Image Title

Search Results for Justin Teresa:

Justin Borgman, Starburst and Teresa Tung, Accenture | AWS re:Invent 2021


 

>>Hey, welcome back to the cubes. Continuing coverage of AWS reinvent 2021. I'm your host, Lisa Martin. This is day two, our first full day of coverage. But day two, we have two life sets here with AWS and its ecosystem partners to remote sets over a hundred guests on the program. We're going to be talking about the next decade of cloud innovation, and I'm pleased to welcome back to cube alumni to the program. Justin Borkman is here, the co-founder and CEO of Starburst and Teresa Tung, the cloud first chief technologist at Accenture guys. Welcome back to the queue. Thank you. Thank you for having me. Good to have you back. So, so Teresa, I was doing some research on you and I see you are the most prolific prolific inventor at Accenture with over 220 patents and patent applications. That's huge. Congratulations. Thank you. Thank you. And I love your title. I think it's intriguing. I'd like to learn a little bit more about your role cloud-first chief technologist. Tell me about, >>Well, I get to think about the future of cloud and if you think about clouded powers, everything experiences in our everyday lives and our homes and our car in our stores. So pretty much I get to be cute, right? The rest of Accenture's James Bond >>And your queue. I like that. Wow. What a great analogy. Just to talk to me a little bit, I know service has been on the program before, but give me a little bit of an overview of the company, what you guys do. What were some of the gaps in the markets that you saw a few years ago and said, we have an idea to solve this? Sure. >>So Starburst offers a distributed query engine, which essentially means we're able to run SQL queries on data anywhere, uh, could be in traditional relational databases, data lakes in the cloud on-prem. And I think that was the gap that we saw was basically that people had data everywhere and really had a challenge with how they analyze that data. And, uh, my co-founders are the creators of an open source project originally called Presto now called Trino. And it's how Facebook and Netflix and Airbnb and, and a number of the internet companies run their analytics. And so our idea was basically to take that, commercialize that and make it enterprise grade for the thousands of other companies that are struggling with data management, data analytics problems. >>And that's one of the things we've seen explode during the last 22 months, among many other things is data, right? In every company. These days has to be a data company. If they're not, there's a competitor in the rear view rear view mirror, ready to come and take that place. We're going to talk about the data mesh Teresa, we're going to start with you. This is not a new car. This is a new concept. Talk to us about what a data mesh is and why organizations need to embrace this >>Approach. So there's a canonical definition about data mesh with four attributes and any data geek or data architect really resonates with them. So number one, it's really routed decentralized domain ownership. So data is not within a single line of business within a single entity within a single partner has to be across different domains. Second is publishing data as products. And so instead of these really, you know, technology solutions, data sets, data tables, really thinking about the product and who's going to use it. The third one is really around self-service infrastructure. So you want everybody to be able to use those products. And finally, number four, it's really about federated and global governance. So even though their products, you really need to make sure that you're doing the right things, but what's data money. >>We're not talking about a single tool here, right? This is more of a, an approach, a solution. >>It is a data strategy first and foremost, right? So companies, they are multi-cloud, they have many projects going on, they are on premise. So what do you do about it? And so that's the reality of the situation today, and it's first and foremost, a business strategy and framework to think about the data. And then there's a new architecture that underlines and supports that >>Just didn't talk to me about when you're having customer conversations. Obviously organizations need to have a core data strategy that runs the business. They need to be able to, to democratize really truly democratized data access across all business units. What are some of the, what are some of your customer conversations like are customers really embracing the data strategy, vision and approach? >>Yeah, well, I think as you alluded to, you know, every business is data-driven today and the pandemic, if anything has accelerated digital transformation in that move to become data-driven. So it's imperative that every business of every shape and size really put the power of data in the hands of everyone within their organization. And I think part of what's making data mesh resonates so well, is that decentralization concept that Teresa spoke about? Like, I think companies acknowledge that data is inherently decentralized. They have a lot of different database systems, different teams and data mesh is a framework for thinking about that. Then not only acknowledges that reality, but also braces it and basically says there's actually advantages to this decentralized approach. And so I think that's, what's driving the interest level in the data mesh, uh, paradigm. And it's been exciting to work with customers as they think about that strategy. And I think that, you know, essentially every company in the space is, is in transition, whether they're moving from on cloud to the prem, uh, to, uh, sorry, from on-prem to the cloud or from one cloud to another cloud or undergoing that digital transformation, they have left behind data everywhere. And so they're, they're trying to wrestle with how to grasp that. >>And there's, we know that there's so much value in data. The, the need is to be able to get it, to be able to analyze it quickly in real time. I think another thing we learned in the pandemic is it real-time is no longer a nice to have. It is essential for businesses in every organization. So Theresa let's talk about how Accenture and servers are working together to take the data mesh from a concept of framework and put this into production into execution. >>Yeah. I mean, many clients are already doing some aspect of the data mesh as I listed those four attributes. I'm sure everybody thought like I'm already doing some of this. And so a lot of that is reviewing your existing data projects and looking at it from a data product landscape we're at Amazon, right? Amazon famous for being customer obsessed. So in data, we're not always customer obsessed. We put up tables, we put up data sets, feature stores. Who's actually going to use this data. What's the value from it. And I think that's a big change. And so a lot of what we're doing is helping apply that product lens, a literal product lens and thinking about the customer. >>So what are some w you know, we often talk about outcomes, everything being outcomes focused and customers, vendors wanting to help customers deliver big outcomes, you know, cost reduction, et cetera, things like that. How, what are some of the key outcomes Theresa that the data mesh framework unlocks for organizations in any industry to be able to leverage? >>Yeah. I mean, it really depends on the product. Some of it is organizational efficiency and data-driven decisions. So just by the able to see the data, see what's happening now, that's great. But then you have so beyond the, now what the, so what the analytics, right. Both predictive prescriptive analytics. So what, so now I have all this data I can analyze and drive and predict. And then finally, the, what if, if I have this data and my partners have this data in this mesh, and I can use it, I can ask a lot of what if and, and kind of game out scenarios about what if I did things differently, all of this in a very virtualized data-driven fashion, >>Right? Well, we've been talking about being data-driven for years and years and years, but it's one thing to say that it's a whole other thing to actually be able to put that into practice and to use it, to develop new products and services, delight customers, right. And, and really achieve the competitive advantage that businesses want to have. Just so talk to me about how your customer conversations have changed in the last 22 months, as we've seen this massive acceleration of digital transformation companies initially, really trying to survive and figure out how to pivot, not once, but multiple times. How are those customer conversations changing now is as that data strategy becomes core to the survival of every business and its ability to thrive. >>Yeah. I mean, I think it's accelerated everything and, and that's been obviously good for companies like us and like Accenture, cause there's a lot of work to be done out there. Um, but I think it's a transition from a storage centric mindset to more of an analytics centric mindset. You know, I think traditionally data warehousing has been all about moving data into one central place. And, and once you get it there, then you can analyze it. But I think companies don't have the time to wait for that anymore. Right there, there's no time to build all the ETL pipelines and maintain them and get all of that data together. We need to shorten that time to insight. And that's really what we, what we've been focusing on with our, with our customers, >>Shorten that time to insight to get that value out of the data faster. Exactly. Like I said, you know, the time is no longer a nice to have. It's an absolute differentiator for folks in every business. And as, as in our consumer lives, we have this expectation that we can get whatever we want on our phone, on any device, 24 by seven. And of course now in our business lives, we're having the same expectation, but you have to be able to unlock that access to that data, to be able to do the analytics, to make the decisions based on what the data say. Are you, are you finding our total? Let's talk about a little bit about the go to market strategy. You guys go in together. Talk to me about how you're working with AWS, Theresa, we'll start with you. And then Justin we'll head over to you. Okay. >>Well, a lot of this is powered by the cloud, right? So being able to imagine a new data business to run the analytics on it and then push it out, all of that is often cloud-based. But then the great thing about data mesh it's it gives you a framework to look at and tap into multi-cloud on-prem edge data, right? Data that can't be moved because it is a private and secure has to be at the edge and on-prem so you need to have that's their data reality. And the cloud really makes this easier to do. And then with data virtualization, especially coming from the digital natives, we know it scales >>Just to talk to me about it from your perspective that the GTL. >>Yeah. So, I mean, I think, uh, data mesh is really about people process and technology. I think Theresa alluded to it as a strategy. It's, it's more than just technology. Obviously we bring some of that technology to bear by allowing customers to query the data where it lives. But the people in process side is just as important training people to kind of think about how they do data management, data analytics differently is essential thinking about how to create data as a product. That's one of the core principles that Theresa mentioned, you know, that's where I think, um, you know, folks like Accenture can be really instrumental in helping people drive that transformational change within their organization. And that's >>Hard. Transformational change is hard with, you know, the last 22 months. I've been hard on everyone for every reason. How are you facilitating? I'm curious, like to get Theresa, we'll start with you, your perspectives on how our together as servers and Accenture, with the power of AWS, helping to drive that cultural change within organizations. Because like we talked about Justin there, nobody has extra time to waste on anything these days. >>The good news is there's that imperative, right? Every business is a digital business. We found that our technology leaders, right, the top 10% investors in digital, they are outperforming are the laggards. So before pandemic, it's times to post pep devek times five, so there's a need to change. And so data is really the heart of the company. That's how you unlock your technical debt into technical wealth. And so really using cloud and technologies like Starburst and data virtualization is how we can actually do that. >>And so how do you, Justin, how does Starburst help organizations transfer that technical debt or reduce it? How does the D how does the data much help facilitate that? Because we talk about technical debt and it can, it can really add up. >>Yeah, well, a lot of people use us, uh, or think about us as an abstraction layer above the different data sources that they have. So they may have legacy data sources today. Um, then maybe they want to move off of over time, um, could be classical data, warehouses, other classical, uh, relational databases, perhaps they're moving to the cloud. And by leveraging Starburst as this abstraction, they can query the data that they have today, while in the background, moving data into the cloud or moving it into the new data stores that they want to utilize. And it sort of hides that complexity. It decouples the end user experience, the business analyst, the data scientists from where the data lives. And I think that gives people a lot of freedom and a lot of optionality. And I think, you know, the only constant is change. Um, and so creating an architecture that can stand the test of time, I think is really, really important. >>Absolutely. Speaking of change, I just saw the announcement about Starburst galaxy fully managed SAS platform now available in all three major clouds. Of course, here we are at AWS. This is a, is this a big directional shift for servers? >>It is, you know, uh, I think there's great precedent within open source enterprise software companies like Mongo DB or confluent who started with a self managed product, much the way that we did, and then moved in the direction of creating a SAS product, a cloud hosted, fully managed product that really I think, expands the market. And that's really essentially what we're doing with galaxy galaxy is designed to be as easy as possible. Um, you know, Starburst was already powerful. This makes it powerful and easy. And, uh, and, and in our view, can, can hopefully expand the market to thousands of potential customers that can now leverage this technology in a, in a faster, easier way, >>Just in sticking with you for a minute. Talk to me about kind of where you're going in, where services heading in terms of support for the data mesh architecture across industries. >>Yeah. So a couple of things that we've, we've done recently, and whether we're doing, uh, as we speak, one is, uh, we introduced a new capability. We call star gate. Now star gate is a connector between Starburst clusters. So you're going to have a Starbucks cluster, and let's say Azure service cluster in AWS, a Starbucks cluster, maybe an AWS west and AWS east. And this basically pushes the processing to where the data lives. So again, living within this construct of, uh, of decentralized data that a data mesh is all about, this allows you to do that at an even greater level of abstraction. So it doesn't even matter what cloud region the data lives in or what cloud entirely it lives in. And there are a lot of important applications for this, not only latency in terms of giving you fast, uh, ability to join across those different clouds, but also, uh, data sovereignty constraints, right? >>Um, increasingly important, especially in Europe, but increasingly everywhere. And, you know, if your data isn't Switzerland, it needs to stay in Switzerland. So starting date as a way of pushing the processing to Switzerland. So you're minimizing the data that you need to pull back to complete your analysis. And, uh, and so we think that's a big deal about, you know, kind of enabling a data mash on a, on a global scale. Um, another thing we're working on back to the point of data products is how do customers curate and create these data products and share them within their organization. And so we're investing heavily in our product to make that easier as well, because I think back to one of the things, uh, Theresa said, it's, it's really all about, uh, making this practical and finding quick wins that customers can deploy, deploy in their data mess journey, right? >>This quick wins are key. So Theresa, last question to you, where should companies go to get started today? Obviously everybody has gotten, we're still in this work from anywhere environment. Companies have tons of data, tons of sources of data, did it, infrastructure's already in place. How did they go and get started with data? >>I think they should start looking at their data projects and thinking about the best data products. I think just that mindset shift about thinking about who's this for what's the business value. And then underneath that architecture and support comes to bear. And then thinking about who are the products that your product could work better with just like any other practice partnerships, like what we have with AWS, right? Like that's a stronger together sort of thing, >>Right? So there's that kind of that cultural component that really strategic shift in thinking and on the architecture. Awesome guys, thank you so much for joining me on the program, coming back on the cube at re-invent talking about data mesh really help. You can help organizations and industry put that together and what's going on at service. We appreciate your time. Thanks again. All right. For my guests, I'm Lisa Martin, you're watching the cubes coverage of AWS reinvent 2021. The cube is the leader in global live tech coverage. We'll be right back.

Published Date : Nov 30 2021

SUMMARY :

Good to have you back. Well, I get to think about the future of cloud and if you think about clouded powers, I know service has been on the program before, but give me a little bit of an overview of the company, what you guys do. And it's how Facebook and Netflix and Airbnb and, and a number of the internet And that's one of the things we've seen explode during the last 22 months, among many other things is data, So even though their products, you really need to make sure that you're doing the right things, but what's data money. This is more of a, an approach, And so that's the reality of the situation today, and it's first and foremost, Just didn't talk to me about when you're having customer conversations. And I think that, you know, essentially every company in the space is, The, the need is to be able to get it, And so a lot of that is reviewing your existing data projects So what are some w you know, we often talk about outcomes, So just by the able to see the data, see what's happening now, that's great. Just so talk to me about how your customer conversations have changed in the last 22 But I think companies don't have the time to wait for that anymore. Let's talk about a little bit about the go to market strategy. And the cloud really makes this easier to do. That's one of the core principles that Theresa mentioned, you know, that's where I think, I'm curious, like to get Theresa, we'll start with you, your perspectives on how And so data is really the heart of the company. And so how do you, Justin, how does Starburst help organizations transfer that technical And I think, you know, the only constant is change. This is a, is this a big directional can, can hopefully expand the market to thousands of potential customers that can now leverage Talk to me about kind of where you're going in, where services heading in the processing to where the data lives. And, uh, and so we think that's a big deal about, you know, kind of enabling a data mash So Theresa, last question to you, where should companies go to get started today? And then thinking about who are the products that your product could work better with just like any other The cube is the leader in global live tech coverage.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

TheresaPERSON

0.99+

AWSORGANIZATION

0.99+

Teresa TungPERSON

0.99+

Justin BorkmanPERSON

0.99+

Justin BorgmanPERSON

0.99+

TeresaPERSON

0.99+

AmazonORGANIZATION

0.99+

JustinPERSON

0.99+

EuropeLOCATION

0.99+

SwitzerlandLOCATION

0.99+

StarburstORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

SecondQUANTITY

0.99+

thousandsQUANTITY

0.99+

NetflixORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

third oneQUANTITY

0.99+

pandemicEVENT

0.98+

four attributesQUANTITY

0.98+

BothQUANTITY

0.98+

todayDATE

0.98+

24QUANTITY

0.98+

firstQUANTITY

0.98+

AirbnbORGANIZATION

0.98+

over 220 patentsQUANTITY

0.97+

over a hundred guestsQUANTITY

0.97+

2021DATE

0.97+

oneQUANTITY

0.96+

StarbucksORGANIZATION

0.96+

single partnerQUANTITY

0.96+

PrestoORGANIZATION

0.96+

single lineQUANTITY

0.96+

sevenQUANTITY

0.95+

confluentORGANIZATION

0.95+

10%QUANTITY

0.94+

one central placeQUANTITY

0.94+

one thingQUANTITY

0.93+

single toolQUANTITY

0.92+

day twoQUANTITY

0.92+

next decadeDATE

0.92+

single entityQUANTITY

0.92+

star gateTITLE

0.92+

Mongo DBORGANIZATION

0.91+

last 22 monthsDATE

0.91+

two lifeQUANTITY

0.91+

StarburstTITLE

0.88+

last 22 monthsDATE

0.87+

Starburst panel Q3


 

>>Okay. We're back with Justin Boorman CEO of Starburst. Richard Jarvis is the CTO of EMI health and Teresa tongue is the cloud first technologist from Accenture. We're on July number three. And that is the claim that today's modern data stack is actually modern. So I guess that's the lie or it's it is it's is that it's not modern, Justin, what do you say? >>Yeah, I mean, I think new isn't modern, right? I think it's, the's the new data stack. It's the cloud data stack, but that doesn't necessarily mean it's modern. I think a lot of the components actually are exactly the same as what we've had for 40 years, rather than Terra data. You have snowflake rather than Informatica you have five trend. So it's the same general stack, just, you know, a cloud version of it. And I think a lot of the challenges that it plagued us for 40 years still maintain. >>So lemme come back to you just this, but okay. But, but there are differences, right? I mean, you can scale, you can throw resources at the problem. You can separate compute from storage. You really, you know, there's a lot of money being thrown at that by venture capitalists and snowflake, you mentioned it's competitors. So that's different. Is it not, is that not at least an aspect of, of modern dial it up, dial it down. So what, what do you say to that? >>Well, it, it is, it's certainly taking, you know, what the cloud offers and taking advantage of that, but it's important to note that the cloud data warehouses out there are really just separating their compute from their storage. So it's allowing them to scale up and down, but your data's still stored in a proprietary format. You're still locked in. You still have to ingest the data to get it even prepared for analysis. So a lot of the same sort of structural constraints that exist with the old enterprise data warehouse model OnPrem still exists just, yes, a little bit more elastic now because the cloud offers that. >>So Theresa, let me go to you cuz you have cloud first in your, in your, your title. So what's what say you to this conversation? >>Well, even the cloud providers are looking towards more of a cloud continuum, right? So the centralized cloud, as we know it, maybe data lake data warehouse in the central place, that's not even how the cloud providers are looking at it. They have news query services. Every provider has one that really expands those queries to be beyond a single location. And if we look at a lot of where our, the future goes, right, that that's gonna very much fall the same thing. There was gonna be more edge. There's gonna be more on premise because of data sovereignty, data gravity, because you're working with different parts of the business that have already made major cloud investments in different cloud providers. Right? So there's a lot of reasons why the modern, I guess the next modern generation of the data staff needs to be much more federated. >>Okay. So Richard, how do you deal with this? You you've obviously got, you know, the technical debt, the existing infrastructure it's on the books. You don't wanna just throw it out. A lot of, lot of conversation about modernizing applications, which a lot of times is a, you know, of microservices layer on top of leg legacy apps. Ho how do you think about the modern data stack? >>Well, I think probably the first thing to say is that the stack really has to include the processes and people around the data as well is all well and good changing the technology. But if you don't modernize how people use that technology, then you're not going to be able to, to scale because just cuz you can scale CPU and storage doesn't mean you can get more people to use your data, to generate you more value for the business. And so what we've been looking at is really changing in very much aligned to data products and, and data mesh. How do you enable more people to consume the service and have the stack respond in a way that keeps costs low? Because that's important for our customers consuming this data, but also allows people to occasionally run enormous queries and then tick along with smaller ones when required. And it's a good job we did because during COVID all of a sudden we had enormous pressures on our data platform to answer really important life threatening queries. And if we couldn't scale both our data stack and our teams, we wouldn't have been able to answer those as quickly as we had. So I think the stack needs to support a scalable business, not just the technology itself. >>Oh thank you for that. So Justin let's, let's try to break down what the critical aspects are of the modern data stack. So you think about the past, you know, five, seven years cloud obviously has given a different pricing model. Drisk experimentation, you know that we talked about the ability to scale up scale down, but it's, I'm, I'm taking away that that's not enough based on what Richard just said. The modern data stack has to serve the business and enable the business to build data products. I, I buy that I'm, you know, a big fan of the data mesh concepts, even though we're early days. So what are the critical aspects if you had to think about, you know, the paying, maybe putting some guardrails and definitions around the modern data stack, what does that look like? What are some of the attributes and principles there >>Of, of how it should look like or, or how >>Yeah. What it should be? >>Yeah. Yeah. Well, I think, you know, in Theresa mentioned this in, in a previous segment about the data warehouse is not necessarily going to disappear. It just becomes one node, one element of the overall data mesh. And I, I certainly agree with that. So by no means, are we suggesting that, you know, snowflake or Redshift or whatever cloud data warehouse you may be using is going to disappear, but it's, it's not going to become the end all be all. It's not the, the central single source of truth. And I think that's the paradigm shift that needs to occur. And I think it's also worth noting that those who were the early adopters of the modern data stack were primarily digital, native born in the cloud young companies who had the benefit of, of idealism. They had the benefit of starting with a clean slate that does not reflect the vast majority of enterprises. >>And even those companies, as they grow up mature out of that ideal state, they go by a business. Now they've got something on another cloud provider that has a different data stack and they have to deal with that heterogeneity that is just change and change is a part of life. And so I think there is an element here that is almost philosophical. It's like, do you believe in an absolute ideal where I can just fit everything into one place or do I believe in reality? And I think the far more pragmatic approach is really what data mesh represents. So to answer your question directly, I think it's adding, you know, the ability to access data that lives outside of the data warehouse, maybe living in open data formats in a data lake or accessing operational systems as well. Maybe you want to directly access data that lives in an Oracle database or a Mongo database or, or what have you. So creating that flexibility to really Futureproof yourself from the inevitable change that you will, you won't encounter over time. >>So thank you. So there, based on what Justin just said, I, I might take away there is it's inclusive, whether it's a data Mart, data hub, data lake data warehouse, it's a, just a node on the mesh. Okay. I get that. Does that include Theresa on, on Preem data? Obviously it has to, what are you seeing in terms of the ability to, to take that data mesh concept on pre I mean most implementations I've seen and data mesh, frankly really aren't, you know, adhering to the philosophy there. Maybe, maybe it's data lake and maybe it's using glue. You look at what JPMC is doing. Hello, fresh, a lot of stuff happening on the AWS cloud in that, you know, closed stack, if you will. What's the answer to that Theresa? >>I mean, I, I think it's a killer case for data mesh. The fact that you have valuable data sources, OnPrem, and then yet you still wanna modernize and take the best of cloud cloud is still, like we mentioned, there's a lot of great reasons for it around the economics and the way ability to tap into the innovation that the cloud providers are giving around data and AI architecture. It's an easy button. So the mesh allows you to have the best of both world. You can start using the data products on-prem or in the existing systems that are working already. It's meaningful for the business. At the same time, you can modernize the ones that make business sense because it needs better performance. It needs, you know, something that is, is cheaper or, or maybe just tap into better analytics to get better insights, right? So you're gonna be able to stretch and really have the best of both worlds that, again, going back to Richard's point, that is needful by the business. Not everything has to have that one size fits all set a tool. >>Okay. Thank you. So Richard, you know, you're talking about data as product. Wonder if we could give us your perspectives here, what are the advantages of treating data as a product? What, what role do data products have in the modern data stack? We talk about monetizing data. What are your thoughts on data products? >>So for us, one of the most important data products that we've been creating is taking data that is healthcare data across a wide variety of different settings. So information about patients' demographics about their, their treatment, about their medications and so on, and taking that into a standards format that can be utilized by a wide variety of different researchers because misinterpreting that data or having the data not presented in the way that the user is expecting means that you generate the wrong insight and in any business, that's clearly not a desirable outcome, but when that insight is so critical, as it might be in healthcare or some security settings, you really have to have gone to the trouble of understanding the data, presenting it in a format that everyone can clearly agree on. And then letting people consume in a very structured and managed way, even if that data comes from a variety of different sources in, in, in the first place. And so our data product journey has really begun by standardizing data across a number of different silos through the data mesh. So we can present out both internally and through the right governance externally to, to research is >>So that data product through whatever APIs is, is accessible, it's discoverable, but it's obviously gotta be governed as well. You mentioned appropriately provided to internally. Yeah. But also, you know, external folks as well. So the, so you've, you've architected that capability today >>We have and because the data is standard, it can generate value much more quickly and we can be sure of the security and, and, and value that that's providing because the data product isn't just about formatting the data into the right, correct tables, it's understanding what it means to redact the data or to remove certain rows from it or to interpret what a date actually means. Is it the start of the contract or the start of the treatment or the date of birth of a patient? These things can be lost in the data storage without having the proper product management around the data to say in a very clear business context, what does this data mean? And what does it mean to process this data for a particular use >>Case? Yeah, it makes sense. It's got the context. If the, if the domains on the data, you, you gotta cut through a lot of the, the, the centralized teams, the technical teams that, that data agnostic, they don't really have that context. All right. Let's end, Justin, how does Starburst fit into this modern data stack? Bring us home. >>Yeah. So I think for us, it's really providing our customers with, you know, the flexibility to operate and analyze data that lives in a wide variety of different systems. Ultimately giving them that optionality, you know, and optionality provides the ability to reduce costs, store more in a data lake rather than data warehouse. It provides the ability for the fastest time to insight to access the data directly where it lives. And ultimately with this concept of data products that we've now, you know, incorporated into our offering as well, you can really create and, and curate, you know, data as a product to be shared and consumed. So we're trying to help enable the data mesh, you know, model and make that an appropriate compliment to, you know, the, the, the modern data stack that people have today. >>Excellent. Hey, I wanna thank Justin Teresa and Richard for joining us today. You guys are great. I big believers in the, in the data mesh concept, and I think, you know, we're seeing the future of data architecture. So thank you. Now, remember, all these conversations are gonna be available on the cube.net for on-demand viewing. You can also go to starburst.io. They have some great content on the website and they host some really thought provoking interviews and, and, and they have awesome resources, lots of data mesh conversations over there, and really good stuff in, in the resource section. So check that out. Thanks for watching the data doesn't lie or does it made possible by Starburst data? This is Dave ante for the, and we'll see you next time.

Published Date : Aug 2 2022

SUMMARY :

And that is the claim that today's So it's the same general stack, So lemme come back to you just this, but okay. So a lot of the same sort of structural So Theresa, let me go to you cuz you have cloud first in your, in your, So the centralized cloud, as we know it, maybe data lake data warehouse in the central place, a, you know, of microservices layer on top of leg legacy apps. you can get more people to use your data, to generate you more value for the business. So you think about the past, you know, five, seven years cloud obviously has given And I think that's the paradigm shift that needs to occur. from the inevitable change that you will, you won't encounter over time. and data mesh, frankly really aren't, you know, adhering to So the mesh allows you to have the best of both world. So Richard, you know, you're talking about data as product. that data or having the data not presented in the way that the user But also, you know, external folks as well. the proper product management around the data to say in a very clear business It's got the context. So we're trying to help enable the data mesh, you know, I big believers in the, in the data mesh concept, and I think, you know,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
RichardPERSON

0.99+

TheresaPERSON

0.99+

Richard JarvisPERSON

0.99+

JustinPERSON

0.99+

Justin BoormanPERSON

0.99+

DavePERSON

0.99+

AWSORGANIZATION

0.99+

fiveQUANTITY

0.99+

40 yearsQUANTITY

0.99+

StarburstORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

40 yearsQUANTITY

0.99+

JPMCORGANIZATION

0.99+

bothQUANTITY

0.99+

Justin TeresaPERSON

0.99+

both worldsQUANTITY

0.99+

todayDATE

0.98+

first thingQUANTITY

0.98+

TeresaPERSON

0.98+

first technologistQUANTITY

0.98+

OracleORGANIZATION

0.98+

firstQUANTITY

0.98+

one elementQUANTITY

0.97+

InformaticaORGANIZATION

0.97+

cube.netOTHER

0.97+

MongoORGANIZATION

0.97+

starburst.ioOTHER

0.96+

seven yearsQUANTITY

0.95+

oneQUANTITY

0.95+

data MartORGANIZATION

0.91+

one placeQUANTITY

0.88+

both worldQUANTITY

0.85+

COVIDTITLE

0.83+

single locationQUANTITY

0.8+

OnPremORGANIZATION

0.8+

TerraORGANIZATION

0.77+

single sourceQUANTITY

0.74+

one sizeQUANTITY

0.73+

EMI healthORGANIZATION

0.73+

July numberDATE

0.7+

dataORGANIZATION

0.64+

five trendQUANTITY

0.63+

moneyQUANTITY

0.51+

threeQUANTITY

0.37+