Eng Lim Goh, HPE & Tuomas Sandholm, Strategic Machine Inc. - HPE Discover 2017
>> Announcer: Live from Las Vegas, it's theCUBE covering HPE Discover 2017, brought to you by Hewlett Packard Enterprise. >> Okay, welcome back everyone. We're live here in Las Vegas for SiliconANGLE's CUBE coverage of HPE Discover 2017. This is our seventh year of covering HPE Discover Now. HPE Discover in its second year. I'm John Furrier, my co-host Dave Vellante. We've got two great guests, two doctors, PhD's in the house here. So Eng Lim Goh, VP and SGI CTO, PhD, and Tuomas Sandholm, Professor at Carnegie Mellon University of Computer Science and also runs the marketplace lab over there, welcome to theCube guys, doctors. >> Thank you. >> Thank you. >> So the patient is on the table, it's called machine learning, AI, cloud computing. We're living in a really amazing place. I call it open bar and open source. There's so many new things being contributed to open source, so much new hardware coming on with HPE that there's a lot of innovation happening. So want to get your thoughts first on how you guys are looking at this big trend where all this new software is coming in and these new capabilities, what's the vibe, how do you look at this. You must be, Carnegie Mellon, oh this is an amazing time, thoughts. >> Yeah, it is an amazing time and I'm seeing it both on the academic side and the startup side that you know, you don't have to invest into your own custom hardware. We are using HPE with the Pittsburgh Supercomputing Center in academia, using cloud in the startups. So it really makes entry both for academic research and startups easier, and also the high end on the academic research, you don't have to worry about maintaining and staying up to speed with all of the latest hardware and networking and all that. You know it kind of. >> Focus on your research. >> Focus on the research, focus on the algorithms, focus on the AI, and the rest is taken care of. >> John: Eng talk about the supercomputer world that's now there, if you look at the abundant computer intelligent edge we're seeing genome sequencing done in minutes, the prices are dropping. I mean high performance computing used to be this magical, special thing, that you had to get a lot of money to pay for or access to. Democratization is pretty amazing can I just hear your thoughts on what you see happening. >> Yes, Yes democratization in the traditional HPC approach the goal is to prediction and forecasts. Whether the engine will stay productive, or financial forecasts, whether you should buy or sell or hold, let's use the weather as an example. In traditional HPC for the last 30 years what we do to predict tomorrows weather, what we do first is to write all the equations that models the weather. Measure today's weather and feed that in and then we apply supercomputing power in the hopes that it will predict tomorrows weather faster than tomorrow is coming. So that has been the traditional approach, but things have changed. Two big things changed in the last few years. We got these scientists that think perhaps there is a new way of doing it. Instead of calculating your prediction can you not use data intensive method to do an educated guess at your prediction and this is what you do. Instead of feeding today's weather information into the machine learning system they feed 30 years everyday, 10 thousand days. Everyday they feed the data in, the machine learning system guess at whether it will rain tomorrow. If it gets it wrong, it's okay, it just goes back to the weights that control the inputs and adjust them. Then you take the next day and feed it in again after 10 thousand tries, what started out as a wild guess becomes an educated guess, and this is how the new way of doing data intensive computing is starting to emerge using machine learning. >> Democratization is a theme I threw that out because I think it truly is happening. But let's get specific now, I mean a lot of science has been, well is climate change real, I mean this is something that is in the news. We see that in today's news cycle around climate change things of that as you mentioned weather. So there's other things, there's other financial models there's other in healthcare, in disease and there's new ways to get at things that were kind of hocus pocus maybe some science, some modeling, forecasting. What are you seeing that's right low hanging fruit right now that's going to impact lives? What key things will HPC impact besides weather? Is healthcare there, where is everyone getting excited? >> I think health and safety immediately right. Health and safety, you mentioned gene sequencing, drug designs, and you also mentioned in gene sequencing and drug design there is also safety in designing of automobiles and aircrafts. These methods have been traditionally using simulation, but more and more now they are thinking while these engines for example, are flying can you collect more data so you can predict when this engine will fail. And also predict say, when will the aircraft lands what sort of maintenance you should be applying on the engine without having to spend some time on the ground, which is unproductive time, that time on the ground diagnosing the problems. You start to see application of data intensive methods increased in order to improve safety and health. >> I think that's good and I agree with that. You could also kind of look at some of the technology perspective as to what kind of AI is going to be next and if you look back over the last five to seven years, deep learning has become a very hot part of machine learning and machine learning is part of AI. So that's really lifted that up. But what's next there is not just classification or prediction, but decision making on top of that. So we'll see AI move up the chain to actual decision making on top of just the basic machine learning. So optimization, things like that. Another category is what we call strategic reasoning. Traditionally in games like chess, or checkers and now Go, people have fallen to AI and now we did this in January in poker as well, after 14 years of research. So now we can actually take real strategic reasoning under imperfect information settings and apply it to various settings like business strategy optimization, automated negotiation, certain areas of finance, cyber security, and so forth. >> Go ahead. >> I'd like to interject, so we are very on it and impressed right. If we look back years ago IBM beat the worlds top chess player right. And that was an expert system and more recently Google Alpha Go beat even a more complex game, Go, and beat humans in that. But what the Professor has done recently is develop an even more complex game in a sense that it is incomplete information, it is poker. You don't know the other party's cards, unlike in the board game you would know right. This is very much real life in business negotiation in auctions, you don't quite know what the other party' thinking. So I believe now you are looking at ways I hope right, that poker playing AI software that can handle incomplete information, not knowing the other parties but still able to play expertly and apply that in business. >> I want to double down on that, I know Dave's got a question but I want to just follow this thread through. So the AI, in this case augmented intelligence, not so much artificial, because you're augmenting without the perfect information. It's interesting because one of the debates in the big data world has been, well the streaming of all this data is so high-velocity and so high-volume that we don't know what we're missing. Everyone's been trying to get at the perfect information in the streaming of the data. And this is where the machine learning if I get your point here, can do this meta reasoning or this reasoning on top of it to try to use that and say, hey let's not try to solve the worlds problems and boil the ocean over and understand it all, let's use that as a variable for AI. Did I get that right? >> Kind of, kind of I would say, in that it's not just a technical barrier to getting the big data, it's also kind of a strategic barrier. Companies, even if I could tell you all of my strategic information, I wouldn't want to. So you have to worry not just about not having all the information but are there other guys explicitly hiding information, misrepresenting and vice versa, you doing strategic action as well. Unlike in games like Go or chess, where it's perfect information, you need totally different kinds of algorithms to deal with these imperfect information games, like negotiation or strategic pricing where you have to think about the opponents responses. >> It's your hairy window. >> In advance. >> John: Knowing what you don't know. >> To your point about huge amounts of data we are talking about looking for a needle in a haystack. But when the data gets so big and the needles get so many you end up with a haystack of needles. So you need some augmentation to help you to deal with it. Because the humans would be inundated with the needles themselves. >> So is HPE sort of enabling AI or is AI driving HPC. >> I think it's both. >> Both, yeah. >> Eng: Yeah, that's right, both together. In fact AI is driving HPC because it is a new way of using that supercomputing power. Not just doing computer intensive calculation, but also doing it data intensive AI, machine learning. Then we are also driving AI because our customers are now asking the same questions, how do I transition from a computer intensive approach to a data intensive one also. This is where we come in. >> What are your thoughts on how this affects society, individuals, particularly students coming in. You mentioned Gary Kasparov losing to the IBM supercomputer. But he didn't stop there, he said I'm going to beat the supercomputer, and he got supercomputers and humans together and now holds a contest every year. So everybody talks about the impact of machines replacing humans and that's always happened. But what do you guys see, where's the future of work, of creativity for young people and the future of the economy. What does this all mean? >> You want to go first or second? >> You go ahead first. (Eng and Tuomas laughing) >> They love the fighting. >> This is a fun topic, yeah. There's a lot of worry about AI of course. But I think of AI as a tool, much like a hammer or a saw So It's going to make human lives better and it's already making human lives better. A lot of people don't even understand all the things that already have AI that are helping them out. There's this worry that there's going to be a super species that's AI that's going to take over humans. I don't think so, I don't think there's any demand for a super species of AI. Like a hammer and a saw, a hammer and a saw is better than a hammersaw, so I actually think of AI as better being separate tools for separate applications and that is very important for mankind and also nations and the world in the future. One example is our work on kidney exchange. We run the nationwide kidney exchange for the United Network for Organ Sharing, which saves hundreds of lives. This is an example not only that saves lives and makes better decisions than humans can. >> In terms of kidney candidates, timing, is all of that. >> That's a long story, but basically, when you have willing but incompatible live donors, incompatible with the patient they can swap their donors. Pair A gives to pair B gives to pair C gives to pair A for example. And we also co-invented this idea of chains where an altruist donor creates a while chain through our network and then the question of which combination of cycles and chains is the best solution. >> John: And no manual involvement, your machines take over the heavy lifting? >> It's hard because when the number of possible solutions is bigger than the number of atoms in the universe. So you have to have optimization AI actually make the decisions. So now our AI makes twice a week, these decisions for the country or 66% of the transplant centers in the country, twice a week. >> Dr. Goh would you would you add anything to the societal impact of AI? >> Yes, absolutely on the cross point on the saw and hammer. That's why these AI systems today are very specific. That's why some call them artificial specific intelligence, not general intelligence. Now whether a hundred years from now you take a hundred of these specific intelligence and combine them, whether you get an emergent property of general intelligence, that's something else. But for now, what they do is to help the analyst, the human, the decision maker and more and more you will see that as you train these models it's hard to make a lot of correct decisions. But ultimately there's a difference between a correct decision and, I believe, a right decision. Therefore, there always needs to be a human supervisor there to ultimately make the right decision. Of course, he will listen to the machine learning algorithm suggesting the correct answer, but ultimately the human values have to be applied to decide whether society accepts this decision. >> All models are wrong, some are useful. >> So on this thing there's a two benefits of AI. One is a this saves time, saves effort, which is a labor savings, automation. The other is better decision making. We're seeing the better decision making now become more of an important part instead of just labor savings or what have you. We're seeing that in the kidney exchange and now with strategic reasoning, now for the first time we can do better strategic reasoning than the best humans in imperfect information settings. Now it becomes almost a competitive need. You have to have, what I call, strategic augmentation as a business to be competitive. >> I want to get your final thoughts before we end the segment, this is more of a sharing component. A lot of young folks are coming in to computer science and or related sciences and they don't need to be a computer science major per se, but they have all the benefits of this goodness we're talking about here. Your advice, if both of you could share you opinion and thoughts in reaction to the trend where, the question we get all the time is what should young people be thinking about if they're going to be modeling and simulating a lot of new data scientists are coming in some are more practitioner oriented, some are more hard core. As this evolution of simulations and modeling that we're talking about have scale here changes, what should they know, what should be the best practice be for learning, applying, thoughts. >> For me you know the key thing is be comfortable about using tools. And for that I think the young chaps of the world as they come out of school they are very comfortable with that. So I think I'm actually less worried. It will be a new set of tools these intelligent tools, leverage them. If you look at the entire world as a single system what we need to do is to move our leveraging of tools up to a level where we become an even more productive society rather than worrying, of course we must be worried and then adapt to it, about jobs going to AI. Rather we should move ourselves up to leverage AI to be an even more productive world and then hopefully they will distribute that wealth to the entire human race, becomes more comfortable given the AI. >> Tuomas your thoughts? >> I think that people should be ready to actually for the unknown so you've got to be flexible in your education get the basics right because those basics don't change. You know, math, science, get that stuff solid and then be ready to, instead of thinking about I'm going to be this in my career, you should think about I'm going to be this first and then maybe something else I don't know even. >> John: Don't memorize the test you don't know you're going to take yet, be more adaptive. >> Yes, creativity is very important and adaptability and people should start thinking about that at a young age. >> Doctor thank you so much for sharing your input. What a great world we live in right now. A lot of opportunities a lot of challenges that are opportunities to solve with high performance computing, AI and whatnot. Thanks so much for sharing. This is theCUBE bringing you all the best coverage from HPE Discover. I'm John Furrier with Dave Vellante, we'll be back with more live coverage after this short break. Three days of wall to wall live coverage. We'll be right back. >> Thanks for having us.
SUMMARY :
covering HPE Discover 2017, brought to you and also runs the marketplace lab over there, So the patient is on the table, and the startup side that you know, Focus on the research, focus on the algorithms, done in minutes, the prices are dropping. and this is what you do. things of that as you mentioned weather. Health and safety, you mentioned gene sequencing, You could also kind of look at some of the technology So I believe now you are looking at ways So the AI, in this case augmented intelligence, and vice versa, you doing strategic action as well. So you need some augmentation to help you to deal with it. are now asking the same questions, and the future of the economy. (Eng and Tuomas laughing) and also nations and the world in the future. is the best solution. is bigger than the number of atoms in the universe. Dr. Goh would you would you add anything and combine them, whether you get an emergent property We're seeing that in the kidney exchange and or related sciences and they don't need to be and then adapt to it, about jobs going to AI. for the unknown so you've got to be flexible John: Don't memorize the test you don't know and adaptability and people should start thinking This is theCUBE bringing you all
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
John | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Gary Kasparov | PERSON | 0.99+ |
Tuomas Sandholm | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tuomas | PERSON | 0.99+ |
30 years | QUANTITY | 0.99+ |
66% | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
10 thousand days | QUANTITY | 0.99+ |
January | DATE | 0.99+ |
Three days | QUANTITY | 0.99+ |
two doctors | QUANTITY | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
One | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
Eng Lim Goh | PERSON | 0.99+ |
Pittsburgh Supercomputing Center | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
Both | QUANTITY | 0.99+ |
twice a week | QUANTITY | 0.99+ |
Strategic Machine Inc. | ORGANIZATION | 0.99+ |
seventh year | QUANTITY | 0.99+ |
two benefits | QUANTITY | 0.99+ |
Hewlett Packard Enterprise | ORGANIZATION | 0.99+ |
today | DATE | 0.98+ |
HPE Discover | ORGANIZATION | 0.98+ |
Carnegie Mellon | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.98+ |
One example | QUANTITY | 0.98+ |
Carnegie Mellon University of Computer Science | ORGANIZATION | 0.98+ |
United Network for Organ Sharing | ORGANIZATION | 0.98+ |
two great guests | QUANTITY | 0.98+ |
second year | QUANTITY | 0.98+ |
tomorrows | DATE | 0.97+ |
Dr. | PERSON | 0.97+ |
seven years | QUANTITY | 0.97+ |
Goh | PERSON | 0.97+ |
second | QUANTITY | 0.96+ |
first time | QUANTITY | 0.96+ |
Two big | QUANTITY | 0.96+ |
Go | TITLE | 0.95+ |
10 thousand tries | QUANTITY | 0.94+ |
one | QUANTITY | 0.94+ |
next day | DATE | 0.91+ |
last few years | DATE | 0.91+ |
a hundred years | QUANTITY | 0.91+ |
single system | QUANTITY | 0.88+ |
SGI | ORGANIZATION | 0.88+ |
hundreds of lives | QUANTITY | 0.87+ |
chess | TITLE | 0.86+ |
last 30 years | DATE | 0.86+ |
pair A | OTHER | 0.85+ |
hundred | QUANTITY | 0.84+ |
HPE Discover 2017 | EVENT | 0.83+ |
HPE Discover | EVENT | 0.82+ |
pair B | OTHER | 0.81+ |
14 years | QUANTITY | 0.8+ |
SiliconANGLE | ORGANIZATION | 0.79+ |
2017 | DATE | 0.78+ |
transplant centers | QUANTITY | 0.75+ |
five | QUANTITY | 0.73+ |
Eng | PERSON | 0.72+ |
last | QUANTITY | 0.71+ |
years ago | DATE | 0.7+ |
every | QUANTITY | 0.68+ |
VP | PERSON | 0.67+ |
theCube | ORGANIZATION | 0.66+ |
pair C | OTHER | 0.59+ |
Alpha Go | COMMERCIAL_ITEM | 0.57+ |