Image Title

Search Results for mySQLHeatWave:

AMD Oracle Partnership Elevates MySQLHeatwave


 

(upbeat music) >> For those of you who've been following the cloud database space, you know that MySQL HeatWave has been on a technology tear over the last 24 months with Oracle claiming record breaking benchmarks relative to other database platforms. So far, those benchmarks remain industry leading as competitors have chosen not to respond, perhaps because they don't feel the need to, or maybe they don't feel that doing so would serve their interest. Regardless, the HeatWave team at Oracle has been very aggressive about its performance claims, making lots of noise, challenging the competition to respond, publishing their scripts to GitHub. But so far, there are no takers, but customers seem to be picking up on these moves by Oracle and it's likely the performance numbers resonate with them. Now, the other area we want to explore, which we haven't thus far, is the engine behind HeatWave and that is AMD. AMD's epic processors have been the powerhouse on OCI, running MySQL HeatWave since day one. And today we're going to explore how these two technology companies are working together to deliver these performance gains and some compelling TCO metrics. In fact, a recent Wikibon analysis from senior analyst Marc Staimer made some TCO comparisons in OLAP workloads relative to AWS, Snowflake, GCP, and Azure databases, you can find that research on wikibon.com. And with that, let me introduce today's guest, Nipun Agarwal senior vice president of MySQL HeatWave and Kumaran Siva, who's the corporate vice president for strategic business development at AMD. Welcome to theCUBE gentlemen. >> Welcome. Thank you. >> Thank you, Dave. >> Hey Nipun, you and I have talked a lot about this. You've been on theCUBE a number of times talking about MySQL HeatWave. But for viewers who may not have seen those episodes maybe you could give us an overview of HeatWave and how it's different from competitive cloud database offerings. >> Sure. So MySQL HeatWave is a fully managed MySQL database service offering from Oracle. It's a single database, which can be used to run transactional processing, analytics and machine learning workloads. So, in the past, MySQL has been designed and optimized for transaction processing. So customers of MySQL when they had to run, analytics machine learning, would need to extract the data out of MySQL, into some other database or service, to run analytics or machine learning. MySQL HeatWave offers a single database for running all kinds of workloads so customers don't need to extract data into some of the database. In addition to having a single database, MySQL HeatWave is also very performant compared to one up databases and also it is very price competitive. So the advantages are; single database, very performant, and very good price performance. >> Yes. And you've published some pretty impressive price performance numbers against competitors. Maybe you could describe those benchmarks and highlight some of the results, please. >> Sure. So one thing to notice that the performance of any database is going to like vary, the performance advantage is going to vary based on, the size of the data and the specific workloads, so the mileage varies, that's the first thing to know. So what we have done is, we have published multiple benchmarks. So we have benchmarks on PPCH or PPCDS and we have benchmarks on different data sizes because based on the customer's workload, the mileage is going to vary, so we want to give customers a broad range of comparisons so that they can decide for themselves. So in a specific case, where we are running on a 30 terabyte PPCH workload, HeatWave is about 18 times better price performance compared to Redshift. 18 times better compared to Redshift, about 33 times better price performance, compared to Snowflake, and 42 times better price performance compared to Google BigQuery. So, this is on 30 Terabyte PPCH. Now, if the data size is different, or the workload is different, the characteristics may vary slightly but this is just to give a flavor of the kind of performance advantage MySQL HeatWave offers. >> And then my last question before we bring in Kumaran. We've talked about the secret sauce being the tight integration between hardware and software, but would you add anything to that? What is that secret sauce in HeatWave that enables you to achieve these performance results and what does it mean for customers? >> So there are three parts to this. One is HeatWave has been designed with a scale out architecture in mind. So we have invented and implemented new algorithms for skill out query processing for analytics. The second aspect is that HeatWave has been really optimized for cloud, commodity cloud, and that's where AMD comes in. So for instance, many of the partitioning schemes we have for processing HeatWave, we optimize them for the L3 cache of the AMD processor. The thing which is very important to our customers is not just the sheer performance but the price performance, and that's where we have had a very good partnership with AMD because not only does AMD help us provide very good performance, but the price performance, right? And that all these numbers which I was showing, big part of it is because we are running on AMD which provides very good price performance. So that's the second aspect. And the third aspect is, MySQL autopilot, which provides machine learning based automation. So it's really these three things, a combination of new algorithms, design for scale out query processing, optimized for commodity cloud hardware, specifically AMD processors, and third, MySQL auto pilot which gives us this performance advantage. >> Great, thank you. So that's a good segue for AMD and Kumaran. So Kumaran, what is AMD bringing to the table? What are the, like, for instance, relevance specs of the chips that are used in Oracle cloud infrastructure and what makes them unique? >> Yeah, thanks Dave. That's a good question. So, OCI is a great customer of ours. They use what we call the top of stack devices meaning that they have the highest core count and they also are very, very fast cores. So these are currently Zen 3 cores. I think the HeatWave product is right now deployed on Zen 2 but will shortly be also on the Zen 3 core as well. But we provide in the case of OCI 64 cores. So that's the largest devices that we build. What actually happens is, because these large number of CPUs in a single package and therefore increasing the density of the node, you end up with this fantastic TCO equation and the cost per performance, the cost per for deployed services like HeatWave actually ends up being extraordinarily competitive and that's a big part of the contribution that we're bringing in here. >> So Zen 3 is the AMD micro architecture which you introduced, I think in 2017, and it's the basis for EPIC, which is sort of the enterprise grade that you really attacked the enterprise with. Maybe you could elaborate a little bit, double click on how your chips contribute specifically to HeatWave's, price performance results. >> Yeah, absolutely. So in the case of HeatWave, so as Nipun alluded to, we have very large L3 caches, right? So in our very, very top end parts just like the Milan X devices, we can go all the way up to like 768 megabytes of L3 cache. And that gives you just enormous performance and performance gains. And that's part of what we're seeing with HeatWave today and that not that they're currently on the second generation ROM based product, 'cause it's a 7,002 based product line running with the 64 cores. But as time goes on, they'll be adopting the next generation Milan as well. And the other part of it too is, as our chip led architecture has evolved, we know, so from the first generation Naples way back in 2017, we went from having multiple memory domains and a sort of NUMA architecture at the time, today we've really optimized that architecture. We use a common I/O Die that has all of the memory channels attached to it. And what that means is that, these scale out applications like HeatWave, are able to really scale very efficiently as they go from a small domain of CPUs to, for example the entire chip, all 64 cores that scaling, is been a key focus for AMD and being able to design and build architectures that can take advantage of that and then have applications like HeatWave that scale so well on it, has been, a key aim of ours. >> And Gen 3 moving up the Italian countryside. Nipun, you've taken the somewhat unusual step of posting the benchmark parameters, making them public on GitHub. Now, HeatWave is relatively new. So people felt that when Oracle gained ownership of MySQL it would let it wilt on the vine in favor of Oracle database, so you lost some ground and now, you're getting very aggressive with HeatWave. What's the reason for publishing those benchmark parameters on GitHub? >> So, the main reason for us to publish price performance numbers for HeatWave is to communicate to our customers a sense of what are the benefits they're going to get when they use HeatWave. But we want to be very transparent because as I said the performance advantages for the customers may vary, based on the data size, based on the specific workloads. So one of the reasons for us to publish, all these scripts on GitHub is for transparency. So we want customers to take a look at the scripts, know what we have done, and be confident that we stand by the numbers which we are publishing, and they're very welcome, to try these numbers themselves. In fact, we have had customers who have downloaded the scripts from GitHub and run them on our service to kind of validate. The second aspect is in some cases, they may be some deviations from what we are publishing versus what the customer would like to run in the production deployments so it provides an easy way, for customers to take the scripts, modify them in some ways which may suit their real world scenario and run to see what the performance advantages are. So that's the main reason, first, is transparency, so the customers can see what we are doing, because of the comparison, and B, if they want to modify it to suit their needs, and then see what is the performance of HeatWave, they're very welcome to do so. >> So have customers done that? Have they taken the benchmarks? And I mean, if I were a competitor, honestly, I wouldn't get into that food fight because of the impressive performance, but unless I had to, I mean, have customers picked up on that, Nipun? >> Absolutely. In fact, we have had many customers who have benchmarked the performance of MySQL HeatWave, with other services. And the fact that the scripts are available, gives them a very good starting point, and then they've also tweaked those queries in some cases, to see what the Delta would be. And in some cases, customers got back to us saying, hey the performance advantage of HeatWave is actually slightly higher than what was published and what is the reason. And the reason was, when the customers were trying, they were trying on the latest version of the service, and our benchmark results were posted let's say, two months back. So the service had improved in those two to three months and customers actually saw better performance. So yes, absolutely. We have seen customers download the scripts, try them and also modify them to some extent and then do the comparison of HeatWave with other services. >> Interesting. Maybe a question for both of you how is the competition responding to this? They haven't said, "Hey, we're going to come up "with our own benchmarks." Which is very common, you oftentimes see that. Although, for instance, Snowflake hasn't responded to data bricks, so that's not their game, but if the customers are actually, putting a lot of faith in the benchmarks and actually using that for buying decisions, then it's inevitable. But how have you seen the competition respond to the MySQL HeatWave and AMD combo? >> So maybe I can take the first track from the database service standpoint. When customers have more choice, it is invariably advantages for the customer because then the competition is going to react, right? So the way we have seen the reaction is that we do believe, that the other database services are going to take a closer eye to the price performance, right? Because if you're offering such good price performance, the vendors are already looking at it. And, you know, instances where they have offered let's say discount to the customers, to kind of at least like close the gap to some extent. And the second thing would be in terms of the capability. So like one of the things which I should have mentioned even early on, is that not only does MySQL HeatWave on AMD, provide very good price performance, say on like a small cluster, but it's all the way up to a cluster size of 64 nodes, which has about 1000 cores. So the point is, that HeatWave performs very well, both on a small system, as well as a huge scale out. And this is again, one of those things which is a differentiation compared to other services so we expect that even other database services will have to improve their offerings to provide the same good scale factor, which customers are now starting to expectancy, with MySQL HeatWave. >> Kumaran, anything you'd add to that? I mean, you guys are an arms dealer, you love all your OEMs, but at the same time, you've got chip competitors, Silicon competitors. How do you see the competitive-- >> I'd say the broader answer and the big picture for AMD, we're very maniacally focused on our customers, right? And OCI and Oracle are huge and important customers for us, and this particular use cases is extremely interesting both in that it takes advantage, very well of our architecture and it pulls out some of the value that AMD bring. I think from a big picture standpoint, our aim is to execute, to build to bring out generations of CPUs, kind of, you know, do what we say and say, sorry, say what we do and do what we say. And from that point of view, we're hitting, the schedules that we say, and being able to bring out the latest technology and bring it in a TCO value proposition that generationally keeps OCI and HeatWave ahead. That's the crux of our partnership here. >> Yeah, the execution's been obvious for the last several years. Kumaran, staying with you, how would you characterize the collaboration between, the AMD engineers and the HeatWave engineering team? How do you guys work together? >> No, I'd say we're in a very, very deep collaboration. So, there's a few aspects where, we've actually been working together very closely on the code and being able to optimize for both the large L3 cache that AMD has, and so to be able to take advantage of that. And then also, to be able to take advantage of the scaling. So going between, you know, our architecture is chip like based, so we have these, the CPU cores on, we call 'em CCDs and the inter CCD communication, there's opportunities to optimize an application level and that's something we've been engaged with. In the broader engagement, we are going back now for multiple generations with OCI, and there's a lot of input that now, kind of resonates in the product line itself. And so we value this very close collaboration with HeatWave and OCI. >> Yeah, and the cadence, Nip, and you and I have talked about this quite a bit. The cadence has been quite rapid. It's like this constant cycle every couple of months I turn around, is something new on HeatWave. But for question again, for both of you, what new things do you think that organizations, customers, are going to be able to do with MySQL HeatWave if you could look out next 12 to 18 months, is there anything you can share at this time about future collaborations? >> Right, look, 12 to 18 months is a long time. There's going to be a lot of innovation, a lot of new capabilities coming out on in MySQL HeatWave. But even based on what we are currently offering, and the trend we are seeing is that customers are bringing, more classes of workloads. So we started off with OLTP for MySQL, then it went to analytics. Then we increased it to mixed workloads, and now we offer like machine learning as alike. So one is we are seeing, more and more classes of workloads come to MySQL HeatWave. And the second is a scale, that kind of data volumes people are using HeatWave for, to process these mixed workloads, analytics machine learning OLTP, that's increasing. Now, along the way we are making it simpler to use, we are making it more cost effective use. So for instance, last time, when we talked about, we had introduced this real time elasticity and that's something which is a very, very popular feature because customers want the ability to be able to scale out, or scale down very efficiently. That's something we provided. We provided support for compression. So all of these capabilities are making it more efficient for customers to run a larger part of their workloads on MySQL HeatWave, and we will continue to make it richer in the next 12 to 18 months. >> Thank you. Kumaran, anything you'd add to that, we'll give you the last word as we got to wrap it. >> No, absolutely. So, you know, next 12 to 18 months we will have our Zen 4 CPUs out. So this could potentially go into the next generation of the OCI infrastructure. This would be with the Genoa and then Bergamo CPUs taking us to 96 and 128 cores with 12 channels at DDR five. This capability, you know, when applied to an application like HeatWave, you can see that it'll open up another order of magnitude potentially of use cases, right? And we're excited to see what customers can do do with that. It certainly will make, kind of the, this service, and the cloud in general, that this cloud migration, I think even more attractive. So we're pretty excited to see how things evolve in this period of time. >> Yeah, the innovations are coming together. Guys, thanks so much, we got to leave it there really appreciate your time. >> Thank you. >> All right, and thank you for watching this special Cube conversation, this is Dave Vellante, and we'll see you next time. (soft calm music)

Published Date : Sep 14 2022

SUMMARY :

and it's likely the performance Thank you. and how it's different from So the advantages are; single and highlight some of the results, please. the first thing to know. We've talked about the secret sauce So for instance, many of the relevance specs of the chips that are used and that's a big part of the contribution and it's the basis for EPIC, So in the case of HeatWave, of posting the benchmark parameters, So one of the reasons for us to publish, So the service had improved how is the competition responding to this? So the way we have seen the but at the same time, and the big picture for AMD, for the last several years. and so to be able to Yeah, and the cadence, and the trend we are seeing is we'll give you the last and the cloud in general, Yeah, the innovations we'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Marc StaimerPERSON

0.99+

Dave VellantePERSON

0.99+

NipunPERSON

0.99+

OracleORGANIZATION

0.99+

2017DATE

0.99+

DavePERSON

0.99+

OCIORGANIZATION

0.99+

Zen 3COMMERCIAL_ITEM

0.99+

7,002QUANTITY

0.99+

KumaranPERSON

0.99+

second aspectQUANTITY

0.99+

Nipun AgarwalPERSON

0.99+

AMDORGANIZATION

0.99+

12QUANTITY

0.99+

64 coresQUANTITY

0.99+

768 megabytesQUANTITY

0.99+

twoQUANTITY

0.99+

MySQLTITLE

0.99+

third aspectQUANTITY

0.99+

12 channelsQUANTITY

0.99+

Kumaran SivaPERSON

0.99+

HeatWaveORGANIZATION

0.99+

96QUANTITY

0.99+

18 timesQUANTITY

0.99+

BergamoORGANIZATION

0.99+

three partsQUANTITY

0.99+

DeltaORGANIZATION

0.99+

three monthsQUANTITY

0.99+

MySQL HeatWaveTITLE

0.99+

42 timesQUANTITY

0.99+

bothQUANTITY

0.99+

18 monthsQUANTITY

0.99+

Zen 2COMMERCIAL_ITEM

0.99+

oneQUANTITY

0.99+

GitHubORGANIZATION

0.99+

OneQUANTITY

0.98+

second generationQUANTITY

0.98+

single databaseQUANTITY

0.98+

128 coresQUANTITY

0.98+

18 monthsQUANTITY

0.98+

three thingsQUANTITY

0.98+