Supercloud2 Preview
>>Hello everyone. Welcome to the Super Cloud Event preview. I'm John Forry, host of the Cube, and with Dave Valante, host of the popular Super cloud events. This is Super Cloud two preview. I'm joined by industry leader and Cube alumni, Victoria Vigo, vice president of klos Cross Cloud Services at VMware. Vittorio. Great to see you. We're here for the preview of Super Cloud two on January 17th, virtual event, live stage performance, but streamed out to the audience virtually. We're gonna do a preview. Thanks for coming in. >>My pleasure. Always glad to be here. >>It's holiday time. We had the first super cloud on in August prior to VMware, explore North America prior to VMware, explore Europe prior to reinvent. We've been through that, but right now, super Cloud has got momentum. Super Cloud two has got some success. Before we dig into it, let's take a step back and set the table. What is Super Cloud and why is important? Why are people buzzing about it? Why is it a thing? >>Look, we have been in the cloud now for like 10, 15 years and the cloud is going strong and I, I would say that going cloud first was deliberate and strategic in most cases. In some cases the, the developer was going for the path of risk resistance, but in any sizable company, this caused the companies to end up in a multi-cloud world where 85% of the companies out there use two or multiple clouds. And with that comes what we call cloud chaos, because each cloud brings their own management tools, development tools, security. And so that increase the complexity and cost. And so we believe that it's time to usher a new era in cloud computing, which we, you call the super cloud. We call it cross cloud services, which allows our customers to have a single way to build, manage, secure, and access any application across any cloud. Lowering the cost and simplifying the environment. Since >>Dave Ante and I introduced and rift on the concept of Supercloud, as we talked about at reinvent last year, a lot has happened. Supercloud one, it was in August, but prior to that, great momentum in the industry. Great conversation. People are loving it, they're hating it, which means it's got some traction. Berkeley has come on board as with a position paper. They're kind of endorsing it. They call it something different. You call it cross cloud services, whatever it is. It's kind of the same theme we're seeing. And so the industry has recognized something is happening that's different than what Cloud one was or the first generation of cloud. Now we have something different. This Super Cloud two in January. This event has traction with practitioners, customers, big name brands, Sachs, fifth Avenue, Warner, media Financial, mercury Financial, other big names are here. They're leaning in. They're excited. Why the traction in the customer's industry converts over to, to the customer traction. Why is it happening? You, you get a lot of data. >>Well, in, in Super Cloud one, it was a vendor fest, right? But these vendors are smart people that get their vision from where, from the customers. This, this stuff doesn't happen in a vacuum. We all talk to customers and we tend to lean on the early adopters and the early adopters of the cloud are the ones that are telling us, we now are in a place where the complexity is too much. The cost is ballooning. We're going towards slow down potentially in the economy. We need to get better economics out of, of our cloud. And so every single customers I talked to today, or any sizable company as this problem, the developers have gone off, built all these applications, and now the business is coming to the operators and asking, where are my applications? Are they performing? What is the security posture? And how do we do compliance? And so now they're realizing we need to do something about this or it is gonna be unmanageable. >>I wanna go to a clip I pulled out from the, our video data lake and the cube. If we can go to that clip, it's Chuck Whitten Dell at a keynote. He was talking about what he calls multi-cloud by default, not by design. This is a state of the, of the industry. If we're gonna roll that clip, and I wanna get your reaction to that. >>Well, look, customers have woken up with multiple clouds, you know, multiple public clouds. On-premise clouds increasingly as the edge becomes much more a reality for customers clouds at the edge. And so that's what we mean by multi-cloud by default. It's not yet been designed strategically. I think our argument yesterday was it can be, and it should be, it is a very logical place for architecture to land because ultimately customers want the innovation across all of the hyperscale public clouds. They will see workloads and use cases where they wanna maintain an on-premise cloud. On-premise clouds are not going away. I mentioned edge Cloud, so it should be strategic. It's just not today. It doesn't work particularly well today. So when we say multi-cloud, by default we mean that's the state of the world. Today, our goal is to bring multi-cloud by design, as you heard. Yeah, I >>Mean, I, okay, Vittorio, that's, that's the head of Dell Technologies president. He obvious he runs it. Michael Dell's still around, but you know, he's the leader. This is a interesting observation. You know, he's not a customer. We have some customer equips we'll go to as well, but by default it kind of happened not by design. So we're now kind of in a zoom out issue where, okay, I got this environment just landed on me. What, what is the, what's your reaction to that clip of how multi-cloud has become present in, in everyone's on everyone's plate right now to deal with? Yeah, >>I it is, it is multi-cloud by default, I would call it by accident. We, we really got there by accident. I think now it's time to make it a strategic asset because look, we're using multiple cloud for a reason, because all these hyperscaler bring tremendous innovation that we want to leverage. But I strongly believe that in it, especially history repeat itself, right? And so if you look at the history of it, as was always when a new level of obstruction that simplify things, that we got the next level of innovation at the lower cost, you know, from going from c plus plus to Visual basic, going from integrating application at the bits of by layer to SOA and then web services. It's, it's only when we simplify the environment that we can go faster and lower cost. And the multi-cloud is ready for that level of obstruction today. >>You know, you've made some good points. You know, developers went crazy building great apps. Now they got, they gotta roll it out and operationalize it globally. A lot of compliance issues going on. The costs are going up. We got an economic challenge, but also agility with the cloud. So using cloud and or hybrid, you can get better agility. And also moving to the cloud, it's kind of still slow. Okay, so I get that at reinvent this year and at VMware explorer we were observing and we reported that you're seeing a transition to a new kind of ecosystem partner. Ones that aren't just ISVs anymore. You have ISVs, independent software vendors, but you got the emergence of bigger players that just, they got platforms, they have their own ecosystems. So you're seeing ecosystems on top of ecosystems where, you know, MongoDB CEO and the Databricks CEO both told me, we're not an isv, we're a platform built on a cloud. So this new kind of super cloudlike thing is going on. Why should someone pay attention to the super cloud movement? We're on two, we're gonna continue to do these out in the open. Anyone can participate. Why should people pay attention to this? Why should they come to the event? Why is this important? Is this truly an inflection point? And if they do pay attention, what should they pay attention to? >>I would pay attention to two things. If you are customers that are now starting to realize that you have a multi-cloud problem and the costs are getting outta control, look at what the leading vendors are saying, connect the dots with the early adopters and some of the customers that we are gonna have at Super Cloud two, and use those learning to not fall into the same trap. So I, I'll give you an example. I was talking to a Fortune 50 in Europe in my latest trip, and this is an a CIO that is telling me >>We build all these applications and now for compliance reason, the business is coming to me, I don't even know where they are, right? And so what I was telling him, so look, there are other customers that are already there. What did they do? They built a platform engineering team. What is the platform? Engineering team is a, is an operation team that understands how developers build modern applications and lays down the foundation across multiple clouds. So the developers can be developers and do their thing, which is writing code. But now you as a cio, as a, as a, as a governing body, as a security team can have the guardrail. So do you know that these applications are performing at a lower cost and are secure and compliant? >>Patura, you know, it's really encouraging and, and love to get your thoughts on this is one is the general consensus of industry leaders. I talked to like yourself in the round is the old way was soft complexity with more complexity. The cloud demand simplicity, you mentioned abstraction layer. This is our next inflection point. It's gotta be simpler and it's gotta be easy and it's gotta be performant. That's the table stakes of the cloud. What's your thoughts on this next wave of simplicity versus complexity? Because again, abstraction layers take away complexity, they should make it simpler. What's your thoughts? >>Yeah, so I'll give you few examples. One, on the development side and runtime. You, you one would think that Kubernetes will solve all the problems you have Kubernetes everywhere, just look at, but every cloud has a different distribution of Kubernetes, right? So for example, at VMware with tansu, we create a single place that allows you to deploy that any Kubernetes environment. But now you have one place to set your policies. We take care of the differences between this, this system. The second area is management, right? So once you have all everything deployed, how do you get a single object model that tells you where your stuff is and how it's performing, and then apply policies to it as well. So these are two areas and security and so on and so forth. So the idea is that figure out what you can abstract and make common across cloud. Make that simple and put it in one place while always allowing the developers to go underneath and use the differentiated features for innovation. >>Yeah, one of the areas I'm excited, I want to get your thoughts of too is, we haven't talked about this in the past, but it, I'll throw it out there. I think the, the new AI coming out chat, G P T and other things like lens, you see it and see new kinds of AI coming that's gonna be right in the heavy lifting opportunity to make things easier with AI and automation. I think AI will be a big factor in super cloud and, and cross cloud. What's your thoughts? >>Well, the one way to look at AI is, is one of the main, main services that you would want out of a multi-cloud, right? You want eventually, right now Google seems to have an edge, but you know, the competition creates, you know, innovation. So later on you wanna use something from Azure or from or from Oracle or something that, so you want at some point that is gonna be prone every single service in in the cloud is gonna be prone to obstruction and simplification. And I, I'm just excited about to see >>What book, I can't wait for the chat services to write code automatically for us. Well, >>They >>Do, they do. They're doing it now. They do. >>Oh, the other day, somebody, you know that I do this song par this for. So for fun sometimes. And somebody the other day said, ask the AI to write a parody song for multi-cloud. And so I have the lyrics stay >>Tuned. I should do that from my blog post. Hey, write a blog post on this January 17th, Victoria, thanks for coming in, sharing the preview bottom line. Why should people come? Why is it important? What's your final kind of takeaway? Billboard message >>History is repeat itself. It goes to three major inflection points, right? We had the inflection point with the cloud and the people that got left behind, they were not as competitive as the people that got on top o of this wave. The new wave is the super cloud, what we call cross cloud services. So if you are a customer that is experiencing this problem today, tune in to to hear from other customers in, in your same space. If you are behind, tune in to avoid the, the, the, the mistakes and the, the shortfalls of this new wave. And so that you can use multi-cloud to accelerate your business and kick butt in the future. >>All right. Kicking kick your names and kicking butt. Okay, we're here on J January 17th. Super Cloud two. Momentum continues. We'll be super cloud three. There'll be super cloud floor. More and more open conversations. Join the community, join the conversation. It's open. We want more voices. We want more, more industry. We want more customers. It's happening. A lot of momentum. Victoria, thank you for your time. Thank you. Okay. I'm John Farer, host of the Cube. Thanks for watching.
SUMMARY :
I'm John Forry, host of the Cube, and with Dave Valante, Always glad to be here. We had the first super cloud on in August prior to VMware, And so that increase the complexity And so the industry has recognized something are the ones that are telling us, we now are in a place where the complexity is too much. If we're gonna roll that clip, and I wanna get your reaction to that. Today, our goal is to bring multi-cloud by design, as you heard. Michael Dell's still around, but you know, he's the leader. application at the bits of by layer to SOA and then web services. Why should they come to the event? to realize that you have a multi-cloud problem and the costs are getting outta control, look at what What is the platform? Patura, you know, it's really encouraging and, and love to get your thoughts on this is one is the So the idea is that figure Yeah, one of the areas I'm excited, I want to get your thoughts of too is, we haven't talked about this in the past, but it, I'll throw it out there. single service in in the cloud is gonna be prone to obstruction and simplification. What book, I can't wait for the chat services to write code automatically for us. They're doing it now. And somebody the other day said, ask the AI to write a parody song for multi-cloud. Victoria, thanks for coming in, sharing the preview bottom line. And so that you can use I'm John Farer, host of the Cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Valante | PERSON | 0.99+ |
John Farer | PERSON | 0.99+ |
John Forry | PERSON | 0.99+ |
Victoria Vigo | PERSON | 0.99+ |
Warner | ORGANIZATION | 0.99+ |
Michael Dell | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Sachs | ORGANIZATION | 0.99+ |
Victoria | PERSON | 0.99+ |
85% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Today | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Vittorio | PERSON | 0.99+ |
January 17th | DATE | 0.99+ |
klos Cross Cloud Services | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
August | DATE | 0.99+ |
Cube | ORGANIZATION | 0.99+ |
North America | LOCATION | 0.99+ |
two things | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
January | DATE | 0.99+ |
today | DATE | 0.99+ |
last year | DATE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Dave Ante | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
J January 17th | DATE | 0.99+ |
first | QUANTITY | 0.99+ |
15 years | QUANTITY | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
second area | QUANTITY | 0.99+ |
each cloud | QUANTITY | 0.98+ |
one place | QUANTITY | 0.98+ |
Billboard | ORGANIZATION | 0.98+ |
fifth Avenue | ORGANIZATION | 0.97+ |
both | QUANTITY | 0.97+ |
MongoDB | ORGANIZATION | 0.97+ |
Super cloud | EVENT | 0.96+ |
Super Cloud two | EVENT | 0.96+ |
Chuck Whitten Dell | PERSON | 0.96+ |
this year | DATE | 0.96+ |
first generation | QUANTITY | 0.95+ |
One | QUANTITY | 0.95+ |
two areas | QUANTITY | 0.94+ |
one | QUANTITY | 0.94+ |
three major inflection points | QUANTITY | 0.94+ |
Supercloud | ORGANIZATION | 0.94+ |
single place | QUANTITY | 0.94+ |
mercury Financial | ORGANIZATION | 0.92+ |
Kubernetes | TITLE | 0.92+ |
Patura | PERSON | 0.92+ |
super cloud | ORGANIZATION | 0.91+ |
Super Cloud | EVENT | 0.91+ |
c plus plus | TITLE | 0.89+ |
Databricks | ORGANIZATION | 0.88+ |
single object | QUANTITY | 0.88+ |
new wave | EVENT | 0.88+ |
Super Cloud Event | EVENT | 0.88+ |
Azure | TITLE | 0.83+ |
media Financial | ORGANIZATION | 0.83+ |
single service | QUANTITY | 0.81+ |
Super Cloud | TITLE | 0.81+ |
single way | QUANTITY | 0.81+ |
Visual basic | TITLE | 0.8+ |
tansu | ORGANIZATION | 0.78+ |
Fortune 50 | ORGANIZATION | 0.76+ |
super cloud | EVENT | 0.76+ |
wave | EVENT | 0.75+ |
Supercloud2 | TITLE | 0.73+ |
CEO | PERSON | 0.72+ |
George Fraser, Fivetran & Veronika Durgin, Saks | Snowflake Summit 2022
(upbeat music) >> Hey, gang. Welcome back to theCUBE's coverage of Snowflake Summit '22 live on the show floor at Caesar's Forum in Las Vegas. Lisa Martin here with Dave Vellante. Couple of guests joining us to unpack more of what we've been talking about today. George Fraser joins us, the CEO of Fivetran, and Veronika Durgin, the head of data at Saks Fifth Avenue. Guys, welcome to the program. >> Thank you for having us. >> Hello. >> George, talk to us about Fivetran for the audience that may not be super familiar. Talk to us about the company, your vision, your mission, your differentiation, and then maybe the partnership with Snowflake. >> Well, a lot of people in the audience here at Snowflake Summit probably are familiar with Fivetran. We have almost 2000 shared customers with them. So a considerable amount of the data that we're all talking about here, flows through Fivetran. But in brief, what Fivetran is, is we're data pipeline. And that means that we go get all the data of your company in all the places that it lives. So all your tools and systems that you use to run your company. We go get that data and we bring it all together in one place like Snowflake. And that is the first step in doing anything with data is getting it all in one place. >> So you've been considerable amount of shared customers. I think I saw this morning on the slide over 5,900, but you're saying you're already at around 2000 shared customers. Lots of innovation I'm sure, with between both companies, but talk to us about some of the latest developments at Fivetran, in terms of product, in terms of company growth, what's going on? >> Well, one of the biggest things that happened recently with Fivetran is we acquired another data integration company called HVR. And HVR specialty has always been replicating the biggest, baddest enterprise databases like Oracle and SQL Server databases that are enormous, that are run within an inch of their capabilities by their DBAs. And HVR was always known as the best in the business at that scenario. And by bringing that together with Fivetran, we now really have the full spectrum of capabilities. We can replicate all types of data for all sizes of company. And so that's a really exciting development for us and for the industry. >> So Veronika, head of data at Saks, what does that entail? How do you spend your time? What's your purview? >> So the cool thing abouts Saks is a very old company. Saks is the premier luxury e-commerce platform. And we help our Saks Fifth Avenue customers just express themselves through fashion. So we're trying to modernize very old company and we do have the biggest, baddest databases of any flavor you can imagine. So my job is to modernize, to bring us to near real-time data, to make sure data is available to all of our users so they can actually take advantage of it. >> So let's talk about some of those biggest, baddest hair balls that you've, and how you deal with that. So lot of over time, you've built up a lot of data. You've got different data stores. So, what are you doing with that? And what role does Fivetran and Snowflake play in helping you modernize? >> Yeah, Fivetran helps us ingest data from all of those data sources into Snowflake near real-time. It's very important to us. And like one of the examples that I give is within a matter of maybe a few weeks, we were able to get data from over a dozen of different data sources into Snowflake in near real-time. And some of those data sources were not available to our users in the past, and everybody was so excited. And the reason they weren't available is because they require a lot of engineering effort to actually build those data pipelines to manage them and maintain them. >> Lisa: Whoa, sorry. >> That was just a follow up. So, Fivetran is the consolidator of all that data and- >> That's right. >> Snowflake plays that role also. >> We bring it all together, and the place that it is consolidated is Snowflake. And from there you can really do anything with it. And there's really three things you were touching on it that make data integration hard. One is volume, and that's the one that people tend to talk about, just size of data. And that is important, but it's not the only thing. It's also latency. How fresh is the data in the locus of consolidation? Before Fivetran, the state of the art was nightly snapshots, once a day was considered pretty good. And we consider now once a minute pretty good and we're trying to make it even better. And then the last challenge, which people tend not to talk about, it's the dark secret of our industry is just incidental complexity. All of these data sources have a lot of strange behaviors and rules and corner cases. Every data source is a little bit different. And so a lot of what we bring that to the table, is that we've done the work over 10 years. And in the case of HVR, since the 90s', to map out all of these little complexities of all these data sources, that as a user, you don't have to see it. You just connect source, connect destination, and that's it. >> So you don't have to do the M word migrate off of all those databases. You can maybe allow them to dial them down over time, then create new value with using Fivetran and Snowflake. Is that the right way to think about it? >> Well, Fivetran, it's incredibly simple. You just connect it to whatever source, And then the matter of minutes you have a pipeline. And for us, it's in the matter of minutes, for Fivetran, there's hundreds of engineers, we're extending our data engineering team to now Fivetran. And we can pick and choose which tables we want to replicate which fields. And once data lands in Snowflake, now we have data across different sources in one place, in central place. And now we can do all kinds of different things. We can integrate it data together, we can do validations, we can do reconciliations. We now have ability to do point in time historical journey, in the past in transactional system, you don't see that, you only see data that's right now, but now that we replicate everything to Snowflake and Snowflake being so powerful as an analytical platform, we can do, what did it look like two months ago? What did it look like two years ago? >> You've got all that time series data, okay. >> And to address that word you mentioned a moment ago, migrate, this is something people often get confused about. What we're talking about here is not a migration, these source systems are not going away. These databases are the systems powering saks.com and they're staying right there. They're the systems you interact with when you place an order on this site. The purpose of our tool and the whole stack that Veronika has put together, is to serve other workloads in Snowflake that need to have access to all of the data together. >> But if you didn't have Snowflake, you would have to push those other data stores, try to have them do things that they have sometimes a tough time doing. >> Yeah, and you can't run analytical workloads. You cannot do reporting on the transactional database. It's not meant for that. It's supporting capability of an application and it's configured to be optimized for that. So we always had to offload those specific analytical reporting functionality, or machine learning somewhere else, and Snowflake is excellent for that. It's meant for that, yeah. >> I was going to ask you what you were doing before, you just answered that. What was the aha moment for realizing you needed to work with the power of Fivetran and Snowflake? If we look at, you talked about Saks being a legacy history company that's obviously been very successful at transforming to the digital age, but what was that one thing, as the head of the data you felt this is it? >> Great question. I've worked with Fivetran in the past. This is my third company, same with Snowflake. I actually brought Fivetran into two companies at this point. So my first experience with both Fivetran and Snowflake, was this like, this is where I want to be, this is the stack and the tooling, and just the engineering behind it. So as I moved on the next company, that that was, I'm bringing tools with me. So that was part. And the other thing I wanted to mention, when we evaluate tools for a new platform, we look at things in like three dimensions, right? One with cloud first, we want to have cloud native tools, and they have to be modular, but we also don't want to have too many tools. So Fivetran's certainly checks that off. They're first cloud native, and they also have a very long list of connectors. The other thing is for us, it's very important that data engineering effort is spent on actually analyzing data, not building pipelines and supporting infrastructure. In Fivetran, reliable, it's secure, it has various connectors, so it checks off that box as well. And another thing is that we're looking for companies we can partner with. So companies that help us grow and grow with us, we'll look in a company culture, their maturity, how they treat their customers and how they innovate. And again, Fivetran checks off that box as well. >> And I imagine Snowflake does as well, Frank Lutman on stage this morning talked about mission alignment. And it seemed to me like, wow, one of the missions of Snowflake is to align with its customer's missions. It sounds like from the conversations that Dave and I have had today, that it's the same with partners, but it sounds like you have that cultural alignment with Fivetran and Snowflake. >> Oh, absolutely. >> And Fivetran has that, obviously with 2000 shared customers. >> Yeah, I think that, well, not quite there yet, but we're close, (laughs) I think that the most important way that we've always been aligned with our customers is that we've been very clear on what we do and don't do. And that our job is to get the data from here to there, that the data be accurately replicated, which means in practice often joke that it is exactly as messed up as it was in the source. No better and no worse, but we really will accomplish that task. You do not need to worry about that. You can well and fully delegate it to us, but then what you do with the data, we don't claim that we're going to solve that problem for you. That's up to you. And anyone who claims that they're going to solve that problem for you, you should be very skeptical. >> So how do you solve that problem? >> Well, that's where modeling comes in, right? You get data from point A to point B, and it's like bad in, bad out. Like, that's it, and that's where we do those reconciliations, and that's where we model our data. We actually try to understand what our businesses, how our users, how they talk about data, how they talk about business. And that's where data warehouse is important. And in our case, it's data evolve. >> Talk to me a little bit before we wrap here about the benefits to the end user, the consumer. Say I'm on saks.com, I'm looking for a particular item. What is it about this foundation that Saks has built with Fivetran and with Snowflake, that's empowering me as a consumer, to be able to get, find what I want, get the transaction done like that? >> So getting access to, our end goal is to help our customers, right? Make their experience beautiful, luxurious. We want to make sure that what we put in front of you is what you're looking for. So you can actually make that purchase, and you're happy with it. So having that data, having that data coming from various different sources into one place enables us to do that near real-time analytics so we can help you as a customer to find what you're looking for. >> Magic on the back end, delighting customers. >> So the world is still messed up, right? Airlines are out of whack. There's supply imbalances. You've got the situation in Ukraine with oil prices. The Fed missed the mark. So can data solve these problems? If you think about the context of the macro environment, and you bring it down to what you're seeing at Saks, with your relationship with Fivetran and with Snowflake, do you see the light at the end of that confusion tunnel? >> That's such a great question. Very philosophical. I don't think data can solve it. Is the people looking at data and working together that can solve it. >> I think data can help, data can't stop a war. Data can help you forecast supply chain misses and mitigate those problems. So data can help. >> Can be a facilitator. >> Sorry, what? >> Can be a facilitator. >> Yeah, it can be a facilitator of whatever you end up doing with it. Data can be used for good or evil. It's ultimately up to the user. >> It's a tool, right? Do you bring a hammer to a gunfight? No, but t's a tool in the right hands, for the right purpose, it can definitely help. >> So you have this great foundation, you're able to delight customers as especially from a luxury brand perspective. I imagine that luxury customers have high expectations. What's next for Saks from a data perspective? >> Well, we want to first and foremost to modernize our data platform. We want to make sure we actually bring that near real-time data to our customers. We want to make sure data's reliable. That well understood that we do the data engineering and the modeling behind the scenes so that people that are using our data can rely on it. Because it's like, there is bad data is bad data but we want to make sure it's very clear. And what's next? The sky's the limit. >> Can you describe your data teams? Is it highly centralized? What's your philosophy in terms of the architecture of the organization? >> So right now we are starting with a centralized team. It just works for us as we're trying to rebuild our platform, and modernize it. But as we become more mature, we establish our practices, our data governance, our definitions, then I see a future where we like decentralize a little bit and actually each team has their own analytical function, or potentially data engineering function as well. >> That'll be an interesting discussion when you get there. >> That's a hot topic. >> It's one of the hardest problems in building a data team is whether decentralized or decentralized. We're still centralized at Fivetran, but companies now over 1000 people, and we're starting to feel the strain of that. And inevitably, you eventually have to find a way to find scenes and create specialization. >> You just have to be fluid, right? And then go with the company as the company grows and things change. >> Yeah, I've worked with some companies. JPMC is here, they've got a little, I'll call it a skunk works. They're probably under states what they're doing, but they're testing that out. A company like HelloFresh is doing some things 'cause their Hadoop cluster just couldn't scale. So they have to begin to decentralize. It is a hot topic these days. And I'm not sure there's a right or wrong. It's really a situational. But I think in a lot of situations, it's maybe the trend. >> Yeah. >> Yeah, I think centralized versus decentralized technology is a different question than centralized versus decentralized teams. >> Yes. >> They're both valid, but they're very different. And sometimes people conflate them, and that's very dangerous. Because you might want one to be centralized and the other to be decentralized. >> Well, it's true. And I think a lot of folks look at a centralized team and say, "Hey, it's more efficient to have these specialized roles, but at the same time, what's the outcome?" If the outcome can be optimized and it's maybe a little bit more people expensive, or I don't know. And they're in the lines of business where there's data context, that might be a better solution for a company. >> So to truly understand the value of data, you have to specialize in that specific area. So I see people like deep diving into specific vertical or whatever that is, and truly understanding what data they have and how to taken advantage of it. >> Well, all this talk about monetization and building data products, you're there, right? >> Yeah. >> You're on the cusp of that. And so who's going to build those data products? It's going to be somebody in the business. Today they don't "Own the life cycle" of the data. They don't feel responsible for it, but they complain when it's not what they want. And so, I feel as though what Snowflake is doing is actually attacking some of those problems. Not 100% there obviously, but a lot of work to do. >> Great analysts are great navigators of organizations amongst other things. And one of the best things that's happened as part of this evolution from technology like Hadoop to technology like Snowflake is the new stack is a lot simpler. There's a lot less technical knowledge that you need. You still need technical knowledge, but not nearly what you used to. And that has made it accessible to more people. People who bring different skills to the table. And in many cases, those are the skills you really need to deliver value from data is not, do you know the inner workings of HDFS? But do you know how to extract from your constituents in the organization, a precise version of the question that they're trying to ask? >> We really want them spending their time, the technical infrastructure is an operational detail, so you can put your teams on those types of questions, not how do we make it work? And that's what Hadoop was, "Hey, we got it to work." >> And that's something we're obsessed with. We're always trying to hide the technical complexities of the problem of data centralization behind the scenes. Even if it's harder for us, even if it's more expensive for us, we will pay any costs so that you don't have to see it. Because that allows our customers to focus on more high impact. >> Well, this is a case where a technology vendor's R&D is making your life easier. >> Veronika: Easier, right. >> I would presume you'd rather spend money to save time, than spend your time, to save engineering time, to save money. >> That's true. And at the end of the day, hiring three data engineers to do custom work that a tool does, it's actually not saving money. It costs more in the end. But to your point, pulling business people into those data teams gives them ownership, and they feel like they're part of the solution. And it's such a great feeling so that they're excited to contribute, they're excited to help us. So I love where the industry's going like in that direction. >> And of course, that's the theme of the show, the world around data collaborations. Absolutely critical, guys. Thank you so much for joining Dave and me, talking about Fivetran, Snowflake together, what you're doing to empower Saks, to be a data company. I'm going to absolutely have a different perspective next time I shop there. Thanks for joining us. Thank you. >> Dave: Thank you, guys. >> Thank you. >> For our guests and for Dave Vellante, I'm Lisa Martin. You're watching theCUBE live from Snowflake Summit '22, from Vegas. Stick around, our next guest joins us momentarily. (upbeat music)
SUMMARY :
on the show floor at for the audience that may And that is the first step of the latest developments and for the industry. Saks is the premier luxury and how you deal with that. And like one of the examples that I give So, Fivetran is the consolidator And in the case of HVR, since the 90s', Is that the right way to think about it? but now that we replicate You've got all that They're the systems you interact with that they have sometimes and it's configured to as the head of the data And the other thing I wanted to mention, that it's the same with partners, And Fivetran has that, And that our job is to get And in our case, it's data evolve. to be able to get, find what I want, so we can help you as a customer Magic on the back end, of the macro environment, Is the people looking at data Data can help you forecast of whatever you end up doing with it. for the right purpose, So you have this great foundation, and the modeling behind the scenes So right now we are starting discussion when you get there. And inevitably, you as the company grows and things change. So they have to begin to decentralize. is a different question and the other to be decentralized. but at the same time, what's the outcome?" and how to taken advantage of it. of the data. And one of the best things that's happened And that's what Hadoop was, so that you don't have to see it. is making your life easier. to save engineering time, to save money. And at the end of the day, And of course, that's guest joins us momentarily.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Veronika Durgin | PERSON | 0.99+ |
Saks | ORGANIZATION | 0.99+ |
Frank Lutman | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Fivetran | ORGANIZATION | 0.99+ |
George Fraser | PERSON | 0.99+ |
Veronika | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Vegas | LOCATION | 0.99+ |
JPMC | ORGANIZATION | 0.99+ |
HelloFresh | ORGANIZATION | 0.99+ |
two companies | QUANTITY | 0.99+ |
Lisa | PERSON | 0.99+ |
Ukraine | LOCATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
both companies | QUANTITY | 0.99+ |
third company | QUANTITY | 0.99+ |
first step | QUANTITY | 0.99+ |
each team | QUANTITY | 0.99+ |
Snowflake | TITLE | 0.99+ |
first experience | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
two years ago | DATE | 0.99+ |
over 1000 people | QUANTITY | 0.99+ |
two months ago | DATE | 0.98+ |
Today | DATE | 0.98+ |
Las Vegas | LOCATION | 0.98+ |
over 10 years | QUANTITY | 0.98+ |
over a dozen | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
one place | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Snowflake Summit '22 | EVENT | 0.98+ |
HVR | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.97+ |
Couple of guests | QUANTITY | 0.97+ |
One | QUANTITY | 0.97+ |
once a minute | QUANTITY | 0.97+ |
Snowflake Summit 2022 | EVENT | 0.97+ |
Hadoop | TITLE | 0.97+ |
Snowflake Summit | EVENT | 0.97+ |
Caesar's Forum | LOCATION | 0.97+ |
saks.com | OTHER | 0.96+ |
three dimensions | QUANTITY | 0.96+ |