Driving Digital Transformation with Search & AI | Beyond.2020 Digital
>>Yeah, yeah. >>Welcome back to our final session in cultivating a data fluent culture track earlier today, we heard from experts like Valerie from the Data Lodge who shared best practices that you can apply to build that data flew into culture in your organization and tips on how to become the next analyst of the future from Yasmin at Comcast and Steve at all Terex. Then we heard from a captivating session with Cindy Hausen and Ruhollah Benjamin, professor at Princeton, on how now is our chance to change the patterns of injustice that we see have been woven into the fabric of society. If you do not have a chance to see today's content, I highly recommend that you check it out on demand. There's a lot of great information that you could start applying today. Now I'm excited to introduce our next session, which will take a look at how the democratization of data is powering digital transformation in the insurance industry. We have two prestigious guests joining us today. First Jim Bramblett, managing director of North America insurance practice, lead at its center. Throughout Jim's career, he's been focused on large scale transformation from large to midsize insurance carriers. His direct experience with clients has traditionally been in the intersection of technology, platform transformation and operating remodel redesign. We also have Michael cast Onus, executive VP and chief operating officer at DNA. He's responsible for all information technology, analytics and operating functions across the organization. Michael has led major initiatives to launch digital programs and incorporating modern AP I architectures ER, which was primarily deployed in the cloud. Jim, please take it away. >>Great. Thanks, Paula E thought we'd cover a few things today around around data. This is some of the trends we see in data within the insurance sector. And then I'll hand it over to Michael Teoh, take you through his story. You know, I think at the macro level, as we think about data and we think about data in the context of the insurance sector, it's interesting because the entire history of the insurance sector has been built on data and yet, at the same time, the entire future of it relies on that same data or similar similar themes for data. But but different. Right? So we think about the history, what has existed in an insurance companies. Four walls was often very enough, very enough to compete, right? So if you think about your customer data, claims, data, CRM, data, digital data, all all the data that was yeah, contained within the four walls of your company was enough to compete on. And you're able to do that for hundreds of years. But as we we think about now as we think about the future and the ability to kind of compete on data, this data comes from many more places just than inside your four walls. It comes from every device, every human, every vehicle, every property, every every digital interaction. Um in upon this data is what we believe insurers need to pivot to. To compete right. They need to be able to consume this data at scale. They need to be able to turn through this data to drive analytics, and they serve up insights based on those analytics really at the desktop of insurance professionals. And by the way, that has to be in the natural transition of national transaction. Of that employees work day. So an underwriter at a desktop claim him on the desktop, the sales associate of desktop. Those insights need to be served up at that point in time when most relevant. And you know. So if we think about how insurance companies are leveraging data, we see this really on kind of three horizons and starting from the left hand side of the page here, this is really brilliant basics. So how my leveraging core core data and core applied intelligence to monetize your existing strategy? And I think this brilliant based, brilliant basics concept is where most of most of my clients, at least within insurance are are today. You know, how are we leveraging data in the most effective way and putting it in the hands of business decision makers to make decisions largely through reporting and some applied intelligence? Um, Horizon two. We see, you know, definitely other industries blazing a trail here, and this is really about How do we integrate ecosystems and partners Now? I think within insurance, you know, we've had data providers forever, right? Whether it's NPR data, credit data risk data, you know, data aggregators and data providers have been a critical part of the insurance sector for for decades. I think what's different about this this ecosystem and partnership model is that it's much more Oneto one and it's much more, you know, kind of. How do we integrate more tightly and how do we become more embedded in each other's transactions? I think that we see some emergence of this, um, in insurance with automotive manufacturers with building management systems. But I think in the grand scheme of things, this is really very, very nascent for us as a sector. And I think the third horizon is is, you know, how do we fundamentally think about data differently to drive new business models? And I, you know, I don't know that we haven't ensure here in North America that's really doing this at any sort of scale. We certainly see pilots and proofs of concepts. We see some carriers in Europe farther down this path, but it's really it's really very new for us. A Z Think about these three horizons for insurance. So you know what's what's behind all this and what's behind. You know, the next powering of digital transformation and and we think at the end of the exercise, its data data will be the next engine that powers digital transformation. So in this exhibit, you know we see the three horizons across the top. You know, data is activated and activating digital transformation. And this, you know, this purple 3rd, 3rd road here is we think some of the foundational building blocks required to kind of get this right. But I think what's most important about about this this purple third bar here is the far right box, which is business adoption. Because you can build this infrastructure, you can have. You know, this great scalable cloud capability. Um, you can create a bunch of applications and intelligence, but unless it's adopted by the business, unless it's democratized, unless those insights and decisions air served up in the natural course of business, you're gonna have trouble really driving value. So that way, I think this is a really interesting time for data. We think this is kind of the next horizon to power the next age of digital transformation for insurance companies. With that brief prelude, I am, I'm honored. Thio, turn it over to Michael Stone Is the Cielo at CNN Insurance? >>Thanks, Jim, for that intro and very exciting Thio be here is part of part of beyond when I think a digital transformation within the context of insurance, actually look at it through the lens of competing in an era of near perfect information. So in order to be able to deliver all of the potential value that we talked about with regard to data and changing ecosystem and changing demands, the question becomes, How do you actually harness the information that's available to everybody to fundamentally change the business? So if you'll indulge me a bit here, let me tell you just a little bit more for those that don't know about insurance, what it really is. And I use a very long run on sentence to do that. It's a business model where capital is placed against risk in the form of products and associated services sold the customers through channels two companies to generate a return. Now, this sounds like a lot of other businesses in across multiple industries that were there watching today. But the difference within insurance is that every major word in that long run on sentence is changing sources of capital that we could draw on to be able to underwrite risk of going away. The nature of risk itself is changing from the perspective of policies that live six months to a year, the policies that could last six minutes. The products that we're creating are changing every day for our ability to actually put a satellite up in the air or ensure against the next pandemic. Our customers are not just companies or individuals, but they could be governments completely different entities than we would have been in sharing in the past and channels were changing. We sell direct, we sell through brokers and products are actually being embedded in other products. So you may buy something and not even know that insurance is a part of it. And what's most interesting here is the last word which is around return In the old world. Insurance was a cash flow business in which we could bring the premium in and get a level of interest income and being able to use that money to be able thio buffer the underwriting results that we would have. But those returns or dramatically reduced because of the interest income scenario, So we have to generate a higher rate of return. So what do we need to do? Is an insurance company in through this digital transformation to be able to get there? Well, fundamentally, we need to rethink how we're using information, and this is where thought spot and the cloud coming for us. We have two basic problems that we're looking to solve with information. The first one is information veracity. Do we believe it? When we get it? Can we actually trust it? Do we know what it means when we say that this is a policy in force or this is a new customer where this is the amount of attention or rate that we're going to get? Do we actually believe in that piece of data? The second is information velocity. Can we get it fast enough to be able to capitalize upon it? So in other words, we're We're working in a situation where the feedback loop is closing quickly and it's operating at a speed that we've never worked in before. So if we can't solve veracity and velocity, then we're never going to be able to get to where we need to go. So when we think of something like hot spot, what do we use it for? We use it to be able to put it in the hands of our business years so that they could ask the key questions about how the business is running. How much profit of my generating this month? What brokers do I need to talk? Thio. What is my rate retention? Look like what? The trends that I'm seeing. And we're using that mechanism not just to present nice visualizations, but to enable that really quick, dynamic question and answer and social, socially enabled search, which completely puts us in a different position of being able to respond to the market conditions. In addition, we're using it for pattern recognition. Were using it for artificial intelligence. We're gonna be capitalizing on the social aspect of of search that's that's enabled through thought spot and also connecting it into our advanced machine learning models and other capabilities that we currently have. But without it solving the two fundamental problems of veracity and velocity, we would be handicapped. So let me give you some advice about if I were in your position and you don't need to be in sleepy old industry like insurance to be able to do this, I'll leave you with three things. The first one is picking water holes so What are the things that you really want to be good at? What are the pieces of information that you really need to know more about? I mean, in insurance, its customers, it's businesses, locations, it's behavior. There are only a few water also really understand and pick those water holes that you're going to be really good at. The second is stand on the shoulders of giants. You know, in the world of technology, there's often a philosophy that says, Well, I can build it something better than somebody else create if I have it in house. But I'm happy to stand on the shoulders of giants like Thought Spot and Google and others to be able to create this capability because guess what? They're gonna out innovate any of the internal shops all day and every day. So don't be afraid. Thio. Stand side by side on the shoulders of giants as part of your journey. Unless you've got to build these organizations not just the technology for rapid experimentation and learning, because guess what? The moment you deliver insight, it begs another question, which also could change the business process, which could change the business model and If your organization the broader organization of business technology, analytics, customer service operations, etcetera is not built in a way that could be dynamic and flexible based on where the market is or is going, then you're gonna miss out on the opportunity. So again, I'm proud to be part of the fast black community. Really love the technology. And if if you look too, have the same kind of issues with your given industry about how you can actually speed up decision making, deliver insights and deliver this kind of search and recommended to use it. And with that, let's go to some questions. >>Awesome. Thank you so much, Michael and Jim for that in depth perspective and those tangible takeaways for our audience. We have a few minutes left and would love to ask a few questions. So here's the first one for Michael Michael. What are some of the most important things that you know now that you didn't know before you started this process? I think one of >>the things that's a great question. I think one of the things that really struck me is that, you know, traditional thinking would be very use case centric or pain point centric Show me, uh, this particular model or a particular question you want me to answer that can build your own analytics to do that or show me a deficiency in the system and I can go and develop a quick head that will do well, then you know, wallpaper over that particular issue. But what we've really learned is the foundation matters. So when we think about building things is building the things that are below the waterline, the pipes and plumbing about how you move data around how the engines work and how it all connects together gives you the above the waterline features that you could deliver to. You know, your employees into your customers much faster chasing use cases across the top above the waterline and ignoring what's below the water line to me. Is it really, uh, easy recipe too quick? Get your way to nothing. So again, focus on the foundation bill below the water line and then iterated above the water line that z what the lessons we've learned. It has been very effective for us. >>I think that's a very great advice for all those watching today on. But Here's one for Jim. Jim. What skills would you say are required for teams to truly adopt this digital transformation process? >>Yeah, well, I think that's a really good question, and I think I'd start with it's It's never one. Well, our experience has shown us number a one person show, right? So So we think to kind of drive some of the value that that that Michael spoke about. We really looked across disciplinary teams, which is a an amalgamation of skills and and team members, right? So if you think about the data science skills required, just kinda under under understand how toe toe work with data and drive insights, Sometimes that's high end analytic skills. Um, where you gonna find value? So some value architectural skills Thio really articulate, you know, Is this gonna move the needle for my business? I think there's a couple of critical critical components of this team. One is, you know, the operation. Whatever. That operation maybe has to be embedded, right, because they designed this is gonna look at a piece of data that seems interesting in the business Leader is going to say that that actually means nothing to me in my operation. So and then I think the last the last type of skill would be would be a data translator. Um, sitting between sometimes the technology in the business so that this amalgamation of skills is important. You know, something that Michael talked about briefly that I think is critical is You know, once you deliver insight, it leads to 10 more questions. So just in a intellectual curiosity and an understanding of, you know, if I find something here, here, the implications downstream from my business are really important. So in an environment of experimenting and learning thes thes cross discipline teams, we have found to be most effective. And I think we thought spot, you know, the platform is wired to support that type of analysis and wired to support that type of teaming. >>Definitely. I think that's though there's some really great skills. That's for people to keep in mind while they are going through this process. Okay, Michael, we have another question for you. What are some of the key changes you've had to make in your environment to make this digital transformation happen? >>That's a great question. I think if you look at our environment. We've got a mixture of, you know, space agent Stone age. We've got old legacy systems. We have all sorts of different storage. We have, you know, smatterings of things that were in cloud. The first thing that we needed to do was make a strong commitment to the cloud. So Google is our partner for for the cloud platform on unabashedly. The second thing that we needed to dio was really rethink the interplay between analytics systems in operational systems. So traditionally, you've got a large data warehouses that sit out over here that, you know, we've got some kind of extract and low that occurs, and we've got transactional operational systems that run the business, and we're thinking about them very differently from the perspective of bringing them together. How Doe I actually take advantage of data emotion that's in the cloud. So then I can actually serve up analytics, and I can also change business process as it's happening for the people that are transacting business. And in the meantime, I can also serve the multiple masters of total cost and consumption. So again, I didn't applications are two ships that pass in the night and never be in the world of Sienna. When you look at them is very much interrelated, especially as we want to get our analytics right. We want to get our A i m all right, and we want to get operational systems right By capturing that dated motion force across that architecture er that was an important point. Commit to the cloud, rethink the way we think analytics systems, work and operational systems work and then move them in tandem, as opposed to doing one without the other one in the vacuum. >>That's that's great advice, Michael. I think it's very important those key elements you just hit one question that we have final question we have for Jim. Jim, how do you see your client sustain the benefits that they've gained through this process? >>Yeah, it's a really good question. Um, you know, I think about some of the major themes around around beyond right, data fluency is one of them, right? And as I think about fluency, you only attain fluency through using the language every single day. They were day, week, over week, month over month. So you know, I think that applies to this. This problem too. You know, we see a lot of clients have to change probably two things at the same time. Number one is mindset, and number two is is structure. So if you want to turn these data projects from projects into processes, right, so so move away from spinning up teams, getting getting results and winding down. You wanna move away from that Teoh process, which is this is just the way working for these teams. Um, you have to change the mindset and often times you have to marry that with orb structure change. So So I'm gonna spin up these teams, but this team is going to deliver a set of insights on day. Then we're gonna be continuous improvement teams that that persist over time. So I think this shifting from project teams to persistent teams coupled with mindset coupled with with or structure changed, you know, a lot of times has to be in place for a period of time to get to get the fluency and achieve the fluency that that most organizations need. >>Thanks, Jim, for that well thought out answer. It really goes to show that the transformation process really varies when it comes to organizations, but I think this is a great way to close out today's track. I like to think Jim, Michael, as well as all the experts that you heard earlier today for sharing. There's best practice as to how you all can start transforming your organization's by building a data fluent culture, Um, and really empowering your employees to understand what data means and how to take actions with it. As we wrap up and get ready for the next session, I'd like to leave you all with just a couple of things. Number one if you miss anything or would like to watch any of the other tracks. Don't worry. We have everything available after this event on demand number two. If you want to ask more questions from the experts that you heard earlier today, you have a chance to do so. At the Meet The Experts Roundtable, make sure to attend the one for track four in cultivating a data fluent culture. Now, as we get ready for the product roadmap, go take a sip of water. This is something you do not want to miss. If you love what you heard yesterday, you're gonna like what you hear today. I hear there's some type of Indiana Jones theme to it all, so I won't say anything else, but I'll see you there.
SUMMARY :
best practices that you can apply to build that data flew into culture in your organization So if you think about your customer data, So in order to be able to deliver all of the potential value that we talked about with regard to data that you know now that you didn't know before you started this process? the above the waterline features that you could deliver to. What skills would you say are required for teams And I think we thought spot, you know, the platform is wired to What are some of the key changes you've had to make in your environment to make this digital transformation I think if you look at our environment. Jim, how do you see your client sustain the benefits that they've gained through this process? So I think this shifting from project teams to persistent teams coupled There's best practice as to how you all can start transforming
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim | PERSON | 0.99+ |
Michael | PERSON | 0.99+ |
Michael Teoh | PERSON | 0.99+ |
Cindy Hausen | PERSON | 0.99+ |
Ruhollah Benjamin | PERSON | 0.99+ |
Steve | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Jim Bramblett | PERSON | 0.99+ |
Comcast | ORGANIZATION | 0.99+ |
six months | QUANTITY | 0.99+ |
Europe | LOCATION | 0.99+ |
Paula E | PERSON | 0.99+ |
Valerie | PERSON | 0.99+ |
DNA | ORGANIZATION | 0.99+ |
10 more questions | QUANTITY | 0.99+ |
Yasmin | PERSON | 0.99+ |
today | DATE | 0.99+ |
two companies | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
North America | LOCATION | 0.99+ |
Terex | ORGANIZATION | 0.99+ |
one question | QUANTITY | 0.99+ |
two ships | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
Michael Stone | PERSON | 0.99+ |
Thio | PERSON | 0.99+ |
hundreds of years | QUANTITY | 0.98+ |
second thing | QUANTITY | 0.98+ |
First | QUANTITY | 0.98+ |
CNN Insurance | ORGANIZATION | 0.98+ |
two prestigious guests | QUANTITY | 0.98+ |
second | QUANTITY | 0.98+ |
Data Lodge | ORGANIZATION | 0.98+ |
three things | QUANTITY | 0.98+ |
two fundamental problems | QUANTITY | 0.97+ |
Thought Spot | ORGANIZATION | 0.96+ |
Sienna | LOCATION | 0.96+ |
a year | QUANTITY | 0.96+ |
first one | QUANTITY | 0.95+ |
pandemic | EVENT | 0.95+ |
One | QUANTITY | 0.95+ |
two basic problems | QUANTITY | 0.94+ |
Michael Michael | PERSON | 0.94+ |
third horizon | QUANTITY | 0.93+ |
earlier today | DATE | 0.93+ |
3rd | QUANTITY | 0.92+ |
Oneto | ORGANIZATION | 0.91+ |
Four walls | QUANTITY | 0.9+ |
first thing | QUANTITY | 0.89+ |
six minutes | QUANTITY | 0.89+ |
NPR | ORGANIZATION | 0.88+ |
decades | QUANTITY | 0.85+ |
every vehicle | QUANTITY | 0.84+ |
single day | QUANTITY | 0.82+ |
third bar | QUANTITY | 0.81+ |
Meet The Experts Roundtable | EVENT | 0.79+ |
Princeton | ORGANIZATION | 0.78+ |
device | QUANTITY | 0.76+ |
3rd road | QUANTITY | 0.76+ |
Indiana Jones | TITLE | 0.76+ |
number two | QUANTITY | 0.75+ |
every human | QUANTITY | 0.74+ |
three horizons | QUANTITY | 0.74+ |
Fred Balboni - IBM Information on Demand 2013 - theCUBE
okay welcome back live in Las Vegas is the cube ibm's information on demand conferences q exclusive coverage SiliconANGLE will keep on here live I'm John furry the founder of silicon Hank I'm Joe mykos Dave vellante co-founder Wikibon org our next guest is a Fred Balboni global leader business analytics optimization IBM GBS global business services you know obviously big data is powering the world I mean just can demand for information and solutions is off the charts afraid welcome to the cube anything there's a services angle here where you know services matters because one in the channel partner is this good gross profit for helping customers implement solutions that they have demand for so you've a combination of a market that's exploding with demand people know it's a game changer with big data analytics cloud is obviously right there in the horizon in terms of on prem of Prem then you've got now see mobile devices bring your own device to work which is thrown off more data okay and then people want to be in all the different channels the social business so you know CIO to CEO says hey this new wave is here if we don't think about it now and get a position and understand it the consequences of not doing anything might be higher than they are so we've heard that how do you look at that and what are you guys doing what's the strategy give us a quick update and from from GBS i think that the to make this successful first of all it services is important it's the last mile you know that means the point you may it's the last mile and without without that you cannot ever deliver the value the the really interesting challenge that every executive faces is you need to be able to we can easily get our head around big data technology and I shouldn't trivialize that but you can go and understand the technology what's possible in big data you can also get your head around analytics and the analytics algorithms and the kind of insights that can be drawn from that the real challenge is how do you articulate what's kind of possible to a client because many of the use cases are very niche and so clients often say yet that's right but it's big it's possibly bigger than that yeah that's right it's possibly bigger than that the other issue or the other challenge to get we've got a hurdle we've got a jump on me articulate this to the businesses clients businesses think in terms of process you don't think in terms of data you know you don't go talk to a CIO CEO and say you know tell us what's the key attributes of your customer and they don't think that way they can talk to you about servicing a customer or selling to a customer or managing customer complaints so that the processes but the data it's a tough thing so the first part the services is so crucial in this is being able to articulate the value of analytics and big data to a client in the businesses terms so it becomes a boardroom conversation kind of so that's that gets the program started and then quickly being able to fill in with use cases because clients don't want this to be they don't want to start from a blank sheet of paper and they don't like going to give me some quick wins here so it's kind of those timetable what kind of timetables mmmm back in the 80s 90s when client-server rolled out it was months and months yeah project management meetings roll out the Oracle systems roll out the big iron now I mean I'll see maybe shorter spurts little different hurdles what's the timetable only some of these horizons for these quick wins okay so project implementation I come on now let's let's know it's it's I think that that we're measuring project implementations in weeks I think cloud-based technology allows us to provision environments on the order of a couple of weeks and that used to be on the order of five to six months so I think that's going to that accelerates everything and that also allows you to do a lot of a lot more speed to value get applications or analytics use cases up there much more rapidly one two as you start to build these portfolio of use cases and if they're built on acceleration tools I mean acceleration so you've got those code sets that are already there that you can add you can jump on top of I mean you can get these use cases up there in 6-8 weeks we have one we have an example a really large major company i'd rather not i'd rather not because it's not externally referenceable but a really a significant client that had on the order of more than more than 5 million discreet customers and doing detailed customer analytics on their customer base against their products and we were able to get that baby up and running in three and a half months now that two to three years ago traditional logic would have told you that was a nine to twelve month project and by the way you know ten years ago that would have been a 18 to 24 month project yeah so I think that yeah we're moving much more rats the expectation now too I mean the customers realize that too right the absolute not but but there's one thing I want to talk about this it's still this is the one thing that if you'd asked me what's most important this speed thing allows you to go rapidly to places but you you better have a navigation roadmap on where you're going because if you're going to do all kinds of little code drops that's great but you want to make sure you're getting leverage so you're going somewhere so therefore there's a scale but this is where roadmapping becomes really really important for every the technology side of the business you have to have a technology roadmap the other thing that's really important out of this is if you don't let's use the client-server example you used because this kind of has a you know we've all been here right here we've all lived seen this movie before yeah if you if you don't in the build this roadmap another thing that happens do you remember when CIOs finally said okay I'm taking control this client servicing sure what do they end up with they ended up with all these departments of computing in the costs work going astronomical so if you've got a road map you can also address the issues of managed services because you don't the least thing you want to be is having all these data Mart's that are scattered everywhere because you get no economies you get no economies of it but a cloud would bring you you get Noah kind you get no economies and being able to do that and you end up having to have all these maintenance teams you know that maintenance and by the way analytics by its nature has constant maintenance little adjustments and changes you're getting new economies of that because they're all managed is discrete units so therefore there's a lot to be as you build this roadmap you've got to think about the managed services environment as well so Fred you talked about earlier clients don't think in terms of data they think in terms of their business process is that a blind spot for clients because there are some companies Google for example that does think in terms of data in your view should clients increasingly be thinking in data terms or does our industry have to evolve to make the data map to business process I actually I kind of just take it as a thick I don't I don't I don't choose to question why I just accept it um i but i would say i which i would say customer's always right I just I just think the industry i thought that definitely but i think just the industries at a stage where you know we've always you know back in the old days of you know i'm going to show my age here but you know the procedure division in the data division oh my god looked at all and and and we you know the procedure division is where you actually did all the really and i think if the reason is we got understand the paradigm under which modern computing was created I don't to be like we go into history lesson but the paradigm under which modern computing was created was that we use computers to automate tasks so we've always taken this procedural approach which went then we went to process reengineering and that became a boardroom conversation so just I think we've conditioned over the last 40 years businesses to think about using technology to gain business efficiency they've always thought in terms of process so that's why this data element yeah companies like Google founded on analytics clearly have got a whole different headset in a different way to approach these which gives them a built-in bias when they address the problems they've got in their businesses sure but you don't come a decline saying hey you got to rethink the way in which you look at data you come in and say let's figure out how we can exploit data in your biz erect what we do it two ways we do it two ways first of all let me not dress let me not dress monton up as lamb at the end of the day it's its data its data okay now the question is how you articulate that and it's twofold we tend to I like to use a metaphor to describe the data so if its customer that the metaphor we've been using recently is DNA DNA strands to be able so you use a metaphor that there's a language that the business can relate to and you can create a common language very easy one in that way you can have an account because you're never going to drag a CEO into your fourth normal form data model so so therefore you've got to you've got to talk a language one number two you talk about as a collection of use cases so you use use cases as a vehicle to have the process conversation and because with the use case you also can talk business outcomes benefits and you can tell kind of a story you don't have to drag them through the details of the process but you can tell them a story whether it's you know I if you can understand called detailed called detailed data records and the affinities you can understand the social networks and therefore you can reduce churn within your telco customer base as an example quick but if you follow I do so you talked about its little use cases and they begin to understand wow what's possible and then you talk about their data as a DNA chain and they get I got it I actually need to get the DNA chain if I'm going to actually think about think about my customer base or my product base or whatever the lingua franca the business is still the businesses language it doesn't result of data but data can enrich the conversation in a way that can lead to new outcomes the data in rich's the conversation when you talk about the business outcomes that are created as the part of the use case well it's like a three third order differential equation but i go back i watch this yeah i just go say your tweet your epic soundbite machine just can't type fast enough on the crowd chat it's good for good for Twitter viewing yeah I've just opened a Twitter account please look me up I'm looking for friends I promise to start posting you got people watching all right all right so so in terms of customers right give us a little bit peak of some of the customer responses when you when you open the kimono show them the road map you know the messaging around on IBM right now is pretty tight here at IOD last year was good this year is better you look really unified face to the customer when you show them the road map what's the feeling they get it they feel like okay I got some trust IBM's got some track record history do they is the is the emotion more of okay where do I jump in how do I jump in there doing it and this little shadow IT going on all over the place we know with Amazon out the area so so when you're in there you've got to have these are conversations what do they like and what's that what's the level of response you get from CIOs and then also the folks in the trenches so there's always a question which there's a couple of questions first of all is how can I get how can I get value from this and that in that and that's you know a I'm tightly coupled to my existing transaction processing which is kind of like if you will call that turbocharged bi and and which is which is where so many people have come from is this turbocharged bi environment and listen that's an important part of your reporting business you need to do that to keep the wheels on the question is as you move to this notion of analytics giving you great insight then then you've got to say okay I need to go from turbocharged bi to really augmented components so clients I'd say there's a large there's a large group of people that are right now moving from turbocharged bi to the notion advanced use cases so there's this some disco a large discussion right now how do I show me do use cases by which i can I can rapidly that would be advanced how to linux up the calling advance limit well no we have well 60 60 use cases industry-based use cases that we as a services business put together on top of that we have about seven or eight key code fragments that we uses accelerators I mean we call them wink we call them assets and we just them up as accelerators but their code fragments that we bring to a client as the basis that we put on top of the the blue stack of technology to actually get them a speed to value because we really want to be able to get clients up and running within this notion of non idealities it's like literally being best practices in the form of technology to the customers well you're on an IBM thing I mean dare I called an application no I wouldn't dare call it an application we're not in that business but the point is is that it is it's starting to feel like an application because it's really moving down these unreal integrated solution is really where we going it's an accelerant this code correct so it's leverage the economies of scale is every success breeds that's exactly it more and then on top of that we would have that just don't throw a few other things that we do to accelerate these things we actually have five what we call signature solutions which is services software together with a piece of services code coming together to solve a problem we've got that round risk and fraud around customers I mean some specific very narrow things if somebody wants to you know because often IT departments they want to buy something they want to buy something they don't want to go down the parts they want to buy something and so fine here's a package solution let's go buy something um and then last but not least one thing we haven't talked much about but I always like to throw this out there because I think this is one of the things they and we didn't talk about it much in the main 10 or any better sessions but let's not forget about IBM research I'm really proud to report to you now since we started this category we've done 61st of a kinds with IBM Research so this is about client says I've got this problem i think it's unachievable i cannot solve this problem you know help me map in my oil exploration like things that are considered big problems big problems let's let's apply this group that does patent factory you know that IBM is but 15 years in a row let's apply those people to my our problems and we have 60 we have 16 so we do about 15 to 20 a year so it's not like we like we're not cranking these out like I'm hundreds of thousands of licenses but it's where basically our services business our software business and IBM Research go work on solving a client specific problem you heard Tim Buckman this morning when he was asked to know why IBM that was said IBM Research was the first answer that's right he gave we talked to him about that on the cube you know in his is insane me as a customer and we you know we always love to hear from customers I mean you know the splunk conference just had was just last week as an emerging startup because probably well aware of those guys they have customers that just say just glowing reports you get to the same same set of customers you know he is someone of high-caliber at the command and control in his healthcare mission and he's automating himself he it's and essentially creating this new data model that allows it to be pushed down to be listen you've got to do this and I'll tell you why you remember the the governance discussion is it was well I'm most excited about is the governance discussion five to eight years ago was an arcane discussion available of data modelers and like what do we do the governance discussion is quickly moving into the language of our business people and the reason is because they're beginning to do you remember the days of accounting systems when they say we want our accounting department to focus on analyzing the numbers and not collecting and forming the numbers well we're here again and if you've got good data governance you can focus on creating the insights and determining what actions you want from the insights as opposed to questioning the numbers and questioning the validity and the heritage of the number the validity and the heritage of the numbers and in this place everywhere yep financial services companies are the most stressed about it because the validity and heritage is required when you want to prove a compliance to a federal statute yes but it means everywhere if you're a consumer packaged goods company and you don't believe that sales are down in a certain market or a certain chain store first thing they do is they start challenging the numbers if you have good governance you can now start that you can now start to trust these systems of record but let's talk about data quality data quality but it's also the governess in the death of mindset is much broader iteration right how we said the first you know that folks from the nonprofit said you want to go on the record but he's basically saying I'll say basically when you put stuff out when you package and then bring it out it still might have some flaws in the data quality but it's the iteration is transformational but once that's in market saying that's changing he things prepare pre-packaging data and then bringing it in is not the better approach but I want to ask you about the your what you just said about this governance conversation that is date the core of this debate around the data economy what is the data economy in your mind given what you do the history that you've lived through we've seen those movies now the cutting edge new wave that will create new well for new ways change from transform business all that stuff's great but what is the data conn what does that mean to business executives that they're focusing on outcomes is is it changing data governance is it changing the value chains is it changing what's your thoughts on that the data economy is about discovering those points of leverage that that the data tells you that your instincts don't the data tells you that your instincts don't one of my favorite stories three years ago four years ago we were called in and clients said this is my problem the going and problem was I got to take 200 million dollars out of my advertising spend budget two hundred million dollars out of my advertising spend was he's a retailer end and the problem is is out of my 600 million dollar advertising budget the problem I have is also have all kinds of interesting theories and models that my agencies have told me I'm not quite sure do I just take 200 off the board across the board do I take 200 off to minimize my risk just spread it around how do i how do I manage the process and what we actually did was we built a super super set of sophisticated analytics which tied to their transaction systems but also tied to their social media system so we also understood and what we did was we were able to understand which customer cohorts responded to which media types then we added one more parts of the model which is we understood the trending in the cost of free-to-air cable radio internet all the different media types and as we looked at the cost models of them and we understood which customer cohorts responded to which media types we suddenly realized that they were super saturated in certain media types they could like doubled their spin and they wouldn't got want any lift in the advertised in their in their sales what we did was we got 200 million out of their budget and increase they got 300 million incremental sales that Christmas season because we help them get really smart about the play let me tell you I tell us privately i maked media buyers look at me like like I'm like a pariah yeah but but it is actually really you know really started to rethink now there's just a really great example because I think we've all can relate to that but that's the data economy where you find these veins of gold in these simple correlations and from that simple correlation you can instantly go and your business you can get the lift listen I can get five percent I IBM get five percent ten percent lift in some small segment business I've got the volume that's going to make a significant difference to my share one small piece of data could open up a window kind of had with Jodie Foster we would contact words like one piece of data opens up a ton of new data I mean that totally is leverage and it changes the game for that customer and and that to me is that is the guts of the data economy identifying those correlations and and what we're finding is our most recent study we just released it here the thing the IB the IBM Institute for business value big data and analytics study w IBM com it's the Institute for bit I bv study on big data just released and said 75 percent of all companies that are outperforming their peers have said big data analytics is one of the key reasons and the human component not to put are all on machines it's really about it's an ardent science its a mix of both the math and the human piece well you know there's this notion of not only do you create the insight but you've got to take action on the insight you know it's not enough to know if I could predict for you who's going to win tonight's basketball game you still got to place the bet you still have to take action on the inside and so therefore this notion of action to insight is all about trust trust in the insight trust in the data and trust in the technology that the business trust the technology and it's until you take that leap of faith remember when the Indiana Jones movie when he liked the leap of faith and you've got to like to step out and take that leap of faith once you take that leap of faith in you suddenly have trust in the data so that's that trust to mention and that's a human thing that's not a that's that's not a that's an organizational thing that is not a lot of technology in that one okay Fred we gotta wrap up i'll give you the final word for the folks out there quickly put a bumper sticker on iod this year's and put on my car when I Drive home what's that bumper sticker say for this year it's not all about the technology but it starts with the technology ok we're here live in Las Vegas we're going to take about that bet that was going to win the games and I will be the sports book later this is the cube live in Las Vegas for information on demand hashtag IBM iod this tequila right back with our next guest if the short break exclusive coverage from information on demand ibm's premier conference we write back the q
**Summary and Sentiment Analysis are not been shown because of improper transcript**
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jodie Foster | PERSON | 0.99+ |
16 | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Tim Buckman | PERSON | 0.99+ |
five percent | QUANTITY | 0.99+ |
60 | QUANTITY | 0.99+ |
300 million | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
two hundred million dollars | QUANTITY | 0.99+ |
200 million | QUANTITY | 0.99+ |
75 percent | QUANTITY | 0.99+ |
five percent | QUANTITY | 0.99+ |
200 million dollars | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Fred Balboni | PERSON | 0.99+ |
15 years | QUANTITY | 0.99+ |
Joe mykos | PERSON | 0.99+ |
IBM Institute | ORGANIZATION | 0.99+ |
nine | QUANTITY | 0.99+ |
Dave vellante | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Fred | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
200 | QUANTITY | 0.99+ |
two ways | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
last week | DATE | 0.99+ |
18 | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
three years ago | DATE | 0.99+ |
IBM com | ORGANIZATION | 0.99+ |
two ways | QUANTITY | 0.98+ |
more than more than 5 million | QUANTITY | 0.98+ |
600 million dollar | QUANTITY | 0.98+ |
10 | QUANTITY | 0.98+ |
five | DATE | 0.98+ |
one more parts | QUANTITY | 0.98+ |
first part | QUANTITY | 0.98+ |
telco | ORGANIZATION | 0.98+ |
John furry | PERSON | 0.97+ |
two | DATE | 0.97+ |
three and a half months | QUANTITY | 0.97+ |
fourth | QUANTITY | 0.97+ |
last year | DATE | 0.97+ |
ten percent | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
IBM Research | ORGANIZATION | 0.97+ |
one thing | QUANTITY | 0.97+ |
one thing | QUANTITY | 0.97+ |
24 month | QUANTITY | 0.96+ |
this year | DATE | 0.96+ |
twelve month | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
hundreds of thousands | QUANTITY | 0.96+ |
one piece | QUANTITY | 0.96+ |
eight years ago | DATE | 0.96+ |
IBM Research | ORGANIZATION | 0.96+ |
first answer | QUANTITY | 0.95+ |
four years ago | DATE | 0.94+ |
Christmas | EVENT | 0.94+ |
ten years ago | DATE | 0.93+ |
2013 | DATE | 0.93+ |
first | QUANTITY | 0.92+ |
three years ago | DATE | 0.92+ |
first thing | QUANTITY | 0.92+ |
Oracle | ORGANIZATION | 0.91+ |
6-8 weeks | QUANTITY | 0.91+ |
IBM Research | ORGANIZATION | 0.91+ |
Fred Balboni | PERSON | 0.89+ |
ORGANIZATION | 0.89+ | |
Indiana Jones | TITLE | 0.89+ |
about seven | QUANTITY | 0.87+ |
this morning | DATE | 0.87+ |
80s 90s | DATE | 0.86+ |
IB | ORGANIZATION | 0.86+ |
Mart | ORGANIZATION | 0.86+ |
one small piece | QUANTITY | 0.85+ |
Hank | PERSON | 0.85+ |
Wikibon org | ORGANIZATION | 0.84+ |
tonight | DATE | 0.84+ |
two | QUANTITY | 0.83+ |
one of the key reasons | QUANTITY | 0.81+ |