Image Title

Search Results for Ken King:

Ken King & Sumit Gupta, IBM | IBM Think 2018


 

>> Narrator: Live from Las Vegas, it's the Cube, covering IBM Think 2018, brought to you by IBM. >> We're back at IBM Think 2018. You're watching the Cube, the leader in live tech coverage. My name is Dave Vellante and I'm here with my co-host, Peter Burris. Ken King is here; he's the general manager of OpenPOWER from IBM, and Sumit Gupta, PhD, who is the VP, HPC, AI, ML for IBM Cognitive. Gentleman, welcome to the Cube >> Sumit: Thank you. >> Thank you for having us. >> So, really, guys, a pleasure. We had dinner last night, talked about Picciano who runs the OpenPOWER business, appreciate you guys comin' on, but, I got to ask you, Sumit, I'll start with you. OpenPOWER, Cognitive systems, a lot of people say, "Well, that's just the power system. "This is the old AIX business, it's just renaming it. "It's a branding thing.", what do you say? >> I think we had a fundamental strategy shift where we realized that AI was going to be the dominant workload moving into the future, and the systems that have been designed today or in the past are not the right systems for the AI future. So, we also believe that it's not just about silicon and even a single server. It's about the software, it's about thinking at the react level and the data center level. So, fundamentally, Cognitive Systems is about co-designing hardware and software with an open ecosystem of partners who are innovating to maximize the data and AI support at a react level. >> Somebody was talkin' to Steve Mills, probably about 10 years ago, and he said, "Listen, if you're going to compete with Intel, "you can copy them, that's not what we're going to do." You know, he didn't like the spark strategy. "We have a better strategy.", is what he said, and "Oh, strategies, we're going to open it up, "we're going to try to get 10% of the market. "You know, we'll see if we can get there.", but, Ken, I wonder if you could sort of talk about, just from a high level, the strategy and maybe go into the segments. >> Yeah, absolutely, so, yeah, you're absolutely right on the strategy. You know, we have completely opened up the architecture. Our focus on growth is around having an ecosystem and an open architecture so everybody can innovate on top of it effectively and everybody in the ecosystem can profit from it and gains good margins. So, that's the strategy, that's how we design the OpenPOWER ecosystem, but, you know, our segments, our core segments, AIX in Unix is still a core, very big core segment of ours. Unix itself is flat to declining, but AIX is continuing to take share in that segment through all the new innovations we're delivering. The other segments are all growth segments, high growth segments, whether it's SAP HANA, our cognitive infrastructure in modern day to platform, or even what we're doing in the HyperScale data centers. Those are all significant growth opportunities for us, and those are all Linux based, and, so, that is really where a lot of the OpenPOWER initiatives are driving growth for us and leveraging the fact that, through that ecosystem, we're getting a lot of incremental innovation that's occurring and it's delivering competitive differentiation for our platform. I say for our platform, but that doesn't mean just for IBM, but for all the ecosystem partners as well, and a lot of that was on display on Monday when we had our OpenPOWER summit. >> So, to talk about more about the OpenPOWER summit, what was that all about, who was there? Give us some stats on OpenPOWER and ecosystem. >> Yeah, absolutely. So, it was a good day, we're up to well over 300 members. We have over 50 different systems that are coming out in the market from IBM or our partners. Over 20 different manufacturers out there actually developing OpenPOWER systems. A lot of announcements or a lot of statements that were made at the summit that we thought were extremely valuable, first of all, we got the number one server vendor in Europe, Atos, designing and developing P9, the number on in Japan, Hitachi, the number one in China, Inspur. We got top ODMs like Super Micro, Wistron, and others that are also developing their power nine. We have a lot of different component providers on the new PCIe gen four, on the open cabinet capabilities, a lot of announcements made by a number of component partners and accelerator partners at the summit as well. The other thing I'm excited about is we have over 70 ISVs now on the platform, and a number of statements were made and announcements on Monday from people like MapD, Anaconda, H2O, Conetica and others who are leveraging those innovations bought on the platform like NVLink and the coherency between GPU and CPU to do accelerated analytics and accelerated GPU database kind of capabilities, but the thing that had me the most excited on Monday were the end users. I've always said, and the analysts always ask me the questions of when are you going to start penetration in the market? When are you going to show that you've got a lot of end users deploying this? And there were a lot of statements by a lot of big players on Monday. Google was on stage and publicly said the IO was amazing, the memory bandwidth is amazing. We are deploying Zaius, which is the power nine server, in our data centers and we're ready for scale, and it's now Google strong which is basically saying that this thing is hardened and ready for production, but we also (laughs) had a number of other significant ones, Tencent talkin' about deploying OpenPOWER, 30% better efficiency, 30% less server resources required, the cloud armor of Alibaba talkin' about how they're putting on their on their X-Dragon, they have it in a piler program, they're asking everybody to use it now so they can figure out how do they go into production. PayPal made statements about how they're using it, but the machine learning and deep learning to do fraud detection, and we even had Limelight, who is not as big a name, but >> CDN, yeah. >> They're a CDN tool provider to people like Netflix and others. We're talkin' about the great capability with the IO and the ability to reduce the buffering and improve the streaming for all these CDN providers out there. So, we were really excited about all those end users and all the things they're saying. That demonstrates the power of this ecosystem. >> Alright, so just to comment on the architecture and then, I want to get into the Cognitive piece. I mean, you guys did, years ago, little Indians, recognizing you got to get software based to be compatible. You mentioned, Ken, bandwidth, IO bandwidth, CAPI stuff that you've done. So, there's a lot of incentives, especially for the big hyperscale guys, to be able to do more with less, but, to me, let's get into the AI, the Cognitive piece. Bob Picciano comes over from running a $15 billion analytics business, so, obviously, he's got some knowledge. He's bringin' in people like you with all these cool buzzwords in your title. So, talk a little bit about infrastructure for AI and why power is the right platform. >> Sure, so, I think we all recognize that the performance advantages and even power advantages that we were getting from Dennard scaling, also known as Moore's law, is over, right. So, people talk about the end of Moore's Law, and that's really the end of gaining processor performance with Dennard scaling and the Moore's Law. What we believe is that to continue to meet the performance needs of all of these new AI and data workloads, you need accelerators, and not just computer accelerators, you actually need accelerated networking. You need accelerated storage, you need high-density memory sitting very close to the compute power, and, if you really think about it, what's happened is, again, system view, right, we're not silicon view, we're looking at the system. The minute you start looking at the silicon you realize you want to get the data to where the computer is, or the computer where the data is. So, it all becomes about creating bigger pipelines, factor of pipelines, to move data around to get to the right compute piece. For example, we put much more emphasis on a much faster memory system to make sure we are getting data from the system memory to the CPU. >> Coherently. >> Coherently, that's the main memory. We put interfaces on power nine including NVLink, OpenCAPI, and PCIe gen four, and that enabled us to get that data either from the network to the system memory, or out back to the network, or to storage, or to accelerators like GPUs. We built and embedded these high-speed interconnects into power nine, into the processor. Nvidia put NVLink into their GPU, and we've been working with marketers like Xilinx and Mellanox on getting OpenCAPI onto their components. >> And we're seeing up to 10x for both memory bandwidth and IO over x86 which is significant. You should talk about how we're seeing up to 4x improvement in training of MLDL algorithms over x86 which is dramatic in how quickly you can get from data to insight, right? You could take training and turn it from weeks to days, or days to hours, or even hours to minutes, and that makes a huge difference in what you can do in any industry as far as getting insight out of your data which is the competitive differentiator in today's environment. >> Let's talk about this notion of architecture, or systems especially. The basic platform for how we've been building systems has been relatively consistent for a long time. The basic approach to how we think about building systems has been relatively consistent. You start with the database manager, you run it on an Intel processor, you build your application, you scale it up based on SMP needs. There's been some variations; we're going into clustering, because we do some other things, but you guys are talking about something fundamentally different, and flash memory, the ability to do flash storage, which dramatically changes the relationship between the processor and the data, means that we're not going to see all of the organization of the workloads around the server, see how much we can do in it. It's really going to be much more of a balanced approach. How is power going to provide that more balanced systems approach across as we distribute data, as we distribute processing, as we create a cloud experience that isn't in one place, but is in more places. >> Well, this ties exactly to the point I made around it's not just accelerated compute, which we've all talked about a lot over the years, it's also about accelerated storage, accelerated networking, and accelerated memories, right. This is really, the point being, that the compute, if you don't have a fast pipeline into the processor from all of this wonderful storage and flash technology, there's going to be a choke point in the network, or they'll be a choke point once the data gets to the server, you're choked then. So, a lot of our focus has been, first of all, partnering with a company like Mellanox which builds extremely high bandwidth, high-speed >> And EOF. >> Right, right, and I'm using one as an example right. >> Sure. >> I'm using one as an example and that's where the large partnerships, we have like 300 partnerships, as Ken talked about in the OpenPOWER foundation. Those partnerships is because we brought together all of these technology providers. We believe that no one company can own the agenda of technology. No one company can invest enough to continue to give us the performance we need to meet the needs of the AI workloads, and that's why we want to partner with all these technology vendors who've all invested billions of dollars to provide the best systems and software for AI and data. >> But fundamentally, >> It's the whole construct of data centric systems, right? >> Right. >> I mean, sometimes you got to process the data in the network, right? Sometimes you got to process the data in the storage. It's not just at the CPU, the GPUs a huge place for processing that data. >> Sure. >> How do you do that all coherently and how do things work together in a system environment is crucial versus a vertically integrated capability where the CPU provider continues to put more and more into the processor and disenfranchise the rest of the ecosystem. >> Well, that was the counter building strategies that we want to talk about. You have Intel who wants to put as much on the die as possible. It's worked quite well for Intel over the years. You had to take a different strategy. If you tried to take Intel on with that strategy, you would have failed. So, talk about the different philosophies, but really I'm interested in what it means for things like alternative processing and your relationship in your ecosystem. >> This is not about company strategies, right. I mean, Intel is a semiconductor company and they think like a semiconductor company. We're a systems and software company, we think like that, but this is not about company strategy. This is about what the market needs, what client workloads need, and if you start there, you start with a data centric strategy. You start with data centric systems. You think about moving data around and making sure there is heritage in this computer, there is accelerated computer, you have very fast networks. So, we just built the US's fastest supercomputer. We're currently building the US's fastest supercomputer which is the project name is Coral, but there are two supercomputers, one at Oak Ridge National Labs and one at Lawrence Livermore. These are the ultimate HPC and AI machines, right. Its computer's a very important part of them, but networking and storage is just as important. The file system is just as important. The cluster management software is just as important, right, because if you are serving data scientists and a biologist, they don't want to deal with, "How many servers do I need to launch this job on? "How do I manage the jobs, how do I manage the server?" You want them to just scale, right. So, we do a lot of work on our scalability. We do a lot of work in using Apache Spark to enable cluster virtualization and user virtualization. >> Well, if we think about, I don't like the term data gravity, it's wrong a lot of different perspectives, but if we think about it, you guys are trying to build systems in a world that's centered on data, as opposed to a world that's centered on the server. >> That's exactly right. >> That's right. >> You got that, right? >> That's exactly right. >> Yeah, absolutely. >> Alright, you guys got to go, we got to wrap, but I just want to close with, I mean, always says infrastructure matters. You got Z growing, you got power growing, you got storage growing, it's given a good tailwind to IBM, so, guys, great work. Congratulations, got a lot more to do, I know, but thanks for >> It's going to be a fun year. comin' on the Cube, appreciate it. >> Thank you very much. >> Thank you. >> Appreciate you having us. >> Alright, keep it right there, everybody. We'll be back with our next guest. You're watching the Cube live from IBM Think 2018. We'll be right back. (techno beat)

Published Date : Mar 21 2018

SUMMARY :

covering IBM Think 2018, brought to you by IBM. Ken King is here; he's the general manager "This is the old AIX business, it's just renaming it. and the systems that have been designed today or in the past You know, he didn't like the spark strategy. So, that's the strategy, that's how we design So, to talk about more about the OpenPOWER summit, the questions of when are you going to and the ability to reduce the buffering the big hyperscale guys, to be able to do more with less, from the system memory to the CPU. Coherently, that's the main memory. and that makes a huge difference in what you can do and flash memory, the ability to do flash storage, This is really, the point being, that the compute, Right, right, and I'm using one as an example the large partnerships, we have like 300 partnerships, It's not just at the CPU, the GPUs and disenfranchise the rest of the ecosystem. So, talk about the different philosophies, "How do I manage the jobs, how do I manage the server?" but if we think about it, you guys are trying You got Z growing, you got power growing, comin' on the Cube, appreciate it. We'll be back with our next guest.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Peter BurrisPERSON

0.99+

Dave VellantePERSON

0.99+

Ken KingPERSON

0.99+

IBMORGANIZATION

0.99+

Steve MillsPERSON

0.99+

KenPERSON

0.99+

SumitPERSON

0.99+

Bob PiccianoPERSON

0.99+

ChinaLOCATION

0.99+

MondayDATE

0.99+

EuropeLOCATION

0.99+

MellanoxORGANIZATION

0.99+

PayPalORGANIZATION

0.99+

10%QUANTITY

0.99+

AlibabaORGANIZATION

0.99+

JapanLOCATION

0.99+

Sumit GuptaPERSON

0.99+

OpenPOWERORGANIZATION

0.99+

30%QUANTITY

0.99+

$15 billionQUANTITY

0.99+

oneQUANTITY

0.99+

NvidiaORGANIZATION

0.99+

HitachiORGANIZATION

0.99+

ConeticaORGANIZATION

0.99+

XilinxORGANIZATION

0.99+

Las VegasLOCATION

0.99+

OpenPOWEREVENT

0.99+

GoogleORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

AtosORGANIZATION

0.99+

PiccianoPERSON

0.99+

300 partnershipsQUANTITY

0.99+

IntelORGANIZATION

0.99+

AnacondaORGANIZATION

0.99+

InspurORGANIZATION

0.98+

two supercomputersQUANTITY

0.98+

LinuxTITLE

0.98+

Moore's LawTITLE

0.98+

over 300 membersQUANTITY

0.98+

USLOCATION

0.98+

SAP HANATITLE

0.97+

AIXORGANIZATION

0.97+

over 50 different systemsQUANTITY

0.97+

WistronORGANIZATION

0.97+

bothQUANTITY

0.97+

LimelightORGANIZATION

0.97+

H2OORGANIZATION

0.97+

UnixTITLE

0.97+

over 70 ISVsQUANTITY

0.97+

Over 20 different manufacturersQUANTITY

0.97+

billions of dollarsQUANTITY

0.96+

MapDORGANIZATION

0.96+

DennardORGANIZATION

0.95+

OpenCAPITITLE

0.95+

Moore's lawTITLE

0.95+

todayDATE

0.95+

single serverQUANTITY

0.94+

LawrenceLOCATION

0.93+

Oak Ridge National LabsORGANIZATION

0.93+

IBM CognitiveORGANIZATION

0.93+

TencentORGANIZATION

0.93+

nineQUANTITY

0.92+

one placeQUANTITY

0.91+

up to 10xQUANTITY

0.9+

X-DragonCOMMERCIAL_ITEM

0.9+

30% lessQUANTITY

0.9+

P9COMMERCIAL_ITEM

0.89+

last nightDATE

0.88+

CoralORGANIZATION

0.88+

AIXTITLE

0.87+

Cognitive SystemsORGANIZATION

0.86+