Image Title

Anthony Dina, Dell Technologies and Bob Crovella, NVIDIA | SuperComputing 22


 

>>How do y'all, and welcome back to Supercomputing 2022. We're the Cube, and we are live from Dallas, Texas. I'm joined by my co-host, David Nicholson. David, hello. Hello. We are gonna be talking about data and enterprise AI at scale during this segment. And we have the pleasure of being joined by both Dell and Navidia. Anthony and Bob, welcome to the show. How you both doing? Doing good. >>Great. Great show so far. >>Love that. Enthusiasm, especially in the afternoon on day two. I think we all, what, what's in that cup? Is there something exciting in there that maybe we should all be sharing with you? >>Just say it's just still Yeah, water. >>Yeah. Yeah. I love that. So I wanna make sure that, cause we haven't talked about this at all during the show yet, on the cube, I wanna make sure that everyone's on the same page when we're talking about data unstructured versus structured data. I, it's in your title, Anthony, tell me what, what's the difference? >>Well, look, the world has been based in analytics around rows and columns, spreadsheets, data warehouses, and we've made predictions around the forecast of sales maintenance issues. But when we take computers and we give them eyes, ears, and fingers, cameras, microphones, and temperature and vibration sensors, we now translate that into more human experience. But that kind of data, the sensor data, that video camera is unstructured or semi-structured, that's what that >>Means. We live in a world of unstructured data structure is something we add to later after the fact. But the world that we see and the world that we experience is unstructured data. And one of the promises of AI is to be able to take advantage of everything that's going on around us and augment that, improve that, solve problems based on that. And so if we're gonna do that job effectively, we can't just depend on structured data to get the problem done. We have to be able to incorporate everything that we can see here, taste, smell, touch, and use >>That as, >>As part of the problem >>Solving. We want the chaos, bring it. >>Chaos has been a little bit of a theme of our >>Show. It has been, yeah. And chaos is in the eye of the beholder. You, you think about, you think about the reason for structuring data to a degree. We had limited processing horsepower back when everything was being structured as a way to allow us to be able to, to to reason over it and gain insights. So it made sense to put things into rows and tables. How does, I'm curious, diving right into where Nvidia fits into this, into this puzzle, how does NVIDIA accelerate or enhance our ability to glean insight from or reason over unstructured data in particular? >>Yeah, great question. It's really all about, I would say it's all about ai and Invidia is a leader in the AI space. We've been investing and focusing on AI since at least 2012, if not before, accelerated computing that we do it. Invidia is an important part of it, really. We believe that AI is gonna revolutionize nearly every aspect of computing. Really nearly every aspect of problem solving, even nearly every aspect of programming. And one of the reasons is for what we're talking about now is it's a little impact. Being able to incorporate unstructured data into problem solving is really critical to being able to solve the next generation of problems. AI unlocks, tools and methodologies that we can realistically do that with. It's not realistic to write procedural code that's gonna look at a picture and solve all the problems that we need to solve if we're talking about a complex problem like autonomous driving. But with AI and its ability to naturally absorb unstructured data and make intelligent reason decisions based on it, it's really a breakthrough. And that's what NVIDIA's been focusing on for at least a decade or more. >>And how does NVIDIA fit into Dell's strategy? >>Well, I mean, look, we've been partners for many, many years delivering beautiful experiences on workstations and laptops. But as we see the transition away from taking something that was designed to make something pretty on screen to being useful in solving problems in life sciences, manufacturing in other places, we work together to provide integrated solutions. So take for example, the dgx a 100 platform, brilliant design, revolutionary bus technologies, but the rocket ship can't go to Mars without the fuel. And so you need a tank that can scale in performance at the same rate as you throw GPUs at it. And so that's where the relationship really comes alive. We enable people to curate the data, organize it, and then feed those algorithms that get the answers that Bob's been talking about. >>So, so as a gamer, I must say you're a little shot at making things pretty on a screen. Come on. That was a low blow. That >>Was a low blow >>Sassy. What I, >>I Now what's in your cup? That's what I wanna know, Dave, >>I apparently have the most boring cup of anyone on you today. I don't know what happened. We're gonna have to talk to the production team. I'm looking at all of you. We're gonna have to make that better. One of the themes that's been on this show, and I love that you all embrace the chaos, we're, we're seeing a lot of trend in the experimentation phase or stage rather. And it's, we're in an academic zone of it with ai, companies are excited to adopt, but most companies haven't really rolled out their strategy. What is necessary for us to move from this kind of science experiment, science fiction in our heads to practical application at scale? Well, >>Let me take this, Bob. So I've noticed there's a pattern of three levels of maturity. The first level is just what you described. It's about having an experience, proof of value, getting stakeholders on board, and then just picking out what technology, what algorithm do I need? What's my data source? That's all fun, but it is chaos over time. People start actually making decisions based on it. This moves us into production. And what's important there is normality, predictability, commonality across, but hidden and embedded in that is a center of excellence. The community of data scientists and business intelligence professionals sharing a common platform in the last stage, we get hungry to replicate those results to other use cases, throwing even more information at it to get better accuracy and precision. But to do this in a budget you can afford. And so how do you figure out all the knobs and dials to turn in order to make, take billions of parameters and process that, that's where casual, what's >>That casual decision matrix there with billions of parameters? >>Yeah. Oh, I mean, >>But you're right that >>That's, that's exactly what we're, we're on this continuum, and this is where I think the partnership does really well, is to marry high performant enterprise grade scalability that provides the consistency, the audit trail, all of the things you need to make sure you don't get in trouble, plus all of the horsepower to get to the results. Bob, what would you >>Add there? I think the thing that we've been talking about here is complexity. And there's complexity in the AI problem solving space. There's complexity everywhere you look. And we talked about the idea that NVIDIA can help with some of that complexity from the architecture and the software development side of it. And Dell helps with that in a whole range of ways, not the least of which is the infrastructure and the server design and everything that goes into unlocking the performance of the technology that we have available to us today. So even the center of excellence is an example of how do I take this incredibly complex problem and simplify it down so that the real world can absorb and use this? And that's really what Dell and Vidia are partnering together to do. And that's really what the center of excellence is. It's an idea to help us say, let's take this extremely complex problem and extract some good value out of >>It. So what is Invidia's superpower in this realm? I mean, look, we're we are in, we, we are in the era of Yeah, yeah, yeah. We're, we're in a season of microprocessor manufacturers, one uping, one another with their latest announcements. There's been an ebb and a flow in our industry between doing everything via the CPU versus offloading processes. Invidia comes up and says, Hey, hold on a second, gpu, which again, was focused on graphics processing originally doing something very, very specific. How does that translate today? What's the Nvidia again? What's, what's, what's the superpower? Because people will say, well, hey, I've got a, I've got a cpu, why do I need you? >>I think our superpower is accelerated computing, and that's really a hardware and software thing. I think your question is slanted towards the hardware side, which is, yes, it is very typical and we do make great processors, but the processor, the graphics processor that you talked about from 10 or 20 years ago was designed to solve a very complex task. And it was exquisitely designed to solve that task with the resources that we had available at that time. Time. Now, fast forward 10 or 15 years, we're talking about a new class of problems called ai. And it requires both exquisite, soft, exquisite processor design as well as very complex and exquisite software design sitting on top of it as well. And the systems and infrastructure knowledge, high performance storage and everything that we're talking about in the solution today. So Nvidia superpower is really about that accelerated computing stack at the bottom. You've got hardware above that, you've got systems above that, you have middleware and libraries and above that you have what we call application SDKs that enable the simplification of this really complex problem to this domain or that domain or that domain, while still allowing you to take advantage of that processing horsepower that we put in that exquisitely designed thing called the gpu >>Decreasing complexity and increasing speed to very key themes of the show. Shocking, no one, you all wanna do more faster. Speaking of that, and I'm curious because you both serve a lot of different unique customers, verticals and use cases, is there a specific project that you're allowed to talk about? Or, I mean, you know, you wanna give us the scoop, that's totally cool too. We're here for the scoop on the cube, but is there a specific project or use case that has you personally excited Anthony? We'll start with that. >>Look, I'm, I've always been a big fan of natural language processing. I don't know why, but to derive intent based on the word choices is very interesting to me. I think what compliments that is natural language generation. So now we're having AI programs actually discover and describe what's inside of a package. It wouldn't surprise me that over time we move from doing the typical summary on the economic, the economics of the day or what happened in football. And we start moving that towards more of the creative advertising and marketing arts where you are no longer needed because the AI is gonna spit out the result. I don't think we're gonna get there, but I really love this idea of human language and computational linguistics. >>What a, what a marriage. I agree. Think it's fascinating. What about you, Bob? It's got you >>Pumped. The thing that really excites me is the problem solving, sort of the tip of the spear in problem solving. The stuff that you've never seen before, the stuff that you know, in a geeky way kind of takes your breath away. And I'm gonna jump or pivot off of what Anthony said. Large language models are really one of those areas that are just, I think they're amazing and they're just kind of surprising everyone with what they can do here on the show floor. I was looking at a demonstration from a large language model startup, basically, and they were showing that you could ask a question about some obscure news piece that was reported only in a German newspaper. It was about a little shipwreck that happened in a hardware. And I could type in a query to this system and it would immediately know where to find that information as if it read the article, summarized it for you, and it even could answer questions that you could only only answer by looking pic, looking at pictures in that article. Just amazing stuff that's going on. Just phenomenal >>Stuff. That's a huge accessibility. >>That's right. And I geek out when I see stuff like that. And that's where I feel like all this work that Dell and Invidia and many others are putting into this space is really starting to show potential in ways that we wouldn't have dreamed of really five years ago. Just really amazing. And >>We see this in media and entertainment. So in broadcasting, you have a sudden event, someone leaves this planet where they discover something new where they get a divorce and they're a major quarterback. You wanna go back somewhere in all of your archives to find that footage. That's a very laborist project. But if you can use AI technology to categorize that and provide the metadata tag so you can, it's searchable, then we're off to better productions, more interesting content and a much richer viewer experience >>And a much more dynamic picture of what's really going on. Factoring all of that in, I love that. I mean, David and I are both nerds and I know we've had take our breath away moments, so I appreciate that you just brought that up. Don't worry, you're in good company. In terms of the Geek Squad over >>Here, I think actually maybe this entire show for Yes, exactly. >>I mean, we were talking about how steampunk some of the liquid cooling stuff is, and you know, this is the only place on earth really, or the only show where you would come and see it at this level in scale and, and just, yeah, it's, it's, it's very, it's very exciting. How important for the future of innovation in HPC are partnerships like the one that Navia and Dell have? >>You wanna start? >>Sure, I would, I would just, I mean, I'm gonna be bold and brash and arrogant and say they're essential. Yeah, you don't not, you do not want to try and roll this on your own. This is, even if we just zoomed in to one little beat, little piece of the technology, the software stack that do modern, accelerated deep learning is incredibly complicated. There can be easily 20 or 30 components that all have to be the right version with the right buttons pushed, built the right way, assembled the right way, and we've got lots of technologies to help with that. But you do not want to be trying to pull that off on your own. That's just one little piece of the complexity that we talked about. And we really need, as technology providers in this space, we really need to do as much as we do to try to unlock the potential. We have to do a lot to make it usable and capable as well. >>I got a question for Anthony. All >>Right, >>So in your role, and I, and I'm, I'm sort of, I'm sort of projecting here, but I think, I think, I think your superpower personally is likely in the realm of being able to connect the dots between technology and the value that that technology holds in a variety of contexts. That's right. Whether it's business or, or whatever, say sentences. Okay. Now it's critical to have people like you to connect those dots. Today in the era of pervasive ai, how important will it be to have AI have to explain its answer? In other words, words, should I trust the information the AI is giving me? If I am a decision maker, should I just trust it on face value? Or am I going to want a demand of the AI kind of what you deliver today, which is No, no, no, no, no, no. You need to explain this to me. How did you arrive at that conclusion, right? How important will that be for people to move forward and trust the results? We can all say, oh hey, just trust us. Hey, it's ai, it's great, it's got Invidia, you know, Invidia acceleration and it's Dell. You can trust us, but come on. So many variables in the background. It's >>An interesting one. And explainability is a big function of ai. People want to know how the black box works, right? Because I don't know if you have an AI engine that's looking for potential maladies in an X-ray, but it misses it. Do you sue the hospital, the doctor or the software company, right? And so that accountability element is huge. I think as we progress and we trust it to be part of our everyday decision making, it's as simply as a recommendation engine. It isn't actually doing all of the decisions. It's supporting us. We still have, after decades of advanced technology algorithms that have been proven, we can't predict what the market price of any object is gonna be tomorrow. And you know why? You know why human beings, we are so unpredictable. How we feel in the moment is radically different. And whereas we can extrapolate for a population to an individual choice, we can't do that. So humans and computers will not be separated. It's a, it's a joint partnership. But I wanna get back to your point, and I think this is very fundamental to the philosophy of both companies. Yeah, it's about a community. It's always about the people sharing ideas, getting the best. And anytime you have a center of excellence and algorithm that works for sales forecasting may actually be really interesting for churn analysis to make sure the employees or students don't leave the institution. So it's that community of interest that I think is unparalleled at other conferences. This is the place where a lot of that happens. >>I totally agree with that. We felt that on the show. I think that's a beautiful note to close on. Anthony, Bob, thank you so much for being here. I'm sure everyone feels more educated and perhaps more at peace with the chaos. David, thanks for sitting next to me asking the best questions of any host on the cube. And thank you all for being a part of our community. Speaking of community here on the cube, we're alive from Dallas, Texas. It's super computing all week. My name is Savannah Peterson and I'm grateful you're here. >>So I.

Published Date : Nov 16 2022

SUMMARY :

And we have the pleasure of being joined by both Dell and Navidia. Great show so far. I think we all, cause we haven't talked about this at all during the show yet, on the cube, I wanna make sure that everyone's on the same page when we're talking about But that kind of data, the sensor data, that video camera is unstructured or semi-structured, And one of the promises of AI is to be able to take advantage of everything that's going on We want the chaos, bring it. And chaos is in the eye of the beholder. And one of the reasons is for what we're talking about now is it's a little impact. scale in performance at the same rate as you throw GPUs at it. So, so as a gamer, I must say you're a little shot at making things pretty on a I apparently have the most boring cup of anyone on you today. But to do this in a budget you can afford. the horsepower to get to the results. and simplify it down so that the real world can absorb and use this? What's the Nvidia again? So Nvidia superpower is really about that accelerated computing stack at the bottom. We're here for the scoop on the cube, but is there a specific project or use case that has you personally excited And we start moving that towards more of the creative advertising and marketing It's got you And I'm gonna jump or pivot off of what That's a huge accessibility. And I geek out when I see stuff like that. and provide the metadata tag so you can, it's searchable, then we're off to better productions, so I appreciate that you just brought that up. I mean, we were talking about how steampunk some of the liquid cooling stuff is, and you know, this is the only place on earth really, There can be easily 20 or 30 components that all have to be the right version with the I got a question for Anthony. to have people like you to connect those dots. And anytime you have a center We felt that on the show.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

David NicholsonPERSON

0.99+

BobPERSON

0.99+

AnthonyPERSON

0.99+

Bob CrovellaPERSON

0.99+

DellORGANIZATION

0.99+

20QUANTITY

0.99+

InvidiaORGANIZATION

0.99+

NVIDIAORGANIZATION

0.99+

Savannah PetersonPERSON

0.99+

MarsLOCATION

0.99+

VidiaORGANIZATION

0.99+

NvidiaORGANIZATION

0.99+

10QUANTITY

0.99+

bothQUANTITY

0.99+

DavePERSON

0.99+

Dallas, TexasLOCATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

15 yearsQUANTITY

0.99+

Dallas, TexasLOCATION

0.99+

NavidiaORGANIZATION

0.99+

OneQUANTITY

0.99+

first levelQUANTITY

0.99+

both companiesQUANTITY

0.98+

TodayDATE

0.98+

oneQUANTITY

0.98+

2012DATE

0.98+

todayDATE

0.98+

billionsQUANTITY

0.98+

earthLOCATION

0.97+

10DATE

0.96+

Anthony DinaPERSON

0.96+

five years agoDATE

0.96+

30 componentsQUANTITY

0.95+

NaviaORGANIZATION

0.95+

day twoQUANTITY

0.94+

one little pieceQUANTITY

0.91+

tomorrowDATE

0.87+

three levelsQUANTITY

0.87+

HPCORGANIZATION

0.86+

20 years agoDATE

0.83+

one littleQUANTITY

0.77+

billions of parametersQUANTITY

0.75+

a decadeQUANTITY

0.74+

decadesQUANTITY

0.68+

GermanOTHER

0.68+

dgx a 100 platformCOMMERCIAL_ITEM

0.67+

themesQUANTITY

0.63+

secondQUANTITY

0.57+

22QUANTITY

0.48+

SquadORGANIZATION

0.4+

Supercomputing 2022ORGANIZATION

0.36+