in terms of how much can you deliver? But it also ends up being a qualitative change as capabilities allow for things we couldn't do before, because we just didn't have the aggregate horsepower to do it. So this chart actually comes out of some performance tests that were done. So it happens to be Dell servers with Broadcom components. And the point here was to peel back, you know, peel off the top of the server and look at what's in that server, starting with, you know, the PCI interconnect. So PCIE gen three, gen four, moving forward. What are the effects on from an interconnect versus on performance application performance, translating into new orders per minute, processed per dollar, et cetera, et cetera? If you look at the advances in CPU architecture mapped against the advances in interconnect and storage subsystem performance, you can see that CPU architecture is sort of lagging behind in a way. And Bob mentioned this idea of tiling and all of the different ways to get around that. When we do performance testing, we can actually peg CPUs, just running the performance tests without any actual database environments working. So right now we're at this sort of imbalance point where you have to make sure you design things properly to get the most bang per kilowatt hour of power per dollar input. So the key thing here what this is highlighting is just as a very specific example, you take a card that's designed as a gen three PCIE device, and you plug it into a gen four slot. Now the card is the bottleneck. You plug a gen four card into a gen four slot. Now the gen four slot is the bottleneck. So we're constantly chasing these bottlenecks. Someone has to be focused on that from an architectural perspective, it's critically important. So there's no question that it matters. But of course, various people in this food chain won't care where it comes from. I guess a good analogy might be, where does our food come from? If I get a steak, it's a pink thing wrapped in plastic, right? Well, there are a lot of inputs that a lot of people have to care about to get that to me. Do I care about all of those things? No. Are they important? They're critically important. >> So, okay. So all I want to get to the, okay. So what does this all mean to customers? And so what I'm hearing from you is to balance a system it's becoming, you know, more complicated. And I kind of been waiting for this day for a long time, because as we all know the bottleneck was always the spinning disc, the last mechanical. So people who wrote software knew that when they were doing it right, the disc had to go and do stuff. And so they were doing other things in the software. And now with all these new interconnects and flash and things like you could do atomic rights. And so that opens up new software possibilities and combine that with alternative processes. But what's the so what on this to the customer and the application impact? Can anybody address that? >> Yeah, let me address that for a moment. I want to leverage some of the things that Bob said, Keith said, Zeus said, and David said, yeah. So I'm a bit of a contrarian in some of this. For example, on the chip side. As the chips get smaller, 14 nanometer, 10 nanometer, five nanometer, soon three nanometer, we talk about more cores, but the biggest problem on the chip is the interconnect from the chip 'cause the wires get smaller. People don't realize in 2004 the latency on those wires in the chips was 80 picoseconds. Today it's 1300 picoseconds. That's on the chip. This is why they're not getting faster. So we maybe getting a little bit slowing down in Moore's law. But even as we kind of conquer that you still have the interconnect problem and the interconnect problem goes beyond the chip. It goes within the system, composable architectures. It goes to the point where Keith made, ultimately you need a hybrid because what we're seeing, what I'm seeing and I'm talking to customers, the biggest issue they have is moving data. Whether it be in a chip, in a system, in a data center, between data centers, moving data is now the biggest gating item in performance. So if you want to move it from, let's say your transactional database to your machine learning, it's the bottleneck, it's moving the data. And so when you look at it from a distributed environment, now you've got to move the compute to the data. The only way to get around these bottlenecks today is to spend less time in trying to move the data and more time in taking the compute, the software, running on hardware closer to the data. Go ahead. >> So is this what you mean when Nicholson was talking about a shift from a processor centric world to a connectivity centric world? You're talking about moving the bits across all the different components, not having the processor you're saying is essentially becoming the bottleneck or the memory, I guess. >> Well, that's one of them and there's a lot of different bottlenecks, but it's the data movement itself. It's moving away from, wait, why do we need to move the data? Can we move the compute, the processing closer to the data? Because if we keep them separate and this has been a trend now where people are moving processing away from it. It's like the edge. I think it was Zeus or David. You were talking about the edge earlier. As you look at the edge, who defines the edge, right? Is the edge a closet or is it a sensor? If it's a sensor, how do you do AI at the edge? When you don't have enough power, you don't have enough computable. People were inventing chips to do that. To do all that at the edge, to do AI within the sensor, instead of moving the data to a data center or a cloud to do the processing. Because the lag in latency is always limited by speed of light. How fast can you move the electrons? And all this interconnecting, all the processing, and all the improvement we're seeing in the PCIE bus from three, to four, to five, to CXL, to a higher bandwidth on the network. And that's all great but none of that deals with the speed of light latency. And that's an-- Go ahead. >> You know Marc, no, I just want to just because what you're referring to could be looked at at a macro level, which I think is what you're describing. You can also look at it at a more micro level from a systems design perspective, right? I'm going to be the resident knuckle dragging hardware guy on the panel today. But it's exactly right. You moving compute closer to data includes concepts like peripheral cards that have built in intelligence, right? So again, in some of this testing that I'm referring to, we saw dramatic improvements when you basically took the horsepower instead of using the CPU horsepower for the like IO. Now you have essentially offload engines in the form of storage controllers, rate controllers, of course, for ethernet NICs, smart NICs. And so when you can have these sort of offload engines and we've gone through these waves over time. People think, well, wait a minute, raid controller and NVMe? You know, flash storage devices. Does that make sense? It turns out it does. Why? Because you're actually at a micro level doing exactly what you're referring to. You're bringing compute closer to the data. Now, closer to the data meaning closer to the data storage subsystem. It doesn't solve the macro issue that you're referring to but it is important. Again, going back to this idea of system design optimization, always chasing the bottleneck, plugging the holes. Someone needs to do that in this value chain in order to get the best value for every kilowatt hour of power and every dollar. >> Yeah. >> Well this whole drive performance has created some really interesting architectural designs, right? Like Nickelson, the rise of the DPU right? Brings more processing power into systems that already had a lot of processing power. There's also been some really interesting, you know, kind of innovation in the area of systems architecture too. If you look at the way Nvidia goes to market, their drive kit is a prebuilt piece of hardware, you know, optimized for self-driving cars, right? They partnered with Pure Storage and ARISTA to build that AI-ready infrastructure. I remember when I talked to Charlie Giancarlo, the CEO of Pure about when the three companies rolled that out. He said, "Look, if you're going to do AI, "you need good store. "You need fast storage, fast processor and fast network." And so for customers to be able to put that together themselves was very, very difficult. There's a lot of software that needs tuning as well. So the three companies partner together to create a fully integrated turnkey hardware system with a bunch of optimized software that runs on it. And so in that case, in some ways the hardware was leading the software innovation. And so, the variety of different architectures we have today around hardware has really exploded. And I think it, part of the what Bob brought up at the beginning about the different chip design. >> Yeah, Bob talked about that earlier. Bob, I mean, most AI today is modeling, you know, and a lot of that's done in the cloud and it looks from my standpoint anyway that the future is going to be a lot of AI inferencing at the edge. And that's a radically different architecture, Bob, isn't it? >> It is, it's a completely different architecture. And just to follow up on a couple points, excellent conversation guys. Dave talked about system architecture and really this that's what this boils down to, right? But it's looking at architecture at every level. I was talking about the individual different components the new interconnect methods. There's this new thing called UCIE universal connection. I forget what it stands answer for, but it's a mechanism for doing chiplet architectures, but then again, you have to take it up to the system level, 'cause it's all fine and good. If you have this SOC that's tuned and optimized, but it has to talk to the rest of the system. And that's where you see other issues. And you've seen things like CXL and other interconnect standards, you know, and nobody likes to talk about interconnect 'cause it's really wonky and really technical and not that sexy, but at the end of the day it's incredibly important exactly. To the other points that were being raised like mark raised, for example, about getting that compute closer to where the data is and that's where again, a diversity of chip architectures help and exactly to your last comment there Dave, putting that ability in an edge device is really at the cutting edge of what we're seeing on a semiconductor design and the ability to, for example, maybe it's an FPGA, maybe it's a dedicated AI chip. It's another kind of chip architecture that's being created to do that inferencing on the edge. Because again, it's that the cost and the challenges of moving lots of data, whether it be from say a smartphone to a cloud-based application or whether it be from a private network to a cloud or any other kinds of permutations we can think of really matters. And the other thing is we're tackling bigger problems. So architecturally, not even just architecturally within a system, but when we think about DPUs and the sort of the east west data center movement conversation that we hear Nvidia and others talk about, it's about combining multiple sets of these systems to function together more efficiently again with even bigger sets of data. So really is about tackling where the processing is needed, having the interconnect and the ability to get where the data you need to the right place at the right time. And because those needs are diversifying, we're just going to continue to see an explosion of different choices and options, which is going to make hardware even more essential I would argue than it is today. And so I think what we're going to see not only does hardware matter, it's going to matter even more in the future than it does now. >> Great, yeah. Great discussion, guys. I want to bring Keith back into the conversation here. Keith, if your main expertise in tech is provisioning LUNs, you probably you want to look for another job. So maybe clearly hardware matters, but with software defined everything, do people with hardware expertise matter outside of for instance, component manufacturers or cloud companies? I mean, VMware certainly changed the dynamic in servers. Dell just spun off its most profitable asset and VMware. So it obviously thinks hardware can stand alone. How does an enterprise architect view the shift to software defined hyperscale cloud and how do you see the shifting demand for skills in enterprise IT? >> So I love the question and I'll take a different view of it. If you're a data analyst and your primary value add is that you do ETL transformation, talk to a CDO, a chief data officer over midsize bank a little bit ago. He said 80% of his data scientists' time is done on ETL. Super not value ad. He wants his data scientists to do data science work. Chances are if your only value is that you do LUN provisioning, then you probably don't have a job now. The technologies have gotten much more intelligent. As infrastructure pros, we want to give infrastructure pros the opportunities to shine and I think the software defined nature and the automation that we're seeing vendors undertake, whether it's Dell, HP, Lenovo take your pick that Pure Storage, NetApp that are doing the automation and the ML needed so that these practitioners don't spend 80% of their time doing LUN provisioning and focusing on their true expertise, which is ensuring that data is stored. Data is retrievable, data's protected, et cetera. I think the shift is to focus on that part of the job that you're ensuring no matter where the data's at, because as my data is spread across the enterprise hybrid different types, you know, Dave, you talk about the super cloud a lot. If my data is in the super cloud, protecting that data and securing that data becomes much more complicated when than when it was me just procuring or provisioning LUNs. So when you say, where should the shift be, or look be, you know, focusing on the real value, which is making sure that customers can access data, can recover data, can get data at performance levels that they need within the price point. They need to get at those datasets and where they need it. We talked a lot about where they need out. One last point about this interconnecting. I have this vision and I think we all do of composable infrastructure. This idea that scaled out does not solve every problem. The cloud can give me infinite scale out. Sometimes I just need a single OS with 64 terabytes of RAM and 204 GPUs or GPU instances that single OS does not exist today. And the opportunity is to create composable infrastructure so that we solve a lot of these problems that just simply don't scale out. >> You know, wow. So many interesting points there. I had just interviewed Zhamak Dehghani, who's the founder of Data Mesh last week. And she made a really interesting point. She said, "Think about, we have separate stacks. "We have an application stack and we have "a data pipeline stack and the transaction systems, "the transaction database, we extract data from that," to your point, "We ETL it in, you know, it takes forever. "And then we have this separate sort of data stack." If we're going to inject more intelligence and data and AI into applications, those two stacks, her contention is they have to come together. And when you think about, you know, super cloud bringing compute to data, that was what Haduck was supposed to be. It ended up all sort of going into a central location, but it's almost a rhetorical question. I mean, it seems that that necessitates new thinking around hardware architectures as it kind of everything's the edge. And the other point is to your point, Keith, it's really hard to secure that. So when you can think about offloads, right, you've heard the stats, you know, Nvidia talks about it. Broadcom talks about it that, you know, that 30%, 25 to 30% of the CPU cycles are wasted on doing things like storage offloads, or networking or security. It seems like maybe Zeus you have a comment on this. It seems like new architectures need to come other to support, you know, all of that stuff that Keith and I just dispute. >> Yeah, and by the way, I do want to Keith, the question you just asked. Keith, it's the point I made at the beginning too about engineers do need to be more software-centric, right? They do need to have better software skills. In fact, I remember talking to Cisco about this last year when they surveyed their engineer base, only about a third of 'em had ever made an API call, which you know that that kind of shows this big skillset change, you know, that has to come. But on the point of architectures, I think the big change here is edge because it brings in distributed compute models. Historically, when you think about compute, even with multi-cloud, we never really had multi-cloud. We'd use multiple centralized clouds, but compute was always centralized, right? It was in a branch office, in a data center, in a cloud. With edge what we creates is the rise of distributed computing where we'll have an application that actually accesses different resources and at different edge locations. And I think Marc, you were talking about this, like the edge could be in your IoT device. It could be your campus edge. It could be cellular edge, it could be your car, right? And so we need to start thinkin' about how our applications interact with all those different parts of that edge ecosystem, you know, to create a single experience. The consumer apps, a lot of consumer apps largely works that way. If you think of like app like Uber, right? It pulls in information from all kinds of different edge application, edge services. And, you know, it creates pretty cool experience. We're just starting to get to that point in the business world now. There's a lot of security implications and things like that, but I do think it drives more architectural decisions to be made about how I deploy what data where and where I do my processing, where I do my AI and things like that. It actually makes the world more complicated. In some ways we can do so much more with it, but I think it does drive us more towards turnkey systems, at least initially in order to, you know, ensure performance and security. >> Right. Marc, I wanted to go to you. You had indicated to me that you wanted to chat about this a little bit. You've written quite a bit about the integration of hardware and software. You know, we've watched Oracle's move from, you know, buying Sun and then basically using that in a highly differentiated approach. Engineered systems. What's your take on all that? I know you also have some thoughts on the shift from CapEx to OPEX chime in on that. >> Sure. When you look at it, there are advantages to having one vendor who has the software and hardware. They can synergistically make them work together that you can't do in a commodity basis. If you own the software and somebody else has the hardware, I'll give you an example would be Oracle. As you talked about with their exit data platform, they literally are leveraging microcode in the Intel chips. And now in AMD chips and all the way down to Optane, they make basically AMD database servers work with Optane memory PMM in their storage systems, not MVME, SSD PMM. I'm talking about the cards itself. So there are advantages you can take advantage of if you own the stack, as you were putting out earlier, Dave, of both the software and the hardware. Okay, that's great. But on the other side of that, that tends to give you better performance, but it tends to cost a little more. On the commodity side it costs less but you get less performance. What Zeus had said earlier, it depends where you're running your application. How much performance do you need? What kind of performance do you need? One of the things about moving to the edge and I'll get to the OPEX CapEx in a second. One of the issues about moving to the edge is what kind of processing do you need? If you're running in a CCTV camera on top of a traffic light, how much power do you have? How much cooling do you have that you can run this? And more importantly, do you have to take the data you're getting and move it somewhere else and get processed and the information is sent back? I mean, there are companies out there like Brain Chip that have developed AI chips that can run on the sensor without a CPU. Without any additional memory. So, I mean, there's innovation going on to deal with this question of data movement. There's companies out there like Tachyon that are combining GPUs, CPUs, and DPUs in a single chip. Think of it as super composable architecture. They're looking at being able to do more in less. On the OPEX and CapEx issue. >> Hold that thought, hold that thought on the OPEX CapEx, 'cause we're running out of time and maybe you can wrap on that. I just wanted to pick up on something you said about the integrated hardware software. I mean, other than the fact that, you know, Michael Dell unlocked whatever $40 billion for himself and Silverlake, I was always a fan of a spin in with VMware basically become the Oracle of hardware. Now I know it would've been a nightmare for the ecosystem and culturally, they probably would've had a VMware brain drain, but what does anybody have any thoughts on that as a sort of a thought exercise? I was always a fan of that on paper. >> I got to eat a little crow. I did not like the Dale VMware acquisition for the industry in general. And I think it hurt the industry in general, HPE, Cisco walked away a little bit from that VMware relationship. But when I talked to customers, they loved it. You know, I got to be honest. They absolutely loved the integration. The VxRail, VxRack solution exploded. Nutanix became kind of a afterthought when it came to competing. So that spin in, when we talk about the ability to innovate and the ability to create solutions that you just simply can't create because you don't have the full stack. Dell was well positioned to do that with a potential span in of VMware. >> Yeah, we're going to be-- Go ahead please. >> Yeah, in fact, I think you're right, Keith, it was terrible for the industry. Great for Dell. And I remember talking to Chad Sakac when he was running, you know, VCE, which became Rack and Rail, their ability to stay in lockstep with what VMware was doing. What was the number one workload running on hyperconverged forever? It was VMware. So their ability to remain in lockstep with VMware gave them a huge competitive advantage. And Dell came out of nowhere in, you know, the hyper-converged market and just started taking share because of that relationship. So, you know, this sort I guess it's, you know, from a Dell perspective I thought it gave them a pretty big advantage that they didn't really exploit across their other properties, right? Networking and service and things like they could have given the dominance that VMware had. From an industry perspective though, I do think it's better to have them be coupled. So. >> I agree. I mean, they could. I think they could have dominated in super cloud and maybe they would become the next Oracle where everybody hates 'em, but they kick ass. But guys. We got to wrap up here. And so what I'm going to ask you is I'm going to go and reverse the order this time, you know, big takeaways from this conversation today, which guys by the way, I can't thank you enough phenomenal insights, but big takeaways, any final thoughts, any research that you're working on that you want highlight or you know, what you look for in the future? Try to keep it brief. We'll go in reverse order. Maybe Marc, you could start us off please. >> Sure, on the research front, I'm working on a total cost of ownership of an integrated database analytics machine learning versus separate services. On the other aspect that I would wanted to chat about real quickly, OPEX versus CapEx, the cloud changed the market perception of hardware in the sense that you can use hardware or buy hardware like you do software. As you use it, pay for what you use in arrears. The good thing about that is you're only paying for what you use, period. You're not for what you don't use. I mean, it's compute time, everything else. The bad side about that is you have no predictability in your bill. It's elastic, but every user I've talked to says every month it's different. And from a budgeting perspective, it's very hard to set up your budget year to year and it's causing a lot of nightmares. So it's just something to be aware of. From a CapEx perspective, you have no more CapEx if you're using that kind of base system but you lose a certain amount of control as well. So ultimately that's some of the issues. But my biggest point, my biggest takeaway from this is the biggest issue right now that everybody I talk to in some shape or form it comes down to data movement whether it be ETLs that you talked about Keith or other aspects moving it between hybrid locations, moving it within a system, moving it within a chip. All those are key issues. >> Great, thank you. Okay, CTO advisor, give us your final thoughts. >> All right. Really, really great commentary. Again, I'm going to point back to us taking the walk that our customers are taking, which is trying to do this conversion of all primary data center to a hybrid of which I have this hard earned philosophy that enterprise IT is additive. When we add a service, we rarely subtract a service. So the landscape and service area what we support has to grow. So our research focuses on taking that walk. We are taking a monolithic application, decomposing that to containers, and putting that in a public cloud, and connecting that back private data center and telling that story and walking that walk with our customers. This has been a super enlightening panel. >> Yeah, thank you. Real, real different world coming. David Nicholson, please. >> You know, it really hearkens back to the beginning of the conversation. You talked about momentum in the direction of cloud. I'm sort of spending my time under the hood, getting grease under my fingernails, focusing on where still the lions share of spend will be in coming years, which is OnPrem. And then of course, obviously data center infrastructure for cloud but really diving under the covers and helping folks understand the ramifications of movement between generations of CPU architecture. I know we all know Sapphire Rapids pushed into the future. When's the next Intel release coming? Who knows? We think, you know, in 2023. There have been a lot of people standing by from a practitioner's standpoint asking, well, what do I do between now and then? Does it make sense to upgrade bits and pieces of hardware or go from a last generation to a current generation when we know the next generation is coming? And so I've been very, very focused on looking at how these connectivity components like rate controllers and NICs. I know it's not as sexy as talking about cloud but just how these opponents completely change the game and actually can justify movement from say a 14th-generation architecture to a 15th-generation architecture today, even though gen 16 is coming, let's say 12 months from now. So that's where I am. Keep my phone number in the Rolodex. I literally reference Rolodex intentionally because like I said, I'm in there under the hood and it's not as sexy. But yeah, so that's what I'm focused on Dave. >> Well, you know, to paraphrase it, maybe derivative paraphrase of, you know, Larry Ellison's rant on what is cloud? It's operating systems and databases, et cetera. Rate controllers and NICs live inside of clouds. All right. You know, one of the reasons I love working with you guys is 'cause have such a wide observation space and Zeus Kerravala you, of all people, you know you have your fingers in a lot of pies. So give us your final thoughts. >> Yeah, I'm not a propeller heady as my chip counterparts here. (all laugh) So, you know, I look at the world a little differently and a lot of my research I'm doing now is the impact that distributed computing has on customer employee experiences, right? You talk to every business and how the experiences they deliver to their customers is really differentiating how they go to market. And so they're looking at these different ways of feeding up data and analytics and things like that in different places. And I think this is going to have a really profound impact on enterprise IT architecture. We're putting more data, more compute in more places all the way down to like little micro edges and retailers and things like that. And so we need the variety. Historically, if you think back to when I was in IT you know, pre-Y2K, we didn't have a lot of choice in things, right? We had a server that was rack mount or standup, right? And there wasn't a whole lot of, you know, differences in choice. But today we can deploy, you know, these really high-performance compute systems on little blades inside servers or inside, you know, autonomous vehicles and things. I think the world from here gets... You know, just the choice of what we have and the way hardware and software works together is really going to, I think, change the world the way we do things. We're already seeing that, like I said, in the consumer world, right? There's so many things you can do from, you know, smart home perspective, you know, natural language processing, stuff like that. And it's starting to hit businesses now. So just wait and watch the next five years. >> Yeah, totally. The computing power at the edge is just going to be mind blowing. >> It's unbelievable what you can do at the edge. >> Yeah, yeah. Hey Z, I just want to say that we know you're not a propeller head and I for one would like to thank you for having your master's thesis hanging on the wall behind you 'cause we know that you studied basket weaving. >> I was actually a physics math major, so. >> Good man. Another math major. All right, Bob O'Donnell, you're going to bring us home. I mean, we've seen the importance of semiconductors and silicon in our everyday lives, but your last thoughts please. >> Sure and just to clarify, by the way I was a great books major and this was actually for my final paper. And so I was like philosophy and all that kind of stuff and literature but I still somehow got into tech. Look, it's been a great conversation and I want to pick up a little bit on a comment Zeus made, which is this it's the combination of the hardware and the software and coming together and the manner with which that needs to happen, I think is critically important. And the other thing is because of the diversity of the chip architectures and all those different pieces and elements, it's going to be how software tools evolve to adapt to that new world. So I look at things like what Intel's trying to do with oneAPI. You know, what Nvidia has done with CUDA. What other platform companies are trying to create tools that allow them to leverage the hardware, but also embrace the variety of hardware that is there. And so as those software development environments and software development tools evolve to take advantage of these new capabilities, that's going to open up a lot of interesting opportunities that can leverage all these new chip architectures. That can leverage all these new interconnects. That can leverage all these new system architectures and figure out ways to make that all happen, I think is going to be critically important. And then finally, I'll mention the research I'm actually currently working on is on private 5g and how companies are thinking about deploying private 5g and the potential for edge applications for that. So I'm doing a survey of several hundred us companies as we speak and really looking forward to getting that done in the next couple of weeks. >> Yeah, look forward to that. Guys, again, thank you so much. Outstanding conversation. Anybody going to be at Dell tech world in a couple of weeks? Bob's going to be there. Dave Nicholson. Well drinks on me and guys I really can't thank you enough for the insights and your participation today. Really appreciate it. Okay, and thank you for watching this special power panel episode of theCube Insights powered by ETR. Remember we publish each week on Siliconangle.com and wikibon.com. All these episodes they're available as podcasts. DM me or any of these guys. I'm at DVellante. You can email me at David.Vellante@siliconangle.com. Check out etr.ai for all the data. This is Dave Vellante. We'll see you next time. (upbeat music)

Published Date : Apr 25 2022

SUMMARY :

but the labor needed to go kind of around the horn the applications to those edge devices Zeus up next, please. on the performance requirements you have. that we can tap into It's really important that you optimize I mean, for years you worked for the applications that I need? that we were having earlier, okay. on software from the market And the point I made in breaking at the edge, in the data center, you know, and society and do you have any sense as and I'm feeling the pain. and it's all about the software, of the components you use. And I remember the early days And I mean, all the way back Yeah, and that's why you see And the answer to that is the disc had to go and do stuff. the compute to the data. So is this what you mean when Nicholson the processing closer to the data? And so when you can have kind of innovation in the area that the future is going to be the ability to get where and how do you see the shifting demand And the opportunity is to to support, you know, of that edge ecosystem, you know, that you wanted to chat One of the things about moving to the edge I mean, other than the and the ability to create solutions Yeah, we're going to be-- And I remember talking to Chad the order this time, you know, in the sense that you can use hardware us your final thoughts. So the landscape and service area Yeah, thank you. in the direction of cloud. You know, one of the reasons And I think this is going to The computing power at the edge you can do at the edge. on the wall behind you I was actually a of semiconductors and silicon and the manner with which Okay, and thank you for watching

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

DavidPERSON

0.99+

Marc StaimerPERSON

0.99+

Keith TownsonPERSON

0.99+

David NicholsonPERSON

0.99+

Dave NicholsonPERSON

0.99+

KeithPERSON

0.99+

Dave VellantePERSON

0.99+

MarcPERSON

0.99+

Bob O'DonnellPERSON

0.99+

DellORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

BobPERSON

0.99+

HPORGANIZATION

0.99+

LenovoORGANIZATION

0.99+

2004DATE

0.99+

Charlie GiancarloPERSON

0.99+

ZK ResearchORGANIZATION

0.99+

PatPERSON

0.99+

10 nanometerQUANTITY

0.99+

GoogleORGANIZATION

0.99+

Keith TownsendPERSON

0.99+

10 gigQUANTITY

0.99+

25QUANTITY

0.99+

Pat GelsingerPERSON

0.99+

80%QUANTITY

0.99+

ARISTAORGANIZATION

0.99+

64 terabytesQUANTITY

0.99+

NvidiaORGANIZATION

0.99+

Zeus KerravalaPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

Larry EllisonPERSON

0.99+

25 gigQUANTITY

0.99+

14 nanometerQUANTITY

0.99+

2017DATE

0.99+

2016DATE

0.99+

Norman RicePERSON

0.99+

OracleORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

Michael DellPERSON

0.99+

69%QUANTITY

0.99+

30%QUANTITY

0.99+

OPEXORGANIZATION

0.99+

Pure StorageORGANIZATION

0.99+

$40 billionQUANTITY

0.99+

Dragon Slayer ConsultingORGANIZATION

0.99+

Analyst Power Panel: Future of Database Platforms


 

(upbeat music) >> Once a staid and boring business dominated by IBM, Oracle, and at the time newcomer Microsoft, along with a handful of wannabes, the database business has exploded in the past decade and has become a staple of financial excellence, customer experience, analytic advantage, competitive strategy, growth initiatives, visualizations, not to mention compliance, security, privacy and dozens of other important use cases and initiatives. And on the vendor's side of the house, we've seen the rapid ascendancy of cloud databases. Most notably from Snowflake, whose massive raises leading up to its IPO in late 2020 sparked a spate of interest and VC investment in the separation of compute and storage and all that elastic resource stuff in the cloud. The company joined AWS, Azure and Google to popularize cloud databases, which have become a linchpin of competitive strategies for technology suppliers. And if I get you to put your data in my database and in my cloud, and I keep innovating, I'm going to build a moat and achieve a hugely attractive lifetime customer value in a really amazing marginal economics dynamic that is going to fund my future. And I'll be able to sell other adjacent services, not just compute and storage, but machine learning and inference and training and all kinds of stuff, dozens of lucrative cloud offerings. Meanwhile, the database leader, Oracle has invested massive amounts of money to maintain its lead. It's building on its position as the king of mission critical workloads and making typical Oracle like claims against the competition. Most were recently just yesterday with another announcement around MySQL HeatWave. An extension of MySQL that is compatible with on-premises MySQLs and is setting new standards in price performance. We're seeing a dramatic divergence in strategies across the database spectrum. On the far left, we see Amazon with more than a dozen database offerings each with its own API and primitives. AWS is taking a right tool for the right job approach, often building on open source platforms and creating services that it offers to customers to solve very specific problems for developers. And on the other side of the line, we see Oracle, which is taking the Swiss Army Knife approach, converging database functionality, enabling analytic and transactional workloads to run in the same data store, eliminating the need to ETL, at the same time adding capabilities into its platform like automation and machine learning. Welcome to this database Power Panel. My name is Dave Vellante, and I'm so excited to bring together some of the most respected industry analyst in the community. Today we're going to assess what's happening in the market. We're going to dig into the competitive landscape and explore the future of database and database platforms and decode what it means to customers. Let me take a moment to welcome our guest analyst today. Matt Kimball is a vice president and principal analysts at Moor Insights and Strategy, Matt. He knows products, he knows industry, he's got real world IT expertise, and he's got all the angles 25 plus years of experience in all kinds of great background. Matt, welcome. Thanks very much for coming on theCUBE. Holgar Mueller, friend of theCUBE, vice president and principal analyst at Constellation Research in depth knowledge on applications, application development, knows developers. He's worked at SAP and Oracle. And then Bob Evans is Chief Content Officer and co-founder of the Acceleration Economy, founder and principle of Cloud Wars. Covers all kinds of industry topics and great insights. He's got awesome videos, these three minute hits. If you haven't seen 'em, checking them out, knows cloud companies, his Cloud Wars minutes are fantastic. And then of course, Marc Staimer is the founder of Dragon Slayer Research. A frequent contributor and guest analyst at Wikibon. He's got a wide ranging knowledge across IT products, knows technology really well, can go deep. And then of course, Ron Westfall, Senior Analyst and Director Research Director at Futurum Research, great all around product trends knowledge. Can take, you know, technical dives and really understands competitive angles, knows Redshift, Snowflake, and many others. Gents, thanks so much for taking the time to join us in theCube today. It's great to have you on, good to see you. >> Good to be here, thanks for having us. >> Thanks, Dave. >> All right, let's start with an around the horn and briefly, if each of you would describe, you know, anything I missed in your areas of expertise and then you answer the following question, how would you describe the state of the database, state of platform market today? Matt Kimball, please start. >> Oh, I hate going first, but that it's okay. How would I describe the world today? I would just in one sentence, I would say, I'm glad I'm not in IT anymore, right? So, you know, it is a complex and dangerous world out there. And I don't envy IT folks I'd have to support, you know, these modernization and transformation efforts that are going on within the enterprise. It used to be, you mentioned it, Dave, you would argue about IBM versus Oracle versus this newcomer in the database space called Microsoft. And don't forget Sybase back in the day, but you know, now it's not just, which SQL vendor am I going to go with? It's all of these different, divergent data types that have to be taken, they have to be merged together, synthesized. And somehow I have to do that cleanly and use this to drive strategic decisions for my business. That is not easy. So, you know, you have to look at it from the perspective of the business user. It's great for them because as a DevOps person, or as an analyst, I have so much flexibility and I have this thing called the cloud now where I can go get services immediately. As an IT person or a DBA, I am calling up prevention hotlines 24 hours a day, because I don't know how I'm going to be able to support the business. And as an Oracle or as an Oracle or a Microsoft or some of the cloud providers and cloud databases out there, I'm licking my chops because, you know, my market is expanding and expanding every day. >> Great, thank you for that, Matt. Holgar, how do you see the world these days? You always have a good perspective on things, share with us. >> Well, I think it's the best time to be in IT, I'm not sure what Matt is talking about. (laughing) It's easier than ever, right? The direction is going to cloud. Kubernetes has won, Google has the best AI for now, right? So things are easier than ever before. You made commitments for five plus years on hardware, networking and so on premise, and I got gray hair about worrying it was the wrong decision. No, just kidding. But you kind of both sides, just to be controversial, make it interesting, right. So yeah, no, I think the interesting thing specifically with databases, right? We have this big suite versus best of breed, right? Obviously innovation, like you mentioned with Snowflake and others happening in the cloud, the cloud vendors server, where to save of their databases. And then we have one of the few survivors of the old guard as Evans likes to call them is Oracle who's doing well, both their traditional database. And now, which is really interesting, remarkable from that because Oracle it was always the power of one, have one database, add more to it, make it what I call the universal database. And now this new HeatWave offering is coming and MySQL open source side. So they're getting the second (indistinct) right? So it's interesting that older players, traditional players who still are in the market are diversifying their offerings. Something we don't see so much from the traditional tools from Oracle on the Microsoft side or the IBM side these days. >> Great, thank you Holgar. Bob Evans, you've covered this business for a while. You've worked at, you know, a number of different outlets and companies and you cover the competition, how do you see things? >> Dave, you know, the other angle to look at this from is from the customer side, right? You got now CEOs who are any sort of business across all sorts of industries, and they understand that their future success is going to be dependent on their ability to become a digital company, to understand data, to use it the right way. So as you outline Dave, I think in your intro there, it is a fantastic time to be in the database business. And I think we've got a lot of new buyers and influencers coming in. They don't know all this history about IBM and Microsoft and Oracle and you know, whoever else. So I think they're going to take a long, hard look, Dave, at some of these results and who is able to help these companies not serve up the best technology, but who's going to be able to help their business move into the digital future. So it's a fascinating time now from every perspective. >> Great points, Bob. I mean, digital transformation has gone from buzzword to imperative. Mr. Staimer, how do you see things? >> I see things a little bit differently than my peers here in that I see the database market being segmented. There's all the different kinds of databases that people are looking at for different kinds of data, and then there is databases in the cloud. And so database as cloud service, I view very differently than databases because the traditional way of implementing a database is changing and it's changing rapidly. So one of the premises that you stated earlier on was that you viewed Oracle as a database company. I don't view Oracle as a database company anymore. I view Oracle as a cloud company that happens to have a significant expertise and specialty in databases, and they still sell database software in the traditional way, but ultimately they're a cloud company. So database cloud services from my point of view is a very distinct market from databases. >> Okay, well, you gave us some good meat on the bone to talk about that. Last but not least-- >> Dave did Marc, just say Oracle's a cloud company? >> Yeah. (laughing) Take away the database, it would be interesting to have that discussion, but let's let Ron jump in here. Ron, give us your take. >> That's a great segue. I think it's truly the era of the cloud database, that's something that's rising. And the key trends that come with it include for example, elastic scaling. That is the ability to scale on demand, to right size workloads according to customer requirements. And also I think it's going to increase the prioritization for high availability. That is the player who can provide the highest availability is going to have, I think, a great deal of success in this emerging market. And also I anticipate that there will be more consolidation across platforms in order to enable cost savings for customers, and that's something that's always going to be important. And I think we'll see more of that over the horizon. And then finally security, security will be more important than ever. We've seen a spike (indistinct), we certainly have seen geopolitical originated cybersecurity concerns. And as a result, I see database security becoming all the more important. >> Great, thank you. Okay, let me share some data with you guys. I'm going to throw this at you and see what you think. We have this awesome data partner called Enterprise Technology Research, ETR. They do these quarterly surveys and each period with dozens of industry segments, they track clients spending, customer spending. And this is the database, data warehouse sector okay so it's taxonomy, so it's not perfect, but it's a big kind of chunk. They essentially ask customers within a category and buy a specific vendor, you're spending more or less on the platform? And then they subtract the lesses from the mores and they derive a metric called net score. It's like NPS, it's a measure of spending velocity. It's more complicated and granular than that, but that's the basis and that's the vertical axis. The horizontal axis is what they call market share, it's not like IDC market share, it's just pervasiveness in the data set. And so there are a couple of things that stand out here and that we can use as reference point. The first is the momentum of Snowflake. They've been off the charts for many, many, for over two years now, anything above that dotted red line, that 40%, is considered by ETR to be highly elevated and Snowflake's even way above that. And I think it's probably not sustainable. We're going to see in the next April survey, next month from those guys, when it comes out. And then you see AWS and Microsoft, they're really pervasive on the horizontal axis and highly elevated, Google falls behind them. And then you got a number of well funded players. You got Cockroach Labs, Mongo, Redis, MariaDB, which of course is a fork on MySQL started almost as protest at Oracle when they acquired Sun and they got MySQL and you can see the number of others. Now Oracle who's the leading database player, despite what Marc Staimer says, we know, (laughs) and they're a cloud player (laughing) who happens to be a leading database player. They dominate in the mission critical space, we know that they're the king of that sector, but you can see here that they're kind of legacy, right? They've been around a long time, they get a big install base. So they don't have the spending momentum on the vertical axis. Now remember this is, just really this doesn't capture spending levels, so that understates Oracle but nonetheless. So it's not a complete picture like SAP for instance is not in here, no Hana. I think people are actually buying it, but it doesn't show up here, (laughs) but it does give an indication of momentum and presence. So Bob Evans, I'm going to start with you. You've commented on many of these companies, you know, what does this data tell you? >> Yeah, you know, Dave, I think all these compilations of things like that are interesting, and that folks at ETR do some good work, but I think as you said, it's a snapshot sort of a two-dimensional thing of a rapidly changing, three dimensional world. You know, the incidents at which some of these companies are mentioned versus the volume that happens. I think it's, you know, with Oracle and I'm not going to declare my religious affiliation, either as cloud company or database company, you know, they're all of those things and more, and I think some of our old language of how we classify companies is just not relevant anymore. But I want to ask too something in here, the autonomous database from Oracle, nobody else has done that. So either Oracle is crazy, they've tried out a technology that nobody other than them is interested in, or they're onto something that nobody else can match. So to me, Dave, within Oracle, trying to identify how they're doing there, I would watch autonomous database growth too, because right, it's either going to be a big plan and it breaks through, or it's going to be caught behind. And the Snowflake phenomenon as you mentioned, that is a rare, rare bird who comes up and can grow 100% at a billion dollar revenue level like that. So now they've had a chance to come in, scare the crap out of everybody, rock the market with something totally new, the data cloud. Will the bigger companies be able to catch up and offer a compelling alternative, or is Snowflake going to continue to be this outlier. It's a fascinating time. >> Really, interesting points there. Holgar, I want to ask you, I mean, I've talked to certainly I'm sure you guys have too, the founders of Snowflake that came out of Oracle and they actually, they don't apologize. They say, "Hey, we not going to do all that complicated stuff that Oracle does, we were trying to keep it real simple." But at the same time, you know, they don't do sophisticated workload management. They don't do complex joints. They're kind of relying on the ecosystems. So when you look at the data like this and the various momentums, and we talked about the diverging strategies, what does this say to you? >> Well, it is a great point. And I think Snowflake is an example how the cloud can turbo charge a well understood concept in this case, the data warehouse, right? You move that and you find steroids and you see like for some players who've been big in data warehouse, like Sentara Data, as an example, here in San Diego, what could have been for them right in that part. The interesting thing, the problem though is the cloud hides a lot of complexity too, which you can scale really well as you attract lots of customers to go there. And you don't have to build things like what Bob said, right? One of the fascinating things, right, nobody's answering Oracle on the autonomous database. I don't think is that they cannot, they just have different priorities or the database is not such a priority. I would dare to say that it's for IBM and Microsoft right now at the moment. And the cloud vendors, you just hide that right through scripts and through scale because you support thousands of customers and you can deal with a little more complexity, right? It's not against them. Whereas if you have to run it yourself, very different story, right? You want to have the autonomous parts, you want to have the powerful tools to do things. >> Thank you. And so Matt, I want to go to you, you've set up front, you know, it's just complicated if you're in IT, it's a complicated situation and you've been on the customer side. And if you're a buyer, it's obviously, it's like Holgar said, "Cloud's supposed to make this stuff easier, but the simpler it gets the more complicated gets." So where do you place your bets? Or I guess more importantly, how do you decide where to place your bets? >> Yeah, it's a good question. And to what Bob and Holgar said, you know, the around autonomous database, I think, you know, part of, as I, you know, play kind of armchair psychologist, if you will, corporate psychologists, I look at what Oracle is doing and, you know, databases where they've made their mark and it's kind of, that's their strong position, right? So it makes sense if you're making an entry into this cloud and you really want to kind of build momentum, you go with what you're good at, right? So that's kind of the strength of Oracle. Let's put a lot of focus on that. They do a lot more than database, don't get me wrong, but you know, I'm going to short my strength and then kind of pivot from there. With regards to, you know, what IT looks at and what I would look at you know as an IT director or somebody who is, you know, trying to consume services from these different cloud providers. First and foremost, I go with what I know, right? Let's not forget IT is a conservative group. And when we look at, you know, all the different permutations of database types out there, SQL, NoSQL, all the different types of NoSQL, those are largely being deployed by business users that are looking for agility or businesses that are looking for agility. You know, the reason why MongoDB is so popular is because of DevOps, right? It's a great platform to develop on and that's where it kind of gained its traction. But as an IT person, I want to go with what I know, where my muscle memory is, and that's my first position. And so as I evaluate different cloud service providers and cloud databases, I look for, you know, what I know and what I've invested in and where my muscle memory is. Is there enough there and do I have enough belief that that company or that service is going to be able to take me to, you know, where I see my organization in five years from a data management perspective, from a business perspective, are they going to be there? And if they are, then I'm a little bit more willing to make that investment, but it is, you know, if I'm kind of going in this blind or if I'm cloud native, you know, that's where the Snowflakes of the world become very attractive to me. >> Thank you. So Marc, I asked Andy Jackson in theCube one time, you have all these, you know, data stores and different APIs and primitives and you know, very granular, what's the strategy there? And he said, "Hey, that allows us as the market changes, it allows us to be more flexible. If we start building abstractions layers, it's harder for us." I think also it was not a good time to market advantage, but let me ask you, I described earlier on that spectrum from AWS to Oracle. We just saw yesterday, Oracle announced, I think the third major enhancement in like 15 months to MySQL HeatWave, what do you make of that announcement? How do you think it impacts the competitive landscape, particularly as it relates to, you know, converging transaction and analytics, eliminating ELT, I know you have some thoughts on this. >> So let me back up for a second and defend my cloud statement about Oracle for a moment. (laughing) AWS did a great job in developing the cloud market in general and everything in the cloud market. I mean, I give them lots of kudos on that. And a lot of what they did is they took open source software and they rent it to people who use their cloud. So I give 'em lots of credit, they dominate the market. Oracle was late to the cloud market. In fact, they actually poo-pooed it initially, if you look at some of Larry Ellison's statements, they said, "Oh, it's never going to take off." And then they did 180 turn, and they said, "Oh, we're going to embrace the cloud." And they really have, but when you're late to a market, you've got to be compelling. And this ties into the announcement yesterday, but let's deal with this compelling. To be compelling from a user point of view, you got to be twice as fast, offer twice as much functionality, at half the cost. That's generally what compelling is that you're going to capture market share from the leaders who established the market. It's very difficult to capture market share in a new market for yourself. And you're right. I mean, Bob was correct on this and Holgar and Matt in which you look at Oracle, and they did a great job of leveraging their database to move into this market, give 'em lots of kudos for that too. But yesterday they announced, as you said, the third innovation release and the pace is just amazing of what they're doing on these releases on HeatWave that ties together initially MySQL with an integrated builtin analytics engine, so a data warehouse built in. And then they added automation with autopilot, and now they've added machine learning to it, and it's all in the same service. It's not something you can buy and put on your premise unless you buy their cloud customers stuff. But generally it's a cloud offering, so it's compellingly better as far as the integration. You don't buy multiple services, you buy one and it's lower cost than any of the other services, but more importantly, it's faster, which again, give 'em credit for, they have more integration of a product. They can tie things together in a way that nobody else does. There's no additional services, ETL services like Glue and AWS. So from that perspective, they're getting better performance, fewer services, lower cost. Hmm, they're aiming at the compelling side again. So from a customer point of view it's compelling. Matt, you wanted to say something there. >> Yeah, I want to kind of, on what you just said there Marc, and this is something I've found really interesting, you know. The traditional way that you look at software and, you know, purchasing software and IT is, you look at either best of breed solutions and you have to work on the backend to integrate them all and make them all work well. And generally, you know, the big hit against the, you know, we have one integrated offering is that, you lose capability or you lose depth of features, right. And to what you were saying, you know, that's the thing I found interesting about what Oracle is doing is they're building in depth as they kind of, you know, build that service. It's not like you're losing a lot of capabilities, because you're going to one integrated service versus having to use A versus B versus C, and I love that idea. >> You're right. Yeah, not only you're not losing, but you're gaining functionality that you can't get by integrating a lot of these. I mean, I can take Snowflake and integrate it in with machine learning, but I also have to integrate in with a transactional database. So I've got to have connectors between all of this, which means I'm adding time. And what it comes down to at the end of the day is expertise, effort, time, and cost. And so what I see the difference from the Oracle announcements is they're aiming at reducing all of that by increasing performance as well. Correct me if I'm wrong on that but that's what I saw at the announcement yesterday. >> You know, Marc, one thing though Marc, it's funny you say that because I started out saying, you know, I'm glad I'm not 19 anymore. And the reason is because of exactly what you said, it's almost like there's a pseudo level of witchcraft that's required to support the modern data environment right in the enterprise. And I need simpler faster, better. That's what I need, you know, I am no longer wearing pocket protectors. I have turned from, you know, break, fix kind of person, to you know, business consultant. And I need that point and click simplicity, but I can't sacrifice, you know, a depth of features of functionality on the backend as I play that consultancy role. >> So, Ron, I want to bring in Ron, you know, it's funny. So Matt, you mentioned Mongo, I often and say, if Oracle mentions you, you're on the map. We saw them yesterday Ron, (laughing) they hammered RedShifts auto ML, they took swipes at Snowflake, a little bit of BigQuery. What were your thoughts on that? Do you agree with what these guys are saying in terms of HeatWaves capabilities? >> Yes, Dave, I think that's an excellent question. And fundamentally I do agree. And the question is why, and I think it's important to know that all of the Oracle data is backed by the fact that they're using benchmarks. For example, all of the ML and all of the TPC benchmarks, including all the scripts, all the configs and all the detail are posted on GitHub. So anybody can look at these results and they're fully transparent and replicate themselves. If you don't agree with this data, then by all means challenge it. And we have not really seen that in all of the new updates in HeatWave over the last 15 months. And as a result, when it comes to these, you know, fundamentals in looking at the competitive landscape, which I think gives validity to outcomes such as Oracle being able to deliver 4.8 times better price performance than Redshift. As well as for example, 14.4 better price performance than Snowflake, and also 12.9 better price performance than BigQuery. And so that is, you know, looking at the quantitative side of things. But again, I think, you know, to Marc's point and to Matt's point, there are also qualitative aspects that clearly differentiate the Oracle proposition, from my perspective. For example now the MySQL HeatWave ML capabilities are native, they're built in, and they also support things such as completion criteria. And as a result, that enables them to show that hey, when you're using Redshift ML for example, you're having to also use their SageMaker tool and it's running on a meter. And so, you know, nobody really wants to be running on a meter when, you know, executing these incredibly complex tasks. And likewise, when it comes to Snowflake, they have to use a third party capability. They don't have the built in, it's not native. So the user, to the point that he's having to spend more time and it increases complexity to use auto ML capabilities across the Snowflake platform. And also, I think it also applies to other important features such as data sampling, for example, with the HeatWave ML, it's intelligent sampling that's being implemented. Whereas in contrast, we're seeing Redshift using random sampling. And again, Snowflake, you're having to use a third party library in order to achieve the same capabilities. So I think the differentiation is crystal clear. I think it definitely is refreshing. It's showing that this is where true value can be assigned. And if you don't agree with it, by all means challenge the data. >> Yeah, I want to come to the benchmarks in a minute. By the way, you know, the gentleman who's the Oracle's architect, he did a great job on the call yesterday explaining what you have to do. I thought that was quite impressive. But Bob, I know you follow the financials pretty closely and on the earnings call earlier this month, Ellison said that, "We're going to see HeatWave on AWS." And the skeptic in me said, oh, they must not be getting people to come to OCI. And then they, you remember this chart they showed yesterday that showed the growth of HeatWave on OCI. But of course there was no data on there, it was just sort of, you know, lines up and to the right. So what do you guys think of that? (Marc laughs) Does it signal Bob, desperation by Oracle that they can't get traction on OCI, or is it just really a smart tame expansion move? What do you think? >> Yeah, Dave, that's a great question. You know, along the way there, and you know, just inside of that was something that said Ellison said on earnings call that spoke to a different sort of philosophy or mindset, almost Marc, where he said, "We're going to make this multicloud," right? With a lot of their other cloud stuff, if you wanted to use any of Oracle's cloud software, you had to use Oracle's infrastructure, OCI, there was no other way out of it. But this one, but I thought it was a classic Ellison line. He said, "Well, we're making this available on AWS. We're making this available, you know, on Snowflake because we're going after those users. And once they see what can be done here." So he's looking at it, I guess you could say, it's a concession to customers because they want multi-cloud. The other way to look at it, it's a hunting expedition and it's one of those uniquely I think Oracle ways. He said up front, right, he doesn't say, "Well, there's a big market, there's a lot for everybody, we just want on our slice." Said, "No, we are going after Amazon, we're going after Redshift, we're going after Aurora. We're going after these users of Snowflake and so on." And I think it's really fairly refreshing these days to hear somebody say that, because now if I'm a buyer, I can look at that and say, you know, to Marc's point, "Do they measure up, do they crack that threshold ceiling? Or is this just going to be more pain than a few dollars savings is worth?" But you look at those numbers that Ron pointed out and that we all saw in that chart. I've never seen Dave, anything like that. In a substantive market, a new player coming in here, and being able to establish differences that are four, seven, eight, 10, 12 times better than competition. And as new buyers look at that, they're going to say, "What the hell are we doing paying, you know, five times more to get a poor result? What's going on here?" So I think this is going to rattle people and force a harder, closer look at what these alternatives are. >> I wonder if the guy, thank you. Let's just skip ahead of the benchmarks guys, bring up the next slide, let's skip ahead a little bit here, which talks to the benchmarks and the benchmarking if we can. You know, David Floyer, the sort of semiretired, you know, Wikibon analyst said, "Dave, this is going to force Amazon and others, Snowflake," he said, "To rethink actually how they architect databases." And this is kind of a compilation of some of the data that they shared. They went after Redshift mostly, (laughs) but also, you know, as I say, Snowflake, BigQuery. And, like I said, you can always tell which companies are doing well, 'cause Oracle will come after you, but they're on the radar here. (laughing) Holgar should we take this stuff seriously? I mean, or is it, you know, a grain salt? What are your thoughts here? >> I think you have to take it seriously. I mean, that's a great question, great point on that. Because like Ron said, "If there's a flaw in a benchmark, we know this database traditionally, right?" If anybody came up that, everybody will be, "Oh, you put the wrong benchmark, it wasn't audited right, let us do it again," and so on. We don't see this happening, right? So kudos to Oracle to be aggressive, differentiated, and seem to having impeccable benchmarks. But what we really see, I think in my view is that the classic and we can talk about this in 100 years, right? Is the suite versus best of breed, right? And the key question of the suite, because the suite's always slower, right? No matter at which level of the stack, you have the suite, then the best of breed that will come up with something new, use a cloud, put the data warehouse on steroids and so on. The important thing is that you have to assess as a buyer what is the speed of my suite vendor. And that's what you guys mentioned before as well, right? Marc said that and so on, "Like, this is a third release in one year of the HeatWave team, right?" So everybody in the database open source Marc, and there's so many MySQL spinoffs to certain point is put on shine on the speed of (indistinct) team, putting out fundamental changes. And the beauty of that is right, is so inherent to the Oracle value proposition. Larry's vision of building the IBM of the 21st century, right from the Silicon, from the chip all the way across the seven stacks to the click of the user. And that what makes the database what Rob was saying, "Tied to the OCI infrastructure," because designed for that, it runs uniquely better for that, that's why we see the cross connect to Microsoft. HeatWave so it's different, right? Because HeatWave runs on cheap hardware, right? Which is the breadth and butter 886 scale of any cloud provider, right? So Oracle probably needs it to scale OCI in a different category, not the expensive side, but also allow us to do what we said before, the multicloud capability, which ultimately CIOs really want, because data gravity is real, you want to operate where that is. If you have a fast, innovative offering, which gives you more functionality and the R and D speed is really impressive for the space, puts away bad results, then it's a good bet to look at. >> Yeah, so you're saying, that we versus best of breed. I just want to sort of play back then Marc a comment. That suite versus best of breed, there's always been that trade off. If I understand you Holgar you're saying that somehow Oracle has magically cut through that trade off and they're giving you the best of both. >> It's the developing velocity, right? The provision of important features, which matter to buyers of the suite vendor, eclipses the best of breed vendor, then the best of breed vendor is in the hell of a potential job. >> Yeah, go ahead Marc. >> Yeah and I want to add on what Holgar just said there. I mean the worst job in the data center is data movement, moving the data sucks. I don't care who you are, nobody likes it. You never get any kudos for doing it well, and you always get the ah craps, when things go wrong. So it's in- >> In the data center Marc all the time across data centers, across cloud. That's where the bleeding comes. >> It's right, you get beat up all the time. So nobody likes to move data, ever. So what you're looking at with what they announce with HeatWave and what I love about HeatWave is it doesn't matter when you started with it, you get all the additional features they announce it's part of the service, all the time. But they don't have to move any of the data. You want to analyze the data that's in your transactional, MySQL database, it's there. You want to do machine learning models, it's there, there's no data movement. The data movement is the key thing, and they just eliminate that, in so many ways. And the other thing I wanted to talk about is on the benchmarks. As great as those benchmarks are, they're really conservative 'cause they're underestimating the cost of that data movement. The ETLs, the other services, everything's left out. It's just comparing HeatWave, MySQL cloud service with HeatWave versus Redshift, not Redshift and Aurora and Glue, Redshift and Redshift ML and SageMaker, it's just Redshift. >> Yeah, so what you're saying is what Oracle's doing is saying, "Okay, we're going to run MySQL HeatWave benchmarks on analytics against Redshift, and then we're going to run 'em in transaction against Aurora." >> Right. >> But if you really had to look at what you would have to do with the ETL, you'd have to buy two different data stores and all the infrastructure around that, and that goes away so. >> Due to the nature of the competition, they're running narrow best of breed benchmarks. There is no suite level benchmark (Dave laughs) because they created something new. >> Well that's you're the earlier point they're beating best of breed with a suite. So that's, I guess to Floyer's earlier point, "That's going to shake things up." But I want to come back to Bob Evans, 'cause I want to tap your Cloud Wars mojo before we wrap. And line up the horses, you got AWS, you got Microsoft, Google and Oracle. Now they all own their own cloud. Snowflake, Mongo, Couchbase, Redis, Cockroach by the way they're all doing very well. They run in the cloud as do many others. I think you guys all saw the Andreessen, you know, commentary from Sarah Wang and company, to talk about the cost of goods sold impact of cloud. So owning your own cloud has to be an advantage because other guys like Snowflake have to pay cloud vendors and negotiate down versus having the whole enchilada, Safra Catz's dream. Bob, how do you think this is going to impact the market long term? >> Well, Dave, that's a great question about, you know, how this is all going to play out. If I could mention three things, one, Frank Slootman has done a fantastic job with Snowflake. Really good company before he got there, but since he's been there, the growth mindset, the discipline, the rigor and the phenomenon of what Snowflake has done has forced all these bigger companies to really accelerate what they're doing. And again, it's an example of how this intense competition makes all the different cloud vendors better and it provides enormous value to customers. Second thing I wanted to mention here was look at the Adam Selipsky effect at AWS, took over in the middle of May, and in Q2, Q3, Q4, AWS's growth rate accelerated. And in each of those three quotas, they grew faster than Microsoft's cloud, which has not happened in two or three years, so they're closing the gap on Microsoft. The third thing, Dave, in this, you know, incredibly intense competitive nature here, look at Larry Ellison, right? He's got his, you know, the product that for the last two or three years, he said, "It's going to help determine the future of the company, autonomous database." You would think he's the last person in the world who's going to bring in, you know, in some ways another database to think about there, but he has put, you know, his whole effort and energy behind this. The investments Oracle's made, he's riding this horse really hard. So it's not just a technology achievement, but it's also an investment priority for Oracle going forward. And I think it's going to form a lot of how they position themselves to this new breed of buyer with a new type of need and expectations from IT. So I just think the next two or three years are going to be fantastic for people who are lucky enough to get to do the sorts of things that we do. >> You know, it's a great point you made about AWS. Back in 2018 Q3, they were doing about 7.4 billion a quarter and they were growing in the mid forties. They dropped down to like 29% Q4, 2020, I'm looking at the data now. They popped back up last quarter, last reported quarter to 40%, that is 17.8 billion, so they more doubled and they accelerated their growth rate. (laughs) So maybe that pretends, people are concerned about Snowflake right now decelerating growth. You know, maybe that's going to be different. By the way, I think Snowflake has a different strategy, the whole data cloud thing, data sharing. They're not trying to necessarily take Oracle head on, which is going to make this next 10 years, really interesting. All right, we got to go, last question. 30 seconds or less, what can we expect from the future of data platforms? Matt, please start. >> I have to go first again? You're killing me, Dave. (laughing) In the next few years, I think you're going to see the major players continue to meet customers where they are, right. Every organization, every environment is, you know, kind of, we use these words bespoke in Snowflake, pardon the pun, but Snowflakes, right. But you know, they're all opinionated and unique and what's great as an IT person is, you know, there is a service for me regardless of where I am on my journey, in my data management journey. I think you're going to continue to see with regards specifically to Oracle, I think you're going to see the company continue along this path of being all things to all people, if you will, or all organizations without sacrificing, you know, kind of richness of features and sacrificing who they are, right. Look, they are the data kings, right? I mean, they've been a database leader for an awful long time. I don't see that going away any time soon and I love the innovative spirit they've brought in with HeatWave. >> All right, great thank you. Okay, 30 seconds, Holgar go. >> Yeah, I mean, the interesting thing that we see is really that trend to autonomous as Oracle calls or self-driving software, right? So the database will have to do more things than just store the data and support the DVA. It will have to show it can wide insights, the whole upside, it will be able to show to one machine learning. We haven't really talked about that. How in just exciting what kind of use case we can get of machine learning running real time on data as it changes, right? So, which is part of the E5 announcement, right? So we'll see more of that self-driving nature in the database space. And because you said we can promote it, right. Check out my report about HeatWave latest release where I post in oracle.com. >> Great, thank you for that. And Bob Evans, please. You're great at quick hits, hit us. >> Dave, thanks. I really enjoyed getting to hear everybody's opinion here today and I think what's going to happen too. I think there's a new generation of buyers, a new set of CXO influencers in here. And I think what Oracle's done with this, MySQL HeatWave, those benchmarks that Ron talked about so eloquently here that is going to become something that forces other companies, not just try to get incrementally better. I think we're going to see a massive new wave of innovation to try to play catch up. So I really take my hat off to Oracle's achievement from going to, push everybody to be better. >> Excellent. Marc Staimer, what do you say? >> Sure, I'm going to leverage off of something Matt said earlier, "Those companies that are going to develop faster, cheaper, simpler products that are going to solve customer problems, IT problems are the ones that are going to succeed, or the ones who are going to grow. The one who are just focused on the technology are going to fall by the wayside." So those who can solve more problems, do it more elegantly and do it for less money are going to do great. So Oracle's going down that path today, Snowflake's going down that path. They're trying to do more integration with third party, but as a result, aiming at that simpler, faster, cheaper mentality is where you're going to continue to see this market go. >> Amen brother Marc. >> Thank you, Ron Westfall, we'll give you the last word, bring us home. >> Well, thank you. And I'm loving it. I see a wave of innovation across the entire cloud database ecosystem and Oracle is fueling it. We are seeing it, with the native integration of auto ML capabilities, elastic scaling, lower entry price points, et cetera. And this is just going to be great news for buyers, but also developers and increased use of open APIs. And so I think that is really the key takeaways. Just we're going to see a lot of great innovation on the horizon here. >> Guys, fantastic insights, one of the best power panel as I've ever done. Love to have you back. Thanks so much for coming on today. >> Great job, Dave, thank you. >> All right, and thank you for watching. This is Dave Vellante for theCube and we'll see you next time. (soft music)

Published Date : Mar 31 2022

SUMMARY :

and co-founder of the and then you answer And don't forget Sybase back in the day, the world these days? and others happening in the cloud, and you cover the competition, and Oracle and you know, whoever else. Mr. Staimer, how do you see things? in that I see the database some good meat on the bone Take away the database, That is the ability to scale on demand, and they got MySQL and you I think it's, you know, and the various momentums, and Microsoft right now at the moment. So where do you place your bets? And to what Bob and Holgar said, you know, and you know, very granular, and everything in the cloud market. And to what you were saying, you know, functionality that you can't get to you know, business consultant. you know, it's funny. and all of the TPC benchmarks, By the way, you know, and you know, just inside of that was of some of the data that they shared. the stack, you have the suite, and they're giving you the best of both. of the suite vendor, and you always get the ah In the data center Marc all the time And the other thing I wanted to talk about and then we're going to run 'em and all the infrastructure around that, Due to the nature of the competition, I think you guys all saw the Andreessen, And I think it's going to form I'm looking at the data now. and I love the innovative All right, great thank you. and support the DVA. Great, thank you for that. And I think what Oracle's done Marc Staimer, what do you say? or the ones who are going to grow. we'll give you the last And this is just going to Love to have you back. and we'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
David FloyerPERSON

0.99+

Dave VellantePERSON

0.99+

Ron WestfallPERSON

0.99+

DavePERSON

0.99+

Marc StaimerPERSON

0.99+

MicrosoftORGANIZATION

0.99+

IBMORGANIZATION

0.99+

MarcPERSON

0.99+

EllisonPERSON

0.99+

Bob EvansPERSON

0.99+

OracleORGANIZATION

0.99+

MattPERSON

0.99+

Holgar MuellerPERSON

0.99+

AWSORGANIZATION

0.99+

Frank SlootmanPERSON

0.99+

RonPERSON

0.99+

StaimerPERSON

0.99+

Andy JacksonPERSON

0.99+

BobPERSON

0.99+

Matt KimballPERSON

0.99+

GoogleORGANIZATION

0.99+

100%QUANTITY

0.99+

Sarah WangPERSON

0.99+

San DiegoLOCATION

0.99+

AmazonORGANIZATION

0.99+

RobPERSON

0.99+