Image Title

Ken Exner, Chief Product Officer, Elastic | AWS re:Invent 2022


 

(upbeat music) >> Hello friends and welcome back to theCUBE's Live coverage of AWS re:Invent 2022 from the Venetian Expo in Vegas, baby. This show is absolutely packed. Lisa Martin with Dave Vellante, Dave this is day two, but really full day one of our wall to wall coverage on theCUBE. We've had great conversations the last half day this morning already, we've been talking with a lot of companies, a lot of Amazonians and some Amazonians that have left and gone on to interesting more things, which is what we're going to talk about next. >> Well, I'm excited about this segment because it's a really interesting space. You've got a search company who's gotten into observability and security and through our ETR partner our research, we do quarterly research and Elastic off the charts. Obviously they're the public company, so you can see how well they're doing. But the spending momentum on this platform is very, very strong and it has been consistently for quite some time. So really excited to learn more. >> The voice of the customer speaking loudly, from Elastic, its Chief Product Officer joins us, Ken Exner. Ken, welcome to the program. Hi, thank you, good to be here. >> Dave Vellante: Hey Ken. >> So a lot of us know about Elastic from Elastic Search but it's so much more than that these days. Talk about Elastic, what's going on now? What's the current product strategy? What's your vision? >> Yeah. So people know Elastic from the ELK Stack, you know Elastic Search, Logstash, Kibana. Very, very popular open source projects. They've been used by millions of developers for years and years. But one of the things that we started noticing over the years is that people were using it for all kinds of different use cases beyond just traditional search. So people started using Elastic Search to search through operational data, search through logs, search through all kinds of other types of data just to find different answers. And what we started realizing is the customers were taking us into different spaces. They took us into log analytics they started building log management solutions. And we said, cool, we can actually help these customers by providing solutions that already do this for them. So it took us into observability, they took us into security, and we started building solutions for security and observability based on what customers were starting to do with the platform. So customers can still use the platform for any number of different use cases for how do you get answers added data or they can use our pre-built packaged solutions for observability and security. >> So you were a longtime Amazonian. >> I was. I was. >> Talk a little bit about some of the things that you did there and what attracted you to Elastic? 'Cause it's only been a couple months, right? >> I've been here three months, I think three months as of yesterday. And I was at AWS for 16 years. So I was there a long, long time. I was there pretty much from the beginning. I was hired as one of the first product managers in AWS. Adam Selipsky hired me. And it was a great run. I had a ton of fun, I learned a lot. But you know, after 16 years I was kind of itching to do something new and it was going to take something special because I had a great gig and enjoyed the team at AWS. But I saw in Elastic sort of a great foundational technology they had a lot of momentum, a huge community behind it. I saw the business opportunity where they were going. I saw, you know the business opportunity of observability and security. These are massive industries with tons of business problems. Customers are excited about trying to get more answers out of data about their operational environment. And I saw, you know, that customers were struggling with their operating environments and things were becoming increasingly complicated. We used to talk in AWS about, you know how customers want to move from monolithic applications to monoliths, but one of the secrets was that things were increasingly complicated. Suddenly people had all these different microservices they had all these different managed services and their operating environment got complicated became this constellation of different systems, all emitting data. So companies like Elastic were helping people find answers in that data, find the problems with their systems so helping tame that complexity. So I saw that opportunity and I said I want to jump on that. Great foundational technology, good community and building solutions that actually helped solve real problems. >> Right. >> So, before you joined you probably looked back, and said, let think about the market, what's happening in the market space. What were the big trends that you saw that sort of informed your decision? >> Well, just sort of the mountain of data that was sort of emerging. Adam Selipsky in his talk this morning began by talking about how data is just multiplying constant. And I saw this, I saw how much data businesses were drowning in. Operational data, security data. You know, if you're trying to secure your business you have all these different endpoints you have all these different devices, you have different systems that you need to monitor all tons of data. And companies like Elastic were helping companies sort of manage that complexity, helping them find answers in that. So, when you're trying to track intruders or trying to track you know, malicious activity, there's a ton of different systems you need to pay attention to. And you know, there's a bunch of data. It's different devices, laptops and phone devices and stuff that you need to pay attention to. And you find correlations across that to figure out what is going on in your network, what is going on in your business. And that was exciting to me. This is a company sort of tackling one of the hardest problems which is helping you understand your operating environment, helping you understand and secure your business. >> So everybody's getting into observability. >> Yep. >> Right, it's a very crowded space right now. First of all, you know it's like overnight it just became the hottest thing going. VCs were throwing money at it. Why was that and how were you guys different? >> Well, we began by focusing on log analytics because that was the core of what we were doing. But customers started using it beyond log analytics and started using it for APM and started using it for performance data. And what we realized is that we could do all this for customers. So we ended up, sort of overnight over the course of three years building that a complete observe observability suite. So you can do APM, you can do profiling, you can do tracing, sort of distributed tracing, you can do synthetic monitoring everything you want to do, wheel user wondering. >> Metrics? >> All of it, metrics, all of it. And you can use the same system for this. So this was sort of a powerful concept, not only is it the best in leading log system, it also provides everything you need for complete observability. And because it's based on this open platform you can extend it to a number of different scenarios. So this is important, a lot of the different observability companies provide you something that's sort of packaged and as long as you're trying to do what it wants to support, it's great. But with Elastic, you have this flexible data architecture that you can use for anything. So companies use it to monitor assembly lines, they use it to monitor dish networks, for example use it to not only manage their fleet of servers they also use it to manage all their devices. So 25 million desktop devices. So, you know, observability systems like that that can do a number of different scenarios, I think that's a powerful thing. It's not just about how do you manage your servers how do you manage the things that are simple. It's how do you manage anything? How do you get observability into anything. >> Multiple use cases. >> Sorry, when you say complete, okay you talked about all the different APM, log analytics tracing, metrics, and also end-to-end. >> Ken Exner: End-to-end, yeah. >> Could you talk about that component of complete? >> So, if you're trying to find an issue like you have some metric that goes into alarm. You want to have a metric system that has alarming. Once that metric goes in alarm you're going to want to dig into your log. So you're going to want it to take you to the area of your logs that has that issue. Once you gets to there, you're going to want to find the trace ID that takes you to your traces and looks at sort of profiling, distributed tracing information. So a system that can do all of that end-to-end is a powerful solution. So it not only helps you track things end-to-end across the different signals that you're monitoring, but it actually helps you remediate more quickly. And the other thing that Elastic does that is unique is a lot of ML in this. So not only helping you find the information but surfacing things before you even know of them. So anomaly detection for example, helps you know about something before you even realize that there was an issue. So you should pay attention to this because it's anomalous. So a lot of systems help you find something if you know what to look for. But we're trying to help you not only find the things that you know to look for, but help you find the things that you didn't even think to know about. >> And it's fair to say one of your differentiators is you're open, open source. I mean, maybe talk about the ELK stack a little bit and how that plays. >> Yeah, well, so the great thing about this is we've extended that openness to both security and to observability. An example of this on the security side is all the detection rules that you use for looking for intrusion all the detection rules are open source and there's an entire community around this. So if you wanted to create a detection rule you can publish an open source, there's a bunch in GitHub you can benefit from what the community is doing as well. So in the world of security you want to be supported by the entire community, everyone looking for the same kind of issues. And there's an entire community around Elastic that is helping support these detection rules. So that approach, you know wanting to focus on community is differentiating for us. Not just, we got you covered as long you use things from us you can use it from the entire community. >> Well there implies the name Elastic. >> Yeah >> Talk a little bit about the influence that the customer has in the product roadmap and the direction. You've talked a little bit in the beginning about customers were leading us in different directions. It sounds very Amazonian in terms of following the customers where they go. >> It does, it actually does, it was one of the things that resonated for me personally is the journey that Elastic took to observability and security was customer led. So, we started looking at what customers were doing and realized that they were taking us into log analytics they were taking us into APM, they were taking us into these different solutions, and yeah, it is an Amazonian thing, so it resonated for me personally. And they're going to continue taking us in new places. Like we love seeing all the novel things that customers do with the platform and it's sort of one of the hallmarks of a great platform is you can have all kinds of novel things that, novel use cases for how people use your platform and we'll continue to see things and we may get taken into other solutions as well as we start seeing things emerge, like common patterns. But for now we're really excited about security and observability. >> So what do you see, so security's a big space, right? >> Yep. >> You see the optiv taxonomy and it makes your eyes bleed 'cause there's so many tools in there. Where do you fit in that taxonomy? How do you see and think about the security space and the opportunity for your customers? >> Yeah, so we began with logs in the security space as well. So SIEM, which is intrusion detection is based on aggregating a bunch of logs and helping you do threat hunting on those logs. So looking for patterns of malicious behavior or intrusion. So we started there and we did both detections as well as just ad hoc threat hunting. But then we started expanding into endpoint protection. So if we were going to have agents on all these different devices they were gathering logs, what if we also started providing remediation. So if you had malicious activity that was happening on one of the servers, don't just grab the information quarantine it, isolate it. So that took us into sort of endpoint protection or XDR. And then beyond that, we recently got into cloud security as well. So similar to observability, we started with logs but expanded to a full suite so that you can do everything. You can have both endpoint protection, you can have cloud security, all of it from one solution. >> Security is a very crowded market as well. What's your superpower? >> Ken Exner: What's our super power? >> Yeah. >> I think it, a lot of it is just the openness. It's the open platform, there's the community around it. People know and love the, the Elastic Search ELK stack and use it, we go into businesses all the time and they're familiar, their security engineers are using our product for searching through logs. So they're familiar with the product already and the community behind it. So they were excited about being able to use detection rules from other businesses and stay on top of that and be part of that community. The transparency of that is important to the customers. So if you're trying to be the most secure place, the most secure business, you want to basically invest in a community that's going to support that and not be alone in that. >> Right, absolutely, so much that rides on that. Favorite customer example that you think really articulates the value of Elastic, its openness, its transparency. >> Well, there's a customer Dish Media Dish Networks that's going to present here at re:Invent tomorrow at 1:45 at Mandalay Bay. I'm excited about their example because they use it to manage, I think it's 10 billion records a day across 25 million devices. So it illustrates the scale that we can support for managing observability for a company but also just sort of the unique use cases. We can use this for set top boxes for all their customers and they can track the performance that those customers are having. It's a unique case that a lot of vendors couldn't support but we can support because of the openness of the platform, the open data architecture that we have. So I think it illustrates the scale that we support, the elasticity, but also the openness of the data platform. >> Awesome and folks can catch that tomorrow, 1:45 PM at the Mandalay Bay. Last question for you, Ken, is you have a bumper sticker. >> Ken Exner: A bumper sticker? >> A bumper sticker you're going to put it on your fancy sexy new car and it's about elastic, what does it say? >> Helping you get answers out of data. So yeah. >> Love it, love it. Brilliant. >> Ken Exner: Thank you. >> Short and sweet. Ken, it's been a pleasure. >> It's been a pleasure being here, thank you. >> Thank you so much for sharing your journey with us as an Amazonian now into Elastic what Elastic is doing from a product perspective. We will keep our eyes peeled as Dave was saying. >> Ken Exner: Fantastic. >> The data show is really strong spending momentum so well done. >> Thank you very much, good to meet you. >> Our pleasure. For our guest and Dave Vellante, I'm Lisa Martin. You're watching theCUBE, the leader in live enterprise and emerging tech coverage. (upbeat music)

Published Date : Nov 29 2022

SUMMARY :

and some Amazonians that have left so you can see how well they're doing. from Elastic, its Chief So a lot of us know about the ELK Stack, you know I was. And I saw, you know, that What were the big trends that you saw and stuff that you need So everybody's getting First of all, you know So you can do APM, you can do profiling, architecture that you you talked about all the the trace ID that takes you to your traces and how that plays. So that approach, you know that the customer has and it's sort of one of the hallmarks and the opportunity for your customers? so that you can do everything. What's your superpower? and the community behind it. that you think really So it illustrates the you have a bumper sticker. Helping you get answers out of data. Love it, love it. Short and sweet. It's been a pleasure Thank you so much so well done. in live enterprise and

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Adam SelipskyPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

Lisa MartinPERSON

0.99+

Ken ExnerPERSON

0.99+

KenPERSON

0.99+

16 yearsQUANTITY

0.99+

three monthsQUANTITY

0.99+

AWSORGANIZATION

0.99+

Mandalay BayLOCATION

0.99+

Elastic SearchTITLE

0.99+

three yearsQUANTITY

0.99+

bothQUANTITY

0.99+

Venetian ExpoEVENT

0.99+

VegasLOCATION

0.98+

one solutionQUANTITY

0.98+

oneQUANTITY

0.98+

25 million devicesQUANTITY

0.97+

yesterdayDATE

0.97+

ElasticTITLE

0.96+

tomorrow at 1:45DATE

0.96+

tomorrow, 1:45 PMDATE

0.96+

FirstQUANTITY

0.95+

25 million desktopQUANTITY

0.94+

APMTITLE

0.91+

ElasticORGANIZATION

0.91+

10 billion records a dayQUANTITY

0.88+

day oneQUANTITY

0.88+

theCUBEORGANIZATION

0.87+

ELK StackORGANIZATION

0.87+

this morningDATE

0.86+

day twoQUANTITY

0.85+

last half dayDATE

0.84+

GitHubORGANIZATION

0.83+

couple monthsQUANTITY

0.82+

InventEVENT

0.82+

AmazonianORGANIZATION

0.79+

AWS re:Invent 2022EVENT

0.78+

first product managersQUANTITY

0.77+

millions of developersQUANTITY

0.76+

tons of dataQUANTITY

0.76+

Elastic Search ELKTITLE

0.74+

LogstashORGANIZATION

0.67+

yearsQUANTITY

0.67+

KibanaORGANIZATION

0.67+

reEVENT

0.55+

ELKORGANIZATION

0.51+