Supercharge Your Business with Speed Rob Bearden - Joe Ansaldi | Cloudera 2021
>> Okay. We want to pick up on a couple of themes that Mick discussed, you know, supercharging your business with AI, for example, and this notion of getting hybrid right. So right now we're going to turn the program over to Rob Bearden, the CEO of Cloudera and Manuvir Das who's the head of enterprise computing at NVIDIA. And before I hand it off to Rob, I just want to say for those of you who follow me at the Cube, we've extensively covered the transformation of the semiconductor industry. We are entering an entirely new era of computing in the enterprise and it's being driven by the emergence of data intensive applications and workloads. No longer will conventional methods of processing data suffice to handle this work. Rather, we need new thinking around architectures and ecosystems. And one of the keys to success in this new era is collaboration between software companies like Cloudera and semiconductor designers like NVIDIA. So let's learn more about this collaboration and what it means to your data business. Rob, take it away. >> Thanks Mick and Dave. That was a great conversation on how speed and agility is everything in a hyper competitive hybrid world. You touched on AI as essential to a data first strategy in accelerating the path to value and hybrid environments. And I want to drill down on this aspect. Today, every business is facing accelerating change. Everything from face-to-face meetings to buying groceries has gone digital. As a result, businesses are generating more data than ever. There are more digital transactions to track and monitor now. Every engagement with coworkers, customers and partners is virtual. From website metrics to customer service records and even onsite sensors. Enterprises are accumulating tremendous amounts of data and unlocking insights from it is key to our enterprises success. And with data flooding every enterprise, what should the businesses do? At Cloudera, we believe this onslaught of data offers an opportunity to make better business decisions faster and we want to make that easier for everyone, whether it's fraud detection, demand forecasting, preventative maintenance, or customer churn. Whether the goal is to save money or produce income, every day that companies don't gain deep insight from their data is money they've lost. And the reason we're talking about speed and why speed is everything in a hybrid world and in a hyper competitive climate, is that the faster we get insights from all of our data, the faster we grow and the more competitive we are. So those faster insights are also combined with the scalability and cost benefit that cloud provides. And with security and edge to AI data intimacy, that's why the partnership between Cloudera and NVIDIA together means so much. And it starts with a shared vision, making data-driven decision-making a reality for every business. And our customers will now be able to leverage virtually unlimited quantities and varieties of data to power an order of magnitude faster decision-making. And together we turbo charged the enterprise data cloud to enable our customers to work faster and better, and to make integration of AI approaches a reality for companies of all sizes in the cloud. We're joined today by NVIDIA's Manduvir Das, and to talk more about how our technologies will deliver the speed companies need for innovation in our hyper competitive environment. Okay, Manuvir, thank you for joining us. Over to you now. >> Thank you Rob, for having me. It's a pleasure to be here on behalf of NVIDIA. We're so excited about this partnership with Cloudera. You know, when, when NVIDIA started many years ago, we started as a chip company focused on graphics. But as you know, over the last decade, we've really become a full stack, accelerated computing company where we've been using the power of GPU hardware and software to accelerate a variety of workloads, AI being a prime example. And when we think about Cloudera, and your company, your great company, there's three things we see Rob. The first one is that for the companies that were already transforming themselves by the use of data, Cloudera has been a trusted partner for them. The second thing we've seen is that when it comes to using your data, you want to use it in a variety of ways with a powerful platform, which of course you have built over time. And finally, as we've heard already, you believe in the power of hybrid, that data exists in different places and the compute needs to follow the data. Now, if you think about NVIDIA's mission going forward to democratize accelerated computing for all companies, our mission actually aligns very well with exactly those three things. Firstly, you know, we've really worked with a variety of companies to date who have been the early adopters using the power acceleration by changing their technology and their stacks. But more and more we see the opportunity of meeting customers where they are with tools that they're familiar with, with partners that they trust. And of course, Cloudera being a great example of that. The second part of NVIDIA's mission is we focused a lot in the beginning on deep learning where the power of GPU is really shown through. But as we've gone forward, we found that GPU's can accelerate a variety of different workloads from machine learning to inference. And so again, the power of your platform is very appealing. And finally, we know that AI is all about data, more and more data. We believe very strongly in the idea that customers put their data, where they need to put it. And the compute, the AI compute, the machine learning compute, needs to meet the customer where their data is. And so that matches really well with your philosophy, right? And, and Rob, that's why we were so excited to do this partnership with you. It's come to fruition. We have a great combined stack now for the customer and we already see people using it. I think the IRS is a fantastic example where, literally, they took the workflow they had, they took the servers they had, they added GPUs into those servers. They did not change anything. And they got an eight times performance improvement for their fraud detection workflows, right? And that's the kind of success we're looking forward to with all customers. So the team has actually put together a great video to show us what the IRS is doing with this technology. Let's take a look. >> How you doing? My name's Joe Ansaldi. I'm the branch chief of the technical branch in RAS. It's actually the research division, research and statistical division of the IRS. Basically, the mission that RAS has is we do statistical and research on all things related to taxes, compliance issues, fraud issues, you know, anything that you can think of basically, we do research on that. We're running into issues now that we have a lot of ideas to actually do data mining on our big troves of data, but we don't necessarily have the infrastructure or horsepower to do it. So our biggest challenge is definitely the, the infrastructure to support all the ideas that the subject matter experts are coming up with in terms of all the algorithms they would like to create. And the diving deeper within the algorithm space, the actual training of those algorithms, the number of parameters each of those algorithms have. So that's, that's really been our challenge now. The expectation was that with NVIDIA and Cloudera's help and with the cluster, we actually build out to test this on the actual fraud detection algorithm. Our expectation was we were definitely going to see some speed up in computational processing times. And just to give you context, the size of the data set that we were, the SME was actually working her algorithm against was around four terabytes. If I recall correctly, we had a 22 to 48 times speed up after we started tweaking the original algorithm. My expectations, quite honestly, in that sphere, in terms of the timeframe to get results, was it that you guys actually exceeded them. It was really, really quick. The definite now term, short term, what's next is going to be the subject matter expert is actually going to take our algorithm run with that. So that's definitely the now term thing we want to do. Going down, go looking forward, maybe out a couple of months, we're also looking at procuring some A-100 cards to actually test those out. As you guys can guess, our datasets are just getting bigger and bigger and bigger, and it demands to actually do something when we get more value added out of those data sets is just putting more and more demands on our infrastructure. So, you know, with the pilot, now we have an idea with the infrastructure, the infrastructure we need going forward and then also just our in terms of thinking of the algorithms and how we can approach these problems to actually code out solutions to them. Now we're kind of like the shackles are off and we can just run a, you know, run to our heart's desire, wherever our imaginations takes our SMEs to actually develop solutions. Now have the platforms to run them on. Just kind of to close out, we really would be remiss, I've worked with a lot of companies through the year and most of them been spectacular. And you guys are definitely in that category, the whole partnership, as I said, a little bit early, it was really, really well, very responsive. I would be remiss if I didn't thank you guys. So thank you for the opportunity. Doing fantastic. and I'd have to also, I want to thank my guys. my staff, Raul, David worked on this, Richie worked on this, Lex and Tony just, they did a fantastic job and I want to publicly thank them for all the work they did with you guys and Chev, obviously also is fantastic. So thank you everyone. >> Okay. That's a real great example of speed and action. Now let's get into some follow up questions guys, if I may, Rob, can you talk about the specific nature of the relationship between Cloudera and NVIDIA? Is it primarily go to market or are you doing engineering work? What's the story there? >> It's really both. It's both go to market and engineering The engineering focus is to optimize and take advantage of NVIDIA's platform to drive better price performance, lower cost, faster speeds, and better support for today's emerging data intensive applications. So it's really both. >> Great. Thank you. Manuvir, maybe you could talk a little bit more about why can't we just use existing general purpose platforms that are, that are running all this ERP and CRM and HCM and you know, all the, all the Microsoft apps that are out there. What, what do NVIDIA and Cloudera bring to the table that goes beyond the conventional systems that we've known for many years? >> Yeah. I think Dave, as we've talked about the asset that the customer has is really the data, right? And the same data can be utilized in many different ways. Some machine learning, some AI, some traditional data analytics. So, the first step here was really to take a general platform for data processing, Cloudera data platform, and integrate with that. Now NVIDIA has a software stack called rapids, which has all of the primitives that make different kinds of data processing go fast on GPU's. And so the integration here has really been taking rapids and integrating it into a Cloudera data platform so that regardless of the technique the customer is using to get insight from the data, the acceleration will apply in all cases. And that's why it was important to start with a platform like Cloudera rather than a specific application. >> So, I think this is really important because if you think about, you know, the software defined data center brought in, you know, some great efficiencies, but at the same time, a lot of the compute power is now going towards doing things like networking and storage and security offloads. So the good news, the reason this is important is because when you think about these data intensive workloads, we can now put more processing power to work for those, you know, AI intensive things. And so that's what I want to talk about a little bit, maybe a question for both of you, maybe Rob, you could start. You think about AI that's done today in the enterprise. A lot of it is modeling in the cloud, but when we look at a lot of the exciting use cases, bringing real-time systems together, transaction systems and analytics systems, and real-time AI inference, at least even at the edge, huge potential for business value. In a consumer, you're seeing a lot of applications with AI biometrics and voice recognition and autonomous vehicles and the liking. So you're putting AI into these data intensive apps within the enterprise. The potential there is enormous. So what can we learn from sort of where we've come from, maybe these consumer examples and Rob, how are you thinking about enterprise AI in the coming years? >> Yeah, you're right. The opportunity is huge here, but you know, 90% of the cost of AI applications is the inference. And it's been a blocker in terms of adoption because it's just been too expensive and difficult from a performance standpoint. And new platforms like these being developed by Cloudera and NVIDIA will dramatically lower the cost of enabling this type of workload to be done. And what we're going to see the most improvements will be in the speed and accuracy for existing enterprise AI apps like fraud detection, recommendation engine, supply chain management, drug province. And increasingly the consumer led technologies will be bleeding into the enterprise in the form of autonomous factory operations. An example of that would be robots. That AR, VR and manufacturing so driving better quality. The power grid management, automated retail, IOT, you know, the intelligent call centers, all of these will be powered by AI, but really the list of potential use cases now are going to be virtually endless. >> I mean, Manufir, this is like your wheelhouse. Maybe you could add something to that. >> Yeah. I mean, I agree with Rob. I mean he listed some really good use cases, you know, The way we see this at NVIDIA, this journey is in three phases or three steps, right? The first phase was for the early adopters. You know, the builders who assembled use cases, particular use cases like a chat bot from the ground up with the hardware and the software. Almost like going to your local hardware store and buying piece parts and constructing a table yourself right now. Now, I think we are in the first phase of the democratization. For example, the work we do with Cloudera, which is for a broader base of customers, still building for a particular use case, but starting from a much higher baseline. So think about, for example, going to Ikea now and buying a table in a box, right. And you still come home and assemble it, but all the parts are there, the instructions are there, there's a recipe you just follow and it's easy to do, right? So that's sort of the phase we're in now. And then going forward, the opportunity we really look forward to for the democratization, you talked about applications like CRM, et cetera. I think the next wave of democratization is when customers just adopt and deploy the next version of an application they already have. And what's happening is that under the covers, the application is infused by AI and it's become more intelligent because of AI and the customer just thinks they went to the store and bought a table and it showed up and somebody placed it in the right spot. Right? And they didn't really have to learn how to do AI. So these are the phases. And I think we're very excited to be going there. >> You know, Rob, the great thing about, for your customers is they don't have to build out the AI. They can, they can buy it. And just in thinking about this, it seems like there are a lot of really great and even sometimes narrow use cases. So I want to ask you, you know, staying with AI for a minute, one of the frustrations, and Mick I talked about this, the GIGO problem that we've all, you know, studied in college, you know, garbage in, garbage out. But, but the frustrations that users have had is really getting fast access to quality data that they can use to drive business results. So do you see, and how do you see AI maybe changing the game in that regard, Rob, over the next several years? >> So yeah, the combination of massive amounts of data that had been gathered across the enterprise in the past 10 years with an open APIs are dramatically lowering the processing costs that perform at much greater speed and efficiency. And that's allowing us as an industry to democratize the data access while at the same time delivering the federated governance and security models. And hybrid technologies are playing a key role in making this a reality and enabling data access to be quote, hybridized, meaning access and treated in a substantially similar way, irrespective of the physical location of where that data actually resides. >> And that's great. That is really the value layer that you guys are building out on top of all this great infrastructure that the hyperscalers have have given us. You know, a hundred billion dollars a year that you can build value on top of, for your customers. Last question, and maybe Rob, you could, you could go first and then Manuvir, you could bring us home. Where do you guys want to see the relationship go between Cloudera and NVIDIA? In other words, how should we as outside observers be, be thinking about and measuring your project, specifically in the industry's progress generally? >> Yes. I think we're very aligned on this and for Cloudera, it's all about helping companies move forward, leverage every bit of their data and all the places that it may be hosted and partnering with our customers, working closely with our technology ecosystem of partners, means innovation in every industry and that's inspiring for us. And that's what keeps us moving forward. >> Yeah and I agree with Rob and for us at NVIDIA, you know, we, this partnership started with data analytics. As you know, Spark is a very powerful technology for data analytics. People who use Spark rely on Cloudera for that. And the first thing we did together was to really accelerate Spark in a seamless manner. But we're accelerating machine learning. We're accelerating artificial intelligence together. And I think for NVIDIA it's about democratization. We've seen what machine learning and AI have done for the early adopters and help them make their businesses, their products, their customer experience better. And we'd like every company to have the same opportunity.
SUMMARY :
And one of the keys to is that the faster we get and the compute needs to follow the data. Now have the platforms to run them on. of the relationship between The engineering focus is to optimize and you know, all the, And so the integration here a lot of the compute power And increasingly the Maybe you could add something to that. from the ground up with the the GIGO problem that we've all, you know, irrespective of the physical location that the hyperscalers have have given us. and all the places that it may be hosted And the first thing we did
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
NVIDIA | ORGANIZATION | 0.99+ |
Mick | PERSON | 0.99+ |
Rob Bearden | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Rob | PERSON | 0.99+ |
22 | QUANTITY | 0.99+ |
Raul | PERSON | 0.99+ |
Joe Ansaldi | PERSON | 0.99+ |
90% | QUANTITY | 0.99+ |
Richie | PERSON | 0.99+ |
Cloudera | ORGANIZATION | 0.99+ |
RAS | ORGANIZATION | 0.99+ |
Lex | PERSON | 0.99+ |
second | QUANTITY | 0.99+ |
Ikea | ORGANIZATION | 0.99+ |
Tony | PERSON | 0.99+ |
first phase | QUANTITY | 0.99+ |
IRS | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
first step | QUANTITY | 0.99+ |
eight times | QUANTITY | 0.99+ |
48 times | QUANTITY | 0.99+ |
second thing | QUANTITY | 0.99+ |
Chev | PERSON | 0.99+ |
Firstly | QUANTITY | 0.98+ |
three steps | QUANTITY | 0.98+ |
Today | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
three things | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
first | QUANTITY | 0.96+ |
three phases | QUANTITY | 0.95+ |
Manuvir | ORGANIZATION | 0.95+ |
first one | QUANTITY | 0.95+ |
Manuvir | PERSON | 0.95+ |
Cloudera | TITLE | 0.93+ |
around four terabytes | QUANTITY | 0.93+ |
first strategy | QUANTITY | 0.92+ |
each | QUANTITY | 0.91+ |
last decade | DATE | 0.89+ |
years ago | DATE | 0.89+ |
Spark | TITLE | 0.89+ |
SME | ORGANIZATION | 0.88+ |
Manuvir Das | PERSON | 0.88+ |