Karl Fosburg, Hughes | ScienceLogic Symposium 2019
(upbeat music) >> From Washington, D.C., it's theCUBE, covering ScienceLogic Symposium 2019. Brought to you by ScienceLogic. >> Hi, I'm Stu Miniman, and you're watching theCUBE's exclusive coverage of ScienceLogic Symposium 2019 here at the Ritz Carlton in Washington, D.C. Happy to welcome to the program first-time guest but a long-time customer of ScienceLogic, Karl Fosburg, who's the senior director of systems integration at Hughes. Thanks so much for joining us. >> Thanks for having me. >> Alright, so we're here in D.C., and that's important 'cause first of all, you're based down here, and ScienceLogic is based down here. >> Yup. Bring us back a little bit. You said you'd been a customer a long time as to... maybe give us a little bit of the before picture, if you could. >> Sure, so yeah, we've been a customer for 12 years now, and we picked ScienceLogic for a big list of reasons, actually wrote the RFI itself, and probably 20 pages long. Lots of people came back and gave us responses. ScienceLogic was one of the short-listed candidates that we picked out. We did a bake-off with a couple other vendors, and ScienceLogic was the clear winner. >> All right. So Karl, lets zoom out for a second here >> Okay. and just give us a level set on Hughes, what Hughes is today. You know, I'm familiar with what Hughes was back in the day and there's certain pieces that are no longer there so give us a level set on the company in the business. >> Yeah, sure. So, Hughes is formally known as Hughes Network Systems, were owned by EchoStar Corporation and we're a managed service provider. We have a consumer business where we provide broadband internet to folks that live really out in the countryside and can't get cable, or DSL, or FIOS, things like that. We have about 1.4 million subscribers in our consumer business. We've also launched consumer services in South America, Brazil, Ecuador, Columbia, places like that. Really serving under-served areas for giving them broadband. We also have an enterprise business where we sell to credit card processing, gas and oil, pipelines, fast foods, places like that. >> Okay. So Karl, is it safe to say you use satellites but no longer put them into space? >> We use satellites, that's correct. We contract that out now. Yeah, we are the last remaining Hughes company. >> Yeah. So, service providers are always fascinating to me because we talk about enterprise IT and how fast things are changing. At least for my entire career, when I talk to service providers, change and growth is really just baked into the DNA. >> Yep. I need to move fast. When you talk about scale, it means something very different and living in that complex world, and just give us a little bit about what things are like in 2019 for you. >> Sure, yeah. The scale is always our challenge. Like I like to say, we have sales people too and they're out there selling new products and services constantly. So we needed to be able to grow with those sales. We started out with a couple thousand devices that needed monitor in applications. Now we're up to almost 30 thousand Nox systems that we monitor. Also, we're keeping track of nearly 2 million terminals and the status of them and things like that. So, yeah, scale is super important to us. >> Okay. So, bring us inside, where ScienceLogic fits into your equation. >> Sure. So when we put out our FI to industry years ago, we were trying to replace a whole bunch of different tools. We had other vendor products and things like that. We really wanted to consolidate tools as much as possible into a single platform. Traditional ICNP, SNMP monitoring is how we originally started. Now we have lots and lots of integration with other tools, APM products, different streaming media products. We're integrating more and more with streaming services now in terms of getting data into the platform. So, yeah ... >> Yeah. Karl, I'd love to get your viewpoint. Something that came through to me in the keynote is on the one hand the years like, oh, well AIOps is going to replace things like some of the traditional players here, but then you see onto the stage it's like, oh okay, we're actually going to have integrations with a number of these tools. So yes, there's overlap but it needs to be integrated. How do you look at that as, is this the primary product? Is this a piece of the product? How do data collection between all these various tools go together? Well, that's a great question 'cause that's exactly what we and lots of other folks are grappling with right now. We've got data producers all over the place now, and we're really focused on the data production and high quality data back at the source into a real pub-sub type of architecture of which we believe that ScienceLogic will be both a producer and consumer of that pub-sub architecture, and whether it's the one tool to rule them all or not? Probably not, no ones going to be that, and we've got lots of vendors that purport to be the one tool to rule them all. But really, we're focused on ScienceLogic at this point to be really the focus, especially for our operations folks. We've got 24/7 staff. They use ScienceLogic as their main tool that they go to. So that's really where we want the data to end. That's where we want as much intelligence to end as possible. >> So, I'd be curious... You've been using the tool for a dozen years now. 12 years ago the discussion of data wasn't no where near what it was today. >> Correct. Can you bring us through a little bit of that journey, and you mentioned data a bunch, but how important is that? Where are you in your journey for... There was that maturity model that was put up there, the role of data today, and where do you see it going? >> Well, data is everything today. 12 years ago we were grappling with things like naming conventions and simple firewall rules and whatnot. Those days are long, long past. Now, the data quality and the pipeline is what we're focused on right now 'cause like Dave said in the keynote, "Garbage in, garbage out". We're really really focused on trying to get good quality data by focusing on the source of the data. As opposed to fixing it after it's been moved into whatever platform it ends up in. So we're using proper scheme of management and trying to bake-day the governance into the actual engineered products, and if it's not governed data then you don't get to look at it. And that's really our focus. We're an engineering company at heart so we actually write most of our own software. So we're kind of in control of our own destiny there, and we're really focused on pushing that back because we think the benefits in the long run are going to be worth that investment to get clean data all the way back to the source. >> Yeah. So Karl, one of the big shifts I've seen in the last few years... When you talked about managing and monitoring, I used to as the administrator or controller, used to be able to go and touch all of those pieces. Today, there's more and more some of those pieces I need to manage not just the stuff that's in my environment or my hosted environment, but outside of my environment and doing public clouds. >> Yep. >> Bring us up to speed as to where does Cloud fit? What's your Cloud strategy? >> Sure. We're actually launching some of our first applications in GCP right now. So we're working with our Google partners in this particular case to integrate the data that they can collect natively in their systems, bring it back in as actionable events into ScienceLogic platform, while keeping the vast majority of the data native to their platform. No need to bring back application specific data unless we're actually going to do something with it, or if we need to cross-correlate it with other information. The data sources live in our data centers, not in GCP. So we need to combine it with information we know about, our on-prem equipment, plus the applications running there. So that's the data we'll bring back to cross correlate. >> How do you decide what lives where, and where does ScienceLogic fit in the whole discussion? >> Yeah, that's a good question. What lives where... We kind of go back to license models and cost models. We're pretty good sticklers about focus on doing proper upfront analysis to make sure we don't end up with some six or seven figure bill at the end of the year from a Cloud provider. We also tend to do a lot of stuff on-prem because a lot of our systems have to run in one of our data centers. If you've ever driven past our building you'll see these large large dish's antennas outside. A lot of our equipment has to be within milliseconds or microseconds even of those dishes. So we actually have a large data center presence kind of scattered around the country and around the world. So, we have the compute resources to do it ourselves. >> Yeah, and even I would think edge computing something that plays into what you're doing. What do you see as some of the main challenges as the kind of footprint for what you're doing and things to spread out more? >> Yeah. Keeping, let's say pet projects, and shadow IP projects, keeping them in check is a really big focus right now, and also with DevOps sort of the "I'll do everything, I'm going to be my own IP department" philosophy is a new challenge that we're facing. So integrating with what the DevOps guys are building into our overall monitoring strategy, that's when a new challenge has really creeped up or it last, lets say six months or a year. >> Okay. Is there an intersection between your use of the ScienceLogic in the DevOps team yet? >> Not a big one yet. I think we're still learning DevOps at this point. I consider it a lifestyle change, not really a thing that you go get. So, I think we're still kind of early adoption for DevOps, and really only greenfield projects at this point in time. >> Okay. How about the term of the show is AIOps, so what's your act in the AIOps? Where do things like machine learning and automation fit into your environment? >> Yeah. We actually have quite a few used cases where we really think that machine learning is going to help us a lot. Cross-correlation is a big area for us. We have lots of information, but figuring it out, feeding like the APMs and Cisco ACI software defined networking, and those bits of information all into one product, we've been challenging ScienceLogic on this for quite a while. It's like, okay, you guys know about everything now. Tell us something that we didn't know before, and that's kind of where we're at, and seeing the announcements from this morning was really encouraging that we're finally see the horizon at this point. >> Yeah. If you can, (mumble), but how has ScienceLogic been doing on the roadmap? What helps between ScienceLogic and your vendor ecosystem out there? What more could they be doing to make your life easier? >> Yeah, that's a good question. So, if you would ask me that a year ago I probably wouldn't have been as encouraged as I am today. It was a challenge and they're engineering company, we're an engineering company. Sometimes you have to focus on foundation, and it's not cool, it's not sexy, it's not shiny, but you have to do it. And I think they've been focused a lot on their foundational aspects of the product which will actually enable doing things like machine learning. There's no point in doing machine learning if you have bad data or if you have a platform that doesn't support very very fast queries, and the graph QL database. We think that we're going to use that extensively and through the API, not even through the UIs. So, I think foundation is important. I think they focused on it for the last couple of years. I think we're finally going to start to see the benefits of it. Both single factor sort of machine learning, anomaly detection, but we really want to see it on a cross domain. I want to be able to see in ScienceLogic impacted by in our full stack environment. >> Yeah. I'd expect you probably had some visibility into what was coming up in the Big Ben release. Is there anything that jumped out at you, or that you're ready to use day one? >> The automations, for sure. We'll use that definitely day one. The way they've gone through and really made it a lot easier to use. You don't have to be a python developer anymore to actually get a lot of benefits out of the product. So I can turn that over to some of our junior engineers to actually handle those things, and we get a lot more sophisticated with them now. Primarily we used to focus on, "oh, let's send an email" type of thing. Now we can actually execute back-end actions without having to have a programmer to do it. So that right away we're going to use out of box. >> Okay. And in that forward looking piece, without breaking any visibility you have into their roadmap, what would you like to see more? >> I'd like to see more getting performance data into their real scalable, laterally scalable back end. And that's certainly an area that I'd love to see as much progress as fast as possible on. Also the Pub-Sub subscribing to streams coming out of our Kafka cluster. We want that to be in the product as soon as possible 'cause we really believe that that's where the majority of our data of the future is going to come from. Also, new applications, they come and go. Docker containers spin up, spin down. So the state of something is no longer fixed and we need to be able to integrate with Kubernetes and our open shift platform to be able to know, "Well what should be running right now?" So, those are the things that are on our roadmap that we need out of the product as soon as possible. >> Yeah. So it definitely came to me that ScienceLogic's listening. Are they moving fast enough for you? >> No. No ones ever moved fast enough. So, yeah, they're moving so that's good, but yeah, I could use it today if they had it. >> All right. Karl, last thing, you've been to a few of the ScienceLogic events in the past. You've been to other industry shows, what's special about the show? What brings you and your team to ScienceLogic symposiums? >> One of the things that ScienceLogic does a really good job is they bring a lot of resources here, and actual resources that actually know stuff. It's not just telling me, "Oh, that shiny new object is going to be in the platform at some indeterminate time in the future." It's the actual engineers, people writing code, product managers, things like that. So having access directly to the people who actually do the platform updates and changes is super valuable. The new sensor where we can touch and feel, take attires on new things has been excellent this year. So I think that's probably the thing, just quick access to all the resources. We have a bit of an advantage, we're only 45 minutes up the road. We can come down here as need be to visit their headquarters but having everyone here at one time is great. >> All right. Well Karl Forsberb, really appreciate you sharing your history and experience in future direction as to where things are going on your end. >> All right. >> I'm Stu Miniman. We'll be back with lots more coverage here from ScienceLogic 2019. Thanks for watching theCube. (upbeat music)
SUMMARY :
Brought to you by ScienceLogic. and you're watching theCUBE's exclusive coverage and ScienceLogic is based down here. of the before picture, if you could. and we picked ScienceLogic for a big list of reasons, So Karl, lets zoom out for a second here and there's certain pieces that are no longer there so and we're a managed service provider. So Karl, is it safe to say you use satellites We contract that out now. So, service providers are always fascinating to me and just give us a little bit about and the status of them and things like that. where ScienceLogic fits into your equation. Now we have lots and lots of integration with other tools, and lots of other folks are grappling with right now. So, I'd be curious... the role of data today, and where do you see it going? and we're really focused on pushing that back because I need to manage not just the stuff that's in my environment of the data native to their platform. We kind of go back to license models and cost models. and things to spread out more? and also with DevOps sort of the "I'll do everything, ScienceLogic in the DevOps team yet? and really only greenfield projects at this point in time. How about the term of the show is AIOps, think that machine learning is going to help us a lot. What more could they be doing to make your life easier? and the graph QL database. I'd expect you probably had some visibility into what was and really made it a lot easier to use. what would you like to see more? of our data of the future is going to come from. So it definitely came to me that ScienceLogic's listening. So, yeah, they're moving so that's good, events in the past. So having access directly to the people who actually history and experience in future direction as to where We'll be back with lots more coverage
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Karl Fosburg | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
D.C. | LOCATION | 0.99+ |
2019 | DATE | 0.99+ |
Karl | PERSON | 0.99+ |
Ecuador | LOCATION | 0.99+ |
Karl Forsberb | PERSON | 0.99+ |
12 years | QUANTITY | 0.99+ |
Brazil | LOCATION | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
Hughes Network Systems | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
EchoStar Corporation | ORGANIZATION | 0.99+ |
South America | LOCATION | 0.99+ |
ScienceLogic | ORGANIZATION | 0.99+ |
Washington, D.C. | LOCATION | 0.99+ |
20 pages | QUANTITY | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Columbia | LOCATION | 0.99+ |
six months | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
a year ago | DATE | 0.99+ |
today | DATE | 0.99+ |
Both | QUANTITY | 0.99+ |
12 years ago | DATE | 0.99+ |
one | QUANTITY | 0.98+ |
python | TITLE | 0.98+ |
one tool | QUANTITY | 0.98+ |
ScienceLogic Symposium 2019 | EVENT | 0.97+ |
first applications | QUANTITY | 0.97+ |
Today | DATE | 0.97+ |
theCUBE | ORGANIZATION | 0.97+ |
about 1.4 million subscribers | QUANTITY | 0.97+ |
first-time | QUANTITY | 0.96+ |
45 minutes | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
single platform | QUANTITY | 0.96+ |
nearly 2 million terminals | QUANTITY | 0.96+ |
Hughes | PERSON | 0.96+ |
RFI | ORGANIZATION | 0.96+ |
a year | QUANTITY | 0.95+ |
day one | QUANTITY | 0.95+ |
One | QUANTITY | 0.95+ |
Kafka | TITLE | 0.94+ |
one product | QUANTITY | 0.94+ |
seven figure | QUANTITY | 0.93+ |
one time | QUANTITY | 0.92+ |
this morning | DATE | 0.92+ |
Kubernetes | TITLE | 0.92+ |
almost 30 thousand | QUANTITY | 0.91+ |
AIOps | TITLE | 0.91+ |
this year | DATE | 0.9+ |
APMs | ORGANIZATION | 0.89+ |
Hughes | ORGANIZATION | 0.87+ |
Carlton | ORGANIZATION | 0.84+ |
years | DATE | 0.82+ |
DevOps | TITLE | 0.81+ |
thousand devices | QUANTITY | 0.81+ |
AIOps | ORGANIZATION | 0.8+ |
Big Ben | TITLE | 0.8+ |
GCP | TITLE | 0.78+ |
Leslie Minnix-Wolfe & Russ Elsner, ScienceLogic | ScienceLogic Symposium 2019
(energetic music) >> From Washington D.C., It's theCUBE! Covering ScienceLogic Symposium 2019. Brought to you by ScienceLogic. >> Welcome back to TheCUBE's coverage of ScienceLogic Symposium 2019, I'm Stu Miniman, and we're here at the Ritz-Carlton in Washington, D.C. Happy to welcome to the program two first-time guests from ScienceLogic, to my left is Leslie Minnix-Wolfe, who is the Senior Director of Product Marketing. And to her left, is Russ Elsner, who's the Senior Director of Product Strategy. Thank you so much for joining us. >> Thank you sir. >> Good, good to be here. >> All right, so Leslie let's start with you. Talk a lot about the product, a whole lot of announcements, Big Ben on the keynote this morning. Everybody's in, getting a little bit more of injection in the keynote today. Tell us a little bit about your roll, what you work on inside of ScienceLogic. >> Okay, so I am basically responsible for enterprise product marketing. So my job is to spin the story and help our sales guys successfully sell the product. >> All right, and Russ. >> I'm part of the product strategy team. So, I have product management responsibilities. I work a lot with the analytics and applications. And I spend a lot of time in the field with our customers. >> All right so, Leslie let's start with enterprise, the keynote this morning. The themes that I hear at many of the shows, you know we talk about things like digital transformation. But, we know the only constant in our environment is change. You know, it's good. I've actually talked to a couple of your customers and one of them this morning he's like "Look, most people don't like change. "I do, I'm embracing it I'm digging in, It's good." But, you know, we have arguments sometimes in analyst circles. And it's like are customers moving any faster. My peers that have been in the industry longer, they're like, Hogwash Stu. They never move faster they don't want change, we can't get them to move anything. I'm like, come on, if they don't the alternative is often, You're going to be... You know, you're competitors are going to take advantage of data and do things better. So, bring us a little bit of insight as what you're hearing from your customers both here and in your day to day. >> Sure, yeah, change is constant now and so one of the big challenges that our customers are facing is how do I keep up with it. The traditional manual processes that they've had in place for years are just not sufficient anymore. So they're looking for ways to move faster, to automate some of the processes that they've been doing manually. To find ways to free up resources to focus on things that do require a human to be involved. But they really need to have more automation in their day to day operations. >> All right, so Russ when I look at this space you know, tooling, monitoring has been something that in my career, has been a little bit messy. (laughter) Guess a little bit of an understatement even. It's an interesting... When I look at, kind of, that balance between what's happening in the infrastructure space and the application space. I went through, one of your partners over here is like "from legacy to server lists and how many weeks." (laughter) And I'm like okay that sounds good on a slide but, these things take awhile. >> Absolutely. Bring us inside a little bit, kind of the the application space an how that marries with the underlying pieces and monitoring. >> Yeah, you have a lot of transformations happening. There's a lot of new technologies and trends happening. You hear about server lists or containers or microservices. And that does represent a part of the application world. There are applications being written with those technologies. But, one of the things is that those applications don't live in isolation. It's that there part of broader business services and we're not rewriting everything and so the new shiny application and the new framework has to work with the old legacy application. So, a big piece of what we see is how do we collapse those different silos of information? How do we merge that data into something meaningful? You can have the greatest Kubernetes based microservice application but, if it requires a SAP instance it's on PRIM it's on Bare Metal. Those things need to work together. So, how do you work with an environment that's like that? Enterprise, just by it's nature is incredibly heterogeneous, lot's of different technologies and that's not going to change. >> Yeah. It's going to be that way. >> You're preaching to the choir, here. You know, IT it always seems additive the answer is always and. And, unfortunately, nothing ever dies. By the way you want to run that wonderful Kubernetes Docker stuff and everything. I could do it on a mainframe with Z Linux. So, from that environment to the latest greatest hypercloud environment >> Right. Talk a little bit about your customers. Most of them probably have hundreds of applications. They're working through that portfolio. What goes where, how do I manage all of those various pieces, and not kill my staff? (laughter) One of the things we're spending a lot of time with this, is that obviously, we come from a background of infrastructure management. So, we understand the different technologies different layers and the heterogeneous nature and on top of that runs application. So they have their own data and there's APM space. So we're seeing a lot of interest in the work we're doing with taking our view of the infrastructure and marrying it to the application view that we're getting from tools like Appdynamics or Dynatrace or New Relic. And so, we're able to take that data and leverage it on top of the infrastructure to give you a single view which aids in root cause analysis, capacity planning and all the different things that people want to do. Which lead us to automation. So, this idea of merging data from lots of sources is a big theme for us. >> All right so, Leslie who are some of the key constituents that you're talking to, to messaging to. In the industry we talked about silos for so many time. And now it's like oh, we're going to get architects and generalists. And you know cloud changes everything, yes and no. (laughter) We understand where budgets sit for most CIO's today. So, bring us inside what you're seeing. >> Sure. Yeah, we're seeing a tremendous change. Where before we use to talk more to the infrastructure team, to the folks managing the servers, the storage the network. We're really seeing a broader audience. And a multiple constituent. We're looking at directors, VP's, CIO's, CEO's, architects. We're starting to see more people that are tools managers, folks that are involved in the application side of the house. So, it's really diverged. So, you're not going in and talking to one person you're talking to lots of different teams, lots of different organizations that need to work together. To Russ's point in about being able to bring all this data together. As you bring it together, those different stakeholders have more visibility into each others areas. And they also have a better understanding of what the impact is when something goes down in the infrastructure, how it effects the app and vice versa. >> Leslie, the other thing I'm wondering if you can help me squint through, when I looked at the landscape, it's, you know, my ITSM's I've got my logging, I've got all my various tools and silos. When I hear something like, actually, your CEO Dave just said "Oh, we just had a customer that replaced 50 tools." with there it's like, How do you target that? How does a customer know that they have a solution that they have a challenge that you fit, Because, you understand, you can't be all things to all people. You've got certain partners that might claim that kind of thing. >> Right But, where you fit in the marketplace how do you balance that? >> Well, so I think what we're seeing now is that there have been some big players for a long time. What we refer to fondly as the Big Four. And those companies really haven't evolved to the extent that they can support the latest technology. Certainly at the speed with which organizations are adopting them. So, they might be able to support some of the legacy but they've really become so cumbersome, so complicated and difficult to maintain people are wanting to move away from them. I would say five years ago, most organizations weren't willing to move down that path. But with some of the recent acquisitions, The Broadcom acquisition, Microfocus acquisition. You're seeing that more organizations are looking to replace those tools in their entirety. And as a result of that they're looking at how can I minimize my tool set. I'm not going to get rid of everything and only have one vendor. But, how do I pick the right tools and bring them together. And this is one of the areas where we do extremely well in that we can bring in data, we can integrate in other tools, we can give you the full picture. But, we're kind of that hub, that central. And I think we heard that earlier today from Bailey at Cisco, where he talked about ScienceLogic is really the core to their monitoring and management environment, because we're bringing the data and we're feeding the data in to other systems as well as managing it within ScienceLogic. >> Russ, I actually heard, data was emphasized more that I expect. I know enough about the management and monitoring space. We understand data was important to that, I'm a networking guy by background, we've been talking about leveraging the data for network and using some automation and things like that but it's a little bit different. Can you talk some about those relationships to data? We understand data's going to be everywhere and customers actually wrapping my arms around it make sure I can manage it, compliance and to hopefully get value out of that is one of the most important things in today. >> Absolutely, so one of the things we stress a lot when we talk about data, it use to be that data was hard to come by. We were data poor and so how do we get... We don't have a probe there so how do we get this data, Do we need agent? That's different now, data is... We are drowning in data, we have so much data. So, really the key is to give that data context. And so for us that means a lot of structure, and topology and dependencies across the layers of abstraction, across the application. And we think that's really the key to taking this, just vast unstructured mess of data that isn't useful to the business and actually be able to take... Apply analytics, and actually take action, and ultimately drive automation by learning and maintaining that structure in real time automatically, because that's something a human can't do. So, you need machine help, you need to automate that. >> So, Leslie, there was in the keynote this morning that to start discussion of the AI Ops maturity model >> Right >> And one of the things struck me is there was not a single person in the poll that said, yes I've gone fully automated. And first, there's the maturity of the technology, the term and where we are. But, there's also that, let's put it on the table. That fear sometimes, is to "Oh my gosh, the machines are taking our jobs" (laughter) You know, we laugh, but it is something that needs to be addressed. How are you addressing that, Where are your customers with at least that willingness, because I use to run operations for a number of years, and I told my team, look you're going to have more work next year, and you're going to have more things change, so if you can't simplify, automate. Get rid of things, I've got to have somebody helping me, and boy those robots would be a good help there. >> What we're seeing is, I mean let's be real, people don't like to do the mundane tasks, right. So you think about, When you report an issue to the service desk. Do you really want to open that ticket? Do you want to enter in all that information yourself? Do you want to provide all the details that they need in order to help you? No. People don't do it they put in the bare minimum and then what ends up happening is there's this back and forth, as they try collect more information. It's things like that, that you want to automate. You want to be able to take that burden off of the individuals And do the things, or at least allow them to do the things that they really need to do. The things that require their intelligence. So, we can do things like clean up storage disk space when your starting to run out of disk space. Or we can restart a service, or we might apply a configuration change that we know that is inconsistent in environment. So, there's lots of things like that that you can automate without actually replacing the individual. You're just freeing them up to do more high level thinking. >> Russ, anything else along the automation line. Great customer examples or any successes that you've seen that are worth sharing? >> Yeah, automation also comes in the form of connecting the breadcrumbs. So, we have a great example. A customer we worked with, they had an EPM tool, one of the great ones, you know, top of the magic quadrant kind of thing, and it kept on reporting code problems. The applications going down, affecting revenue, huge visibility. And it's saying code problem, code problem ,code problem. But the problem is jumping around. Sometimes it's here, sometimes it's there. So, it seemed like a ghost. So, when we connected that data, the APN data with the V center data and the network data what it turned out was, there was a packet loss in the hypervisor. So, it was actually network outage that was manifesting itself as a code problem, and as soon as they saw that, they said what's causing that network problem? They immediately found a big spike of traffic and were able to solve it. They always had the data. They had the network data, they had the VMware data they had the JVM data. They didn't know to connect the dots. And so, by us putting it right next to each other we connected the dots, and it was a human ultimately that said I know what's wrong, I can fix that. But it took them 30 seconds to solve a problem that they had been chasing after for months. That's a form of automation too is get the information to the human, so that they can make a smart decision. That's automation just as much as rebooting a >> Exactly server or cleaning a disk >> Well right, It's The Hitchhikers Guide to the Galaxy. Sometimes, the answers are easy if I know what question to ask. >> Exactly, yes. (laughter) >> And that's something we've seen from data scientists too. That's what their expertise is, is to help find that. All right, Leslie give us a little view forward. We heard a little bit, so many integrations, the AI ops journey. What should customers be looking for forward? What are they asking you, to help bring them along that journey? >> Oh gosh. They're asking us to make it easier on all counts. Whether it's easier to collect the data, easier to add the context to the data, easier to analyze the data. So, we're putting more and more analytics into our platform. So that their not having to do a lot of the analysis themselves. There's, as you said earlier, there's the folks that are afraid they're going to lose their job because the robots or the machines are taking over. That's not really where I see it. It's just that we're bringing the automation in ways and the analytics in ways that they don't want to have to do, so that they can look at it and solve the really gnarly problems and start focusing on areas that are not necessarily going to be automatable or predictable. It's the things that are unusual that their going to have to get involved in as opposed to the things that are traditional and constant. So, Russ, I'd love for you to comment on the same question. And just a little bit of feedback I got talking to some of the customers is they like directionally where it's going, but the term they through out was dynamic. Because, if you talk about cloud you talk about containers. Down the road things like serverless. It's if it pulls every five minutes it's probably out of date. >> oh, Absolutely. I remember back when we talked big data, real time was one of those misnomers that got thrown out there. Really, what we always said is what real time needs to mean is the data in the right place to the right people to solve the issue >> Absolutely. >> Exactly. So, where do you guys see this directionally, and how do you get more dynamic? >> Well see, dynamic exists in a bunch of different ways. How immediate is the data? How accurate is the dependency map, and that's changing and shifting all the time. So, we have to keep that up to date automatically in our product. It's also the analytics that get applied the recommendations you make. And one of the things you can talk to data scientists and they can build a model, train a model, test a model and find something. But if they find something that was true three weeks ago it's irrelevant. So, we need to build systems that can do this in real time. That they can in real time, meaning, gather data in real time, understand the context in real time, recognize the behavior and make a recommendation or take an action. There's a lot of stuff that we have to do to get there. We have a lot of the pieces in place, it's a really cool time in the industry right now because, we have the tools we have the technology. And it's a need that needs to be filled. That's really where we're spending our energy is completing that loop. Closed loop system that can help humans do their jobs better and in a more automated way. >> Awesome. Well, Leslie and Russ, thanks so much for sharing your visibility into what customers are doing and the progress with your platforms. >> All right, thank you Stu. >> And we'll be back with more coverage here from ScienceLogic Symposium 2019. I'm Stu Miniman, and thank you for watching theCUBE. (energetic music)
SUMMARY :
Brought to you by ScienceLogic. And to her left, is Russ Elsner, of injection in the keynote today. and help our sales guys successfully sell the product. I'm part of the product strategy team. My peers that have been in the industry longer, and so one of the big challenges that our customers and the application space. the application space an how that marries and the new framework has to work It's going to be that way. So, from that environment to the latest greatest and marrying it to the application view that we're In the industry we talked about silos for so many time. lots of different organizations that need to work together. that they have a challenge that you fit, ScienceLogic is really the core to their is one of the most important things in today. So, really the key is to give that data context. And one of the things struck me is that they really need to do. Russ, anything else along the automation line. is get the information to the human, Well right, It's The Hitchhikers Guide to the Galaxy. (laughter) so many integrations, the AI ops journey. So that their not having to do the data in the right place to the and how do you get more dynamic? And one of the things you can talk to data scientists and the progress with your platforms. I'm Stu Miniman, and thank you for watching theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Leslie | PERSON | 0.99+ |
Leslie Minnix | PERSON | 0.99+ |
Russ | PERSON | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
Russ Elsner | PERSON | 0.99+ |
50 tools | QUANTITY | 0.99+ |
Leslie Minnix-Wolfe | PERSON | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Washington, D.C. | LOCATION | 0.99+ |
one | QUANTITY | 0.99+ |
Washington D.C. | LOCATION | 0.99+ |
ScienceLogic | ORGANIZATION | 0.99+ |
one vendor | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
today | DATE | 0.99+ |
first | QUANTITY | 0.98+ |
next year | DATE | 0.98+ |
TheCUBE | ORGANIZATION | 0.98+ |
five years ago | DATE | 0.98+ |
three weeks ago | DATE | 0.98+ |
Z Linux | TITLE | 0.98+ |
ScienceLogic Symposium 2019 | EVENT | 0.97+ |
both | QUANTITY | 0.97+ |
single person | QUANTITY | 0.95+ |
one person | QUANTITY | 0.94+ |
One | QUANTITY | 0.93+ |
this morning | DATE | 0.93+ |
Stu | PERSON | 0.93+ |
earlier today | DATE | 0.92+ |
hundreds of applications | QUANTITY | 0.92+ |
New Relic | ORGANIZATION | 0.91+ |
The Hitchhikers Guide to the Galaxy | TITLE | 0.9+ |
single view | QUANTITY | 0.89+ |
two first-time guests | QUANTITY | 0.89+ |
ScienceLogic Symposium | EVENT | 0.89+ |
Kubernetes Docker | TITLE | 0.88+ |
Dynatrace | ORGANIZATION | 0.86+ |
Bailey | PERSON | 0.86+ |
VMware | ORGANIZATION | 0.83+ |
every five minutes | QUANTITY | 0.78+ |
Appdynamics | ORGANIZATION | 0.73+ |
Bare Metal | TITLE | 0.71+ |
Carlton | ORGANIZATION | 0.67+ |
Big Ben | PERSON | 0.66+ |
Microfocus | ORGANIZATION | 0.64+ |
Ritz- | LOCATION | 0.6+ |
Kubernetes | TITLE | 0.6+ |
the areas | QUANTITY | 0.6+ |
CEO | PERSON | 0.59+ |
2019 | DATE | 0.59+ |
years | QUANTITY | 0.58+ |
Broadcom | ORGANIZATION | 0.57+ |
Wolfe | PERSON | 0.55+ |
each | QUANTITY | 0.5+ |
couple | QUANTITY | 0.49+ |
SAP | ORGANIZATION | 0.48+ |
Four | EVENT | 0.46+ |
Dave Link, ScienceLogic | ScienceLogic Symposium 2019
>> From Washington DC, it's theCUBE. Covering ScienceLogic Symposium 2019. Brought to you by ScienceLogic. >> I'm Stu Miniman and this is theCUBE's coverage of ScienceLogic Symposium 2019 here at The Ritz-Carlton in Washington DC. Really excited to welcome back to the program. It's the co-founder CEO and the Headmaster of Wizarding school, >> Wizarding school, yes. >> Dave Link, thank you so much for joining us. Great to be here Steve. >> All right, so Dave first of all congratulations, really been enjoying the event you know you you kicked it off in the keynote this morning great energy, really I think capturing you know where we are in you know IT in business today. We understand how things are changing so much and it's a complex world and ScienceLogic is trying to do Its part to help simplify and make it easier for IT to you know run at the speed of business and machines. >> That's exactly right. What's happening in the world right now is you've got a confluence of cloud apps, traditional legacy apps and they're colliding together and as they collide together you need new tools to manage that in a way that's different than what we've seen in the past. You're looking at lots of sources coming together to contextualize, not just seeing what's happening, understanding how systems relate to one another but acting upon them. Machine at machine speed means that automation is king and the wizard hat actually relates to a storyline we had earlier today when we think about how to educate the marketplace and the customers we realized that we needed a very new way of communicating. So videos E-Learning The Wizard of learning has been a theme of the show to help our customers to get up to speed and actually take full advantage of the application that we provide to help them deliver great service quality. >> Yeah well and we appreciate you bringing theCUBE to help with that video education of the community overall. >> That's right >> Yeah so you know look Dave you know wanted... let's step back for a second and you know we want to going to get to the business update but first you know the company is founded in 2003. You know cloud wasn't a term, some of the underlying foundations of what became cloud, you know existed back there. Those of us in the industry understand some of the waves that have happened there but you know to talk about cloud and micro services and all of these changes that have... So give us a little bit about that evolution about the original premise of the company, as we move now to you know the world of today and how you manage to keep the company moving and relevant >> I love telling this story Stu because it never gets old >> Yeah >> A lot of the original feces that we had about where service business service analysis was going, the application analysis connected to the infrastructure. Our belief was we were going to move to a world where it wasn't based on devices or nodes or systems. It was really based on this service and what we're seeing with cloud has accentuated that tenfold because services now are made up of compound things, technologies, service delivery mechanisms as a service platforms and they all have to work with one another The platform we built had an architecture that was very open that could take data streams from lots of different sources, create a common information model contextualize that and then act upon it. So now more than ever before, we really built the right platform with multi-tenancy, with role based access control with all the things that were really hard problems to solve code day one and now the thesis that we had that it was more about the service view is as important as it as it's ever been with ephemeral systems that are coming and going, with really containerized systems on top of virtual machines on top of their metal. All these abstraction layers require a different mindset but an open architecture is really at the heart of pulling lots of data streams together contextualizing it and then acting upon it >> Yeah, so I'm a sucker for Venn diagrams. so you heard that the analyst in the keynote this morning talked about AI ops and he said to the inner structure intersection of IT operations data science and machine learning >> Yes >> Data at the center of everything, it's something we've had a couple of waves of trying on intelligence and automation, are things we've been talking about for decades in IT. Give us a little bit as why some of those waves are coming together so that now and what you're doing is the right moment to really help accelerate. You've been having great growth for a number of years and project out some really strong growth for the next few. >> We have over the last five years the company has grown over five hundred and forty percent from a revenue perspective and I think that's the underpinnings of that relates to do we have the right market fit. Are we solving a problem that's material to customers that it's hard for them to solve without our product. But I really envision a future we've been working on this for a couple decades, right? The future is one I hope where from a artificial intelligence at machine speed where we're getting so predictive and understanding, through really smart scalable algorithms the future faults that may occur for you know we've both been at this for a long time. we've been talking about event correlation for many years. I envision a world where you're not doing event correlation when you've had an event, it's actually too late. Usually that's caused by a system telling you that there is a problem. So what we're really working on what we've talked a lot about here at the show is not just predictive analytics but really understanding what's abnormal and getting in front of a problem before there is a problem with the system with really super smart algorithms that help customers understand, many different data sets converge together and what they really mean so that you can get ahead of a service outage rather than have the fault that you're then working on correlating to infrastructure to application layers. >> You know the other thing that's been interesting for me to watch is, the core of where you started was really working with the service Fighters. I've had a chance to talk to a number of your service fighters >> Yes and Hughes has been with you since the early days up to you know one that just bought a couple of weeks ago and you know they're happy very. Talked about kind of the compare/contrast of the service riders and the enterprise because you know cloud is impacting you know the big hybrid hyper scale clouds are impacting both of those and the rate of change is affecting both of those in a lot of ways. So I'm curious as you see you know what what what's similar and what's different between going into those markets. >> When we thought about the problem for service providers there were two axes that we were looking at. Number one was from one instance of our platform you had to serve many customers that all had their own tenancy. But on top of that, you had to layer in a role based access control who could see what the customer had their view, the internal ops teams had their view. So building out a really complicated foundational model and an architecture that would support tenancy on steroids with one instance of our product was a really important linchpin of what's now, incredibly important to enterprises, because enterprises are getting into a moment where they're having to really act as service bureau's, service brokers and that means that all the different teams that support different technology silos, really have to work together as one and... but yet they still need their own views.So a lot of the foundational highly differentiated capabilities we built for service providers, for large scale globally distributed enterprises, actually meets a need profile that is very hard to find solutions that fit that profile and can give them that consolidated view but yet the deep dive view for the practitioner and we're finding that more and more enterprises, have follow-the-sun operations, follow-the-sun architecture teams, follow-the-sun engineering teams that need different views that is really hard to get most products that were built in this space were built for a single tenant enterprise view and that never gives you the granularity for each consumer and each persona to get the view that they need. So it's interesting that although we kind of over engineered those capabilities for the service provider needs it's becoming involved with the enterprises as they're looking at how do they need to do things as really a converged team, working as one team across many silo disciplines and that requires a very different way of thinking, a different tool space a different solution to the problem that we built kind of from the ground up. It's now really appropriate for the DevOps teams the teams that are really having to break down the silos and work as one team. >> Yeah the, the the the term that often gets misused and misunderstood is scale. But if you truly can build something that's distributed architecture for scale, It really opens up a lot of opportunities. One of the things you highlight it also is that, ScienceLogic puts a lot of investment into you know R&D and keep working on things big announcement of Big Ben, seemed I've had a chance to hear what everybody likes and the best. Talk a little bit about you know how you keep the development efforts going how you put that strong and effort on it and you know boy you know you said you worked on the UI for three years and now it sounds you know it's a bold statement to be like okay and everybody you're using this, you know you can't have the safety blanket of old away in new way for a while, >> You're constantly reinventing and refactoring code base to get to new outcomes for customers. we're spending between 35 and 40 percent of revenues on R&D. That's generally almost twice as much as many of our competitors and we're doing that because there is so much still to do. At times we have really thought carefully, could we scale back should we scale back our R&D spend but fortunately we've had a very supportive board of directors that believes in our vision. Believes in the vision that this is a unique moment in time the whole market is transitioning to a new tool set, because of all of the crosswinds of public cloud refactoring of applications containerization abstraction of the network, a storage, compute. All of these things combining together require a very different way of solving this problem We've, we've actually seen this play out in the past which again is why we're over investing in engineering. When you look at the mainframes and the compute architecture of mainframes and then we went to client-server, the tools that managed the mainframe really didn't manage the client-server. we've now gone from client-server to cloud the same things happening again. Because the needs are so different and we're going to see a very different generation of tools rule this next gen of requirements the customers have when they have a multitude of clouds that all work together to deliver an outcome to an application that you as a user are benefiting from. >> Alright so talked about the growth, talked about the investment, it's a strong industry validation today also. Gartner up on stage talked about the definition of AI ops they might not be fully in sync as to how mature the market is but it's still important that they are you know this is a trend and something to watch and it's on their hype cycle and Forrester released the wave which had congratulations ScienceLogic as the the top scorer up in the leaders category. So congratulations on that and what does that mean. >> Well we're thrilled about that because that external validation is what customers look at. It helps them with their analysis and that the talk tracks that everybody's on in our industry sometimes it's hard to discern who does what and how well each company does it to some degree from a marketing perspective many people use the same words so the good words are already used up. So sometimes it's hard to understand how each product is differentiated in the marketplace the Forrester wave report was so thorough so comprehensive, put us through over 30 use case scenarios where we had to demonstrate to get the qualifications for that ranking. So it wasn't just us responding in writing and waving our arms and throwing out a few powerpoints to get to that result we had to prove it and it feels the satisfaction of actually proving it for our team for our engineering team for everybody here at the company I'm so proud of everybody because that's really from a product perspective. We love those product recognition awards are actually sometimes more enjoyable than the growth recognition awards because that means you're really delivering a value to the customer where they're going to when they deploy the product they're going to have a good outcome. So that's what we're focused on and having Forrester put us at the top of the wave report is a special moment in the history of the company. >> Alright so Dave this is your user conference, so what I want to end on... Let's talk about the customers and here's here's my observation as you know, my first time coming to your event and I've talked to a number of seen some of the interactions there. There are certain products that customers love the relationship is an interesting and I would say a really good one the customers are really engaged and enjoying and liking it and it's almost like that friend that you can be like I really like you and your friends in their car I can be like this is how I want you to get better in ScienceLogic this is what you've done and I'm excited once on the roadmap and this is where I want you to go even more. So it's it's like you know that that friend that you can kind of hang out with and joke with and I've seen some of those relationships it's a good robust relationship and strong partnerships. It seems that you build with your customers am I getting the right vibe how do you look at your relationships with your customers. >> From a simple business perspective, I look at a couple things this is just as a run the business metric. On average our customers buy about twenty four, twenty five percent more capacity each year. On average our customers stay with us for 7-10 years. On average our customers pay us within 59 days. So I look at are we getting paid on time, do our customers buy more capacity each and every year and do we retain our customers. We retain about ninety five percent of our customers. So those metrics are really best-in-class, net subscription retention, DSO. All of those things are really good foundational indicators of we're doing a great job for our customers but what I love is this interaction that we have with them where they're they're never ending pressure on us to do better to strive for something that makes a day in their life a better day. I love that pressure it's uncomfortable many days of the week as I mentioned in my opening presentation but it makes us a better company and everybody in the company embodies this sense of how do we capture that synthesize it and then deliver against their needs and wants as quick as we can. So our innovation rates now are as high as they've ever been the throughput our of our development team this last quarter was the best we've ever seen in the history of the company, not just because we have more people but we're getting more done in the same amount of time. So all the KPIs that I look at are pointing in a really positive direction of great momentum for the business and really good alignment with customer needs and wants. We have probably the best market fit I've ever seen with the needs and wants of a net new customer and how our product fits against that. The Forrester wave report was yet another independent validation of how good our market fit in our strategy is right now to solve real problems that are very painful for customers to solve without our product >> Alright, Dave I can't let the head wizard gone without looking a little bit into the future. So as you look down the road what should we be looking as industry watchers to seem from ScienceLogic, seen from the industry you know I asked customers if they had a magic wand you know what would they do to make things better. You had a magic wand up on stage what will you be doing to make the industry better for all of us. >> There's so many things that when we think about making the industry better, it's a community and that means that among the key things that everybody's focused on right now for AI OPS is automation. So sharing those lessons learned cauterizing, validating the automation opportunities whether it's with provisioning systems, with end devices for capacity planning. All the things that we're doing we're starting to work with our customers to publish that broadly so that they can benefit from one another as quick as possible to take those best practices and throughout our community put them into production. If we do that each and every day and really focus on delivering that value across the customer base even for competitive customers. They compete with one another what we've seen is the spirit of cooperation and that to me is among the most satisfying parts of our customer and user community that it's a community that wants to help each other get better every day of the week and that's really hard mission as well. So from a trend line for the entire industry, I think we're all moving towards a moment in time where we have this autonomic capability where we know the applications are infrastructure, we're the tools that help us keep those applications running are getting smarter and smarter by the day and basically move us away from a fault and event correlation storyline to a predictive automation storyline >> Alright well Dave actually I said it on theCUBE a couple of years ago data holds the potential be that flywheel of growth for many years to come. Really appreciate you sharing the story and thanks again for having theCUBE at the event. >> Thanks too great to be here with you. Alright we'll be back with more coverage here from ScienceLogic Symposium 2019, I'm Stu Miniman and thank you for watching theCUBE.
SUMMARY :
Brought to you by ScienceLogic. It's the co-founder CEO and the Headmaster Dave Link, thank you so much for joining us. the event you know you you kicked it off in of the show to help our customers to get up to speed to help with that video education of the community overall. to you know the world of today and how you manage and now the thesis that we had that it was more about and he said to the inner structure intersection is the right moment to really help accelerate. of a service outage rather than have the fault the core of where you started was really working with the service riders and the enterprise because you know cloud and that means that all the different teams One of the things you highlight it also is that, because of all of the crosswinds of public cloud refactoring but it's still important that they are you know and it feels the satisfaction of actually proving it the right vibe how do you look of great momentum for the business seen from the industry you know I asked customers and that means that among the key things Really appreciate you sharing the story I'm Stu Miniman and thank you for watching theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
2003 | DATE | 0.99+ |
Steve | PERSON | 0.99+ |
Dave Link | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Washington DC | LOCATION | 0.99+ |
three years | QUANTITY | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
Forrester | ORGANIZATION | 0.99+ |
first time | QUANTITY | 0.99+ |
twenty five percent | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
59 days | QUANTITY | 0.99+ |
each company | QUANTITY | 0.99+ |
each product | QUANTITY | 0.99+ |
each year | QUANTITY | 0.99+ |
ScienceLogic | ORGANIZATION | 0.98+ |
each persona | QUANTITY | 0.98+ |
one team | QUANTITY | 0.98+ |
about ninety five percent | QUANTITY | 0.98+ |
about twenty four | QUANTITY | 0.98+ |
ScienceLogic Symposium 2019 | EVENT | 0.98+ |
last quarter | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
40 percent | QUANTITY | 0.98+ |
theCUBE | ORGANIZATION | 0.97+ |
7-10 years | QUANTITY | 0.97+ |
one instance | QUANTITY | 0.97+ |
over five hundred and forty percent | QUANTITY | 0.97+ |
over 30 use case scenarios | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
Hughes | PERSON | 0.96+ |
each | QUANTITY | 0.96+ |
each consumer | QUANTITY | 0.95+ |
today | DATE | 0.95+ |
Big Ben | TITLE | 0.94+ |
waves | EVENT | 0.94+ |
this morning | DATE | 0.91+ |
two axes | QUANTITY | 0.9+ |
single tenant | QUANTITY | 0.9+ |
35 | QUANTITY | 0.89+ |
Number one | QUANTITY | 0.87+ |
a couple of years ago | DATE | 0.82+ |
decades | QUANTITY | 0.81+ |
a day | QUANTITY | 0.81+ |
a couple of weeks ago | DATE | 0.8+ |
day one | QUANTITY | 0.77+ |
every year | QUANTITY | 0.75+ |
couple things | QUANTITY | 0.72+ |
ScienceLogic | TITLE | 0.72+ |
almost twice | QUANTITY | 0.7+ |
earlier today | DATE | 0.64+ |
last five years | DATE | 0.61+ |
couple decades | QUANTITY | 0.59+ |
second | QUANTITY | 0.51+ |
Ritz- | LOCATION | 0.5+ |
Carlton | ORGANIZATION | 0.48+ |
Forrester | EVENT | 0.43+ |
wave | EVENT | 0.32+ |