Image Title

Search Results for Data Lodge:

Driving Digital Transformation with Search & AI | Beyond.2020 Digital


 

>>Yeah, yeah. >>Welcome back to our final session in cultivating a data fluent culture track earlier today, we heard from experts like Valerie from the Data Lodge who shared best practices that you can apply to build that data flew into culture in your organization and tips on how to become the next analyst of the future from Yasmin at Comcast and Steve at all Terex. Then we heard from a captivating session with Cindy Hausen and Ruhollah Benjamin, professor at Princeton, on how now is our chance to change the patterns of injustice that we see have been woven into the fabric of society. If you do not have a chance to see today's content, I highly recommend that you check it out on demand. There's a lot of great information that you could start applying today. Now I'm excited to introduce our next session, which will take a look at how the democratization of data is powering digital transformation in the insurance industry. We have two prestigious guests joining us today. First Jim Bramblett, managing director of North America insurance practice, lead at its center. Throughout Jim's career, he's been focused on large scale transformation from large to midsize insurance carriers. His direct experience with clients has traditionally been in the intersection of technology, platform transformation and operating remodel redesign. We also have Michael cast Onus, executive VP and chief operating officer at DNA. He's responsible for all information technology, analytics and operating functions across the organization. Michael has led major initiatives to launch digital programs and incorporating modern AP I architectures ER, which was primarily deployed in the cloud. Jim, please take it away. >>Great. Thanks, Paula E thought we'd cover a few things today around around data. This is some of the trends we see in data within the insurance sector. And then I'll hand it over to Michael Teoh, take you through his story. You know, I think at the macro level, as we think about data and we think about data in the context of the insurance sector, it's interesting because the entire history of the insurance sector has been built on data and yet, at the same time, the entire future of it relies on that same data or similar similar themes for data. But but different. Right? So we think about the history, what has existed in an insurance companies. Four walls was often very enough, very enough to compete, right? So if you think about your customer data, claims, data, CRM, data, digital data, all all the data that was yeah, contained within the four walls of your company was enough to compete on. And you're able to do that for hundreds of years. But as we we think about now as we think about the future and the ability to kind of compete on data, this data comes from many more places just than inside your four walls. It comes from every device, every human, every vehicle, every property, every every digital interaction. Um in upon this data is what we believe insurers need to pivot to. To compete right. They need to be able to consume this data at scale. They need to be able to turn through this data to drive analytics, and they serve up insights based on those analytics really at the desktop of insurance professionals. And by the way, that has to be in the natural transition of national transaction. Of that employees work day. So an underwriter at a desktop claim him on the desktop, the sales associate of desktop. Those insights need to be served up at that point in time when most relevant. And you know. So if we think about how insurance companies are leveraging data, we see this really on kind of three horizons and starting from the left hand side of the page here, this is really brilliant basics. So how my leveraging core core data and core applied intelligence to monetize your existing strategy? And I think this brilliant based, brilliant basics concept is where most of most of my clients, at least within insurance are are today. You know, how are we leveraging data in the most effective way and putting it in the hands of business decision makers to make decisions largely through reporting and some applied intelligence? Um, Horizon two. We see, you know, definitely other industries blazing a trail here, and this is really about How do we integrate ecosystems and partners Now? I think within insurance, you know, we've had data providers forever, right? Whether it's NPR data, credit data risk data, you know, data aggregators and data providers have been a critical part of the insurance sector for for decades. I think what's different about this this ecosystem and partnership model is that it's much more Oneto one and it's much more, you know, kind of. How do we integrate more tightly and how do we become more embedded in each other's transactions? I think that we see some emergence of this, um, in insurance with automotive manufacturers with building management systems. But I think in the grand scheme of things, this is really very, very nascent for us as a sector. And I think the third horizon is is, you know, how do we fundamentally think about data differently to drive new business models? And I, you know, I don't know that we haven't ensure here in North America that's really doing this at any sort of scale. We certainly see pilots and proofs of concepts. We see some carriers in Europe farther down this path, but it's really it's really very new for us. A Z Think about these three horizons for insurance. So you know what's what's behind all this and what's behind. You know, the next powering of digital transformation and and we think at the end of the exercise, its data data will be the next engine that powers digital transformation. So in this exhibit, you know we see the three horizons across the top. You know, data is activated and activating digital transformation. And this, you know, this purple 3rd, 3rd road here is we think some of the foundational building blocks required to kind of get this right. But I think what's most important about about this this purple third bar here is the far right box, which is business adoption. Because you can build this infrastructure, you can have. You know, this great scalable cloud capability. Um, you can create a bunch of applications and intelligence, but unless it's adopted by the business, unless it's democratized, unless those insights and decisions air served up in the natural course of business, you're gonna have trouble really driving value. So that way, I think this is a really interesting time for data. We think this is kind of the next horizon to power the next age of digital transformation for insurance companies. With that brief prelude, I am, I'm honored. Thio, turn it over to Michael Stone Is the Cielo at CNN Insurance? >>Thanks, Jim, for that intro and very exciting Thio be here is part of part of beyond when I think a digital transformation within the context of insurance, actually look at it through the lens of competing in an era of near perfect information. So in order to be able to deliver all of the potential value that we talked about with regard to data and changing ecosystem and changing demands, the question becomes, How do you actually harness the information that's available to everybody to fundamentally change the business? So if you'll indulge me a bit here, let me tell you just a little bit more for those that don't know about insurance, what it really is. And I use a very long run on sentence to do that. It's a business model where capital is placed against risk in the form of products and associated services sold the customers through channels two companies to generate a return. Now, this sounds like a lot of other businesses in across multiple industries that were there watching today. But the difference within insurance is that every major word in that long run on sentence is changing sources of capital that we could draw on to be able to underwrite risk of going away. The nature of risk itself is changing from the perspective of policies that live six months to a year, the policies that could last six minutes. The products that we're creating are changing every day for our ability to actually put a satellite up in the air or ensure against the next pandemic. Our customers are not just companies or individuals, but they could be governments completely different entities than we would have been in sharing in the past and channels were changing. We sell direct, we sell through brokers and products are actually being embedded in other products. So you may buy something and not even know that insurance is a part of it. And what's most interesting here is the last word which is around return In the old world. Insurance was a cash flow business in which we could bring the premium in and get a level of interest income and being able to use that money to be able thio buffer the underwriting results that we would have. But those returns or dramatically reduced because of the interest income scenario, So we have to generate a higher rate of return. So what do we need to do? Is an insurance company in through this digital transformation to be able to get there? Well, fundamentally, we need to rethink how we're using information, and this is where thought spot and the cloud coming for us. We have two basic problems that we're looking to solve with information. The first one is information veracity. Do we believe it? When we get it? Can we actually trust it? Do we know what it means when we say that this is a policy in force or this is a new customer where this is the amount of attention or rate that we're going to get? Do we actually believe in that piece of data? The second is information velocity. Can we get it fast enough to be able to capitalize upon it? So in other words, we're We're working in a situation where the feedback loop is closing quickly and it's operating at a speed that we've never worked in before. So if we can't solve veracity and velocity, then we're never going to be able to get to where we need to go. So when we think of something like hot spot, what do we use it for? We use it to be able to put it in the hands of our business years so that they could ask the key questions about how the business is running. How much profit of my generating this month? What brokers do I need to talk? Thio. What is my rate retention? Look like what? The trends that I'm seeing. And we're using that mechanism not just to present nice visualizations, but to enable that really quick, dynamic question and answer and social, socially enabled search, which completely puts us in a different position of being able to respond to the market conditions. In addition, we're using it for pattern recognition. Were using it for artificial intelligence. We're gonna be capitalizing on the social aspect of of search that's that's enabled through thought spot and also connecting it into our advanced machine learning models and other capabilities that we currently have. But without it solving the two fundamental problems of veracity and velocity, we would be handicapped. So let me give you some advice about if I were in your position and you don't need to be in sleepy old industry like insurance to be able to do this, I'll leave you with three things. The first one is picking water holes so What are the things that you really want to be good at? What are the pieces of information that you really need to know more about? I mean, in insurance, its customers, it's businesses, locations, it's behavior. There are only a few water also really understand and pick those water holes that you're going to be really good at. The second is stand on the shoulders of giants. You know, in the world of technology, there's often a philosophy that says, Well, I can build it something better than somebody else create if I have it in house. But I'm happy to stand on the shoulders of giants like Thought Spot and Google and others to be able to create this capability because guess what? They're gonna out innovate any of the internal shops all day and every day. So don't be afraid. Thio. Stand side by side on the shoulders of giants as part of your journey. Unless you've got to build these organizations not just the technology for rapid experimentation and learning, because guess what? The moment you deliver insight, it begs another question, which also could change the business process, which could change the business model and If your organization the broader organization of business technology, analytics, customer service operations, etcetera is not built in a way that could be dynamic and flexible based on where the market is or is going, then you're gonna miss out on the opportunity. So again, I'm proud to be part of the fast black community. Really love the technology. And if if you look too, have the same kind of issues with your given industry about how you can actually speed up decision making, deliver insights and deliver this kind of search and recommended to use it. And with that, let's go to some questions. >>Awesome. Thank you so much, Michael and Jim for that in depth perspective and those tangible takeaways for our audience. We have a few minutes left and would love to ask a few questions. So here's the first one for Michael Michael. What are some of the most important things that you know now that you didn't know before you started this process? I think one of >>the things that's a great question. I think one of the things that really struck me is that, you know, traditional thinking would be very use case centric or pain point centric Show me, uh, this particular model or a particular question you want me to answer that can build your own analytics to do that or show me a deficiency in the system and I can go and develop a quick head that will do well, then you know, wallpaper over that particular issue. But what we've really learned is the foundation matters. So when we think about building things is building the things that are below the waterline, the pipes and plumbing about how you move data around how the engines work and how it all connects together gives you the above the waterline features that you could deliver to. You know, your employees into your customers much faster chasing use cases across the top above the waterline and ignoring what's below the water line to me. Is it really, uh, easy recipe too quick? Get your way to nothing. So again, focus on the foundation bill below the water line and then iterated above the water line that z what the lessons we've learned. It has been very effective for us. >>I think that's a very great advice for all those watching today on. But Here's one for Jim. Jim. What skills would you say are required for teams to truly adopt this digital transformation process? >>Yeah, well, I think that's a really good question, and I think I'd start with it's It's never one. Well, our experience has shown us number a one person show, right? So So we think to kind of drive some of the value that that that Michael spoke about. We really looked across disciplinary teams, which is a an amalgamation of skills and and team members, right? So if you think about the data science skills required, just kinda under under understand how toe toe work with data and drive insights, Sometimes that's high end analytic skills. Um, where you gonna find value? So some value architectural skills Thio really articulate, you know, Is this gonna move the needle for my business? I think there's a couple of critical critical components of this team. One is, you know, the operation. Whatever. That operation maybe has to be embedded, right, because they designed this is gonna look at a piece of data that seems interesting in the business Leader is going to say that that actually means nothing to me in my operation. So and then I think the last the last type of skill would be would be a data translator. Um, sitting between sometimes the technology in the business so that this amalgamation of skills is important. You know, something that Michael talked about briefly that I think is critical is You know, once you deliver insight, it leads to 10 more questions. So just in a intellectual curiosity and an understanding of, you know, if I find something here, here, the implications downstream from my business are really important. So in an environment of experimenting and learning thes thes cross discipline teams, we have found to be most effective. And I think we thought spot, you know, the platform is wired to support that type of analysis and wired to support that type of teaming. >>Definitely. I think that's though there's some really great skills. That's for people to keep in mind while they are going through this process. Okay, Michael, we have another question for you. What are some of the key changes you've had to make in your environment to make this digital transformation happen? >>That's a great question. I think if you look at our environment. We've got a mixture of, you know, space agent Stone age. We've got old legacy systems. We have all sorts of different storage. We have, you know, smatterings of things that were in cloud. The first thing that we needed to do was make a strong commitment to the cloud. So Google is our partner for for the cloud platform on unabashedly. The second thing that we needed to dio was really rethink the interplay between analytics systems in operational systems. So traditionally, you've got a large data warehouses that sit out over here that, you know, we've got some kind of extract and low that occurs, and we've got transactional operational systems that run the business, and we're thinking about them very differently from the perspective of bringing them together. How Doe I actually take advantage of data emotion that's in the cloud. So then I can actually serve up analytics, and I can also change business process as it's happening for the people that are transacting business. And in the meantime, I can also serve the multiple masters of total cost and consumption. So again, I didn't applications are two ships that pass in the night and never be in the world of Sienna. When you look at them is very much interrelated, especially as we want to get our analytics right. We want to get our A i m all right, and we want to get operational systems right By capturing that dated motion force across that architecture er that was an important point. Commit to the cloud, rethink the way we think analytics systems, work and operational systems work and then move them in tandem, as opposed to doing one without the other one in the vacuum. >>That's that's great advice, Michael. I think it's very important those key elements you just hit one question that we have final question we have for Jim. Jim, how do you see your client sustain the benefits that they've gained through this process? >>Yeah, it's a really good question. Um, you know, I think about some of the major themes around around beyond right, data fluency is one of them, right? And as I think about fluency, you only attain fluency through using the language every single day. They were day, week, over week, month over month. So you know, I think that applies to this. This problem too. You know, we see a lot of clients have to change probably two things at the same time. Number one is mindset, and number two is is structure. So if you want to turn these data projects from projects into processes, right, so so move away from spinning up teams, getting getting results and winding down. You wanna move away from that Teoh process, which is this is just the way working for these teams. Um, you have to change the mindset and often times you have to marry that with orb structure change. So So I'm gonna spin up these teams, but this team is going to deliver a set of insights on day. Then we're gonna be continuous improvement teams that that persist over time. So I think this shifting from project teams to persistent teams coupled with mindset coupled with with or structure changed, you know, a lot of times has to be in place for a period of time to get to get the fluency and achieve the fluency that that most organizations need. >>Thanks, Jim, for that well thought out answer. It really goes to show that the transformation process really varies when it comes to organizations, but I think this is a great way to close out today's track. I like to think Jim, Michael, as well as all the experts that you heard earlier today for sharing. There's best practice as to how you all can start transforming your organization's by building a data fluent culture, Um, and really empowering your employees to understand what data means and how to take actions with it. As we wrap up and get ready for the next session, I'd like to leave you all with just a couple of things. Number one if you miss anything or would like to watch any of the other tracks. Don't worry. We have everything available after this event on demand number two. If you want to ask more questions from the experts that you heard earlier today, you have a chance to do so. At the Meet The Experts Roundtable, make sure to attend the one for track four in cultivating a data fluent culture. Now, as we get ready for the product roadmap, go take a sip of water. This is something you do not want to miss. If you love what you heard yesterday, you're gonna like what you hear today. I hear there's some type of Indiana Jones theme to it all, so I won't say anything else, but I'll see you there.

Published Date : Dec 10 2020

SUMMARY :

best practices that you can apply to build that data flew into culture in your organization So if you think about your customer data, So in order to be able to deliver all of the potential value that we talked about with regard to data that you know now that you didn't know before you started this process? the above the waterline features that you could deliver to. What skills would you say are required for teams And I think we thought spot, you know, the platform is wired to What are some of the key changes you've had to make in your environment to make this digital transformation I think if you look at our environment. Jim, how do you see your client sustain the benefits that they've gained through this process? So I think this shifting from project teams to persistent teams coupled There's best practice as to how you all can start transforming

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JimPERSON

0.99+

MichaelPERSON

0.99+

Michael TeohPERSON

0.99+

Cindy HausenPERSON

0.99+

Ruhollah BenjaminPERSON

0.99+

StevePERSON

0.99+

GoogleORGANIZATION

0.99+

Jim BramblettPERSON

0.99+

ComcastORGANIZATION

0.99+

six monthsQUANTITY

0.99+

EuropeLOCATION

0.99+

Paula EPERSON

0.99+

ValeriePERSON

0.99+

DNAORGANIZATION

0.99+

10 more questionsQUANTITY

0.99+

YasminPERSON

0.99+

todayDATE

0.99+

two companiesQUANTITY

0.99+

two thingsQUANTITY

0.99+

North AmericaLOCATION

0.99+

TerexORGANIZATION

0.99+

one questionQUANTITY

0.99+

two shipsQUANTITY

0.99+

yesterdayDATE

0.99+

oneQUANTITY

0.99+

Michael StonePERSON

0.99+

ThioPERSON

0.99+

hundreds of yearsQUANTITY

0.98+

second thingQUANTITY

0.98+

FirstQUANTITY

0.98+

CNN InsuranceORGANIZATION

0.98+

two prestigious guestsQUANTITY

0.98+

secondQUANTITY

0.98+

Data LodgeORGANIZATION

0.98+

three thingsQUANTITY

0.98+

two fundamental problemsQUANTITY

0.97+

Thought SpotORGANIZATION

0.96+

SiennaLOCATION

0.96+

a yearQUANTITY

0.96+

first oneQUANTITY

0.95+

pandemicEVENT

0.95+

OneQUANTITY

0.95+

two basic problemsQUANTITY

0.94+

Michael MichaelPERSON

0.94+

third horizonQUANTITY

0.93+

earlier todayDATE

0.93+

3rdQUANTITY

0.92+

OnetoORGANIZATION

0.91+

Four wallsQUANTITY

0.9+

first thingQUANTITY

0.89+

six minutesQUANTITY

0.89+

NPRORGANIZATION

0.88+

decadesQUANTITY

0.85+

every vehicleQUANTITY

0.84+

single dayQUANTITY

0.82+

third barQUANTITY

0.81+

Meet The Experts RoundtableEVENT

0.79+

PrincetonORGANIZATION

0.78+

deviceQUANTITY

0.76+

3rd roadQUANTITY

0.76+

Indiana JonesTITLE

0.76+

number twoQUANTITY

0.75+

every humanQUANTITY

0.74+

three horizonsQUANTITY

0.74+