Image Title

Search Results for Jordan Plum:

HPE Compute Engineered for your Hybrid World-Containers to Deploy Higher Performance AI Applications


 

>> Hello, everyone. Welcome to theCUBE's coverage of "Compute Engineered for your Hybrid World," sponsored by HPE and Intel. Today we're going to discuss the new 4th Gen Intel Xeon Scalable process impact on containers and AI. I'm John Furrier, your host of theCUBE, and I'm joined by three experts to guide us along. We have Jordan Plum, Senior Director of AI and products for Intel, Bradley Sweeney, Big Data and AI Product Manager, Mainstream Compute Workloads at HPE, and Gary Wang, Containers Product Manager, Mainstream Compute Workloads at HPE. Welcome to the program gentlemen. Thanks for coming on. >> Thanks John. >> Thank you for having us. >> This segment is going to be talking about containers to deploy high performance AI applications. This is a really important area right now. We're seeing a lot more AI deployed, kind of next gen AI coming. How is HPE supporting and testing and delivering containers for AI? >> Yeah, so what we're doing from HPE's perspective is we're taking these container platforms, combining with the next generation Intel servers to fully validate the deployment of the containers. So what we're doing is we're publishing the reference architectures. We're creating these automation scripts, and also creating a monitoring and security strategy for these container platforms. So for customers to easily deploy these Kubernete clusters and to easily secure their community environments. >> Gary, give us a quick overview of the new Proliant DL 360 and 380 Gen 11 servers. >> Yeah, the load, for example, for container platforms what we're seeing mostly is the DL 360 and DL 380 for matching really well for container use cases, especially for AI. The DL 360, with the expended now the DDR five memory and the new PCI five slots really, really helps the speeds to deploy these container environments and also to grow the data that's required to store it within these container environments. So for example, like the DL 380 if you want to deploy a data fabric whether it's the Ezmeral data fabric or different vendors data fabric software you can do so with the DL 360 and DL 380 with the new Intel Xeon processors. >> How does HP help customers with Kubernetes deployments? >> Yeah, like I mentioned earlier so we do a full validation to ensure the container deployment is easy and it's fast. So we create these automation scripts and then we publish them on GitHub for customers to use and to reference. So they can take that and then they can adjust as they need to. But following the deployment guide that we provide will make the, deploy the community deployment much easier, much faster. So we also have demo videos that's also published and then for reference architecture document that's published to guide the customer step by step through the process. >> Great stuff. Thanks everyone. We'll be going to take a quick break here and come back. We're going to do a deep dive on the fourth gen Intel Xeon scalable process and the impact on AI and containers. You're watching theCUBE, the leader in tech coverage. We'll be right back. (intense music) Hey, welcome back to theCUBE's continuing coverage of "Compute Engineered for your Hybrid World" series. I'm John Furrier with the Cube, joined by Jordan Plum with Intel, Bradley Sweeney with HPE, and Gary Wang from HPE. We're going to do a drill down and do a deeper dive into the AI containers with the fourth gen Intel Xeon scalable processors we appreciate your time coming in. Jordan, great to see you. I got to ask you right out of the gate, what is the view right now in terms of Intel's approach to containers for AI? It's hot right now. AI is booming. You're seeing kind of next gen use cases. What's your approach to containers relative to AI? >> Thanks John and thanks for the question. With the fourth generation Xeon scalable processor launch we have tested and validated this platform with over 400 deep learning and machine learning models and workloads. These models and workloads are publicly available in the framework repositories and they can be downloaded by anybody. Yet customers are not only looking for model validation they're looking for model performance and performance is usually a combination of a given throughput at a target latency. And to do that in the data center all the way to the factory floor, this is not always delivered from these generic proxy models that are publicly available in the industry. >> You know, performance is critical. We're seeing more and more developers saying, "Hey, I want to go faster on a better platform, faster all the time." No one wants to run slower stuff, that's for sure. Can you talk more about the different container approaches Intel is pursuing? >> Sure. First our approach is to meet the customers where they are and help them build and deploy AI everywhere. Some customers just want to focus on deployment they have more mature use cases, and they just want to download a model that works that's high performing and run. Others are really focused more on development and innovation. They want to build and train models from scratch or at least highly customize them. Therefore we have several container approaches to accelerate the customer's time to solution and help them meet their business SLA along their AI journey. >> So what developers can just download these containers and just go? >> Yeah, so let me talk about the different kinds of containers we have. We start off with pre-trained containers. We'll have about 55 or more of these containers where the model is actually pre-trained, highly performant, some are optimized for low latency, others are optimized for throughput and the customers can just download these from Intel's website or from HPE and they can just go into production right away. >> That's great. A lot of choice. People can just get jump right in. That's awesome. Good, good choice for developers. They want more faster velocity. We know that. What else does Intel provide? Can you share some thoughts there? What you guys else provide developers? >> Yeah, so we talked about how hey some are just focused on deployment and they maybe they have more mature use cases. Other customers really want to do some more customization or optimization. So we have another class of containers called development containers and this includes not just the kind of a model itself but it's integrated with the framework and some other capabilities and techniques like model serving. So now that customers can download just not only the model but an entire AI stack and they can be sort of do some optimizations but they can also be sure that Intel has optimized that specific stack on top of the HPE servers. >> So it sounds simple to just get started using the DL model and containers. Is that it? Where, what else are customers looking for? What can you take a little bit deeper? >> Yeah, not quite. Well, while the customer customer's ability to reproduce performance on their site that HPE and Intel have measured in our own labs is fantastic. That's not actually what the customer is only trying to do. They're actually building very complex end-to-end AI pipelines, okay? And a lot of data scientists are really good at building models, really good at building algorithms but they're less experienced in building end-to-end pipelines especially 'cause the number of use cases end-to-end are kind of infinite. So we are building end-to-end pipeline containers for use cases like media analytics and sentiment analysis, anomaly detection. Therefore a customer can download these end-to-end containers, right? They can either use them as a reference, just like, see how we built them and maybe they have some changes in their own data center where they like to use different tools, but they can just see, "Okay this is what's possible with an end-to-end container on top of an HPE server." And other cases they could actually, if the overlap in the use case is pretty close, they can just take our containers and go directly into production. So this provides developers, all three types of containers that I discussed provide developers an easy starting point to get them up and running quickly and make them productive. And that's a really important point. You talked a lot about performance, John. But really when we talk to data scientists what they really want to be is productive, right? They're under pressure to change the business to transform the business and containers is a great way to get started fast >> People take product productivity, you know, seriously now with developer productivity is the hottest trend obviously they want performance. Totally nailed it. Where can customers get these containers? >> Right. Great, thank you John. Our pre-trained model containers, our developmental containers, and our end-to-end containers are available at intel.com at the developer catalog. But we'd also post these on many third party marketplaces that other people like to pull containers from. And they're frequently updated. >> Love the developer productivity angle. Great stuff. We've still got more to discuss with Jordan, Bradley, and Gary. We're going to take a short break here. You're watching theCUBE, the leader in high tech coverage. We'll be right back. (intense music) Welcome back to theCUBE's coverage of "Compute Engineered for your Hybrid World." I'm John Furrier with theCUBE and we'll be discussing and wrapping up our discussion on containers to deploy high performance AI. This is a great segment on really a lot of demand for AI and the applications involved. And we got the fourth gen Intel Xeon scalable processors with HP Gen 11 servers. Bradley, what is the top AI use case that Gen 11 HP Proliant servers are optimized for? >> Yeah, thanks John. I would have to say intelligent video analytics. It's a use case that's supplied across industries and verticals. For example, a smart hospital solution that we conducted with Nvidia and Artisight in our previous customer success we've seen 5% more hospital procedures, a 16 times return on investment using operating room coordination. With that IVA, so with the Gen 11 DL 380 that we provide using the the Intel four gen Xeon processors it can really support workloads at scale. Whether that is a smart hospital solution whether that's manufacturing at the edge security camera integration, we can do it all with Intel. >> You know what's really great about AI right now you're starting to see people starting to figure out kind of where the value is does a lot of the heavy lifting on setting things up to make humans more productive. This has been clearly now kind of going neck level. You're seeing it all in the media now and all these new tools coming out. How does HPE make it easier for customers to manage their AI workloads? I imagine there's going to be a surge in demand. How are you guys making it easier to manage their AI workloads? >> Well, I would say the biggest way we do this is through GreenLake, which is our IT as a service model. So customers deploying AI workloads can get fully-managed services to optimize not only their operations but also their spending and the cost that they're putting towards it. In addition to that we have our Gen 11 reliance servers equipped with iLO 6 technology. What this does is allows customers to securely manage their server complete environment from anywhere in the world remotely. >> Any last thoughts or message on the overall fourth gen intel Xeon based Proliant Gen 11 servers? How they will improve workload performance? >> You know, with this generation, obviously the performance is only getting ramped up as the needs and requirements for customers grow. We partner with Intel to support that. >> Jordan, gimme the last word on the container's effect on AI applications. Your thoughts as we close out. >> Yeah, great. I think it's important to remember that containers themselves don't deliver performance, right? The AI stack is a very complex set of software that's compiled together and what we're doing together is to make it easier for customers to get access to that software, to make sure it all works well together and that it can be easily installed and run on sort of a cloud native infrastructure that's hosted by HPE Proliant servers. Hence the title of this talk. How to use Containers to Deploy High Performance AI Applications. Thank you. >> Gentlemen. Thank you for your time on the Compute Engineered for your Hybrid World sponsored by HPE and Intel. Again, I love this segment for AI applications Containers to Deploy Higher Performance. This is a great topic. Thanks for your time. >> Thank you. >> Thanks John. >> Okay, I'm John. We'll be back with more coverage. See you soon. (soft music)

Published Date : Dec 27 2022

SUMMARY :

Welcome to the program gentlemen. and delivering containers for AI? and to easily secure their of the new Proliant DL 360 and also to grow the data that's required and then they can adjust as they need to. and the impact on AI and containers. And to do that in the about the different container and they just want to download a model and they can just go into A lot of choice. and they can be sort of So it sounds simple to just to use different tools, is the hottest trend to pull containers from. on containers to deploy we can do it all with Intel. for customers to manage and the cost that they're obviously the performance on the container's effect How to use Containers on the Compute Engineered We'll be back with more coverage.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jordan PlumPERSON

0.99+

GaryPERSON

0.99+

JohnPERSON

0.99+

NvidiaORGANIZATION

0.99+

Gary WangPERSON

0.99+

BradleyPERSON

0.99+

HPEORGANIZATION

0.99+

John FurrierPERSON

0.99+

16 timesQUANTITY

0.99+

5%QUANTITY

0.99+

JordanPERSON

0.99+

ArtisightORGANIZATION

0.99+

DL 360COMMERCIAL_ITEM

0.99+

IntelORGANIZATION

0.99+

three expertsQUANTITY

0.99+

DL 380COMMERCIAL_ITEM

0.99+

HPORGANIZATION

0.99+

Compute Engineered for your Hybrid WorldTITLE

0.98+

FirstQUANTITY

0.98+

Bradley SweeneyPERSON

0.98+

over 400 deep learningQUANTITY

0.97+

intelORGANIZATION

0.97+

theCUBEORGANIZATION

0.96+

Gen 11 DL 380COMMERCIAL_ITEM

0.95+

XeonCOMMERCIAL_ITEM

0.95+

TodayDATE

0.95+

fourth genQUANTITY

0.92+

GitHubORGANIZATION

0.91+

380 Gen 11COMMERCIAL_ITEM

0.9+

about 55 or moreQUANTITY

0.89+

four gen XeonCOMMERCIAL_ITEM

0.88+

Big DataORGANIZATION

0.88+

Gen 11COMMERCIAL_ITEM

0.87+

five slotsQUANTITY

0.86+

ProliantCOMMERCIAL_ITEM

0.84+

GreenLakeORGANIZATION

0.75+

Compute Engineered for your HybridTITLE

0.7+

EzmeralORGANIZATION

0.68+